
Fusing a Transformation Language with an
Open Compiler

Karl Trygve Kalleberg 1

Department of Informatics, University of Bergen,
P.O. Box 7800, N-5020 BERGEN, Norway

Eelco Visser 2

Department of Software Technology, Faculty of Electrical Engineering, Mathematics and Computer
Science, Delft University of Technology, The Netherlands

Abstract

Program transformation systems provide powerful analysis and transformation frameworks as well as con-
cise languages for language processing, but instantiating them for every subject language is an arduous
task, most often resulting in half-completed frontends. Compilers provide mature frontends with robust
parsers and type checkers, but solving language processing problems in general-purpose languages without
transformation libraries is tedious. Reusing these frontends with existing transformation systems is there-
fore attractive. However, for this reuse to be optimal, the functional logic found in the frontend should be
exposed to the transformation system – simple data serialization of the abstract syntax tree is not enough,
since this fails to expose important compiler functionality, such as import graphs, symbol tables and the
type checker.
In this paper, we introduce a novel and general technique for combining term-based transformation systems
with existing language frontends. The technique is presented in the context of a scriptable analysis and
transformation framework for Java built on top of the Eclipse Java compiler. The framework consists of an
adapter automatically extracted from the abstract syntax tree of the compiler and an interpreter for the
Stratego program transformation language. The adapter allows the Stratego interpreter to rewrite directly
on the compiler AST. We illustrate the applicability of our system with scripts written in Stratego that
perform framework and library-specific analyses and transformations.

Keywords: compiler scripting; strategic programming; program transformation

1 Introduction

Developing and maintaining frameworks and libraries is at the core of software de-
velopment: all domain abstractions of software applications are invariably encoded
into libraries of a given programming language. Maintenance of this code involves
various language processing tools such as compilers, editors, source code navigators,

1 Email: karltk@ii.uib.no
2 Email: visser@acm.org

Electronic Notes in Theoretical Computer Science 203 (2008) 21–36

1571-0661 © 2008 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.03.042
Open access under CC BY-NC-ND license.

mailto:karltk@ii.uib.no
mailto:visser@acm.org
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

documentation generators, style checkers and static analysis tools. Unfortunately,
most of these tools only have a fixed repertoire of functionality which seldom cov-
ers all the needs of the developer of a given library or framework. Relatively few
processing tools can quickly and easily be programmed, extended or adapted by
the library developer. This often drives developers to implement many additional,
text-based tools from scratch. A preferable solution would be for library developers
to quickly write custom scripts in a suitable scripting language and thus imple-
ment analyses and transformations specific to their own code bases, such as style
checking and library-specific optimizations. Domain-specific languages (DSLs) for
program analysis and transformations are attractive candidates for expressing these
scripts, since DSLs allow precise and concise formulations. However, the DSLs are
rarely coupled with robust and mature parsers and type analyzers. Open compilers
are also attractive because they provide solid parsers and type analyses, but im-
plementing analyses and transformation in their general-purpose languages is often
very time-consuming.

In this paper, we obtain the best of both worlds by combining Stratego, a DSL
for program transformation and the open Eclipse Compiler for Java (ECJ), using
a program object model (POM) adapter. The POM adapter welds together the
Stratego runtime and the ECJ abstract syntax tree (AST) by translating Stratego
rewriting operations on-the-fly to suitable method calls on the AST API. This obvi-
ates the need for data serialization. The technique can be applied to many tree-like
APIs, and is reusable for other rewriting systems. Using the POM adapter, Stratego
becomes a compiler scripting language, offering its powerful features for analysis and
transformation such as pattern matching, rewrite rules, generic tree traversals, and
a reusable library of generic transformation functions and data-flow analysis. This
combination is a powerful platform for programming domain-specific analyses and
transformations. We argue that the system can be wielded by advanced developers
and framework providers because large and interesting classes of domain-specific
analyses and transformations can be expressed by reusing the transformation li-
braries provided with Stratego.

The contributions of this paper include the fusing of a DSL for language process-
ing with an open compiler without resorting to data serialization. This brings the
analysis and transformation capabilities of modern compiler infrastructure into the
hands of advanced developers through a convenient and feature-rich transformation
language. The technique is reusable for other transformation languages. It may help
make transformation tools and techniques practical and reusable both by compiler
designers and by framework developers, since it directly integrates them with stable
tools like the Java compiler – developers can write interesting classes of analyses
and transformations easily and compiler designers can experiment with prototypes
of analyses and transformations before committing to a final implementation. We
validate the system’s applicability through a series of examples taken from mature
and well-designed applications and frameworks.

The remainder of this paper is organized as follows: In Sec. 2, we discuss the
POM adapter and how it connects Stratego with ECJ. In Sec. 3, we show the

K.T. Kalleberg, E. Visser / Electronic Notes in Theoretical Computer Science 203 (2008) 21–3622

practical applicability of our prototype on a series of common, framework-specific
analysis and transformation problems. In Sec. 4, we discuss the implementation
details of our prototype. In Sec. 5, we cover related work. In Sec. 6, we discuss
some trade-offs related to our technique before we conclude in Sec. 7.

2 The Program Object Model Adapter

The program object model adapter is the linchpin in the composition of the compiler
and the program transformation language. A program object model (POM) is our
name for the object model representing a program in the compiler. This is typically
an AST with symbol tables and other auxiliary data structures, such as import
graphs. The POM adapter translates the primitive rewriting operations of the
rewriting engine to method calls on the POM API.

