
University of Bergen
Department of Informatics

Community Detection in Social
Networks

Author:
Erlend Eindride
Fasmer

Supervisor:
Jan Arne Telle

April 2015

Abstract

Social networks usually display a hierarchy of communities and it is the task
of community detection algorithms to detect these communities and preferably
also their hierarchical relationships. One common class of such hierarchical
algorithms are the agglomerative algorithms. These algorithms start with one
community per vertex in the network and keep agglomerating vertices together
to form increasingly larger communities. Another common class of hierarchical
algorithms are the divisive algorithms. These algorithms start with a single
community comprising all the vertices of the network and then split the network
into several connected components that are viewed as communities.

We start this thesis by giving an introductory overview of the field of com-
munity detection in part I, including complex networks, the basic groups of com-
munity definitions, the modularity function, and a description of common com-
munity detection techniques, including agglomerative and divisive algorithms.

Then we proceed, in part II, with community detection algorithms that have
been implemented and tested, with refined use of data structures, as part of this
thesis. We start by describing, implementing and testing against benchmark
graphs the greedy hierarchical agglomerative community detection algorithm
proposed by Aaron Clauset, M. E. J. Newman, and Cristopher Moore in 2004 in
the article Finding community structure in very large networks [5]. We continue
with describing and implementing the hierarchical divisive algorithm proposed
by Filippo Radicchi, Claudio Castellano, Federico Cecconi, Vittorio Loreto, and
Domenico Parisi in 2004 in the article Defining and identifying communities in
networks [28]. Instead of testing this algorithm against benchmark graphs we
present a community detection web service that runs the algorithm by Radicchi
et al. on the collaboration networks in the DBLP database of scientific publi-
cations and co-authorships in the area of computer science. We allow the user
to freely set the many parameters that we have defined for this algorithm. The
final judgment on the results is measured by the modularity value or can be left
to the knowledgeable user. A rough description of the design of the algorithms
and of the web service is given, and all code is available at GitHub [10] [9].

Lastly, a few improvements both to the algorithm by Radicchi et al. and to
the web service are presented.

Acknowledgement
First and foremost, I would like to thank my supervisor, Jan Arne, for continuous
encouragement during the last year, for many hours spent on invaluable help
and suggestions both with respect to the present text, with the implementation
of the algorithms, and with the web service.

I would also like to thank Fredrik Manne for giving a qualified evaluation
of the results obtained by running the RECC algorithm on his collaboration
network.

I would like to honor my parents, Ole Bernt and Gunn, for a good childhood,
for giving me the love of knowledge, and for encouraging me to take higher
education.

The Algorithms Group as a whole also deserves acknowledgement for pro-
viding a stimulating environment.

1

Contents

I Preliminaries 4

1 Introduction 5
1.1 What is community detection? 5
1.2 Outline of this thesis . 5

2 Complex networks 9
2.1 Complex networks in the real world 9
2.2 Mathematical properties of complex networks 10
2.3 Random Network Models . 13

3 Communities 15
3.1 Basic definitions . 15
3.2 Local definitions . 16
3.3 Global definitions . 18
3.4 Definitions based on vertex similarity 18

4 Modularity 19
4.1 Partitions and quality functions 19
4.2 Introducing modularity . 19
4.3 The limitations of modularity . 22
4.4 Motif modularity . 24

5 Community detection algorithms 26
5.1 Graph partitioning . 28
5.2 Hierarchical clustering . 28

5.2.1 Agglomerative hierarchical algorithms 30
5.2.2 Divisive hierarchical algorithms 31

5.3 Greedy modularity based community detection 33
5.3.1 Newman’s algorithm . 33
5.3.2 The algorithm of Clauset, Newman and Moore 34
5.3.3 Improvements of the CNM algorithm 36

2

II Main part 39

6 Introduction to the main part 40
6.1 Implementation environment . 41

7 The CNM algorithm 42
7.1 Implementing the algorithm . 42

7.1.1 Differences between the implementations 42
7.1.2 The Data Structures . 43
7.1.3 The Algorithm . 46

7.2 Testing the algorithm . 48

8 A divisive algorithm based on the edge clustering coefficient 54
8.1 The algorithms by Radicchi et al. 54

8.1.1 The REB algorithm . 54
8.1.2 The RECC algorithm . 56
8.1.3 The running time of the RECC algorithm 59

8.2 Implementing the algorithm . 59
8.2.1 The Data Structures . 60
8.2.2 The Algorithm . 60
8.2.3 Efficient triangle counting 61
8.2.4 The running time . 64

