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A stronger focus on natural mortality may be required to better understand contemporary changes in fish life
histories and behaviour and their responses to anthropogenic drivers. Firstly, natural mortality is the selec-
tion under which fish evolved in the first place, so a theoretical understanding of effects of natural mortality
alone is needed. Secondly, due to trade-offs, most organismal functions can only be achieved at some cost in
terms of survival. Several trade-offs might need to be analysed simultaneously with effects on natural mor-
tality being a common currency. Thirdly, there is scattered evidence that natural mortality has been increas-
ing, some would say dramatically, in some fished stocks, which begs explanations. Fourthly, natural mortality
most often implies transfer of mass and energy from one species to another, and therefore has foodweb and
ecosystem consequences. We therefore analyse a model for evolution of fish life histories and behaviour,
where state-dependent energy-allocation and growth strategies are found by optimization. Natural mortality
is split into five different components, each specified as the outcome of individual traits and ecological trade-
offs: a fixed baseline mortality; size-dependent predation; risk-dependent growth strategy; a fixed mortality
when sexually mature; and mortality increasing with reproductive investment. The analysis is repeated with
and without fishing. Each component of natural mortality has consequences for optimal life history strate-
gies. Beyond earlier models, we show i) how the two types of reproductive mortality sometimes have similar
and sometimes contrasting effects on life history evolution, ii) how ecosystem properties such as food avail-
ability and predation levels have stronger effects on optimal strategies than changing other mortality compo-
nents, and iii) how expected changes in risk-dependent growth strategies are highly variable depending on
the type of mortality changed.

© 2012 Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction

Natural selection has moulded fish and their life histories through
millions of years, and those individuals that best avoided natural
mortality and were able to reproduce left the descendants we observe
today. Natural mortality is not only an external force that shapes life
histories and other traits through natural selection, but it is also the
outcome of behavioural and life history strategies. In this paper we
use evolutionary modelling to study how between-species variation
in ecology and trade-offs has consequences for optimal life history
strategies and the resulting rate of natural mortality.

In fisheries science, natural mortality is treated almost like an
orphan, vividly illustrated by John Pope's cartoon of how ‘M=?’
metamorphosed into amagical ‘M=.2’ now being applied ubiquitously
2011 Flatfish Symposium in
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(e.g., Jennings et al., 2001, p. 203). Admittedly, great efforts go into
quantifying natural mortality and its large-scale patterns of variation
across species (Gislason et al., 2010), but most theory has treated natu-
ral mortality as an externally set parameter, usually of M=.2. Some
studies have included size-dependent mortality (Enberg et al., 2009;
Jørgensen and Fiksen, 2006), a trade-off between survival and growth
rate (Dunlop et al., 2009b; Enberg et al., 2009), or mortality costs of
spawning (Hutchings, 2005, 2009). In this paper we expand the
model by Jørgensen and Fiksen (2010) where several traits were linked
to mortality through trade-offs.

To motivate our study, we give four reasons for why we believe an
increased focus on natural mortality might be advantageous.

First, the exploitation of fish stocks is increasingly being recog-
nized as a potential driver for contemporary evolution of life history
traits (reviewed, e.g., by Allendorf et al., 2008; Dunlop et al., 2009a;
Fenberg and Roy, 2008; Hard et al., 2008; Heino and Godø, 2002;
Hutchings and Fraser, 2008; Jørgensen et al., 2007; Kuparinen and
Merilä, 2007; Law, 1991, 2000). There is evidence that the rate of
this evolution is orders of magnitude faster than one would expect
from the fossil record (Darimont et al., 2009; Jørgensen et al., 2007;
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Fig. 1. Conceptual figure of how fishing mortality might lead to adaptations that in-
volve increased natural mortality. a) Consider a mature fish, so that natural mortality
M can be considered roughly constant over time, indicated by the horizontal black
line. Because survival is given by the formula S=e−Mt, survival is higher the smaller
the grey area below the mortality curve is. Assume furthermore that this fish repro-
duces or builds up reserves designated to reproduction at a constant rate (dashed
line), and that the total time shown here equals the time required to complete one
unit of reproduction (for example, average reproduction in one year). b) Imagine
now that this fish can change its strategy and speed up its rate of reproduction, but
that this can only be achieved by taking higher risks which leads to an increase, ΔM,
in natural mortality. This could for example be more risk-prone foraging behaviour,
building larger gonads that make it harder to escape predators, down-regulating the
immune system, or spending more time searching for high quality mates. Thus, the
unit of reproduction can be achieved faster, and this might evolve as long as the area
saved (hatched area) is larger than the area of new mortality accepted (black area).
c) Add fishing mortality F. Accelerated reproduction will now shorten also the duration
the fish risks being fishing, i.e. the dark hatched area is also saved. Consequently, a risk-
ier strategy that involves even higher natural mortality might evolve as long as the
black area of new accepted natural mortality is smaller than the areas of mortality
saved (hatched).