�������	
������	��	����

�������	��������

���	������
���	�����

�������	���	�����

���	� �!	 ��"

Fig 2: Architecture.

Consider Fig. 2 which shows the principal components
of our system. At the bottom, the ECJ provides an AST
API for modifying and inspecting its internal program
object model. The AST is implemented in a traditional
object-oriented style. Each node type in the AST, such
as CompilationUnit is represented by a concrete class.
Children of a node can be retrieved using get-methods
and replaced using set-methods. New nodes can be con-
structed using methods, such as
newCompilationUnit(), in the AST factory.

The Stratego interpreter is a rewriting engine, or runtime, for the Stratego term
rewriting language (introduced below), written in Java. It executes scripts compiled
to an abstract machine. The crucial feature of the interpreter is that it abstracts
over the actual term implementation. Any data structure that can provide a suitable
interface may be treated as terms and be rewritten. The job of the POM adapter
is to adapt tree-like data structures so that they can be transformed with Stratego.
This is done by wrapping a POM in the term interface required by the interpreter.
The adapter translates term rewriting operations to POM API method calls that
are executed directly on the POM, without any intermediate data serialization.

The interpreter also has a facility for calling foreign functions, i.e. functions
implemented in Java. The interface between Stratego and ECJ includes a small
foreign function interface (FFI) that exposes parts of the native Eclipse AST API
as Stratego library functions. These allow Stratego scripts to ask for the type of a
suitable node using type-of, the supertype using supertype-of, and more.

Our prototype system is available as a stand-alone, command-line application
based on Eclipse, and as a reusable Eclipse plugin. In stand-alone mode, the system
performs source-to-source transformation. The user supplies the path of a project
and a script to execute. The scripts use the FFI to traverse the project directories
and to parse source files, to obtain their AST. After rewriting, the scripts use the
FFI to write modified ASTs back to disk, as source code. In plugin mode, interpreter

K.T. Kalleberg, E. Visser / Electronic Notes in Theoretical Computer Science 203 (2008) 21–36 23

objects may be instantiated with arbitrary scripts. Scripts are executed directly on
individual ASTs by calling execute methods on the interpreter object. This allows
scripts to be used for very fine-grained source code queries and transformations
inside the Eclipse environment

2.1 Scripting in Stratego

Stratego is a DSL for language processing based on the paradigm of strategic term
rewriting. In our context, terms are essential equivalent to ASTs. Stratego has
language constructs that make it well-suited for language processing, such as pat-
tern matching, generic tree traversals, rewrite rules and powerful combinators for
expressing strategies for rewriting and analysis. Essential constructs of Stratego are
explained below.

Patterns are written using prefix notation on the form SimpleName("b"),
and can contain variables, e.g. SimpleName(n), where n is a term variable.
A term is a pattern that does not contain variables. Lists are written as
[1,2,3]. Terms are built (instantiated) from patterns using the build operator
(!): !MethodInvocation(obj, name, [], []), where obj and name are variables.
Operators are applied to an implicit current term; a build replaces the current term.
Patterns are matched against terms using the match operator (?): ?SimpleName(x),
binds the term variable x to the subterm of SimpleName. Matching fails if the pat-
tern does not match, i.e. the current term is not a SimpleName term.

Strategy expressions combine basic operations (such as match) into more com-
plex transformations. Since match can fail, strategy expressions may fail as well.
Combinators are used to compose expressions and handle failures. The choice com-
binator s0 <+ s1 evaluates the expression s0. If s0 succeeds, the (potentially) new
current term is kept, and s1 is skipped. If s0 fails, the current term is restored, and
s1 is evaluated instead. If s1 fails, the combination fails. The sequence combinator
s0 ; s1 first evaluates s0 then s1. If either fails, the combination fails. The fail
and id operators leave the current term untouched; fail always fails and id always
succeeds.

The primitive traversal operators one, some and all are used to traverse terms
by local navigation into subterms. all(s) applies the expression s to each subterm
of the current term, potentially rewriting each. all(s) succeeds iff s succeeds for
all subterms, e.g. all(!1) applied to the term [1,2,3] gives [1,1,1]. one(s) and
some are similar, and applies s non-deterministically to exactly one or as many as
possible but at least one subterm, respectively. Both fail iff s never succeeded.

Strategies may be named and parametrized, e.g. try(s) = s <+ id defines a
strategy try(s) that attempts to apply s, and defaults to id if s fails. Generic
traversal strategies can be built from the primitive traversal operations, e.g.
bottomup(s) = all(bottomup(s)); s and topdown(s) = s; all(topdown(s)).

A rewrite rule R: pl(x) -> pr(x) with name R, left-hand side pattern pl(x),
and right-hand side pattern pr(x), x symbolizing term variables, is syntactic sugar
for R = ?pl(x) ; !pr(x). A where(s)-clause temporarily saves the current term,
applies s to it, then restores the current term. The clause fails iff s fails. wheres

K.T. Kalleberg, E. Visser / Electronic Notes in Theoretical Computer Science 203 (2008) 21–3624

are typically used to express rule conditions, as shown later.