8.3 Introducing one additional parameter to the Radicchi algorithm . 65
8.4 Introducing weighted networks, weighted community definitions,

and a weighted ECC . 66
8.5 Testing the algorithm . 67

8.5.1 Running the algorithm on a collaboration network 68

9 A community detection web service 72
9.1 An overview of the software used 72
9.2 The DBLP XML API . 73
9.3 How the web service works . 74

9.3.1 Building the collaboration network 75
9.3.2 The results page . 76

9.4 A drawback and its solution . 77

10 Conclusion and further research 81
10.1 Summary . 81
10.2 Further research and application improvements 81

10.2.1 Improving the RECC algorithm 82
10.2.2 Improving DBLP Communities 82

Appendices 83

A Graph theory 84
A.1 Basic terminology . 84

3

Part I

Preliminaries

4

Chapter 1

Introduction

1.1 What is community detection?
There are many kinds of networks in the real world and in this thesis we focus
on what is known as social networks, that involve some type of social interac-
tions between humans. One such network is the collaboration network of all
researchers and their coauthor relationships. In this network each researcher
is represented by a vertex and two vertices are connected by an edge if the re-
searchers they represent have at least one publication in common. The vertices
of real world networks tend to clump together into communities such that there
are considerably more edges inside the communities than between them. The
aim of the field of community detection is to reveal the potential communities
of a network and possibly also their hierarchical structure.

Given a well defined social network, community detection has several im-
portant applications. For instance, finding the communities of a collaboration
network can help discover groups of researchers with expertise in the same area.
Another example is online social networking services such as Facebook. Take
John, a fictive user of Facebook, as an example. John’s network consists of
every acquaintance with a Facebook account that he has registered as a friend.
John has three clearly distinct communities. The first community consists of
his near family, the second community consists of colleagues from his office, and
the third community consists of friends from former years in the army. Now
consider how Facebook repeatedly suggests that you may know a friend of a
friend and that you should possibly add this friend of a friend to your friend
list. Should an army friend of John be suggested to add John’s grandmother as
a friend? Community detection can help in areas such as this one.

1.2 Outline of this thesis
The outline of this thesis is as follows. In part I, preliminaries, we give all the
necessary background material that is needed in the main part.

5

The preliminaries starts out with an introduction to complex networks the-
ory in chapter 2. The chapter gives the reader a soft introduction to the field
with some real world examples of complex networks and then proceeds with
four important mathematical properties of complex networks. The first prop-
erty is the scale-free property, meaning that the degree distribution of complex
networks often follows a power-law. Then there is the small-world property,
meaning that the mean shortest path length, taken over all vertex pairs, is small
relative to the total number of vertices in the network. The third property is the
community structure, which is the main property of this thesis, meaning that
the vertices of complex networks tend to clump together in tightly connected
groups. The last property is that one can define meaningful clustering coeffi-
cients that measure the level of clustering in the network, either at a global or
local level.

In chapter 3 we first present basic community notation, as it is used in the
field of community detection. Then we proceed with explaining four basic cat-
egories of community definitions, and giving examples of each of them. Even
though there are several graph theoretic concepts in this chapter, the graph the-
oretician may be unfamiliar with some of the notation as the field is dominated
by physicists with their own notation.

In chapter 4 we present the modularity function, which is the most well
known function that measures the quality of partitions of vertex sets into com-
munities. The maximum obtainable value of the function is discussed, as well as
the simplicity of the function and the resulting limitations on the quality of the
partitions found with the help of the function. Lastly, an alternative function
that resembles the modularity function, called motif modularity, is presented.
Both these functions are made use of in the main part.

In the last chapter in the preliminaries, in chapter 5, we discuss some basic
algorithms for community detection. We first present graph partitioning and
explain its poor ability to be used for community detection. Then we proceed
with introducing the field of hierarchical clustering algorithms, the main field of
algorithms in this thesis. Hierarchical clustering algorithms can be divided into
agglomerative and divisive algorithms. Agglomerative algorithms are bottom-
up algorithms that start out with one community per vertex and keeps ag-
glomerating vertices together to form increasingly larger communities. Divisive
algorithms, on the other hand, are top-down algorithms that start out with one
community comprising all the vertices of the networks and then keeps splitting
the initial community into several communities. The last part of the chapter
presents several examples of greedy hierarchical algorithms that maximize the
modularity function.