9C. Jørgensen, R.E. Holt / Journal of Sea Research 75 (2013) 8–18
Sharpe and Hendry, 2009; see also Andersen and Brander, 2009).
Trends on decadal timescales have been observed, particularly for
age and size at maturation (Ricker, 1981; reaction norm studies
reviewed by Dieckmann and Heino, 2007) but also for reproductive
investment (Rijnsdorp et al., 2005; Yoneda and Wright, 2004). Be-
cause life history traits are changing so rapidly, one could expect con-
sequences for natural mortality, but which? To address this, we
present a model that links life history evolution to changes in natural
mortality.

Second, behaviour is a flexible way for organisms to respond to
changes in their environment. Fishing gear is often designed to ex-
ploit a species' behavioural tendencies, such as schooling, foraging
behaviour, swimming, or habitat use, and is therefore likely to cause
changes in behaviour over time as fish either evolve (slow) or learn
(potentially much faster) countermeasures. It has for example been
shown that gillnets preferentially harvest individuals with bold per-
sonality traits, probably because they have higher food requirements
and are more active (Biro and Post, 2008). Angling works in similar
ways (Philipp et al., 2009; Redpath et al., 2009). Behaviour is
hard to observe, however, and time-series data from wild
populations hardly exist. One crude way of studying behaviour in
theoretical models is to be specific about likely trade-offs (Krebs
and Davies, 1993; Lima, 2009; Lima and Dill, 1990). By including
trade-offs that represent behaviour, the model in this paper can
suggest likely broad-scale changes in behaviour.

The third reason natural mortality may warrant intensified focus is
that some studies have begun noticing temporal trends towards in-
creasing natural mortality. Natural mortality has been referred to as
the most critical and important parameter, but also the most difficult
to obtain (Pauly, 1980). Studies of temporal changes in natural mor-
tality are few. Atlantic cod in the Gulf of St Lawrence were estimated
to have a natural mortality of 0.1–0.2 year−1 in the 1980s, but by the
2000s it had risen to values as high as 0.6 year−1 (Swain, 2011; Swain
and Chouinard, 2008). A similar estimate was suggested for winter
skates (Swain et al., 2009) and white hake (Benoît et al., 2011).
Such increases in natural mortality may be part of the explanation
collapsed stocks are not recovering. The temporal increases in natural
mortality are particularly worrisome because they follow a pattern
expected by theory (Fig. 1). Using a model that assumed trade-offs
between several life history traits and survival, Jørgensen and Fiksen
(2010) predicted that natural mortality would increase with roughly
half the fishing mortality once the fish stock has had sufficient time to
reach a new evolutionary equilibrium. This estimate was robust to pa-
rameter variation over a wide range. Of course, other anthropogenic
and natural drivers of change could also affect natural mortality.

A fourth reason for studying natural mortality is its trophic and
food web implications. Natural mortality usually involves one species
being eaten by another, and therefore describes flows of energy and
mass through ecosystems. In the cod example above, there is ample
evidence that predation from seals has increased numerically and is
now a significant contributor to mortality (Benoît et al., 2011;
Savenkoff et al., 2007). But which way does causality operate? Has
the increasing seal abundance led to increased predation on cod? Or
has the previously high fishing pressure led to changes in cod life
history and behaviour, whereby higher exposure to seals became
adaptive? The latter implies that changes in the cod may have con-
tributed to the seal explosion.

For these four reasons we believe it is timely to focus more on un-
derstanding what natural mortality is, how its mechanisms vary be-
tween species, how it has shaped fish life histories, and how it can
be changed by fishing and other anthropogenic and natural drivers.
Below we describe a model with relationships that link natural mor-
tality to life history traits, ecology, and behaviour.

For the model we have chosen parameters representative of flat-
fish. Flatfish are physiologically and ecologically adapted to benthic
environments (Link et al., 2002), with cryptic morphology and a
potentially low metabolic rate that allow them to bury or hide in
open habitats in which one otherwise would be exposed and vul-
nerable. Several species are targeted by fisheries, and particularly
trawling and dredging practices are known to alter the survivability
of flatfish beyond those harvested (Link et al., 2002). As a group,
flatfish are distributed worldwide and exhibit considerable inter-
specific variation in terms of their life histories (Roff, 1991). Al-
though the parameters chosen in this paper best represent
European plaice in the North Sea, the model describes general eco-
logical relationships with trade-offs that involve survival, and are
likely applicable to other flatfish species and harvested marine or-
ganisms in general.



Table 1
Variables used in a model for life history evolution in flatfish. Dimensionless variables
are assigned ‘–’ in the column for unit.

Variable Description Unit

α Strategy variable: allocation of available
resources towards reproduction

–

φ Strategy variable: level of risk accepted
in relation to foraging

–

L Body length cm
R Net resources available for growth and

reproduction (mass equivalents)
kg year−1

W Somatic body mass kg
H Food intake coefficient given level of

accepted risk
kg1− byear−1

T Time (continuous) years
Z Total mortality rate year−1

G Mass of gonads kg
Q Gonado-somatic index –

Table 2
Parameters used in a fish life history model, chosen to resemble plaice in the North Sea.
Dimensionless parameters are assigned ‘–’ in the column for unit.

