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a b s t r a c t

Mortality profiles have figured prominently among tools used by zooarchaeologists to investigate re-
lationships between hominids and prey species. Their analysis and interpretation have been considerably
influenced by M.C. Stiner's approach based on ternary diagrams. Part of this method included the
demarcation of “zones” in ternary diagrams identifying specific mortality patterns (e.g. attritional,
catastrophic, prime-dominated, etc.). Since its introduction some twenty-five years ago, this zoning has,
however, received little critical attention. Mathematical modelling as well as a reassessment of the
ecological data used to define these zones reveal several problems that may bias interpretations of
mortality profiles on ternary diagrams.

Here we propose new, mathematically supported definitions for the zoning of ternary diagrams
combined with species-specific age class boundaries based on ethological and ontological data for seven
of the most common hominid prey (bison, red deer, reindeer, horse, zebras, African buffalo and common
eland). We advocate for the use of new areas (JPO, JOP, O and P zones) that produce more valid in-
terpretations of the relative abundance of juveniles, prime and old adults in an assemblage. These results
contribute to the improvement of the commonly used method of mortality profile analysis first advanced
by M.C. Stiner.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. Mortality profiles in zooarchaeology

Mortality profiles are widely used in zooarchaeology, serving as
a key line of evidence for exploring relationships between past
societies and the animal species they exploited (e.g. Frison, 1978;
Stiner, 1991b; Brugal and David, 1993; Stiner, 1994; Morel and
Müller, 1997; Turner et al., 2002; Steele, 2004; Fernandez et al.,
2006; Bignon, 2008; Hill et al., 2008; Bunn and Pickering, 2010b;
Street and Turner, 2013). Age-frequency distributions are
commonly used to document choices made by human populations
in terms of prey acquisition strategies (e.g. Reher, 1973; Klein, 1982;
Stiner, 1990; Brugal and David, 1993; Fernandez et al., 2006; Driver
and Maxwell, 2013) or herd management (e.g. Payne, 1973;
Institute, Postboks 7805, N-

ps).
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Halstead, 1998; Greenfield, 2005; Vigne and Helmer, 2007;
Marom and Bar-Oz, 2009).

Based on data from contemporary wild populations, two theo-
retical models have been proposed to describe the demography of
stable large mammal cohorts (Deevey, 1947; Caughley, 1966, 1977).
The first corresponds to the age profile of a typical stable living
population, often referred to as a “catastrophic” or “living struc-
ture” pattern. The second basic mortality type is characterized by
an under-representation of prime adults alongside larger numbers
of young and old individuals, which corresponds to “attritional”
mortality factors implicating elevated mortality rates for juvenile
and old individuals. In the fossil record, these basic mortality types
were first used by palaeontologists to shed light on the mortality
factors underlying the formation of faunal assemblages (e.g. Kurt�en,
1953; Voorhies, 1969), and later by zooarchaeologists in order to
considerably enrich discussions concerning past hunting strategies
(e.g. Reher, 1970, 1973; Klein, 1982; Stiner, 1990):

- “Catastrophic” profiles are generally considered illustrative of
mortality events related to natural disasters (Voorhies, 1969;
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Delta:1_given name
Delta:1_surname
http://creativecommons.org/licenses/by-nc-nd/4.�0/
mailto:ediscamps@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jas.2015.03.021&domain=pdf
www.sciencedirect.com/science/journal/03054403
http://www.elsevier.com/locate/jas
http://dx.doi.org/10.1016/j.jas.2015.03.021
http://creativecommons.org/licenses/by-nc-nd/4.�0/
http://dx.doi.org/10.1016/j.jas.2015.03.021
http://dx.doi.org/10.1016/j.jas.2015.03.021


E. Discamps, S. Costamagno / Journal of Archaeological Science 58 (2015) 62e76 63
Lyman, 1987), mass kills (e.g. Reher, 1970; Levine, 1983;
Costamagno et al., 2006; Hill et al., 2008; Kuntz and
Costamagno, 2011; Rendu et al., 2012) or non-selective hunt-
ing episodes (e.g. Klein, 1978, 1981; Stiner, 1990; Costamagno,
2003). Solitary ambush predators do not track their prey but
generally capture them during chance encounters, meaning that
these predators are more likely to generate mortality profiles
resembling the expected age structure of a living population, i.e.
catastrophic profiles (Stiner, 1990).

- “Attritional” mortality profiles can have several causes,
including disease, malnutrition, accidents and predation
(Clutton-Brock et al., 1982; White et al., 1987; Stiner, 1991b;
Delgiudice et al., 2006). Social cursorial carnivores (e.g.
wolves, wild dogs and spotted hyenas), which engage in long
chases of their quarry, are also more prone to produce attritional
mortality profiles (Stiner, 1990). While Klein (1978) interpreted
attritional profiles in Palaeolithic sites as reflecting the inability
of hominids to hunt prime-age adults, Stiner (1991a) interpreted
them as the product of scavenging.

Additional mortality types have also been recognized in
archaeological assemblages. For instance, old-dominated mortality
profiles have been considered typical signatures of scavenging
(Klein, 1982; Klein and Cruz-Uribe, 1991; Stiner, 1991a, 1994), as
primary predators often leave behind very little of the fragile
skeletons of young individuals. Stiner (1990, 1991a) also showed
that several archaeological sites exhibit a strong bias towards prime
adults, with the selection of the most profitable prey considered
evidence for the emergence of specific hunting strategies (selective
ambush techniques) during the Late Mousterian. Prime-mortality
profiles have since been recognized in older archaeological as-
semblages (e.g. Wallertheim cf. Gaudzinski, 1995; Le Lazaret cf.
Valensi and Psathi, 2004; Bocksteinschmiede cf. Kr€onneck et al.,
2004; see also Steele, 2004) as well as in natural accumulations
(e.g. Wolverton, 2001, 2006; Kahlke and Gaudzinski, 2005).

1.2. Methods used to identify mortality patterns

While the analysis of mortality profiles is not limited to the
identification of a specific mortality pattern (e.g. catastrophic or
attritional mortality), these broad categories often guide behav-
ioural interpretation. Because of their significant interpretative
power, it has long been considered important to both elaborate and
improve the tools available to zooarchaeologists for identifying
different theoretical mortality patterns (e.g. Klein, 1982; Lyman,
1987; Stiner, 1990; Steele and Weaver, 2002). Zooarchaeologists
working with Palaeolithic assemblages have favoured two types of
graphical representations to identify these patterns, histograms
and ternary plots. Although other graphical solutions can be used to
represent age distributions (e.g. survivorship curves cf. Deevey,
1947; Caughley, 1966; Spinage, 1972; Millard and Zammuto,
1983), they have rarely been applied to mortality analyses in
zooarchaeology (although see Lyman, 1987; Fernandez and
Legendre, 2003; Fernandez et al., 2006). For instance, survivor-
ship curves, commonly used in Neolithic contexts (e.g. Payne, 1973;
Vigne and Helmer, 2007; Marom and Bar-Oz, 2009), feature far less
often in Palaeolithic studies (e.g. Klein, 1978). Similarly, the alter-
native advanced by Klein et al. (1981), which relies on boxplots of
crown heights representing age distribution of adults, is still rarely
employed (Klein and Cruz-Uribe, 1996; Steele, 2005; Klein et al.,
2007).