In part II of this thesis we discuss and implement two hierarchical algorithms,
and incorporate one of them into a community detection web service.

In chapter 7, we describe and implement a greedy hierarchical agglomerative
clustering algorithm by Aaron Clauset, Mark E. J. Newman, and Cristopher
Moore [5]. This algorithm greedily maximizes the modularity function. The
chapter is concluded with some tests on benchmark graphs, and these tests are
not altogether successful when we look at the final numbers only. This is partly

6

due to the simplicity of the modularity function, explained in section 4.3, and
partly due to the fact that measuring partitions into communities is not an easy
task and there is often not a final and definitive answer. A better approach is to
use some sort of scale, e.g. from 1 to 10, to say how good or bad the partition
is.

In chapter 8 we describe and implement a divisive clustering algorithm
by Filippo Radicchi, Claudio Castellano, Federico Cecconi, Vittorio Loreto,
Domenico Parisi [28]. This algorithm uses a clustering coefficient called the
edge clustering coefficient (ECC), that is inspired by the motif modularity func-
tion, presented in section 4.4. The ECC is used to split one initial community
comprising all the vertices into several smaller communities.

The algorithm by Radicchi et al. is not tested on benchmark graphs. Rather,
in chapter 9, in response to a challenge at the end of the article by Radicchi
et al., noting that one should interpret the results of a partition of a vertex
set into communities on the given network in order to say a final world on the
quality of the partition, we present a web service offering community detection
in the DBLP database using the algorithm by Radicchi et al. and thus offering
everybody a chance to evaluate the results. The algorithm of Radicchi et al.
only works on unweighted networks but later the same year Castellano et al. [4]
extended the algorithm to also work on weighted networks and we have extended
both our algorithm and the web service in line with their paper in order to offer
community detection on weighted collaboration networks in the DBLP database.
In the weighted case, the number of joint publications that two reserachers have
in common is taken into account.

The web service presented in chapter 9 is implemented using the Spring
Framework and utilizes the XML API of the DBLP server in order to build the
collaboration networks.

In chapter 10 we conclude our thesis and present some suggestions on future
research on the algorithm by Radicchi et al. and some improvements of the
community detection web service.

All the standard graph theory that is necessary to keep up the pace with
this thesis is presented in chapter A in the appendix.

Table 1.1 gives an overview over the algorithms presented in this thesis, as
well as where in the thesis they are mentioned.

7

Section Year Short
name

Authors Type Parent I

5.1,
5.3.3

1970 KL Kernighan-Lin [16] GP

5.2.2,
8.1.1,
8.1.2

2002 GN Girvan and New-
man [13] [24]

DH

5.2.2, 8 2004 REB Radicchi, Castel-
lano, Cecconi,
Loreto, and
Parisi [28]

DH GN

5.2.2, 8,
9

2004 RECC Radicchi, Castel-
lano, Cecconi,
Loreto, and
Parisi [28]

DH GN X

5.3.1,
5.3.2,
5.3.3

2004 N Newman [23] GAH

5.3.2,
5.3.3, 7,
9

2004 CNM Clauset, Newman,
and Moore [5]

GAH N X

5.3.3 2007 WT Wakita and Tsu-
rumi [35]

GAH CNM

5.3.3 2008 SC Schuetz and Caflisc
[30]

GAH CNM,
KL

Table 1.1: The algorithms studied in this thesis. The column "Section" gives an
overview of the sections and chapters of this thesis where the given algorithms
are mentioned. The following abbreviations are used in the column "Type",
which explains what type of algorithm the given algorithm is. GP = graph par-
titioning, DH = divisive hierarchical, and GAH = greedy agglomerative hierar-
chical. The "Parent" column contains the algorithm(s) that the given algorithm
builds upon. The column "I" shows which algorithms are implemented in this
thesis.

8

Chapter 2

Complex networks

In recent times, and in particular since the birth of the Internet, it has become
common to analyze interactions in the real world by looking at the networks, or
graphs, underlying these interactions. These networks can be defined in various
ways, and also the terminology used for them is varied.