Parameter Description Value Unit

b Exponent of energy intake function 0.70 –

hmax Asymptotic level of foraging rate,
at infinite risk

6 kg1− byear−1

h1/2 Risk level at which half the asymptotic
foraging rate is achieved

1 –

k Coefficient in length-weight relationship 9.5·10−3 kg cm−3

qref Gonadosomatic index at which
Mgonads=Mpredation

0.15 –

p Exponent scaling cost of carrying gonads 2 –

u Coefficient for mortality cost of
participation in spawning

0.5 –

c Coefficient for size-dependent predation 2.5 year−1

d Scaling for size-dependent predation 0.75 –

v Cost of gonad tissue relative to somatic
tissue

2 –
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2. Model description

The modelling approach in this paper uses a state-dependent
energy-allocation model in which optimal fish life-history strategies
are found by optimization. It is built on a previous model and
explained only briefly here; for further details please refer to the
full model description in Jørgensen and Fiksen (2010). Here, the for-
mulation of mortality has been extended, particularly with regard to
reproduction-related mortality that is split into several components.
Natural mortality has been split into 5 components that reflect eco-
logical processes, allowing for a comprehensive understanding of
the forces that mould fish life histories. We have also chosen param-
eters to resemble a flatfish, European plaice (Pleuronectes platessa) in
the North Sea.

A key point is that the model finds optimal values for the foraging
strategy φ, and the energy allocation strategy α, for each combination
of age and length (individual states). These strategies are then simu-
lated to produce the results shown.

2.1. Growth, allocation, and reproduction

The model we use for growth is a simplified bioenergetics model,
similar to the growth models by Lester et al. (2004) and Quince et al.
(2008). It is assumed that the net energy intake R (kg year−1; thus in
mass equivalents) scales allometrically with body size as R=HWb,
where W (kg) is somatic body mass, b (dimensionless) the allometric
scaling exponent, and H (kg1−byear−1) a foraging rate that is the
outcome of a foraging strategy that we optimize (see below).

The available resources are allocated such that somatic body mass
and gonads G (kg), respectively, grow as:

dW=dt ¼ 1–αð ÞR; and ð1aÞ

dG=dt ¼ αR=v: ð1bÞ

Here v (dimensionless) is the ratio of the energetic cost of gonadic
tissue relative to somatic tissue. Gonads are interpreted in a broad
sense and do not only include the gonad itself but all energetic costs
associated with reproduction, including mating behaviour and
spawning migrations. Gonad mass can therefore be thought of as re-
productive investment, measured in units equivalent to body mass.
Spawning takes place at the end of each year, and we assume lifetime
expected production of gonad mass is proportional to fitness. Body
length (L, cm) is isometrically related to weight as W=kL3.

2.2. Mortality

The focus of this paper is how a life history strategy is the outcome
of natural selection operating on ecological relationships, in particular
the trade-offs with survival. Natural mortality is therefore split into 5
categories (all with unit year−1) that correspond to behavioural or
morphological features of the organism. The rationale and equations
are given in this section, and below we explain how we use optimiza-
tion to find the best life history trajectory given a set of parameter
values (Variables are summarized in Table 1 and parameter values
given in Table 2). The model's sensitivity to these values was tested
varying each parameter value and reporting on the effect on an opti-
mal flatfish life history.

2.2.1. Size-dependent predation
There is considerable empirical evidence that mortality in aquatic

and marine environments is size-dependent, where mortality rate
declines with body size L (cm) as

Mpredation Lð Þ ¼ cL–d ð2Þ
(Fig. 2a). A typical value of the scaling parameter is d=0.75 (dimen-
sionless; Andersen and Beyer, 2006; Gislason et al., 2010; McGurk,
1986; Peterson and Wroblewski, 1984). One of our central assump-
tions is that the scaling of predation mortality influences the size-
dependent scaling of many of the other components of natural mor-
tality (as was also assumed by Jørgensen and Fiksen, 2010). A fish
that is vulnerable to predation will therefore be so also when it is for-
aging, reproducing, or performing other activities.