Basic Stratego Constructs

Strategy Expression Meaning

!p(x) (build) Instantiate the term pattern p(x) and make it the current term

?p(x) (match) Match the term pattern p(x) against the current term

s0 <+ s1 (left choice) Apply s0. If s0 fails, roll back, then apply s1

s0 ; s1 (composition) Apply s0, then apply s1. Fail if either s0 or s1 fails

id, fail (identity, failure) Always succeeds/fails. Current term is not modified

one(s) Apply s to one direct subterm of the current term

some(s) Apply s to as many direct subterms of the current term as possible

all(s) Apply s to all direct subterms of the current subterm

Syntactic Sugar

Strategy Expression Meaning — (syntacic sugar)

\pl(x) -> pr(x)\ Anonymous rewrite rule from term pattern pl(x) to pr(x)

?x@p(y) Equivalent to ?x ; ?p(y); bind current term to x then match p(y)

<s> p(x) Equivalent to !p(x) ; s; build p(x) then apply s

s => p(x) Equivalent to s ; ?p(x); match p(x) on result of s

3 Domain-specific Analyses and Transformations

In this section, we motivate the applicability of our system by showing some
framework-specific analyses and transformations. The examples in this section il-
lustrate what an advanced framework developer with a good working knowledge of
language processing and Stratego could implement. However, Stratego is capable
of performing significantly more advanced analyses and transformation than shown
here. See [15,4,10] for some examples.

3.1 Project-specific Code Style Checking

Software projects of non-trivial size always adopt some form of (moderately) consis-
tent code style to aid maintenance and readability. We are concerned with checking
for proper implementation and proper use of domain abstractions. Consistency
of implementation may be improved by encouraging systematic use of particular
idioms. The following idiom is taken from the AST implementation in ECJ.

Bounds Checking Idiom.
Consider the following code for iterating over x:

for(int i = 0; i < x.length (); i++) { ... }

If x is a value object of type T, i.e. happens to be immutable, then the length()
method will be invoked needlessly for every iteration. The JIT may eventually inline
this call, but only if the code is executed frequently enough. One might want to
encourage a coding style that is also efficient with the bytecode interpreter:

{ final int sz = x.length (); for(int i = 0; i < sz; i++) { ... } }

This idiom is used throughout the implementation of the internal AST classes of
the ECJ, and may be checked using the following function:

K.T. Kalleberg, E. Visser / Electronic Notes in Theoretical Computer Science 203 (2008) 21–36 25

check-for =
?ForStatement(_, e, _, _)

; <topdown(try(call-to-immutable))> e

call-to-immutable =
?MethodInvocation(_, _, _, _, _, [])

; binding-of ⇒ MethodBinding(class-name , _, _, _)
; <list-contains (? class-name)> immutable-classes
; emit-warn (|" Call to method on immutable object in loop iteration ")

check-for should be applied to a for-statement. If any of the condition expressions
are calls to methods without parameters of objects of an immutable type, a warning
is emitted. The list of known, non-mutating methods is kept in the global variable
immutable-classes 3 .

With data-flow analysis, we could even consider method calls on objects which
are not immutable; as long as the body of the for-loop does not invoke any mu-
tating operation and does not pass x as an argument to another function, we can
assume immutability. By keeping (typename,methodname) pairs in an list, say
immutable-methods, we can look up the immutability property.

3.2 Custom Data-Flow Analysis

Totem propagation is a kind of data-flow analysis where variables in the source code
are marked with annotations, called totems [10]. These assert properties on the vari-
ables which are later used by other analyses and transformations. A meta-program
will perform data-flow analysis and propagate the asserted totems throughout the
code, following the same principles as constant propagation.

Totem propagation is in many ways similar to typestate analysis, which is “a
dataflow analysis for verifying the operations performed on variables obey the type-
state rules of the language” [16]. Typestate analysis is mostly concerned with veri-
fying protocols, such as ensuring that files are opened before they are read. Totem
propagation uses the same data-flow machinery to discover opportunities for opti-
mizing away unnecessary calls (such as a call to sort() on a sorted list) or replacing
costly operations with cheaper ones (such as binary search instead of linear search
on sorted lists). Meta-programs performing these forms of data-flow analyses must
be aware of the propagation rules for each kind of totem.

A totem propagator could be useful for removing dynamic boundary checks in
a library for matrix computations. The following interface is found in the Matrix
Toolkits for Java (MTJ) library [1]:

public interface Matrix {
Matrix add(Matrix B);
Matrix mult(Matrix B, Matrix C);
Matrix transpose ();
... }

These operations have certain, well-defined requirements. Two matrices, A and B,
may only be added if they have the same dimensions, i.e. A has same number of
rows and columns as B. Two matrices, A and B, may be multiplied and placed into

3 Technically, immutable-classes is a Stratego overlay, but this amounts to a global, immutable variable
in our case.

K.T. Kalleberg, E. Visser / Electronic Notes in Theoretical Computer Science 203 (2008) 21–3626

C if the number of columns of A equals the number of rows of B. The dimensions
of C must be equal to the number of rows of A and the number of columns of B.
Transposition of a matrix swaps the row and column dimensions. These rules are
violated by the following code:

Matrix m = new DenseMatrix (5,4);
Matrix n = new DenseMatrix (4,6), z = new DenseMatrix (5,6),

w = new DenseMatrix (3 ,5);
m.mult(n,z); z.transpose (); z.mult(m,w); // m and w incompatible

All dimensions are compatible for the first two operations, but not for the final
z.mult(m,w). The matrix operations in MTJ will verify dimensions before calcu-
lating and throw exceptions if the preconditions are not met. Performance-wise,
this is costly, and latent mismatches may lurk in seldom used code.