This chapter on complex networks is based on the book Complex Networks:
structure, robustness, and function by Reuven Cohen (associate professor in the
Department of Mathematics at Bar-Ilan University) and Shlomo Havlin (pro-
fessor in the Department of Physics at Bar-Ilan University) [6], unless otherwise
noted. Cohen and Havlin are two prominent authorities in the field of complex
networks. In this thesis, our terminology sticks to that of Reuven and Havlin.

We will first give an introduction to complex networks as found in the real
world and then we will proceed with some mathematical properties of these
networks.

2.1 Complex networks in the real world
This section presents some examples of real-world complex networks, including
computer networks, social networks, and biological networks.

Computer networks consist of computers (vertices) connected by (physi-
cal) connections (edges) such as cable or satellite. The sizes of these networks
vary, ranging from local area networks (LANs) to wide area networks (WANs).
Most computer networks are connected to the Internet, a network of many au-
tonomous systems (ASs), that is, networks run by their respective owners. Data
packets are sent between networks with the help of routers. The Internet is ei-
ther studied at the router level or at the AS level when considered as a complex
network. In 2009, the AS network consisted of approximately 104 vertices (ASs).

There exist many types of technological networks, including phone networks
and transportation networks.

Virtual technological networks are networks where the edges and sometimes
even the vertices are logical rather than physical. The most notable example of

9

such a network is the World Wide Web (WWW), a directed network of HTML
pages (vertices), where there is an edge from one page to another if the former
links to the latter. Another example is the email network where every individual
is represented by a vertex and a directed edge (u, v) exists if v is in the electronic
address book of u. Yet another type of network is the phone call graph, which is
usually created by phone network operators. In this graph, every phone number
is represented by a vertex and a directed edge (u, v) exists if phone number u
made a call to v during a certain period, e.g. a day.

Another class of complex networks is social networks, which are the focus
of this thesis. These networks encode social interactions between individuals,
such as friendships, acquaintances, job relations, etc. One example of such
networks is the actor network, where every actor is represented by a vertex and
two vertices are connected by an edge if the corresponding actors have played
together in some movie. Another example is the scientific coauthorship network
where every scientist is represented by a vertex and two vertices are connected
by an edge if they have published some paper together. Yet another example
is the citation network where every scientist is represented by a vertex and a
directed edge (u, v) exists if u cites a paper by v in any of her publications.

A class of well studied complex networks is the biological networks. Several
of these networks are logical, e.g. networks representing interactions between
proteins or genes, and networks modelling interactions between molecules in the
cell’s metabolic pathways. Although the actual interaction is physical, the edges
represent possible interactions and are therefore deemed logical. Another type
of biological network is the physical biological network. Important examples
include the nervous system, the neurons in the brain, and the network of blood
vessels in an organism.

2.2 Mathematical properties of complex networks
A complex network is a graph with structural features that are not present in
simple networks such as lattices or random graphs. These structural features
are neither purely regular nor purely random and include a vertex degree dis-
tribution following something that looks like a power law, a high clustering
coefficient, community structure and hierarchical structure. These features and
others are described in the following. We start with two properties of complex
networks that have received much attention lately: the scale-free and power law
property and the small-world property.

Scale-free networks
A network is said to be scale-free if its degree distribution follows a power law,
at least asymptotically as the number of vertices grows. The degree of a vertex
is the number of edges adjacent to it. The degree distribution P (k) of a network
is the fraction of vertices in the network with degree k, i.e. P (k) = nk

n , where n
is the total number of vertices in the network and nk is the number of vertices

10

with degree k. If P (k) follows a power law, then it is approximately equal
to k−γ for large values of k, where the parameter γ typically is in the range
(2, 3). The World Wide Web and email networks are examples of real world
networks with degree distributions following power laws. A degree distribution
resembling a power law has a large number of vertices of low degree and a
small number of vertices with high degree, sometimes referred to as hubs. The
corresponding function plotting the degree distribution looks something like the
one in Figure 2.1.

P(k)

k

Figure 2.1: This is how a graph
following a power law looks like,
more or less.

There exists several models for the evolu-
tion of a scale-free network, the two most im-
portant being the Barabási-Albert model (also
called the preferential attachment model),
and the configuration model (also called the
Bollobás construction and the Molloy-Reed
construction).