2.2.2. Mortality related to foraging
As for other animals, an adaptive growth strategy has likely

evolved among fish (reviewed in Arendt, 1997; Enberg et al., 2012).
Although higher growth can be achieved by reallocating resources
from other functions, e.g. immunity, behaviour, or cognition, such
reallocation would amount to increasing the net availability of re-
sources in the same way that increasing foraging would and here
we treat these effects as the same and denote the ensuing mortality
as Mgrowth. At the behavioural level, the field of foraging ecology has
long studied how optimal patch choice balances expected foraging
returns against predation risk (Mangel and Clark, 1986; McNamara
and Houston, 1986). Lima and Dill (1990) provide an insightful re-
view, and here we use a general formulation whereby increased for-
aging leads to increased mortality Mgrowth. Several mechanisms can
underlie such a relationship. For example: the safest foraging oppor-
tunities can be exploited first, and to achieve a higher foraging rate
the fish might need to include more risky patches or unsafe time win-
dows (Clark and Levy, 1988). The trade-off can also be physiological,
as in Atlantic silversides where individuals with higher voluntary
meal size (Billerbeck et al., 2000) are being eaten more often by
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Fig. 2. Main assumptions of the model. a) We assume the same size-dependent scaling
of mortality rate as found in many empirical meta-analyses and theoretical studies,
where natural mortality is an allometric function of length scaling as L−0.75. b) The
fish can change the coefficient that determines resource acquisition rate by changing
their growth strategy φ. The model is not specific on mechanism, but this may be
done for example by more risky foraging behaviour or down-regulating immune func-
tion. Extra mortality is assumed proportional to φ and with the same size-dependent
scaling as predation in panel a. c) Increased reproductive investment causes increased
mortality, with the same scaling with size as predation in panel a. For reproductive in-
vestment we use the gonado-somatic index (GSI) Q as proxy, but this should be inter-
preted in the broad sense as also including behaviour, migrations, expression of
secondary sexual characters etc.
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predators (Lankford et al., 2001) because they are poorer swimmers
(Billerbeck et al., 2001) due to the elevated oxygen requirements of
higher digestion rates (Arnott et al., 2006). Such a relationship can
be particularly relevant for flatfish, where respiration rates are de-
pressed when buried but can be elevated by lying on top of sediments
or even arching to get their heads above the layer affected by sedi-
ment metabolism (Gibson and Robb, 1992; Howell and Canario,
1987; Stoner and Ottmar, 2003). To reflect ecology where intake
rate can be increased but patchiness and behavioural and physiolo-
gical constraints may involve diminishing returns, we assume a
saturation function for the relationship between the foraging strategy
φ and the food intake coefficient H:

H ¼ hmax � φ
h1=2 þ φ

ð3Þ

(Fig. 2b). We then specify foraging-related mortality as proportional
to φ:

Mgrowth φ; Lð Þ ¼ φ �Mpredation Lð Þ: ð4Þ

We assume the same size-dependence as predation mortality,
with the rationale that the same predators are likely to be active dur-
ing foraging as during other activities. There is thus a trade-off be-
tween net ingested resources and survival.

2.2.3. Reproduction
The effects of reproduction on survival were one of the first trade-

offs that received attention in life history theory (Gadgil and Bossert,
1970; Williams, 1966). In early papers a general shape was often as-
sumed, but empirical studies on fish now give us some insights into
what this relationshipmay look like. Here we split the cost of reproduc-
tion into two components, related to the burden of carrying gonads and
to costs of exposure and mate search at the spawning grounds.

2.2.3.1. Mortality at spawning grounds. Spawning behaviours include
mate search, courtship, and mating, and each of these behaviours
often require that the individual is relatively exposed to predators.
Further, the possibility of reproduction may focus attention towards
mates and mating opportunities and reduce the attention given to
potential predators. We therefore include a cost of being at the
spawning grounds in terms of increased mortality. We use the
same scaling with body size as predation mortality, and introduce a
coefficient u to determine the level:

Mspawning Lð Þ ¼ u⋅Mpredation Lð Þ: ð5Þ

2.2.3.2. Mortality due to carrying gonads. Fish need to fit their gonads in
their body cavity, which makes them rounder and stiffer and in turn
compromises swimming abilities. In general terms, the power required
to overcome hydrostatic friction increases proportional to the cross-
sectional area (Vogel, 1994). One could therefore expect that rounder
fish have poorer swimming performance, which can compromise es-
cape behaviour and thus increase risk of predation. Few studies have
quantified this directly, but Ghalambor et al. (2004) found declining
swimming performance throughout the roughly four-week gestation
period in guppies, a livebearer where brood mass increases linearly
over time. In livebearers the developing brood has, in addition to the
effect on the mother's body shape, increasing oxygen demands that
additionally limit the mother's performance.

For the purposes of this paper we assume that mortality related to
carrying gonads,Mgonads, increases with reproductive investment as a
function of the gonado-somatic index Q=G/(W+G) (dimension-
less), and that it follows the same size dependence as predation:

Mgonads Q ; Lð Þ ¼ Mpredation Lð Þ⋅ Q=qrefð Þp; ð6Þ

Here qref is a reference value at which the mortality from repro-
duction equals the size-dependent predation component, i.e., at
which Mgonads=Mpredation. For p>1, mortality rate accelerates with
increasing reproduction (Fig. 2c).

2.2.4. Unavoidable mortality
The above list is likely not exhaustive, so we also add a baseline or

unavoidable mortality Mfixed. This is a fixed mortality rate that affects
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all individuals independent of their state or their actions, and it
should be interpreted to include sources of mortality not accounted
for by the more specific mechanisms listed above and that do not
show size dependence. Examples include diseases, catastrophic envi-
ronmental effects, meteors, and the like.

2.2.5. Fishing mortality
Finally, we add fishing mortality F. This could easily be extended

to include gear selectivity and size dependence, but to make interpre-
tation easier we use a fixed mortality rate that does not vary with in-
dividual size or state.

Total mortality rate (Z; year−1) is then

Z φ;Q ; Lð Þ ¼ Mpredation Lð Þ þMforaging φ; Lð Þ þMgonads Q ; Lð Þ
þMspawning Lð Þ þMfixed þ F: ð7Þ

Annual survival probability (S) in year t is thus found as
S=exp(−∫ T=t

t+1Z(T)dT).