To alleviate this problem, we can apply a totem propagator which knows how
to propagate and verify the dimension of matrix operations. Initial dimensions can
be picked up from programmer-supplied assertions (on the form of a comment //
@dim(m,4,3)) or from the variable initialization. Whenever a dimension is asserted
for a variable in the code, a new, dynamic rule Dimensions: name -> dim is
created that remembers the asserted dimensions dim for a variable name. Dynamic
rules are like normal rewrite rules, except they can be introduced, updated and
removed at runtime. If an existing Dimensions rule with the name left-hand side
already exists, it is updated to a (potentially) new dim. This rule can then be ap-
plied (and updated) when propagating the dimension totem across a transposition:

PropTotem =
?MethodInvocation(src , SimpleName (" transpose"), _, [])

; <type-of ; dotted-name-of> src ⇒ "no.uib.cipr.matrix.Matrix"
; <Dimensions> src ⇒ [rows , columns]
; rules(Dimensions : src → [columns , rows])

Here, the old dimensions (if they are known) will be swapped and the Dimensions
rule updated. There are other (overloaded) PropTotem functions which deal with
addition and multiplication. The propagator core is based on the general constant
propagation framework proposed by Olmos and Visser [15], but is adapted to prop-
agate arbitrary data properties, not just constants:

prop-totem = PropTotem
<+ prop-totem-vardecl
<+ prop-totem-assign
<+ ...
<+ all(prop-totem)

The prop-totem function should be applied to a method body where it will recurse
through the subnodes. At each node, a series of functions is tried, in order. If
all fail, the recursion continues into the children of the current node. The first
function applied is PropTotem. This is a set of overloaded functions, for the add,
mult and transpose cases; the one with the matching pattern will be executed.
If none succeed, i.e., we are not at a method call to add, mult or transpose, we
continue by trying the prop-totem-vardecl function (s0 <+ s1 means evaluate s0,
then evaluate s1 iff s0 failed). This will try to infer totems from variable declaration
nodes. If we are at an assignment node (v = e), the totem of e is inherited by v.
This is handled by prop-totem-assign. Additional cases deal with control flow

K.T. Kalleberg, E. Visser / Electronic Notes in Theoretical Computer Science 203 (2008) 21–36 27

constructs like if and while, as described in [15]. Once we can guarantee, based on
the user assertions and propagation, that the dimensions are correct, we can remove
the runtime dimension checks by source code transformation.

3.3 Domain-specific Source Code Transformations

Results of analyses may be used to perform source code transformations, either as
part of the compilation process or as refactorings on the source code. Such code
transformations can aid in framework migration, performing pervasive style changes
or the removal of code smells.

Optimizing Matrix Dimension Checks
Using totem propagation described previously, we can rewrite matrix operations

to remove runtime dimension checks when we can statically determine that the
matrix dimensions are correct, e.g.:

A.mult(B,C) -> A.uncheckedMult(B,C)

The following rewrite rule can be plugged directly into the totem propagator to
achieve such a transformation:

PropTotem:
MethodInvocation(src1 , SimpleName (" mult"), x, [src2 , dst])

→ MethodInvocation(src1 , SimpleName (" uncheckedMult "), x, [src2 , dst])
where

<type-of ; name-of> dst ⇒ "no.uib.cipr.matrix.Matrix"
; <Dimensions> src1 ⇒ (s1r , s1c)
; <Dimensions> src2 ⇒ (s2r , s2c)
; <Dimensions> dst ⇒ (dr , dc)
; !s1c ⇒ s2r; !s2c ⇒ dc; !s1r ⇒ dr

The where clause is a rewriting condition which ensures that the mult call is on
the correct data type and that the dimensions are compatible. This rewrite rule
is all that is needed to turn the analysis from Sec. 3.2 into an optimizing code
transformation.

Optimizing Loop Boundary Checks
The bounds checking idiom from the previous section can also be turned into a

code transformation:
OptimizeFor:

ForStatement(init , cond , incr , body)
→ Block(<concat> [vdecls , [ForStatement(init , cond ’, incr , body)]])
where

<collect(is-immutable-call) ; new-names> cond ⇒ call-var-pairs
; <map(\(e, v) → vardecl(<type-of> e, v, e)\)> call-var-pairs ⇒ vdecls
; <bottomup(try(RewriteImmutable (| vars)))> cond ⇒ cond ’

The generic collect function is used with is-immutable to find all invocation of
get-like methods in the condition expression. For each expression, a new uniquely
named variable is created (by new-names) and a variable declaration for it is created
that gets added before the for loop. Each expression is replaced with its correspond-
ing, freshly named, temporary variable using the RewriteImmutable function, thus
avoiding any name capture in the generated code.

K.T. Kalleberg, E. Visser / Electronic Notes in Theoretical Computer Science 203 (2008) 21–3628

4 Implementation

The ECJ AST is a class hierarchy consisting of abstract and concrete classes. For
example, all expression nodes, such as InfixExpression, inherit from the abstract
Expression class. The root node of the hierarchy is the abstract class ASTNode.
The AST hierarchy is adapted to the term interface expected by the rewriting engine
using the POM adapter.

4.1 Term Interface

The term interface is a generalization of the ATerm interface used by various term
rewriting systems, such as ASF+SDF [18], Tom [13] and Stratego [4]. There are two
levels to this interface, depending on whether read-only traversals or full rewriting
is desired.