The Barabási-Albert model is an algo-
rithm that generates random scale-free net-
works with the preferential attachment prop-
erty. This means that the more neighbors a
vertex has, the higher probability it has of be-
ing linked to new vertices introduced to the
network. The network is built as follows. We
start with a network on n0 vertices and re-
peatedly add new vertices to the network. Ev-
ery time we add a new vertex to the network

we connect it to n ≤ n0 existing vertices. The probability pi that the vertex is
connected to vertex i is proportional to the number of neighbors that i already
has. Formally pi is defined as

pi =
ki∑
j kj

(2.1)

where the sum is taken over all the vertices j that exist at the time we add
the new vertex.

Small-world networks
A network is said to be a small-world network if it exhibits the small-world
property, i.e. that the mean shortest path length `, taken over all vertex pairs,
is small relative to the total number of vertices, n, in the network. ` must
not grow faster than logarithmically as the number of vertices tends to infinity,
that is, ` → O(log n) as n → ∞. Note that this definition does not allow
one to determine whether an individual network is a small-world network since
a collection of graphs are needed in order to rigorously define the property.
However, given a specific network, it is possible to compute all the usual graph
properties. For instance it is possible make several randomized versions of the

11

network by randomly rewiring its edges, compute the geodesic distance for each
version, and finally compute the mean geodesic distance [27]. The World Wide
Web and the metabolic network are examples of small-world networks.

Community structure
Social networks (among other complex networks) usually display community
structure (which is sometimes referred to as clustering). A network is said to
display such structure if the vertices of the network can be partitioned into
either overlapping or disjoint sets of vertices such that the number of internal
edges exceeds the number of external edges by some reasonable amount. An
internal edge is an edge connecting two vertices belonging to the same commu-
nity whereas an external edge is an edge connecting two vertices of different
communities.

Networks displaying a community structure may often display a hierarchical
community structure as well. This means that the network may be divided into
a small amount of large communities and each of these may be divided into
several smaller communities. In section 5.2 (in the preliminaries) we will look
closer at algorithms that reveal the hierarchical community structure of graphs,
and in the main part, in chapter 7 and chapter 8, we will implement and test
two such algorithms.

Clustering coefficients
A clustering coefficient is a measure of how much the vertices of a network tend
to cluster together. Especially in social networks vertices tend to form densely
connected groups (communities). There are two different and well known clus-
tering coefficients, a global and a local.

The global clustering coefficient C is due to Luce and Perry [20] and is based
on the concept of a triple of vertices. A connected triple is an ordered triple
(in the set theoretic sense of the word) (a, b, c) of three vertices a, b, and c such
that a is connected to b and b to c. The coefficient is defined as

C =
3× number of triangles

number of connected triples
(2.2)

The factor of 3 is due to the fact that every triangle gives rise to three
connected triples, see Figure 2.2 [27].

The local clustering coefficient was introduced by Duncan J. Watts and
Steven Strogatz in 1998 as a measure used to determine if a network is a small-
world network. Each vertex v has its own clustering coefficient Cv, which is
defined as the number of edges between the vertices in its neighborhood over
the total number of possible edges between these vertices. For an undirected
graph the coefficient is then

Cv =
2 · |{{u,w} : u,w ∈ N(v), {u,w} ∈ E}|

kv(kv − 1)
(2.3)

12

c

a b

a b c

b c a

c a b

Figure 2.2: A triangle graph consisting of three vertices a, b, and c shown on the
top. Below it we have arranged the vertices of the graph in three different ways
in order to reveal the three corresponding triples (a, b, c), (b, c, a), and (c, a, b).

where kv = |N(v)|.
In chapter 8 we will introduce a clustering coefficient called the edge clus-

tering coefficient, which is the central concept in the main algorithm of this
thesis.

2.3 Random Network Models
In this section we briefly introduce random graph theory and a random graph
model called the ER model.

Random graph theory
Random graph theory is the study of a probability space Ω of graphs. Each
graph in Ω has a probability attached to it. A certain property π exists with
probability p if the total probability of a graph in Ω possessing π is p, or in
other words, if the number of graphs in Ω that have property π divided by the
total number of graphs in Ω is p.

The Erdős-Rényi Models
The Erdős-Rényi model (henceforth called the ER model) may refer to one of
two closely related random graph models. The Gn,p model was introduced by
Paul Erdős and Alfréd Rényi in 1959. The model generates a graph with n
vertices and puts an edge between every pair of vertices with probability p. The
Gn,M model was introduced independently and contemporaneously by Edgar

13

Gilbert. In this model a graph is chosen uniformly at random from the space of
all graphs with n vertices andM edges. The two models are similar ifM =

(
N
2

)
p.