Histograms are commonly used to represent the relative or
absolute frequency of individuals in a series of age classes. Gener-
ally, age classes are defined either as a given duration in years or
months (e.g. Voorhies, 1969; Lyman, 1987; Turner, 2002) or as a
proportion of total life expectancy (Klein, 1982). In a histogram
where age classes are of similar duration, the shape of the age
profile provides an initial assessment of the corresponding mor-
tality pattern. The curve of a catastrophic profile is typically “L-
shaped” (i.e. half-pyramidal), characterized by a progressive
decrease in the number of individuals in each subsequent age class
(Fig. 1a). Conversely, the curve of attritional profiles is most often
“U-shaped” (Fig. 1b), with juvenile and old individuals being best
represented and prime adults rare. It is important to note that the
“L” or “U” shape of an age profile can only be recognized on his-
tograms where age classes are of similar duration. However,
depending on the ageing method used, the precision in age esti-
mates is not always sufficient for individuals to be ascribed to
classes of equal duration. In such cases, “corrected” age profiles are
sometimes produced by dividing raw class frequencies by the
percentage of lifespan represented by a given class in order to
render them comparable with theoretical profiles (Bignon, 2006a;
Vigne and Helmer, 2007, Fig. 5).

While H.C. Greenfield (1988), in his study of Neolithic domestic
animal production strategies, was the first to rely on a three-age
system where assemblages are plotted on ternary diagrams, it
wasM.C. Stiner (1990,1991a,1994) who popularized themethod. In
promoting its clear advantages for the comparison of mortality
profiles from small samples, she proposed three age groups (ju-
veniles, prime adults and old adults), which “correspond to major
life history phases in artiodactyls and equids” (Stiner, 1990: 311).
Individuals with deciduous teeth were considered as juveniles,
those with the full complement of permanent teeth as prime adults
and individuals with more than half of their crown worn away as
old adults. These broad age classes are interesting as they corre-
spond to nutritional trade-offs faced by hunters as well as non-
human predators. Juveniles and old adults have lower fat levels
than prime adults, and juveniles have a lower body weight, while
prime adults provide the most calories, yet are less vulnerable to
predation. By comparing a large number of age profiles from both
archaeological sites and modern wildlife datasets on ternary dia-
grams, Stiner (1990) was able to discuss niche separation in prey
age selection between different predators. While this was not the
main objective of her analyses, Stiner (1990) also identified various
zones on ternary diagrams that were correlated with basic mor-
tality patterns (Fig. 1c). In addition to areas delimiting profiles
reflecting a bias towards one of the threemain age groups (juvenile,
prime and old dominated), she demarcated the expected range of
variation for both U- and L-shaped profiles: “The U-shapedmortality
model and the natural cases of mortality […] occur in the lower left-
central region of the graph […] The living-structure model, live census
data, and cases of mass (catastrophic) death are distributed in the
lower right-central region of the graph” (Stiner, 1990: 319). Since
1990, Stiner's zoned ternary diagrams have been widely used in
zooarchaeological studies, especially in Palaeolithic research (e.g.
Lyman, 1994; Marean, 1997; Speth and Tchernov, 1998; Díez et al.,
1999; Lubinski, 2000; Munro, 2001; Steele and Weaver, 2002;
Kahlke and Gaudzinski, 2005; Adler et al., 2006; Wolverton,
2006; Hill et al., 2008; Byers and Hill, 2009; Steele and Klein,
2009; Rendu, 2010; Driver and Maxwell, 2013). When used in
mortality profile analyses, ternary diagrams almost systematically
employ Stiner's zonation. While the position of an age profile ac-
cording to Stiner's zones is seldom the only line of evidence
mobilised for interpreting mortality profiles, it has been used to
identify an age profile as L-shaped, U-shaped, prime dominated, old
dominated or juvenile dominated. This age profile can then sub-
sequently be evoked as further evidence of a particular prey
acquisition strategy. For example, when profiles from archaeolog-
ical sites fall in the “L-shaped zone” on ternary plots, they could be
interpreted as evidence for non-selective hunting episodes,



Fig. 1. Commonly used theoretical mortality patterns. L-shaped (a), U-shaped (b) and Stiner's (1990) zoning of ternary diagrams (c).
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including mass kill events. Yet Stiner's method was originally not
specifically intended as a tool to attribute a single age profile to a
given theoretical mortality pattern (e.g. catastrophic or attritional
profiles).

The purpose of the present paper is to (a) examine whether
Stiner's zones can be used for the identification of mortality pat-
terns (such as L-shaped or U-shaped profiles) on ternary diagrams
and (b) define new zones on ternary diagrams that can help
zooarchaeologists interpret the relative proportions of 3 age
cohorts.

2. The demarcation of mortality patterns on ternary
diagrams

2.1. Mathematical modelling of theoretical mortality patterns

Since its original proposition by Stiner (1990), the demarcation
of specific areas pertaining to different mortality types on ternary
plots has received little critical attention. Although Stiner (1990)
used examples of profiles from wildlife studies to demarcate the
different zones of the ternary diagram, it is equally possible to
assess the distribution of mortality patterns on ternary diagrams
using mathematical models.

The relationships between the proportions of the 3 age cohorts
on a ternary diagram are shown in Fig. 2a (Pj, Pp, Po: proportions of
Fig. 2. a) Mathematical relationships between the proportions of the 3 age cohorts on a tern
where the 3 classes are proportionally equal. b) Example of a typical L-shaped age profile as s
classes of unequal duration leads to uncharacteristic profiles that are less straightforward t
juveniles, prime adults and old adults, respectively). If we consider
the definitions of L-shaped and U-shaped profiles, the first should
correspond to the “Pj > Pp > Po” zone (juveniles > prime
adults > old in proportion), the second to the “Pj > Po > Pp” zone
(juveniles > old > prime adults), with prime-dominated assem-
blages corresponding to the “Pp > Po > Pj” and “Pp > Pj > Po” zones.
However, the 3 age cohorts used in ternary diagrams seldom
correspond to the same fraction of the potential ecological
longevity or PEL (Stiner, 1990; Costamagno, 1999, Table 1). For
instance, if juveniles are defined as individuals between 0 and 2
years of age and prime adults as between 2 and 6 years, differences
in age class duration (2 and 4 years, respectively) might in itself
explain an under-representation of juveniles. In such a case, the
mortality profile should not be considered evidence for the pref-
erential selection of adults (i.e. a prime-dominated profile). Using
age classes of unequal duration leads to profiles that are less
straightforward to interpret (Fig. 2b). This does not mean that
zooarchaeologists must use age classes of equal duration, which
would in any case be difficult considering the precision of ageing
methods, but rather that defining zones corresponding to certain
mortality types on ternary diagrams should take into account the
duration of each age cohort relative to PEL.

In order to test Stiner's zones, we used randomization tech-
niques to produce a large number of mortality profiles that fall
within the ‘basic’ mortality types commonly used in
ary diagram (Pj: juveniles; Pp: prime adults; Po: old adults). The star indicates the point
een on histograms with 10 classes of equal duration or 3 of unequal duration. Using age
o interpret (in this example Pp > Pj > Po).



Table 1
Proportional lifespan of each age cohort for the different species considered (bold numbers with, in parentheses, class limit in years, with the upper limit of the old class
representing the mean longevity). Estimated proportions of individuals within each age class of several natural modern populations are also included (with corresponding
numbers from Fig. 8).