Inspection Interface
The inspection interface is a class hierarchy. At its root we find ITerm. There

are four distinct primitive term types deriving from ITerm, for integers, strings, lists
and applications. The essential methods of ITerm are given below.

public int getPrimitiveTermType ();
public ITermConstructor getConstructor ();
public int getSubtermCount ();
public ITerm getSubterm(int index);
public boolean isEqual(ITerm rhs);

The getPrimitiveTermType() method returns an integer specifying which primi-
tive term type is represented by a given ITerm object. Most AST nodes are appli-
cation nodes. An application C(t0, ..., tn) consists of a constructor name C and a
list of subterms t0 through tn. The number and types of the subterms are given
together with the constructor name in a signature, e.g.

signature EclipseJava
constructors

InfixExpression : String × Expression × Expression → Expression
PackageDeclaration : Javadoc × List(Annotation) × Name → ASTNode
...

This declares to Stratego that InfixExpression terms have three children, the
first being a string and the remaining two being expressions. The declaration cor-
responds to the AST class InfixExpression. For each concrete AST node type,
a constructor is generated. For each abstract AST node type, a sort is gener-
ated. The sets of constructors and sorts define the EclipseJava signature. Calling
getConstructor() on an InfixExpression returns an object that can be queried
for the constructor name (in this case InfixExpression), and arity (in this case
three). Calling getSubtermCount() returns three and the method getSubterm()
can be used to retrieve either of the subterms. The isEqual() method performs
a deep equality check. Stratego allows pattern matching with variables. All the
code for handling variable bindings is kept inside the interpreter, to keep the POM
adapter interface minimal.

K.T. Kalleberg, E. Visser / Electronic Notes in Theoretical Computer Science 203 (2008) 21–36 29

Concrete implementations of the ITerm inspection interface can be derived
mostly automatically from the AST class hierarchy. Each concrete class in the
ECJ AST requires a small adapter class, all of it generated boilerplate. The only
place where human intervention is needed is to decide how the subtrees in the AST
should map to an ordered set of terms, e.g:

class WrappedPackageDeclaration implements ITermAppl {
private PackageDeclaration wrappee;
...
public ITerm getSubterm(int index) {

switch(index) {
case 0: return ECJFactory.wrap(wrappee.getPackage ());
case 1: return ECJFactory.wrap(wrappee.imports ());
case 2: return ECJFactory.wrap(wrappee.types ());
} throw new ArrayIndexOutOfBoundsException ();

}
}

In the current implementation, AST nodes are wrapped lazily, thus wrapping only
occurs when needed. When AST nodes are traversed by the rewriting engine, the
AST node children are wrapped progressively, as terms are unfolded.

Generation Interface
The POM adapter technique does not require an implementation of the genera-

tion interface, but if one is not provided, rewriting cannot be done (only analysis is
possible). The following are the essential factory methods that must be provided.
interface ITermFactory { ...

public ITerm makeAppl(ITermConstructor ctor , ITerm [] args);
public ITerm makeString(String s);
public ITerm makeInt(int i);
public ITerm makeList(ITerm[] args); }

Default implementations exist for strings, lists and integers. Only the makeAppl
method must provided. In our prototype, this method forwards constructor re-
quests to the appropriate factory methods of the ECJ AST; when it sees a request
for constructing, say, a PackageDeclaration node, the request is forwarded to
newPackageDeclaration() of the ECJ AST factory.
1 class ECJFactory implements ITermFactory { ...
2 public ITerm makeAppl(ITermConstructor ctor , ITerm [] args) {
3 switch(constructorMap.get(ctor.getName ())) {
4 case PACKAGE_DECLARATION: {
5 if((! isJavadoc(kids [0]) && !isNone(kids [0]))
6 || !isAnnotations(kids [1])
7 || !isName(kids [2]))
8 return null;
9

10 PackageDeclaration pd = ast.newPackageDeclaration ();
11 if(isNone(kids [0]))
12 pd.setJavadoc(null);
13 else
14 pd.setJavadoc(getJavadoc(kids [0]));
15 pd.annotations (). addAll(getAnnotations(kids [1]));
16 pd.setName(asName(kids [2]));
17 return wrap(pd);
18 }
19 ...
20 }
21 ...
22 }

K.T. Kalleberg, E. Visser / Electronic Notes in Theoretical Computer Science 203 (2008) 21–3630

23 }

Before the factory method is invoked (line 10), the type correctness of all children
are checked (lines 5–7). If this fails, an error is signaled by returning null (line 8).
The EclipseJava signature completely declares the structure of legal terms that
ECJFactory should allow, so all of this code may be automatically generated. We
discuss below how “incorrect” constructions are handled using mixed terms.

Once all children are verified as appropriate, a new PackageDeclaration AST
node is created and initialized (lines 10–16). Finally, it is wrapped as a term and re-
turned (line 17). The use of a constructor map for switch on line 3 is a performance
trick for mapping constructor names to constructor methods.

4.2 Design Considerations

Functional Integration – The type analysis functions, such as type-of, are calls
to the ECJ type checker, through the FFI library in Fig. 2. For example, invoking
type-of on an InfixExpression term t results in a call to resolveTypeBinding()
defined in the class InfixExpression on the object wrapped by t. Stratego is
dynamically typed, and only the arity of terms is statically guaranteed. If, say, a
SimpleName term is passed to type-of, the FFI stub for type-of detects this and
fails, just like any expression in Stratego may fail.

Imperative and Functional Data Structures – The rewriting engine assumes a
functional data structure; in-place updates to existing terms are not allowed. The
generation interface is designed so that existing terms are never modified – there
simply are no operations for modifying existing terms. This makes wrapping im-
perative data structures in such a functional dress relatively straightforward. The
compiler need not provide one. The only restriction is that AST nodes must not
change behind the scenes, i.e. the rewriting engine must have exclusive access while
rewriting. For in-place rewriting systems, e.g. TXL [6], a slight modification of
the ITerm interface would be necessary so that subterms of existing terms can be
modified in place.