In random graph theory the average degree of a graph plays an important
role. The degree of vertex i will be denoted ki and the average degree of a graph
will be denoted 〈k〉. A graph on n vertices with 〈k〉 = O(n0) = O(1) is called
a sparse graph. The Dictionary of Algorithms and Data Structures defines a
sparse graph as a graph "in which the number of edges is much less than the
possible number of edges." [26]

An important characteristic of Gn,p is that many of its properties have a
related threshold function, pt(n). When n → ∞ such a property exists with
probability 0 if p < pt and with probability 1 if p > pt, where pt is the threshold
probability. The existence of a giant component, i.e. a large set of connected
vertices, is an example of such a property. Erdős and Rényi showed that such a
component exists if 〈k〉 > 1 whereas only small components exists when 〈k〉 < 1
and then the size of the largest component is proportional to ln n. When 〈k〉 = 1
a component with size proportional to n2/3 appears.

14

Chapter 3

Communities

There is no universally accepted definition of a community. However, intuitively
a community is conceived of as a subset of vertices of a graph with more in-
ternal than external edges. Many different community definitions have been
introduced. They can roughly be divided into local and global community defi-
nitions. The most notable of these definitions will be presented in the following
but first we will present a set of basic definitions that often occur in community
detection literature.

Note that the rest of this thesis does not depend on section 3.4. This section
stands as it does merely for the sake of completeness.

3.1 Basic definitions
In this section we present only the basic definitions from community detection
theory that we actually will use later on in this thesis.

In the following definitions C = (V ′, E′) is a subgraph of a graph G = (V,E),
where |V ′| = nc and |V | = n.

Whereas the degree of a vertex v usually is denoted d(v) in graph theory, it
is usually denoted kv in complex network theory, and we will stick to the latter
notation in the rest of this thesis.

Definition 3.1.1. The internal degree kint(C)
v of a vertex v in a community

C is the number of edges connecting v to other vertices of C.

Definition 3.1.2. The external degree kext(C)
v of a vertex v in a community

C is the number of edges connecting v to the rest of the graph.

A vertex v ∈ C where kext(C)
v = 0 has thus found a good community in C.

If on the other hand kint(C)
v = 0, v is disjoint from C and should be assigned to

another community.

Definition 3.1.3. The internal degree kCint of a community C is the sum of
the internal degrees of its vertices.

15

Definition 3.1.4. The external degree kCext of a community C is the sum of
the external degrees of its vertices.

Definition 3.1.5. The total degree kC of a community C is the sum of the
degrees of its vertices.

x

y

Figure 3.1: A graph consisting of three different communities, B, G, and P,
shown in blue, green and purple respectively. kint(B)

x = 3, kext(B)
x = 2, kBint = 16,

kBext = 2, kB = 18. Note that kext(P)
y = 0 and thus P is a good community for

vertex y.

See Figure 3.1 for an example where the definitions above is used.

3.2 Local definitions
A local definition of a community focuses solely on the community itself and pos-
sibly on its immediate neighbourhood. The rest of the graph is not considered.
The following disposition sticks closely to that of Wasserman and Faust [37],
whereas the presentation of the definitions also depends on [11]. Wasserman
and Faust categorize what they call subgroups, and that we may call com-
munities, into four categories: 1) communities based on complete mutuality,
2) communities based on reachability and diameter, 3) communities based on
vertex degrees, and 4) communities based on comparison between inside and
outside community ties.

Definitions based on complete mutuality
A community may be defined as a subgroup whose members all know each other.
This is what is called a clique in graph theory, i.e. a maximal complete subgraph
of at least three vertices. A triangle is the simplest example of a clique. This

16

definition is clearly too strict when we are dealing with subgraphs of, say, ten
or more vertices. A subgraph consisting of ten vertices where there is an edge
between every pair of vertices except one should intuitively be considered as a
good community. Still it would not be considered as a community according to
this definition. Moreover, the completely symmetric clique does not correlate
with real world social networks where communities displays a hierarchy, with
some people having a dominant position and others a more peripheral position.

Definitions based on reachability and diameter
It is useful to relax the notion of a clique and instead define communities that
are almost cliques. A key idea is to include the property of paths between
vertices in the definition, giving rise to definitions such as k-clique, k-clan, and
k-club.