Juvenile Prime Old

Bison and African Buffalo Proportion of each class (with limits in years) 15% (0e3) 45% (3e12) 40% (12e20)
1 Białowie _za, bison (Krasi�nski, 1978) 26.3% 59.1% 14.6%
2 Akagera, buffalo (Spinage, 1972) 37.2% 54.4% 8.4%

Horse, Mountain and Plains zebras Proportion of each class (with limits in years) 8% (0e2) 52% (2e15) 40% (15e25)
1 Montana, horse (Garrott and Taylor, 1990) 32.8% 57.3% 9.9%
2 Nevada, horse (Garrott, 1991) 33.1% 62.1% 4.8%
3 Oregon, horse (Garrott, 1991) 30.6% 66.5% 2.9%
4 Wyoming, horse (Garrott, 1991) 36.1% 63.9% 0%
5 Akagera, zebra (Spinage, 1972) 20.4% 73.9% 5.7%

Red deer Proportion of each class (with limits in years) 12.5% (0e2) 62.5% (2e12) 25% (12e16)
1 Rhum 1957 (Lowe, 1969) 30% 68.3% 1.7%
2 Mount St Helen (Lyman, 1987) 27.4% 71.2% 1.4%

Reindeer Proportion of each class (with limits in years) 18.8% (0e3) 50% (3e11) 31.2% (11e16)
1 Barff (Leader-Williams, 1980) 66.6% 33.2% 2.5%
2 Busen (Leader-Williams, 1980) 61.6% 37.5% 8.9%
3 Svalbard (Reimers, 1983) 42.1% 55.8% 2.1%

Eland Proportion of each class (with limits in years) 13.9% (0e2.5) 58.3% (2.5e13) 27.8% (13e18)
1 Loskop Dam (approximation, Underwood, 1975) 41.9% 57% 1.1%
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zooarchaeology. Our mathematical modelling considered mortality
profiles with relatively common characteristics: 10 age classes; the
first two correspond to juveniles, classes 3 to 6 to prime adults and
classes 7 to 10 to old adults. The number of individuals for the 10
age classes in each random age profile was computed using a
random number generator (any number between 1 and 1000). Age
profiles that follow a specific mathematical law were then selected
in order to assess the distribution of L- and U-shaped profiles (see
below). The resulting profiles were then plotted on a ternary
diagram.

The mathematical definition of L-shaped mortality profiles is
fairly straightforward. For L-shaped profiles, we selected 10,000
random profiles with decreasing numbers of individuals in each
subsequent class from classes 1 to 10. Once plotted, these profiles
(Fig. 3a) reveal a clear problemwith the current definition of the “L-
shaped zone” in that a majority of the random profiles fall within
the ‘classic’ “U-shaped zone”.

Mathematically defining U-shaped profiles proved slightly more
complicated. We selected 10,000 random U-shaped profiles for
which: 1) the number of individuals decreases from class 1 to 6, 2)
the number of individuals increases from class 6 to 10 and 3) the
number of individuals in class 10 is inferior to the number of in-
dividuals in class 2. While this simulation does not necessarily
integrate all theoretically possible U-shaped profiles, Fig. 3b does
show that a large proportion of them are found outside the ‘classic’
U-shaped zone, with several profiles even falling within the ‘classic’
L-shaped area.

2.2. Problems with the zoning of ternary diagrams?

Simulations pinpointed potential problems in the current
zoning of ternary diagrams. Issues with the ‘classic’ zoning
commonly used by zooarchaelogists were first recognised by
Costamagno (1999) and then Discamps (2011). Fig. 4 shows an
example of an age profile that would typically be identified as L-
shaped on a histogram, but which, when plotted on a ternary dia-
gram, falls within the “U-shaped” zone defined by Stiner (1990).
This type of problem can have important repercussions for the
interpretation of mortality profiles in terms of hunting techniques.
In this particular case, a catastrophic profile would be categorized
as attritional. Additionally, very distinct mortality profiles are found
at the exact same spot on a ternary diagram. Fig. 4 shows such a
case, where U- and L-shaped profiles are located at the same spot
on the diagram. This is to be expected if we bear in mind that the
use of ternary diagrams induces a substantial loss of resolution in
the analysis of mortality profiles (Klein, 1995). In the following, we
investigatewhy such discrepancies are apparent between the zones
defined by Stiner (1990) and the simulated age profiles presented
above.

Stiner's method was not originally developed as a tool to
demarcate zones pertaining to specific mortality patterns. While
the original zones (Stiner, 1990) were devised with reference to two
theoretical profiles, the majority of the profiles come from wildlife
studies in which the mortality factors identified should theoreti-
cally have produced L-shaped (catastrophic mortality and ambush
predators) or U-shaped (attritional mortality and cursorial preda-
tors) profiles. These wildlife profiles were then used to demarcate
the expected range of L-shaped and U-shaped profiles. Stiner's
approach is in itself sound, although the specific examples of age
profiles she selected in wildlife studies do not meet the theoretical
expectations. Fig. 5 represents 12 of the 13 mortality profiles used
to define the “U-shaped zone”. A re-assessment of the original data
from living populations shows the selected profiles only to be
clearly categorized on histograms as U-shaped in 3 out of 12 cases
(NF, WM1 and HWS). Profiles NW and HWN are actually more
similar to L-shaped profiles. Despite the U-shaped appearance of
WM2, it is much closer to an L-shaped profile when differences in
the duration of age classes are taken into account. HZS, composed
of only 12% of old individuals and 41% of prime adults, is hardly
classifiable as a U-shaped profile. The remaining profiles are more
difficult to classify but are nevertheless not clearly U-shaped.
Moreover, interpreting histograms of this type is often problematic
as the relative duration of each age class is not always known
(profiles marked with a * in Fig. 5). Actual U-shaped profiles are
concentrated in the upper-left part of the area defined by Stiner as
the “U-shaped zone” (Fig. 5).

In fact, in some of the wildlife studies, the identified mortality
factors did not produce the type of profile theoretically expected.
The NW profile, assumed to be tied to attritional mortality factors
(wolf skulls found in Israel), is closer to an L-shaped profile. Mor-
tality profiles of hyena prey, considered representative of attritional
mortality, are highly variable (e.g. U-shaped, L-shaped) and depend
largely on the demographic characteristics of the prey populations,
a phenomenon previously recognized by Kruuk (1972). The same



Fig. 3. Mathematical simulations for a) L-shaped and b) U-shaped profiles (cf. text for details). In both cases, 10,000 random profiles are represented on a ternary diagram with
Stiner's zoning (1990), as well as 4 profiles representing the extreme limits of the scatter plot (histograms).
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can be said for mortality profiles produced by wolves, which may
be U- or L-shaped or even old-dominated in some cases (in Pimlott
et al., 1969 study, old adults represent 46% of wolf-killed white tail
deer). Additionally, some differences highlighted by Stiner (1990)
between cursorial and ambush predators reflect analytical
choices. For instance, Bunn and Pickering (2010a, their figure 4)
show that differences observed by Stiner between lion- and hyena-
hunted wildebeest is a consequence of the boundaries used for the



Fig. 4. Examples of problems with the commonly used zoning. The L-shaped profile (a) is placed on a ternary diagram in the U-shaped area defined by Stiner (1990). Profiles (a) and
(b) illustrate problems due to the limited resolution of ternary diagrams sharing the same number of juveniles, prime and old adults, such that both profiles fall in exactly the same
spot on the ternary diagram, despite one being more L-shaped (a) and the other U-shaped (b).
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age classes in one of the studies (data from Schaller, 1972), and that
there is in fact no statistically significant difference between mor-
tality profiles created by these two predators.