Efficiency Considerations – Using a functional data structure provides some
appealing properties for term comparison and copying. As described in [7], maximal
sharing of subterms (i.e. always representing two structurally identical terms by
the same object) offers constant-time term copying and structural equality checks
because these reduce to pointer copying and comparisons, respectively. This is
important for efficient pattern matching because term equivalence is deep structural
equality, not object (identifier) equality. The ECJ AST interface provides deep
structural matching, but this is not constant-time. This may be provided in the
POM adapter, but then lazy wrapping must be given up.

Hash codes should always be computed deeply. The hash code must be computed
from the structure of the term – not the object identity of the AST node – since the
equality is structural (two objects that are equal should have the same hash code).
Once a hash code has been computed, it may be memoized, since the subterms can
never change.

K.T. Kalleberg, E. Visser / Electronic Notes in Theoretical Computer Science 203 (2008) 21–36 31

The memory footprint of the wrapper objects is small. Each object has only
two fields. By keeping a (weak) hash table of the AST nodes already wrapped,
the overhead is reduced even further. The current implementation takes just over
four minutes to run the bounds checking idiom analysis on the entire Eclipse code
base (about 2.7 million lines of code), on a 1.4GHz laptop with 1.5GB of RAM.
Complicated transformations are limited by the efficiency of the current Stratego
interpreter, not the adapter. Compiling the scripts to Java byte code, instead of
the abstract Stratego machine, should significantly improve performance for com-
plicated scripts.

Strongly vs Weakly Typed ASTs – The ECJ AST is strongly typed and the
term rewriting system needs to respect this. Stratego is dynamically typed and
would normally allow the term InfixExpression(1,BooleanLiteral(0),3) to
be constructed, even though the subterms must be String and Expression,
as declared previously (making 1, 3 invalid subterms). ECJFactory has
two modes for dealing with this. In strict mode, the factory bars in-
valid EclipseJava terms from being built. As a result, the build expres-
sion !InfixExpression(1,BooleanLiteral(0),3) fails. Terms without any
EclipseJava terms, such as (1,2,3), may be built freely. These are not rep-
resented as EclipseJava terms, but by the default internal term library of the
interpreter. We call these terms without EclipseJava constructors basic terms.

In lenient mode, mixed terms consisting of basic and EclipseJava terms
are allowed, such as InfixExpression(1,BooleanLiteral(0),3). The subterm
BooleanLiteral remains an EclipseJava term, but 0 and 3 are basic terms. The
root term, InfixExpression, becomes a mixed term, and is also handled by the ba-
sic term library. Since all terms are constructed from their leaves up (ITermFactory
forces this), ECJFactory can determine inside its makeAppl() method when an
EclipseJava term can be built: iff all subterms are EclipseJava terms, and are
compatible with the requested constructor, an EclipseJava term is built, other-
wise a mixed term must be constructed. ECJ FFI functions fail if they are passed
mixed terms. Java programs, such as Eclipse plugins, using the Stratego interpreter
to rewrite ASTs receive an ITerm as the result from the interpreter. They should
perform a dynamic type check to ensure that the ITerm is a wrapped ECJ AST
node, and not a mixed or basic term.

Rewritings can result in structurally valid but semantically invalid ASTs, for ex-
ample by removing a method which is called elsewhere from a class. Neither Stratego
nor the ECJ AST API checks for this. However, a subsequent type reanalysis will
uncover the problem. If the type analysis functions are used as transformation pre-
condition checks, it is possible to ensure that well-written transformations always
yield type-correct results. A post-condition check is computationally worse, since
a full reparse is required – the ECJ type analyzer is designed to compute type in-
formation only during parsing, i.e. when constructing the initial AST from source
code.

K.T. Kalleberg, E. Visser / Electronic Notes in Theoretical Computer Science 203 (2008) 21–3632

5 Related work

Language processing is what program transformation systems like Tom [13],
TXL [6], ASF+SDF [18], Stratego [4] were designed for.

Programmable static analysis tools such as CodeQuest [9], CodeSurfer [2] and
PQL [12], all support writing various kinds of flow- and/or context-sensitive program
analyses, in addition to (often limited) queries on the AST. Pluggable type systems,
an implementation of which is described by Andreae et al [3], also offer static analysis
capabilities. Developers may express custom type checking rules on the AST. These
are executed at compile-time so as to extend the compiler type checking. Neither
programmable static analysis tools nor pluggable type systems support source code
transformations, however.

Languages for refactoring such as JunGL [20] and ConTraCT [11] provide both
program analysis and rewriting capabilities. JunGL is hybrid between an ML-like
language (for rewriting) and Datalog (for data-flow queries) whereas ConTraCT is
based on Prolog. JunGL supports rewriting on both trees and graphs, but is a young
language and does not (yet) support user-defined data types. Stratego is a compar-
atively mature program transformation language with sizable libraries and built-in
language constructs for data- and control-flow analysis, handling scoping and vari-
able bindings, and pattern matching with concrete syntax (not demonstrated in this
paper) that comes with both a compiler and interpreter, and has been applied to
processing various other mainstream languages such as C and C++ [4].