2.3. Optimization and simulations

Weuse optimization by dynamic programming (Clark andMangel,
2000; Houston and McNamara, 1999) to find optimal strategies for
energy allocation and the growth strategy. The method works
backwards from a maximum age of 30 years and finds the optimal
response for each combination of the individual state variables age
and length. Numerically, strategies are found for discrete values of
the individual state variables age (in years) and length (in cm). Be-
tween year t and t+1, mortality rate is calculated in 24 finer tem-
poral steps and total mortality rate summed. This numerical
implementation gives results that are indistinguishable from a
fully continuous approach. An advantage compared to alternative
modelling methodologies is that strategies are flexible and free to
vary depending on age and size, which allows strategies e.g. to
vary depending on maturity status. The method only finds the glob-
al optimum. The fitness measure we use is expected reproductive
value, i.e. the gonad production at age discounted by survival until
that age, summed over the entire lifespan. The predicted life histo-
ries are evolutionary endpoints — the adaptations one could expect
to observe given sufficient time for evolution to reach equilibrium,
and given that the ecology described by the parameter set remains
constant. Thereafter we simulate an individual following this opti-
mal strategy (using interpolated values for lengths that fall between
discrete values), leading to the trajectories of growth, survival, and
reproduction shown in the results section. A fuller description of
the method and equations for numerical implementation can be
found in Jørgensen and Fiksen (2010).

2.4. Parameterization

We chose to model the European plaice as a representative species
of flatfish, and the model only considers females. Parameters were
then chosen so that predicted growth without fishing corresponded
to a maximum observed length of 100 cm and weight of 7 kg (maxi-
mum length and weight recorded in http://www.fishbase.se).
Weight-at-age data for plaice in the North Sea (ICES, 2011) were av-
eraged over the period 1980–2010 and converted to lengths assum-
ing a condition factor of k=0.0105 (which assumes some gonad
mass). A life history that fits well with these data was predicted as
the evolutionary endpoint at a fishing mortality of F=0.13 year−1.
The rationale for this choice is that our model is limited to finding
evolutionary endpoints, so this value for F represents partial evolu-
tion to the higher and more variable fishing rates this stock has
been exposed to in the recent past. The model contains no environ-
mental stochasticity so some of the predictions appear as bang–
bang strategies with abrupt transitions between a juvenile growth
phase and an adult reproductive phase, but when constraints domi-
nate there is often a more gradual shift, i.e. indeterminate growth.

For parameters of the functions that make up natural mortality
we reasoned from ecological processes as follows (values are given
in Table 2). We first assumed that the cryptic appearance and bury-
ing behaviour imply a low baseline mortality (Mfixed) in the ab-
sence of activities that expose the individual, and also a low
predation rate (low value of c). However, because plaice live on
sandy bottom where any activity may be visible, we assumed that
foraging behaviour is costly as any movements will reveal the posi-
tion of the individual and attract the attention of predators. Simi-
larly, we assumed that reproductive investment is relatively
costly as large gonads would make a bulky appearance that is har-
der to hide, and require more oxygen for metabolic needs which
could imply larger movements of the gill operculum or lead the
flatfish to bury less deep or even lie on top of the sediments to en-
sure efficient respiration. Higher metabolic needs could also lead to
poorer swimming abilities and reduce chances of successful escape
from predators. Because plaice eggs contain many lipid droplets we
assume that the cost of producing gonad tissue was twice that of
somatic tissue (Dawson and Grimm, 1980 measured this to be
~1.75, our value also includes costs of behaviour etc.). The exact
values were found by tuning parameter values until the model's
predictions for several phenotypic patterns fit observations: age
and size at maturity, growth trajectory, and maximum length and
weight in the absence of fishing, as well as gonado-somatic index
and total natural mortality.

3. Results

By breaking down natural mortality into several ecological rela-
tionships and trade-offs, the model illustrates how contrasting selec-
tion pressures may interact and influence fish life history strategies
in diverse ways. Within the model, mortality rate emerges as a result
of adaptive processes associated with growth and reproduction.
Here we first report the effects of fishing mortality to establish a
life history that resembles that observed for plaice today (Fig. 3).
We then vary parameter values for the individual components of
natural mortality. In Fig. 4 we assume a population of plaice that
has partly adapted to fishing, and show results for the evolution-
ary endpoint at F=0.13 year−1. This is meant to reflect the cur-
rent population of plaice, and predictions for how variation in
natural mortality parameters might affect current populations.
We then compare this with changes in life histories of varying
the same parameters in an unfished stock (F=0 year−1; Fig. 5),
corresponding to the pristine situation before fishing levels
intensified.

The general expectation from theory is that increasing the general
level of mortality will lead to earlier maturation (e.g., Law and Grey,
1989) and increased reproductive investment (e.g., Williams, 1966).
When it comes to how growth will change, predictions vary and the
evolutionary dynamics are poorly understood (Dunlop et al., 2009b;
Enberg et al., 2012; Jørgensen and Fiksen, 2010; Miller, 1957). The
model in this paper also varies parameters in several of the trade-
offs that link survival to behavioural and life history traits — for
these expectations are not clear-cut.