The above highlights that the current zoning of ternary plots
inaccurately distinguishes the different theoretical mortality pat-
terns such as catastrophic and attritional mortality profiles.

2.3. Towards new definitions for ternary diagram zones

Despite these problems, it is possible to demarcate zones on
ternary diagrams that are useful for zooarchaeologists to identify
mortality patterns. As shown by Stiner (1990), ternary diagrams
provide a powerful means for comparing the relative abundance of
3 different age classes of a large number of age profiles. Here we
propose a new zoning of ternary diagrams aimed at improving
Stiner's method. Instead of identifying ‘classic’ theoretical mortality
patterns, such as catastrophic or attritional profiles, our zonation
provides a means for distinguishing particular profile types defined
by the relative proportions of juvenile, prime and old individuals.

This new zoning is devised on the basis of mathematical re-
lationships in order to overcome difficulties in interpreting ternary
diagrams with age cohorts of unequal duration. Fig. 6 describes the
manner in which the new zones are demarcated for a typical un-
gulate population where juveniles represent 20% of the PEL, prime
adults 40% and old adults 40%:

- First, the mathematical relationships between the observed
proportions of each class (Pj, Pp, Po; proportions of juveniles,
prime adults and old adults, without taking into account biases
produced by unequal class duration) were determined such that
the corrected proportions (Pjc, Ppc, Poc; proportions
corrected for age class duration, defined as corrected
proportion ¼ observed proportion of the class/fraction of the
PEL represented by the given class) are equal (i.e.
Pjc¼ Ppc¼ Poc). This holds true at a single point on the diagram
that is defined by the PEL fractions of the different classes. In this
specific case, the point is located at 20% juveniles, 40% prime
adults, 40% old adults: if Pj ¼ 20%, Pp ¼ 40% and Po ¼ 40%, then
Pjc ¼ Pj/fraction of PEL ¼ 20%/20% ¼ Ppc ¼ 40%/40% ¼ Poc.

- Secondly, the 3 lines running through this point and the corners
of the triangle are then drawn. The line passing through the old
adult corner of the triangular diagram includes cases where the
corrected proportion of juveniles and prime adults are equal
(Pjc ¼ Ppc; Fig. 6a) and delimits zones where Ppc > Pjc (right)
and Ppc < Pjc (left). The line going through the juvenile corner
includes points where Ppc ¼ Poc and delimits zones where
Poc > Ppc and Poc < Ppc (Fig. 6b). Finally, the line going through
the prime adult corner contains points where Pjc ¼ Poc and
delimits zones where Poc > Pjc and Poc < Pjc (Fig. 6c).

- The combination of these areas results in zones with particular
mathematical relationships between Pjc, Ppc and Poc (Fig. 6d).
Differences between Figs. 2a and 6d demonstrate how zones
‘shift’ when biases produced by age classes of unequal duration
are taken into account.

This mathematically-based zoning for ternary diagrams
demarcates:

- the JPOe “Juveniles-Prime-Old”e zone (Pjc > Ppc > Poc), which
primarily includes L-Shaped profiles but also a few U-shaped
ones;

- the JOP e “Juveniles-Old-Prime” - zone (Pjc > Poc > Ppc) that
includes U-shaped profiles;

- the P e “Prime” e zone (Ppc > Poc > Pjc or Ppc > Pjc > Poc) with
profiles that are dominated by prime adults (age class duration
bias taken into account);

- the O e “Old” e zone (Poc > Ppc > Pjc or Poc > Pjc > Ppc)
comprising profiles dominated by old adults (age class duration
bias taken into account).

Plotting randomly generated L- and U-shaped profiles (see
Section 2.1) on ternary diagrams allows us to empirically test their
position according to these new zones. All the simulated L-shaped
profiles fall within the JPO zone, a pattern that can in fact be
demonstrated mathematically (see annex 1). While the majority of
simulated U-shaped profiles fall within the JOP zone, some lie in the
JPO zone (Fig. 7). Interestingly, it is possible to visualize the
approximate delimitation of zones JOP and JPO on the basis of
Stiner's examples from wildlife studies (diagonal dotted line on
Fig. 5a). Additionally, in Section 3 below, we review age profiles of
living populations for different species (Table 1): they all fall in the
JPO zone (Fig. 8).

Stiner (1990) defined juvenile-, prime- and old-dominated
zones where individuals of the “dominant” class represent more



Fig. 5. a) Mortality profiles used by Stiner (1990) to define the U-shaped zone (light grey area) on a ternary diagram (m: U-shaped model from Stiner, 1990). b) Histograms of the 3
mortality profiles that can be considered as U-shaped (NF: fallow deer in the absence of predators, cf. Chapman and Chapman, 1975; WM1: wolf-killed moose, cf. Peterson et al.,
1984; HWS: hyena-killed wildebeest, Serengeti, cf. Kruuk, 1972). c) Histograms of the 4 mortality profiles that actually appear more L-shaped (NW: wolf in the absence of predators,
cf. Mendelssohn, 1982; HWN: hyena-killed wildebeest, Ngorongoro, cf. Kruuk, 1972; HZS: hyena-killed zebra, Serengeti, cf. Kruuk, 1972; WM2: wolf-killed moose, cf. Fuller and
Keith, 1980). d) Histograms of the 4 mortality profiles that are rather equivocal (WdG: wild dog-killed Thompson's gazelle, cf. Kruuk, 1972; HZN: hyena-killed zebra, Ngor-
ongoro, cf. Kruuk, 1972; HG: hyena-killed Thompson's gazelle, cf. Kruuk, 1972; CG: cheetah-killed Thompson's gazelle, cf. Schaller, 1972). The WM2 profile is presented uncorrected
(WM2 uncorr., with age classes of unequal duration) and corrected (WM2 corr., corrected for age class duration). Mortality profiles marked by an * are those for which interpretation
is hampered by the uncertain time span of each age class. We have excluded one of the profiles considered as U-shaped by Stiner due to small sample size (n ¼ 14) and uncertain
mortality factors (tiger kills plus some scavenging). Vertical bars in the histograms represent age class boundaries used by Stiner (1990) for each profile. We were unable to define
them with any certainty for the NF profile.

Fig. 6. Subsequent steps involved in establishing the new zones (cf. text for more details). Pjc: corrected proportion of juveniles, Ppc: corrected proportion of prime adults, Poc:
corrected proportion of old adults.
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Fig. 7. L-shaped (a) and U-shaped (b) profiles from mathematical simulations plotted
on a ternary diagram with the newly defined zones (JOP, JPO, P and O).
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than 66% for the first two and more than 33% for the latter. The
zones defined here are based on mathematical relationships as
opposed to fixed arbitrary values. Prime and old adults are most
frequent in zones P and O, respectively, once age class duration bias
is taken into account. No “juvenile-dominated zone” is defined, as
zones JPO and JOP are both dominated by juveniles (age class
duration bias taken into consideration). Assemblages composed
almost exclusively of juveniles would cluster at the bottom left-
hand corner of the ternary diagram.