Luce [19] introduced the concept of an k-clique . A k-clique is a maximal
subgraph in which no two vertices are at a distance more than k apart from
each other, i.e. the number of edges in a shortest path between two arbitrary
vertices is ≤ k. This definition is, however, problematic because a shortest path
may go through vertices that are not part of the subgraph under consideration.
Thus, the diameter of the subgraph may exceed k, and the subgraph may even
be disconnected, i.e. there exists two vertices in the subgraph such that there
is no path between them only running through vertices inside the subgraph.

Mokken [22] resolved these problems with the introduction of the concepts k-
clan and k-club. A k-clan is a k-clique with diameter at most k, i.e. a subgraph
where the distance between any two vertices in the subgraph does not exceed
k. A k-club is a maximal subgraph of diameter k.

Definitions based on vertex degrees
Another approach is based on the idea that in order for a vertex to be part of
a community it must be adjacent to at least a certain number of other vertices
in the community.

Seidman and Foster [33] introduced the concept of a k-plex, which is a maxi-
mal subgraph in which any vertex is adjacent to all other vertices of the subgraph
except at most k of them. Seidman [32] also introduced the concept of a k-core,
a maximal subgraph in which any vertex is adjacent to at least k other vertices.
Fortunato [11] considers the k-core "essentially the same" as the p-quasi com-
plete subgraph defined by Matsuda et al. [21]. This is a subgraph QC = (V,E)
such that kv ≥ dp(k − 1)e∀v ∈ V , where p and k denote the connectivity ratio
of QC (0 ≤ p ≤ 1) and the number of vertices in the subgraph.

Definitions based on comparison between inside and outside
community ties
It is only meaningful to speak of a subgraph as a community if the number
of edges inside the subgraph is considerably greater than the number of edges

17

between the subgraph and the rest of the graph. This simple consideration has
given rise to the fourth group of local definitions.

Luccio and Sami [18] introduced the concept of an LS-set, which is a sub-
graph C = (V,E) such that kint(C)v > k

ext(C)
v ∀v ∈ V . Radicchi et al. [28] calls

this a strong community but they also define a weak community C such that
kCint > kCext. These two definitions will be central in chapter 8 and chapter 9, in
the main part.

Borgatti et al. [2] defines the edge connectivity of two vertices to be the
minimum number of edges one has to remove in order to disconnect them. A
lambda set is then a subgraph such that any two vertices in the subgraph have
greater edge connectivity than any pair of vertices where one belongs to the
subgraph and the other not. The weakness of this definition is that two vertices
in a lambda-set are not necessarily adjacent to each other.

3.3 Global definitions
There is a group of definitions that states that a graph displays community
structure if it is different from a random graph in some way. A random graph is
not expected to have community structure because there is an equal probability
that any two vertices are adjacent. A null model of some kind is generated in
order to compare it with the graph under consideration. The most famous null
model is probably that of Girvan and Newman, which is a randomized version of
the original graph such that the expected degree of every vertex is equal to the
degree of the vertex in the original graph. This null model is the foundation of
the important modularity function which will be discussed further in chapter 4.

3.4 Definitions based on vertex similarity
This section is based solely on the review article by Santo Fortunato called
Community detection in graphs [11].

Definitions based on vertex similarity uses either local or global criteria to
compute the similarity between every pair of vertices. This group of definitions
is not important for the rest of this thesis and we will therefore not delve further
into this subject, with the exception of one definition, given to wet the tongue of
the reader. The neighbourhood overlap ωuv between the neighbourhoods N(u)
and N(v) of vertices u and v is defined as

ωuv =
|N(u) ∩N(v)|
|N(u) ∪N(v)|

(3.1)

Given this definition we can compute the similarity of every pair of vertices
in the graph. The closer the number is to 1, the more similar the vertices are.

18

Chapter 4

Modularity

In community detection we are given a graph and want to find a partition of its
vertex set so that each class of the partition can be seen as a separate community.

This chapter introduces a function called modularity that is used to measure
the quality of such a vertex set partition, when viewed as a set of communities.
Unless otherwise stated, the material is based on the review article Community
detection in graphs by Santo Fortunato [11], one of the major authorities in the
field of community detection.

4.1 Partitions and quality functions
A partition of a graph is a division into disjoint communities such that every
vertex is assigned one community. All partitions are not equally good and we
need some way of ranking them. A quality function is a function that maps
each partition of a graph to a number representing the quality of the partition.
Higher numbers generally mean better partitions.