3.1. Baseline predictions and fishing mortality

Under increasing fishing mortality F, the key life history response
was a reduction in size and age at maturation (Fig. 3). The model only
considers females, and for these age of maturation was predicted to
decline from 15 years in the total absence of fishing to 4 years at
F=0.13 year−1, to 2 years at the highest fishing mortality investigated
(F=0.4 year−1). Over the same increase in F, relative reproductive
investment roughly doubled. These results are typical of the effect
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of fishing upon life history strategies, whereby a reduction in age and
size at maturation as well as an increase in reproductive effort are
predicted by theory and observed empirically.

The model also predicted that as fishing mortality goes up, fish
tend to take more risk to accelerate growth prior to maturation, de-
spite increased mortality (Fig. 3c). After maturation, the level of risk
depends on body size and is higher the larger the fish is, mainly be-
cause the cost of taking risks is lower as size-dependent predation
is lower. The overall consequence of all these life history changes is
that natural mortality goes up in the populations adapted to fishing,
especially at older ages (Fig. 3d).

3.2. Changing size-independent mortality

The life history changes predicted by an increase in the basic
level of size-independent mortality Mfixed follow standard life his-
tory theory: sexual maturity at smaller size and earlier age as
well as increased reproductive investment. These changes were
small in the life history adapted to fishing (Fig. 4a–d) but were
qualitatively the same but of greater magnitude in the life history
with no fishing (Fig. 5a–d). Note that because we assumed size-
independent fishing, changing Mfixed is synonymous to changing
F. Prior to maturation, a riskier growth strategy φ was also ob-
served as a consequence of higher Mfixed (Figs. 4c, 5c). After matu-
ration the growth strategy was very similar across different values
of Mfixed, but as adult size is smaller at higher Mfixed, the same
growth strategy will result in higher mortality because of the
size-dependent scaling that affects also growth-related mortality
(Eq. (4)). Changing Mfixed led to a general increase in natural mor-
tality across all ages (Figs. 4d, 5d).
3.3. Changing size-dependent predation mortality

By increasing the coefficient c that determines the level of size-
dependent predation (Figs. 4e–h, 5e–h), the model predicts a large
response towards earlier maturation at smaller size. As increasing c
increases the overall level of mortality, this is as expected from
theory. The value of c also has a strong effect on the growth strat-
egy, as the benefits that follow from having more resources incur a
higher mortality rate when size-dependent predation is higher.
Here it can also be seen, when c is low, that the growth strategy
φ increases during the juvenile phase as predation declines, follow-
ing from the size-dependent scaling of predation mortality
(Figs. 4g, 5g). Because changing the value of c changes predation
rates, the effect on natural mortality rates is strong as expected
(Figs. 4h, 5h).

3.4. Changing food availability — the risk half-saturation

The risk half-saturation parameter h1/2 can be described as refer-
ring to an ecological relationship, where lower values translate to
an increase in food availability such that the same resources can be
obtained at lower foraging risk. Consequently, safer behaviours are
observed when h1/2 takes lower values (Figs. 4k, 5k), the increased
food availability means that growth can be faster, and the model pre-
dicts maturation later and at larger size as well as with a lower invest-
ment into reproduction (Figs. 4i–j, 5i–j). In terms of evolutionary
fitness the model predicts that it is better to divert energy towards re-
production rather than growth when food availability is limited. The
value of h1/2 has consequences for the natural mortality rate across
all ages (Figs. 4p, 5p).
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3.5. Changing mortality at the spawning grounds

The spawning activity itself may be linked to mortality, for exam-
ple due to migrations, mate search, courtship, or spawning behaviour.
In our model this is implemented as a fixed mortality that applies to
all reproductive individuals but not to immatures, with the level
given by the parameter u. When spawning becomes more costly in
terms of mortality (higher u), maturation is delayed and takes place
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Fig. 5. Responses to changing natural mortality components in the absence of fishing. See caption of Fig. 4 for legend; the only difference is that F=0.0 year−1.
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at larger size and reproductive investment goes up (Figs. 4m–n, 5m–n).
As immatures the model predicts the same growth strategy regard-
less of u, but after maturation the growth strategy depends on size
so that fish that mature larger are predicted to grow faster
(Figs. 4o, 5o). The combined effect on natural mortality is small,
but of larger magnitude for early-maturing life histories (compare
Figs. 4p and 5p).
3.6. Mortality related to gonads

The final contribution to natural mortality we included was a trade-
off between the intensity of reproductive investment and survival. We
assumed an accelerating cost of reproductive investment, and varied
the parameter qref, which is the broad-sense gonado-somatic index
that incurs the same mortality as the size-dependent predation
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component (Fig. 2c). This parameter only matters from age at first
reproduction and onwards, but if the costs of reproductive invest-
ment become high then maturation itself can be delayed (e.g.
Fig. 5q, r). A lower value for qref implies a higher mortality cost of
reproductive investment, and leads to smaller gonads (Figs. 4r,
5r) and a higher larger body sizes post maturation because less re-
sources are used for gonads (Figs. 4q, 5q). The model's prediction
for the growth strategy depends on the fishing mortality: in the ab-
sence of fishing the larger-bodied fish (low qref) take less risk and
prioritize survival until future spawning seasons (Fig. 5s), but
when adapted to fishing this becomes a less viable option and
more risk is accepted among adult fish (Fig. 4s). This is likely partly
driven by the fishing mortality itself (as explained in Fig. 1) and
partly because the adult size differences across parameter variation
in qref are larger in the life histories adapted to fishing (compare
Figs. 4q and 5q). Interestingly, as the mortality from having large
gonads is increased, the total natural mortality declines, and most
so in the population adapted to fishing.