Open compilers such as SUIF [21], OpenJava [17], OpenC++ [5] and Poly-
glot [14] offer extensible language processing platforms, and in many open compil-
ers, the entire compiler pipeline is extensible, including the backend. Constructing
and maintaining such an open architecture is a laborious task. As we have shown,
many interesting classes of domain-specific analyses and transformations require
only the front-end to be open. Exposing just the front-end is less demanding than
maintaining a fully open compiler pipeline. In principle, we could have plugged
Stratego into either of these compilers.

A key strength of Stratego is generic traversals (built with one, some and all)
that cleanly separate the code for tree navigation from the actual operations (such
as rewrite rules) performed on each node. The JJTraveler visitor combinator frame-
work is a Java library described by van Deursen and Visser [19] that also provides
generic traversals. Generic traversals and visitor combinators go far beyond tradi-
tional object-oriented visitors, and the core interface required by both approaches
is very similar. Comparing the Visitable interface of JJTraveler, the ATerm in-
terface found in ASF+SDF and the Stratego C runtime, suggests that the POM
adapter should be reusable for all of these systems, implementation language issues
notwithstanding (C for ASF+SDF, and Java for JJTraveler and our interpreter).

A related approach to rewriting on existing class hierarchies is presented in
Tom [13]. Tom is a language extension for Java that provides features for rewriting
and matching on existing class hierarchies. Recent versions also support generic
traversals in the style of JJTraveler, but its library of analyses is still rather small.

K.T. Kalleberg, E. Visser / Electronic Notes in Theoretical Computer Science 203 (2008) 21–36 33

It works by adding a new match construct to the Java language that is expanded by
the Tom pre-processor into Java method calls. A generator, Gom, is available for
generating classes that implement term structures. These are specified algebraically,
much like the signatures of Stratego.

High-level analyses are also provided by Engler et al [8], where a system for
checking system-specific programming rules for the Linux kernel is described. These
rules rules are implemented as extensions to an open compiler. Our system is
different in that it can also perform arbitrary code transformation, and that the
language we use to implement our rules is a feature-rich transformation language
designed for language processing. For language processing problems, Stratego has
the advantage of a sizable library of generic transformations, traversals and high-
level data-flow analysis, in addition to its novel language features. The net result is
that transformation code becomes both precise and concise.

6 Discussion

Recent research has provided pluggable type systems, style checkers and static anal-
ysis with scripting support. The appealing feature of our system, and that of JunGL
and ConTraCT, is that we can also script source code transformations based on the
analysis results. The tradeoff with using a domain-specific language for scripting
is that the same language features that make the language powerful and domain-
specific also make it more difficult to learn. This may be offset in part by good
documentation, and a sizable corpus of similar code to learn from.

A compiler scripting language may also provide an appealing part of a testbed
for prototyping language extensions, new compiler analyses and transformations
because its high-level constructs support rapid prototyping. The plethora of custom
analysis and transformation tools suggests that compiler writers should cater for
potential extenders in their infrastructure design. As we have demonstrated, even
a rather simple inspection interface is sufficient for read-only analysis. By adding
functionality for building AST nodes, general rewriting may be scripted. The POM
adapter presented in this paper was generated automatically using source code
analysis techniques over the AST classes of existing frontends. We are currently
experimenting with generalizing and improving our tools for automatic generation
of POM adapters. It is being tested against other frontends such as the reference
Java compiler from Sun, the Polyglot compiler [14] and various C/C++ frontends.

A limitation of ECJ is that rewriting the AST will invalidate the type informa-
tion. After rewriting, complete type reanalysis must be performed to restore accu-
rate type information. An open compiler with incremental type reanalysis would
help in ensuring that the transformation is semantically correct, as “safe points”
can defined in the transformation where the (intermediate) result is checked for
type-correctness.

Stratego does not have any fundamental limitations on the types of analyses and
transformations it can express. The language is Turing-complete, and can express
both imperative and functional algorithms for program analysis and transforma-

K.T. Kalleberg, E. Visser / Electronic Notes in Theoretical Computer Science 203 (2008) 21–3634

tion. Special support exists, in the form of reusable strategy libraries and language
constructs such as dynamic rules, for performing control- and data-flow analysis
over subject programs represented as terms, i.e. abstract syntax trees. Please refer
to [15] for more details on these features. In practice, the current performance of
the interpreter may be a limiting factor for particularly resource-intensive analyses
and transformations. In these cases, the C-based Stratego/XT infrastructure [4]
may be an alternative. In the future, we anticipate a Java bytecode backend for the
Stratego compiler. Certain whole-program analyses may require very efficient im-
plementations of specific data structures, such as binary decision diagrams (BDDs).
Stratego does not currently have a library providing BDDs.

7 Conclusion

We have presented the design of the program object model adapter, a general tech-
nique for fusing program transformation systems with existing language infrastruc-
tures, such as compilers and frontends, without resorting to data serialization. This
allows the transformation system to rewrite directly on the program object mod-
els (e.g. ASTs) of the language frontend. The applicability of the technique was
illustrated through the discussion of a prototype framework composed of the Strat-
ego rewriting language and the Eclipse Compiler for Java. The framework yields a
powerful solution for scripting domain-specific analyses and transformations due to
the stability of the Eclipse compiler and the features of Stratego – the analyses and
transformations are expressed precisely and concisely. We have shown that even a
relatively small degree of extensibility on the part of the compiler is sufficient for
plugging in a rewriting system, motivated that the POM adapter can be reused
for other, tree-like data structures, and that its design is also applicable to other
rewriting engines. The usefulness of the framework was demonstrated through a
series of analysis and transformation problems taken from mature and well-designed
frameworks.