Despite not being able to systematically distinguish L-shaped
from U-shaped profiles (as this is not possible on ternary diagrams,
cf. above and Fig. 4), this revised zoning clearly distinguishes
certain profile types:

- a profile within the JOP zone can be considered U-shaped;
- a profile within the JPO zone can either be U- or L-shaped, the
latter being more likely;

- a profile outside of the JPO zone cannot strictly speaking be an L-
shaped profile (cf. annex 1);

- profiles in the JOP or JPO zone are dominated by juveniles, those
in the P zone by prime adults and in the O zone by old adults
(age class duration bias taken into consideration).
It is important to note that, in order to use this new zonation, it
is not necessary to compute corrected frequencies for age profiles.
The uncorrected proportions are used to plot the age profile on the
ternary diagram, and the demarcation of the zones allows for an
interpretation of the “corrected” proportions of the 3 cohorts
without any manipulation of the raw data. Ternary diagrams
remain a powerful means for exploring ordinal-scale differences
between age profiles (Lyman, 1987; Stiner, 1990). The new zoning
proposed here aims to explore ordinalescale relationships between
“corrected” proportions of the 3 age cohorts (in other words,
detecting for instance whether juveniles are more abundant than
prime adults when the age class duration bias is taken into
consideration).

3. Zoning adapted to each species

The definition of age class boundaries is critical in a 3-class
system as even the slightest change in boundaries may impact in-
terpretations. The necessity of defining species-specific age classes
to properly take into account ontogeny and ethology has been
mentioned on several occasions (Costamagno, 1999; Bunn and
Pickering, 2010a; Driver and Maxwell, 2013). Driver and
Maxwell's (2013) review of bison kill sites perfectly illustrates
this key point: mortality profiles appear primarily as either L-sha-
ped or prime dominated depending on the boundary chosen be-
tween juveniles and prime adult classes (if fixed at 4 years in
Stiner's original definition or 2 years when bison biological traits
are more fully considered, cf. Figs. 1 and 2 in Driver and Maxwell,
2013). Similarly, Bunn and Pickering (2010a) highlighted prob-
lems in the definition of the prime/old boundary, suggesting this
limit should vary depending on the research question at hand. For
example, when assessing hunting selectivity (i.e., the preferential
selection of a given animal social group), the prime/old boundary
ought to be defined as the moment when individuals modify their
physical position in the herd (e.g. by isolating themselves), which is
around 50e60 % of the PEL for buffalo. However, when evaluating
the hunting capabilities of hominids (i.e. whether they were
capable of hunting the most dangerous animals), this boundary
should be adjusted to reflect the fact that buffalos remain physically
viable up to 75% of their PEL, and may therefore be just as
dangerous to hunt as a younger prime adult.

Several authors have recently proposed species-specific class
boundaries based on ethological and biological data (Costamagno,
2001; Adler et al., 2006; Hill et al., 2008; Bunn and Pickering,
2010a; Discamps, 2011; Driver and Maxwell, 2013). While this is
a significant step forwards, little consensus has been reached in
terms of what criteria are most appropriate for fixing these
boundaries. The zones proposed in Section 2.3 utilise the PEL
fractions of each age cohort (see above) and thus have to be adapted
to each species considered in mortality profiles. In the following,
we propose new ternary diagram zones specifically adapted to 7
species frequently hunted by hominids during the Middle and Late
Palaeolithic in Eurasia and North America and the Middle and Late
Stone Age in Africa: bison (Bison priscus/bonasus/bison), red deer
(Cervus elaphus), reindeer (Rangifer tarandus), horse (Equus cab-
allus), zebras (Equus quagga/zebra/capensis), African buffalo (Syn-
cerus caffer) and common eland (Tragelaphus oryx) (Fig. 8). The age
group boundaries for each species were fixed with reference to
biological and ethological traits from contemporary populations
that seem the most important for hunters (e.g. when an individual
forms part of an animal social group or remains solitary, or when it
moves from one group to another) or scavengers (e.g. at which
time(s) an individual is more likely to die of natural causes). As age
is one of the criteria that shape the composition of animal social
groups (e.g. matriarchal groups, bachelor groups, harems),



Fig. 8. Suggested species-adapted zoning of ternary diagrams for a) bison and African Buffalo, b) horse and mountain/plains zebras, c) red deer, d) reindeer and e) eland. Reference
populations of each species are plotted on the corresponding ternary diagram (cf. Table 1).
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mortality profiles can equally shed light on the type of social group
targeted if age cohorts boundaries are set appropriately.

We used average PEL values as in most ungulate species males
have a shorter life expectancy than females, and PEL estimates vary
according to different wildlife studies. The juvenile/prime limit was
set primarily by taking into consideration the age of sexual matu-
rity, which correlates with important behavioural changes (e.g.
solitary/grouped individuals). The age at which maximal body
weight is reached was not factored into our model as several
studies have shown it often occurs at a very advanced age
(Dzieciolowski, 1970; Skogland, 1983; Bender et al., 2003; Fichant,
2003). The prime/old limit is often less straightforward to define.
Contrary to many authors who use a set limit (often between 50
and 75 % of the PEL, e.g. Lyman, 1987; Stiner, 1990; Marean, 1997;
Bunn and Pickering, 2010a), we determined a species-specific
range based on (a) wildlife studies demonstrating populations
that comprise a prime-age phase during which survival is relatively
high and constant compared to other age classes and (b) senes-
cence, which refers to the decline in age-specific survival and
fecundity with age (Promislow, 1991; Loison et al., 1999). In this
conception, old individuals are more likely to be isolated as a
consequence of decreased fecundity, to die of natural causes due to
a decrease in age-specific survival or to be generally weaker.

The PEL of European bison (Bison bonasus) varies in wild in-
dividuals, from around 14e16 years for males and up to 24 years for
females (Krasi�nski,1978; Pucek et al., 2004). For the American bison
(Bison bison), both sexes typically live up to 20 years (Mitchell and
Gates, 2002), which is the mean value we retained for all bison
species. In both European and American bison populations, females
are sexually mature at around 2e3 years of age, but generally don't
give birth to their first calf before 3e4 years (Krasi�nski and
Raczy�nski, 1967; Mitchell and Gates, 2002; COSEPAC, 2004). Bulls
are sexually mature at 4e6 years of age and, while they do not take
part in reproduction for behavioural reasons (Krasi�nski and
Raczy�nski, 1967), they nevertheless join bull groups as early as 3
years of age (Krasi�nski and Krasi�nska, 1992). For both European and
American bison populations, we considered individuals less than 3
years of age as juveniles and set the lower limit of the old adult
group at 12 years. Fecundity declines after this point, especially for
males (Krasi�nski and Raczy�nski, 1967; COSEPAC, 2004), who tend to
be less aggressive and submit to younger bulls (Maher and Byers,
1987).

Wild red deer can live up to 20 years (Fichant, 2003), however
individuals over the age of 16 are extremely rare (Clutton-Brock
et al., 1982). Accordingly, 16 was retained as the average PEL
value for this species. Although females reach sexual maturity at 2
years of age, fecundity is low among 3- and 4-year-old hinds
(Clutton-Brock et al., 1982: 83). Stags are sexually mature at around
3 years old but only begin to hold harems after the 5-year mark
(Gibson and Guinness, 1980). Full sexual maturity also corresponds
to stags reaching their full body weight (Dzieciolowski, 1970).
Young males leave the familial herd during their second year
(Fichant, 2003). Individuals younger than 2 years old were thus
considered as juveniles. The prime/old boundary is harder to fix;
body size decreases after 8 and 9 years for females and males,
respectively (Dzieciolowski, 1970), fecundity and body fat severely
decline in females older than 12 years (Dzieciolowski, 1970) and
males experience a decrease in physical strength (Fichant, 2003).
Consequently, males older than 11 years are no longer able to hold
harems (Clutton-Brock et al., 1982: 117). Unlike Clutton-Brock et al.
(2002), who considered >10-year-old individuals as old adults, we
fixed this limit at 12 years old. Our limits are comparable to those
recommended by Steele (2002).