4. Discussion

In this paper we use a model as a conceptual tool to investigate
how fishing and changes in ecological relationships may influence
the selective landscape on fish life histories and behaviour. Our
main message is that natural mortality is not an externally imposed
factor, but emerges from the behavioural and life history tactics of in-
dividuals, and that these strategies may be under selection or shaped
by anthropogenic or ecological relationships that one can study and
monitor over time.

4.1. Fishing-induced evolution of a broader set of traits

The field of fishing-induced evolution has, probably rightly, histor-
ically focused on age at maturation because early trends were
detected, maturity status and size are quantifiable and relatively
easy to observe, and there was available theory to explain the changes
(reviewed e.g., by Dieckmann and Heino, 2007). But there is a need to
considerably broaden the perspective on possibly evolving traits. In
some cases data exist to suggest fishing-induced trends that likely
have an evolutionary component: morphology, particularly condition,
in salmonids (Ricker, 1981, 1995), lake whitefish (Handford et al.,
1977), and common carp (Wohlfarth et al., 1975); increased fecundity
in Atlantic cod (Yoneda andWright, 2004), lake whitefish (Thomas et
al., 2009), and perhaps European plaice (Rijnsdorp et al., 2005);
growth in Pacific salmonids (Ricker, 1981, 1995), Atlantic cod
(Swain et al., 2007) and lake whitefish (Thomas and Eckmann,
2007); and seasonal timing e.g. of salmon runs (Quinn et al., 2007).
Beyond these, theory has suggested further traits that might evolve,
e.g. migration distance (Jørgensen et al., 2008; Opdal, 2010), her-
maphroditism (Sattar et al., 2008), and skipped spawning (Jørgensen
et al., 2006). In this paper we follow Jørgensen and Fiksen (2010)
and use general ecological relationships that can reflect multiple
traits. For example, the growth strategy φ can represent foraging be-
haviour, meal size, digestive physiology, or internal trade-offs such
as how resources are allocated between e.g. immune defence, integu-
ment or armoury on the one side versus available resources for growth
on the other (Enberg et al., 2012). This makes the model more general
as it indicates which groups of functions are sensitive to different
types of mortality changes, but it also leaves a remaining challenge,
often species-specific, of identifying exactly which traits are actually
under current selection.

4.2. A diversified view on reproductive mortality

A particular contribution of the model in this paper is the par-
titioning of reproductive mortality into a fixed threshold mortality
(parameter u; Figs. 4m–p, 5m–p), due to e.g. exposure and migra-
tions, and a variable mortality relating to the actual reproductive in-
vestment (parameter qref; Figs. 4q–t, 5q–t). The threshold mortality
has often been used in life history models for fish (e.g. Hutchings,
1999, 2005; Jørgensen and Fiksen, 2006), whereas a trade-off be-
tween the intensity of reproduction and survival has a long history
in life history theory (Gadgil and Bossert, 1970; Williams, 1966).

Both an increase in the fixed spawning cost (higher u) and the
gonad-specific cost (lower qref) cause later maturation, but they
have the opposite effect on reproductive investment. A high thresh-
old cost of reproduction will cause high gonad mass because it is
not beneficial to accept the costs of spawning if the reproductive out-
put is low. In contrast, a high cost of large gonads will tend to select
for smaller gonads and rather spawning over many consecutive years.

There is also an interesting interaction with fishing (compare
Figs. 4 and 5). In the pristine stock, increasing both types of reproduc-
tive mortality caused an increase in adult size. In the population
adapted to fishing, in contrast, increasing the threshold cost of repro-
duction caused smaller adult size for a wide range of age-classes
whereas increasing the cost of gonads consistently increased adult
size. Understanding which ecological and physiological relationships
and interactions cause reproductive mortality is therefore crucial to
predicting species-specific responses to fishing or environmental
change, and may be sensitive to parameter values of the involved
trade-offs.

The differential response to types of reproductive mortality also
has consequences for how one considers the potential evolutionary
impact of a spawner fishery. Because increased fishing mortality on
sexually mature fish (analogous to increasing u) leads to weak selec-
tion for later maturation these have been considered as having less
evolutionary impact than fishing mortality targeting juvenile or all
age-classes (first highlighted by Law and Grey, 1989). We extend
this perspective by showing that not all reproductive mortalities act
in the same way. For example, a seasonally short and concentrated
fishery may affect individuals the same regardless of their reproduc-
tive investment (as u), whereas a prolonged fishery may target
those fish that reproduce more intensely and stay longer at the
spawning grounds (similar to qref). Different fishing gear may also
be more u-like, for example purse seines that catch entire schools
more or less regardless of individual variation, or more qref-like, for
example gillnets that target round body shapes or trawls where
poor swimming performance from large gonads can increase risk of
capture.