References

[1] Matrix Toolkits for Java. http://rs.cipr.uib.no/mtj/,2006.

[2] P. Anderson and T. Teitelbaum. Software inspection using CodeSurfer. In Proceedings of WISE’01 (Itl
Workshop on Inspection in Software Engineering), 2001.

[3] C. Andreae, J. Noble, S. Markstrum, and T. Millstein. A framework for implementing pluggable
type systems. In Proceedings of OOPLSA’06: Conference on Object-Oriented Programming, Systems,
Languages, and Applications, New York, NY, USA, 2006. ACM Press.

[4] M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser. Stratego/XT 0.16. Components for
transformation systems. In ACM SIGPLAN 2006 Workshop on Partial Evaluation and Program
Manipulation (PEPM’06), Charleston, South Carolina, January 2006. ACM SIGPLAN.

[5] S. Chiba. A metaobject protocol for C++. In OOPSLA ’95: Proceedings of the tenth annual conference
on Object-oriented programming systems, languages, and applications, pages 285–299, New York, NY,
USA, 1995. ACM Press.

[6] J. R. Cordy. TXL - a language for programming language tools and applications. ENTCS, 110:3–31,
2004.

K.T. Kalleberg, E. Visser / Electronic Notes in Theoretical Computer Science 203 (2008) 21–36 35

http://rs.cipr.uib.no/mtj/

[7] M. G. T. V. den Brand, H. A. de Jong, P. Klint, and P. A. Olivier. Efficient annotated terms. Softw.
Pract. Exper., 30(3):259–291, 2000.

[8] D. R. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using system-specific,
programmer-written compiler extensions. In OSDI, pages 1–16, 2000.

[9] E. Hajiyev, M. Verbaere, O. de Moor, and K. de Volder. CodeQuest: querying source code with
datalog. In OOPSLA ’05: Companion to the 20th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pages 102–103, New York, NY, USA,
2005. ACM Press.

[10] K. T. Kalleberg. User-configurable, high-level transformations with CodeBoost. Master’s thesis,
University of Bergen, P.O.Box 7800, N-5020 Bergen, Norway, March 2003.

[11] G. Kniesel and H. Koch. Static composition of refactorings. Sci. Comput. Program., 52(1-3):9–51,
2004.

[12] M. Martin, B. Livshits, and M. S. Lam. Finding application errors and security flaws using PQL:
a program query language. In OOPSLA ’05: Proc. of the ACM SIGPLAN Conf. Object oriented
programming, systems, languages, and applications, pages 365–383, New York, NY, USA, 2005. ACM
Press.

[13] P.-E. Moreau, C. Ringeissen, and M. Vittek. A pattern matching compiler for multiple target languages.
In 12th International Conference on Compiler Construction, LNCS, pages 61–76. Springer, 2003.

[14] N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: An extensible compiler framework for Java.
In 12th International Conference on Compiler Construction, LNCS, pages 138–152. Springer, 2003.

[15] K. Olmos and E. Visser. Composing source-to-source data-flow transformations with rewriting
strategies and dependent dynamic rewrite rules. In R. Bodik, editor, 14th International Conference on
Compiler Construction (CC’05), volume 3443 of Lecture Notes in Computer Science, pages 204–220.
Springer-Verlag, April 2005.

[16] R. E. Strom and D. M. Yellin. Extending typestate checking using conditional liveness analysis. IEEE
Trans. Softw. Eng., 19(5):478–485, 1993.

[17] M. Tatsubori, S. Chiba, K. Itano, and M.-O. Killijian. OpenJava: A class-based macro system for java.
In Proceedings of the 1st OOPSLA Workshop on Reflection and Software Engineering, pages 117–133,
London, UK, 2000. Springer-Verlag.

[18] M. G. J. van den Brand, A. van Deursen, J. Heering, H. A. de Jong, M. de Jonge, T. Kuipers, P. Klint,
L. Moonen, P. A. Olivier, J. Scheerder, J. J. Vinju, E. Visser, and J. Visser. The ASF+SDF meta-
environment: A component-based language development environment. In CC ’01: Proceedings of the
10th International Conference on Compiler Construction, pages 365–370, London, UK, 2001. Springer-
Verlag.

[19] A. van Deursen and J. Visser. Building program understanding tools using visitor combinators.
In Proceedings 10th Int. Workshop on Program Comprehension, IWPC 2002, pages 137–146. IEEE
Computer Society, 2002.

[20] M. Verbaere, R. Ettinger, and O. de Moor. JunGL: a scripting language for refactoring. In ICSE ’06:
Proceeding of the 28th international conference on Software engineering, pages 172–181, New York,
NY, USA, 2006. ACM Press.

[21] R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe, J. M. Anderson, S. W. K. Tjiang, S.-W.
Liao, C.-W. Tseng, M. W. Hall, M. S. Lam, and J. L. Hennessy. SUIF: an infrastructure for research
on parallelizing and optimizing compilers. SIGPLAN Not., 29(12):31–37, 1994.

K.T. Kalleberg, E. Visser / Electronic Notes in Theoretical Computer Science 203 (2008) 21–3636

	Introduction
	The Program Object Model Adapter
	Scripting in Stratego

	Domain-specific Analyses and Transformations
	Project-specific Code Style Checking
	Custom Data-Flow Analysis
	Domain-specific Source Code Transformations

	Implementation
	Term Interface
	Design Considerations

	Related work
	Discussion
	Conclusion
	References