Reindeer PEL is highly variable, ranging from around 12 to 20
years depending on the population (Miller, 1974). PEL also varies
according to sex. For instance, in Kaminuriak populations, males
rarely survive beyond 12 years of age while females may live up to
16 years (Miller, 1974), and, in the Norwegian Svalbard, PEL ranges
between 12 and 17 years depending on the sex (Reimers, 1983). We
set the average PEL for reindeer at 16 in order to account for this
variability. Sexual maturity is reached at 3 and 2.5 years of age for
males and females, respectively, with female fecundity increasing
up until 7 years of age (Bergerud, 2000 in Thomas and Gray, 2002).
Although reindeer groups are more or less gregarious and the
composition of social groups varies according to ecotype, the basic
social unit is always composed of females accompanied by their<1-
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year-old calves. Yearlings are generally excluded from matriarchal
groups and form bands of juveniles that remain at the periphery
(Miller, 1974). However, in forest ecosystems, calves can remain
with their mother during their first two years (Shoesmith and
Storey, 1977 in Murray, 1993). We defined the juvenile/prime
limit at 3 years of age based on sexual maturity rather than
behaviour, as the latter varies depending on the ecotype. In both
barren-ground and woodland caribou, only 2e3 % of females and
males survive beyond 12 and 10 years of age, respectively (Messier
et al., 1988; Thomas and Barry, 1990). Mortality rates in barren-
ground caribou increase considerably after 10e11 years, and fe-
males cease reproduction (Reimers, 1983). We set the boundary
between prime and old adults at 11 years of age.

Horse class limits were defined on the basis of several etho-
logical studies (Amann et al., 1979; Berger, 1986; Duncan, 1992;
Bennett and Hoffman, 1999). The lifespan of wild horses rarely
exceeds 25 years, which is the mean PEL value we retained. Mares
are fertile at 3e4 years of age, although, up until 5 years, few
pregnancies are ever carried to full term (Klingel, 1975). Sexual
maturity is attained in the fifth year for males, which is also when
individuals reach their adult weight. Horse social organization is
highly structured. Harems are composed of females with calves and
one stallion. At about 2 years old, young males leave to join male
bachelor groups. Unlike males, subadult females are not forced to
leave their maternal herd but often join other harems after 2 years
of age (Goodloe et al., 2000). As these behaviours heavily influence
the composition of social groups, individuals over 2 years old were
considered as adults in our model. While horses are fertile
throughout their lives, lower fertility rates are observed in females
from 18 years on (Berger, 1986). Beyond 10e12 years of age, the
stallion is generally dethroned by a younger male. Fernandez
(2001) classified individuals >12 years old as old adults. However,
as the stallion's change in status has little effect on the de-
mographic composition of social groups, we, like Bignon (2006a),
defined old adults as individuals over 15 years of age, which cor-
responds to an increased mortality rate (Garrott and Taylor, 1990).

The strong behavioural similarities between mountain zebras
(Equus zebra), plains zebras (different subspecies of E. quagga, cf.
Groves and Bell, 2004) and horses (Groves, 1974; Klingel, 1975)
support the use of the same class limits for these species. The horse
behavioural patterns outlined above are generally true for zebra
populations (cf. Grubb, 1981; Penzhorn, 1988; Estes, 1991; Skinner
and Chimimba, 2005). Moreover, zebra ethology further reinforces
our class boundaries for equids (i.e. 0e2, 2e15,15e25 years). Zebras
may live up to at least 21 years in the wild, often reaching 26e29
(Grubb, 1981; Jones, 1993). Juvenile mountain zebras leave their
maternal herd around 22 months (Penzhorn, 1988; Lloyd and Rasa,
1989), and plains zebras around 1e3 years (Grubb, 1981). Stallions
maintain their dominant status in the herd for up to 15 years.

The African buffalo PEL, which is sex-dependent, has been
estimated to be around 15e26 years for wild populations (Mentis,
1972; Spinage, 1973; Grubb, 1981; Jones, 1993; Prins, 1996; Apps,
2000). We adopted an average value of 20 years, which best fits
with most wildlife studies. Females are fertile at around 4e5 years,
and while bulls are sexually mature as early as 3.5e5.5 years, they
do not breed before 7e8 years of age (Taylor, 1985; Estes, 1991;
Apps, 2000; Skinner and Chimimba, 2005). Adult body weight is
only reached at around 5 years of age for females, while males
increase in body size throughout their life (Sinclair, 1977). Buffalos
congregate in large mixed herds or in bachelor bands of adult bulls
(Sinclair, 1977; Estes, 1991; Skinner and Chimimba, 2005). Large
herds may split into smaller groups, and the physical position of
individuals in the herd depends largely on age and sex. Calves,
whether male or female, stay close to their mother until they are at
least 2 years old. Female adults often stay in the larger herds, while
young bulls reaching puberty (around 3 years old) tend to form
small independent bachelor groups, eventually rejoining the herd
for mating. Bulls older than 10e12 years of age often leave the herd
to form small sedentary groups or adopt a solitary life style, at
which time they cease to procreate and are put at a greater risk of
predation (Sinclair, 1977). We therefore considered individuals
younger than 3 years of age as juveniles, andmore than 12 years old
as old adults. These class boundaries are identical to those adopted
for bison given the strong ethological similarities between these
two Bovinae species.

For the common eland, PEL estimates range from 12 to 25 years,
but most often fall between 15 and 20 years (Mentis, 1972;
Underwood, 1975; Attwell and Jeffery, 1981; Estes, 1991; Jones,
1993; Apps, 2000; Pappas, 2002). We opted for an average value
of 18 years. Females first breed at around 2.5 years (Underwood,
1975; Estes, 1991; Pappas, 2002). Males are sexually mature at
around 18 months, however, restrained by older dominant males,
they rarely breed before 4 years of age (Pappas, 2002; Skinner and
Chimimba, 2005). Adult bodyweight is reached at around 3.5 years,
although males grow throughout their life (Underwood, 1975).
Elands are found in large mixed herds (nursery/breeding herds),
notably in the summer, but these bands may split into smaller
groups the rest of the year (Underwood, 1975; Hillman, 1987; Estes,
1991; Skinner and Chimimba, 2005). The composition of social
groups is highly variable as inter-group movements are frequent.
Juveniles stay together at least for their first 2 years, forming
clusters within the large herds. At around 2e3 years old, elands
tend to leave the large nursery herds to join smaller groups of
adults, a pattern which is particularly true for males (Hillman,
1987). We thus considered individuals younger than 2.5 years of
age as juveniles, which corresponds to the juvenile/“subadult” limit
of Underwood (1975). The boundary between prime and old adults
is extremely difficult to fix. Unlike buffalos (cf. supra), old bulls may
mate throughout their life and do not necessarily isolate them-
selves from large herds (Hillman, 1987). Females are no longer
fertile after 15 years (Scotcher, 1982). Attwell and Jeffery (1981)
considered individuals as “senescent” from about 13 years old,
when feeding efficiency is impaired by worn teeth. We have
adopted this value for our prime/old limit, as it correlates with an
increase in the likelihood of death by natural causes.