It is worth contemplating how increased mortality of carrying go-
nads led, somewhat surprisingly, to quite a substantial reduction in
predicted natural mortality in the population adapted to fishing
(Fig. 4t). This happens because building smaller gonads and rather
prioritizing repeated spawning becomes beneficial. This effect may
be worth looking further into for its potential relevance for evolution-
ary optimal fisheries management.

4.3. The ecosystem embedding

There are also many other drivers beyond fishing that may cause
temporal changes in the phenotypic traits of fish. Considerable atten-
tion has been devoted to disentangle effects of fishing from those of,
e.g., temperature and nutrient loading (e.g. Grift et al., 2003; Opdal,
2010; Rijnsdorp and van Leeuwen, 1996; Swain et al., 2007; Thomas
and Eckmann, 2007; Thomas et al., 2009). For the model in this
paper, the level of size-dependent predation and the risk associated
with foraging and growth can be viewed as having strong influences
from ecosystem properties, and they were, interestingly, the parame-
ters that led to the largest changes in predicted life histories.

Of particular relevance to flatfish is that benthic trawling, and
particularly beam trawls or tickler chains that dig into or stir up
the sediments, may make food available by destroying or uncovering
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organisms or, over time, favouring benthic species with higher
growth and production (Hiddink et al., 2008). In the terms of our
model, more available food implies that same amount can be
obtained at a lower foraging risk, which was studied by varying the
parameter h1/2 (Figs. 4i–l, 5i–l). Everything else being the same, our
model predicts that increased food availability has a strong effect
on optimal life histories (faster growth, larger adult size, later matu-
ration, and lower GSI) as well as a relatively strong reduction in nat-
ural mortality across all life stages.

Changes in the abundance of predator communities may influence
prey species. This is complicated by how predators may affect differ-
ent life stages differentially, with consequences for co-existence (de
Roos et al., 2008), or even be kept in check by what is normally con-
sidered their prey (Persson et al., 2007).

Our model suggests that a change in size-specific predation has
large effects on all life history traits and mortality. Many of the rela-
tionships in our model propagate the effects of size-dependent preda-
tion, for example when more risky foraging or building larger gonads
expose individuals more to predation. This suggests that, although
extremely difficult, there is a need for strengthened focus on how
changes in communities (e.g. Jennings et al., 1999) influence preda-
tion pressures (Gislason et al., 2008), which affect plasticity and evo-
lution of life history and behaviour, which in turn feed back to
community structure again. Some researchers have started this
daunting challenge (e.g. Abrams, 2009; Abrams and Matsuda, 2005;
Gårdmark et al., 2003).
4.4. Observed changes

Most traits are in a trade-off with survival. It can therefore be that
the prediction of an increased natural mortality is robust and a signal
that something is going on. Increased mortality could follow from
earlier maturation at smaller size, which is the general expectation
from fishing-induced evolution, but it could also follow from other
learned or evolved trait changes.

There is evidence that natural mortality has gone up in some
heavily harvested stocks, for example some Atlantic cod stocks off
Canada (Shelton et al., 2006; Swain, 2011; Swain and Chouinard,
2008). The increase in grey seal abundance may be a significant con-
tributor to this (Benoît et al., 2011; Savenkoff et al., 2007), but con-
comitant changes in life history parameters (Swain, 2011; Swain
and Chouinard, 2008) may indicate a role for fishing-induced adapta-
tions too (Hutchings, 2005; Jørgensen and Fiksen, 2010; Swain,
2011). Can it be that changes in cod behaviour and life history strate-
gies now expose cod more to their seal predators, leading to more
food for seals and increasing seal populations? If so, there could be
a positive feedback loop where elevated mortality from fishing or
seal predation causes higher seal predation. Such positive feedbacks
could explain why cod populations have not recovered, despite re-
laxed harvesting. Comparing expected rates of fishing-induced evolu-
tion towards riskier strategies and reverse evolution in the absence of
fishing may shed light on the lack of recovery in these stocks.

To identify the specific traits that evolve in specific populations is
a particular and non-trivial challenge. In hindsight it might be that we
scientists might be perceived as utterly naïve because we didn't rec-
ognize early on the really important traits that were undergoing evo-
lutionary change. It can be timely to remind oneself of Leslie Orgel's
second rule: Evolution is cleverer than you are. Thus, our imagination
is likely preventing us from having the appropriate expectations of
what is going on. This is particularly true for models, which need to
assume traits and relationships, with the consequence that traits
not assumed to be evolvable in a model will, by definition, not be
predicted to evolve. Maybe the model in this paper, with general
classes of mechanisms that absorb the selection pressure instead of
particular traits, can help broaden the perspective and motivate
researchers with more specialist knowledge to think about how
their focal traits or species might respond to the rapid changes in
the seas.
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