This ethological data highlights the fundamental importance of
sex and seasonality in the composition of animal social groups, and
hence related difficulties in defining age groups that allow direct
interpretations in terms of animal social bands targeted by hunters.
We do not claim the age class limits suggested here to be univer-
sally applicable and every analyst should adapt age classes
depending on the behavioural factors they wish to investigate.
Three parameters should however be made available in order to
facilitate inter-study comparisons: the PEL considered, as well as
the juvenile/prime and prime/old boundaries, information that can
easily be included in the ternary diagrams themselves (see Figs. 8
and 9).

In practice,matching age class boundarieswith patterns of dental
attrition can be problematic. However, it is important to note that the
resolution of ageingmethods is often sufficient to distinguish the age
classes proposed above. This holds true for dental ageing methods
commonly used for bison (e.g. Frison and Reher, 1970; Frison et al.,
1976; Gifford-Gonzalez, 1991; Todd et al., 1996), buffalo (e.g.
Grimsdell, 1973; Taylor, 1988), equids (Levine, 1982; Guadelli, 1998;
Fernandez and Legendre, 2003; Bignon, 2006b), red deer (e.g.
Quimby and Gaab, 1957; Lowe, 1967; Klein et al., 1981; Brown and
Chapman, 1991; Steele and Weaver, 2012), reindeer (e.g. Miller,
1974; Pike-Tay et al., 2000) and eland (e.g. Kerr and Roth, 1970;
Attwell and Jeffery, 1981; Jeffery and Hanks, 1981). When data from
tooth eruption and wear is combined, young individuals are easily



Fig. 9. Bison kill sites dataset from Driver and Maxwell (2013, Tables 2 and 3) with Stiner's zoning (a) and the new zoning of ternary diagrams (b). Confidence intervals have been
omitted for clarity.
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discerned fromadults. Additionally, while distinguishing prime from
old adults is often more complicated and somewhat prone to error,
wear patterns (notably the loss of molar infundibula) and crown
height measurements provide means for separating the two.

4. Discussion

4.1. Example of the effect of the new zoning on interpretations

The revised zoning presented above may considerably alter
previous interpretations of mortality profiles. For example, when
Driver and Maxwell (2013:105, their figure 1) compiled mortality
data from bison kill sites, they highlighted the fact that “assem-
blages [fall] within a range of zones, including “living structure”,“U-
shaped” and, in rare cases, “juvenile-dominated”. [ … ] Most bison
kill sites [ … ] do not conform to the classic catastrophic mortality
profile” (Fig. 9). In fact, when the same zoning described in
Section 2.3 is applied, 7 profiles fall within the JPO zone, which
includes the L-shaped profiles, and 5 in the P zone, all in close
proximity to the JPO zone (Fig. 9). Not a single profile is found in
the JOP zone that includes most of the U-shaped profiles,
revealing that the mortality profiles of bison kill sites considered
are not so unusual, as they apparently mostly conform to cata-
strophic mortality profiles.

4.2. Limitations of zoned ternary diagrams

Despite the fact that the new zones advocated here improve the
validity of interpretations drawn from ternary diagrams, several
important limitations remain. Certain theoretical mortality patterns
are commonly assumed to correspond to hunting episodes “without
selection” (e.g. L-shaped) and others to episodes “with selection”
(e.g. U-shaped, prime-dominated). However, the analysis of mor-
tality profiles using zones on ternary diagrams is not sufficient to
securely determine if a given age class was preferentially selected or
not. Valid conclusions can only be drawn when mortality profiles
are compared with demographic data from modern reference
populations corresponding to different animal social groups. Even
though all the living populations from Fig. 8 fall within the JPO zone,
this zone should not be systematically linked to unselective hunt-
ing. For instance, several “sub-groups” of the prime-adult class may
be preferentially targeted (e.g. youngest prime adults).

Several other limitations pertain to long-recognized biases in
mortality profiles that can severely hamper interpretation of mor-
tality profiles.

4.2.1. Demographic variability of the prey population
The “slope” and “shape” of a living-structure mortality profile

may vary if the animal population is stable, decreasing or growing
following seasonal or long-term environmental changes or as a
response to human or non-human predation pressure (Peterson
et al., 1984; Lyman, 1987; Stiner, 1990; Blumenschine, 1991;
Lyman, 1994; Lubinski, 2000; Hill et al., 2008; Wolverton, 2008;
Driver and Maxwell, 2013). For example, significant predation
pressure can induce an under-representation of young and/or old
adults in the prey population (Driver and Maxwell, 2013). In such
cases, the selective hunting of the most vulnerable individuals (i.e.
juveniles and old adults) might remain undetected as the resulting
age profile, likely L-shaped, will fall within the JPO zone instead of
the JOP one. Moreover, herd demography largely depends on the
season and animal social group. Mass hunting of different sub-
populations without selection will produce dissimilar “cata-
strophic” profiles depending on the targeted animal social group
(Levine, 1983). For example, mass kills of a bachelor group of male
horses would produce profiles situated towards the lower right-
hand corner of the graph (i.e. prime-dominated) instead of inside
the JPO zone, where profiles traditionally considered as the signa-
ture of unselective hunting (L-shaped) would be expected. The
demography of the hunted population thus has to be taken into
consideration before any preferential selection of a particular age
group can be demonstrated. This is made possible partly by iden-
tifying the hunting season and the animal social group targeted.
4.2.2. Effects of taphonomic processes, site function and transport
decisions

The preferential destruction of deciduous teeth by gelifraction
(Guadelli and Ozouf, 1994; Guadelli, 2008; Mallye et al., 2009) or
carnivore consumption (Blumenschine, 1991; Munson, 2000;
Munson and Garniewicz, 2003) is often evoked to explain the
under-representation of juveniles (Munson and Marean, 2003;
Kahlke and Gaudzinski, 2005). While it is simple enough to omit
younger individuals from mortality profiles on a histogram, it is
much more difficult on a ternary diagram (Steele and Weaver,
2002). Site function can also play a role in the representativeness
of mortality profiles. Contrary to most kill sites, residential camps
are often associated with faunal assemblages that represent several
hunting episodes. Apart from cases were the same age class was
consistently targeted, mortality profiles from palimpsests present a
greater likelihood of representing the general living population (L-
shaped), and can thus be wrongly interpreted as indicating unse-
lective hunting (Costamagno, 1999). The repeated use of kill sites
can also produce non-catastrophic profiles when different herds
are targeted (Wilson, 1980). Additionally, the somewhat connected
effect of transport decisions can also impact mortality profiles
(Reher and Frison, 1980; Marean, 1997): the transported profile (i.e.
heads transported from kill sites to residential sites) does not al-
ways correspond to the death profile, as several factors influence
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transport decisions (Binford, 1978; Speth, 1983; Bunn et al., 1988;
O'Connell et al., 1990; Bartram, 1993; Monahan, 1998).

The key issues raised above highlight the importance of equi-
finality in the analysis of mortality profiles and the shortcomings of
relying solely on this type of evidence for interpreting specific
hunting strategies. In fact there is no clear link between the different
theoretical ‘classic’ mortality patterns (L-shaped, U-shaped, etc.)
and potential interpretations concerning acquisition strategies
(selective or unselective kills, hunting tactics, etc.). As such, the
commonly assumed links “L shaped ¼ catastrophic mortality” and
“U-shaped ¼ attritional mortality” cannot be taken as a given.
Likewise, a prime- or old-dominated profile is not necessarily con-
nected to a preferential selection of prime or old individuals, as
identical patterns can result from taphonomic biases (e.g. Bunn and
Pickering, 2010a) or the specificity of the prey population, including
differences in the targeted animal social group (cf. Levine,1983) or in
the demography of the natural population following significant
non-human predation pressure (cf. Hill et al., 2008). As noted by
several scholars (e.g. Blumenschine, 1991; Lyman, 1994; Marean,
1997; Steele, 2004; Hill et al., 2008; Wolverton, 2008), additional
data on site formation processes, faunal taphonomy, sex ratio,
skeletal profiles, body size or hunting season should be integrated if
mortality patterns are to be properly interpreted.

4.3. Advantages of ternary plots

While the interpretation of mortality patterns using ternary
diagrams can be problematic compared to other graphical repre-
sentations, they do offer several valuable advantages:

- Sample sizes are often too small in Palaeolithic contexts for
mortality patterns based on ten age classes to be reliably
explored (Klein and Cruz-Uribe, 1984; Lyman, 1987). The use of
three age classes, despite the resulting loss of resolution, allows
for data from small faunal assemblages to be integrated more
easily, as the minimum sample size is lower (Stiner, 1998).

- The use of three age classes limits the impact of problems linked
to ethological variability (cf. Section 3) and ageing methods,
such as the use of overly precise age classes or difficulties
associated with isolated teeth, which are often the most abun-
dant dental remains recovered from archaeological sites.

- Ternary diagrams constitute a powerful and efficient way of
comparing dozens of mortality profiles in a single illustration.
Furthermore, it is possible to statistically test the relevance of
mortality profiles on a ternary diagram (Steele andWeaver, 2002;
Weaver et al., 2011) in a much more direct and convenient way
than other methods (Klein, 1978; Marom and Bar-Oz, 2009).

- Relying on the relative proportions of juveniles, prime and old
adults for discussing age-driven prey selection can be compli-
cated by the fact that these age cohorts are generally of unequal
duration. The zoning proposed here allows the relative impor-
tance of each age group to be quickly and easily determined
from ternary diagrams while taking into account this age class
duration bias.

- Finally, ternary diagrams can be adapted to address different
research questions using the same dataset, adjust to different
hunted populations or overcome taphonomic biases.

5. Conclusion

The way in which zooarchaeologists analyse and interpret
mortality profiles has been considerably impacted by the devel-
opment of analytical methods based on ternary diagrams by Stiner
(1990). Part of this method involved the use of interpretative
“zones”, which delimited specific mortality patterns (attritional,
catastrophic, etc.). Our revision of these commonly used zones re-
veals some significant problems that can bias interpretations. For
example, the ‘classic’ U-shaped zone actually comprises numerous
L-shaped profiles. Additionally, it is not always possible to securely
distinguish L- and U-shaped mortality profiles on a ternary dia-
gram. Furthermore, differences between the respective duration of
each age cohort (i.e. age class duration bias) impede the consistent
interpretation of ternary plots. We advocate for the use of new
areas (JPO, JOP, O and P zones) that overcome this age class duration
bias, resulting in more robust interpretations of the relative abun-
dance of juveniles, prime and old adults in an assemblage. Even if
‘traditional’ concepts (e.g. U-shaped/attritional and L-shaped/
catastrophic profiles) are somewhat abandoned in our revised
zoning, ternary diagrams are still useful for reconstructing subsis-
tence strategies as they are based on three age cohorts that present
distinct advantages and drawbacks for hunters (cf. 1.2). With that
said, the importance of biases and uncertainties affecting mortality
profiles and ageing methods, as well as the undoubtedly variable
character of past animal communities, must be built into analyses.
Zones on ternary diagrams are only heuristic devices, useful but
imperfect. In the end, discerning and interpreting relative differ-
ences between faunal assemblages remains the overall goal of the
analysis.

Building upon Stiner's theoretical and methodological contri-
bution, our study proposes new, mathematically supported defi-
nitions for the zoning of ternary diagrams combined with species-
specific age class boundaries based on ethological and ontological
data. This new zoning permits mortality profiles from a large
number of assemblages to be more reliably compared. The position
of a profile on a ternary diagram in this revised zoning allows the
relationships between relative proportions of juveniles, prime and
old adults to be identified while taking into account age class
duration bias. It is however only through the combination of several
zooarchaeological datasets (e.g. mortality profiles, site function,
seasonality, skeletal-part profiles, taphonomy, sex-ratio) and
comparisons with modern data from reference populations corre-
sponding to various animal social groups that the preferential se-
lection of a given age class or a specific hunting tactic can be
demonstrated with any certainty.
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Annex 1. Mathematical verification of L-shaped profiles

In this demonstration, mortality profiles were considered using
a 10-class system, where juveniles are defined as classes 1 and 2,
prime adults 3 to 6 and old adults 7 to 10.

A theoretically perfect L-shaped mortality profile should have
decreasing numbers of individuals from class 1 to 10.

If the number of individuals (n) in class 3 (youngest prime in-
dividuals) is “x”, and the number of individuals (n) in class 7
(youngest old individuals) is “y”, then these 3 equations are satis-
fied for a perfect L-shaped profile:
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N juvenilesð Þ � xþ 2ð Þ þ xþ 1ð Þ;
(1)
therefore N juvenilesð Þ � 2xþ 3

N primeð Þ � xþ x� 1ð Þ þ x� 2ð Þ þ x� 3ð Þ;
therefore N primeð Þ � 4x� 6

(2)

N primeð Þ � yþ 4ð Þ þ yþ 3ð Þ þ yþ 2ð Þ þ yþ 1ð Þ;
therefore N primeð Þ � 4yþ 10

(3)

N oldð Þ � yþ y� 1ð Þ þ y� 2ð Þ þ y� 3ð Þ;
therefore N oldð Þ � 4y� 6

(4)

If we consider corrected numbers for differences in the duration
of the 3 main cohorts:

Ncorr juvenilesð Þ ¼ N juvenilesð Þ=0:2; therefore eq 1ð Þð Þ
equals Ncorr juvenilesð Þ � 2xþ 3ð Þ=0:2;
therefore Ncorr juvenilesð Þ � 10xþ 15

(5)

Ncorr primeð Þ ¼ N primeð Þ=0:4; therefore eq 2ð Þð Þ equals
Ncorr primeð Þ � 4x� 6ð Þ=0:4; therefore
Ncorr primeð Þ � 10x� 15

(6)

Ncorr primeð Þ¼ N primeð Þ=0:4; therefore eq 3ð Þð Þ equals
Ncorr primeð Þ� 4yþ10ð Þ=0:4; therefore
Ncorr primeð Þ� 10yþ25

(7)

Ncorr oldð Þ ¼ N oldð Þ=0:4; therefore eq 4ð Þð Þ equals
Ncorr oldð Þ � 4y� 6ð Þ=0:4; therefore
Ncorr oldð Þ � 10y� 15

(8)

The combination of eq (5) and eq (6) demonstrates that a
theoretical L-shaped profile always satisfies the equation Ncorr
(juveniles) > Ncorr (prime) because 10x þ 15 > 10x � 15.

The combination of eq (7) and eq (8) demonstrates that a
theoretical L-shaped profile always satisfies the equation Ncorr
(prime) > Ncorr (old) because 10y þ 25 > 10y � 15.

These observations show that a theoretical L-shaped profile,
when plotted on a ternary diagram, will necessarily fall within the
JPO zone defined in Section 3 by Ncorr (juveniles) > Ncorr
(prime) > Ncorr (old).
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