Most quality functions are additive. A quality function Q is additive if there
exists a function f that can be applied to each community C of a partition P
such that the quality of the partition is the sum of the qualities of the individual
communities.

Q(P) =
∑
C∈P

f(C) (4.1)

4.2 Introducing modularity
The most famous quality function is the modularity function of Newman and
Girvan [24]. The basic idea behind the modularity function is to compare the
edge density of a given subgraph (a community candidate) with the edge density
of a randomized version of the same subgraph. The randomized version is not
expected to have community structure. The randomized version of the subgraph

19

1

4
5

2

3

6
7

1

4
5

2

3

6
7

1

4
5

2

3

6
7

1

4
5

2

3

6
7

Figure 4.1: Slice all m edges of the original blue graph to obtain 2m edge stubs.
The green and red graphs on the second line are the product of two possible
randomized rewirings of the edgs stubs of the blue graph. Note that each vertex
keeps the same degree.

is part of a randomized version of the whole input graph called a null model,
that keeps some of the structures of the original graph but that does not display
community structure. The modularity function of Newman and Girvan does not
depend on a specific null model. The modularity function Q is a sum that runs
over all possible pairs of vertices.

Q(C) =
1

2m

∑
i∈V,j∈V

(Aij − Pij)δ(Ci, Cj) (4.2)

A is the adjacency matrix, with Aij = 1 if vertices i and j are adjacent,
m is the number of edges in the whole graph, Pij is the expected number of
edges between vertices i and j in the null model, C is a partition of the graph
into communities, Ci and Cj are the communities of vertices i and j respectively,
and δ(i, j) = 1 if vertices i and j are in the same community (Ci = Cj), and 0
otherwise.

So what does this function say, intuitively? Given a partition into disjoint
groups, if there are significantly more edges inside the groups than there would
be between the same vertices in a randomized version of the graph, then we
have a partition into real communities. The higher the value of Q, the better
the partition is.

There exists several null models. Fortunato claims that it is preferable to
choose a null model in which the degree distribution is the same as in the
original graph [11]. The standard null model of modularity is designed such
that the expected degree sequence matches the actual degree sequence of the
graph. In other words, the expected degree of a vertex v must match the actual
degree of v. The expected degree sequence is computed as the average of all
possible configurations of the model. This model is essentially equivalent to
the configuration model, which works as follows. Conceptually slice each of the
m edges of the graph into two stubs to obtain 2m stubs, see Figure 4.1. The

20

probability pi of choosing one of the stubs of vertex i is ki
2m and the probability

of making a connection between vertices i and j is pipj =
ki·kj
4m2 . The expected

number of edges between vertices i and j is then Pij = 2mpipj =
ki·kj
2m . The

modularity function Q can then be written as:

Q(C) =
1

2m

∑
ij

(
Aij −

kikj
2m

)
δ(Ci, Cj) (4.3)

Only pairs of vertices that belong to the same community contribute to the
sum of equation (4.3) and therefore the equation can be rewritten as follows.

Q =

nc∑
c=1

(
lc
m
−
(
kc

2m

)2)
(4.4)

where nc is the number of communities, lc is the total number of edges
joining vertices in community c, and kc is the sum of the degrees of the vertices
of c. lc

m is the fraction of edges of the graph that are inside community c. (k
c

2m)2

is the expected fraction of edges if the graph was a random graph such that the
expected degrees of two arbitrary vertices were the same.

Equation (4.4) states that the quality of a community increases when the
positive difference between the actual and the expected number of internal edges
of a community increases. The modularity of the whole graph is zero, it is always
smaller than one, and it can also take negative values. The modularity of a
partition where each vertex constitutes its own community is negative because
the first term of equation (4.4) then is zero. This implies that a graph without
any partition of positive modularity does not display community structure.

The maximum modularity is, however, dependent both on the size of the
graph and on the number of well-defined communities.

Modularity has been used as a quality function in many algorithms, in-
cluding some of the algorithms that we will discuss in section 5.2.2 on divisive
algorithms. Modularity optimization is itself a community detection method,
which will be discussed in section 5.3 on greedy modularity-based community
detection methods.

The modularity function can easily be extended to graphs with weighted
edges. The degrees of vertices i and j, ki and kj , must be replaced by their
strengths, si and sj , where the strength of a vertex is the sum of the weights of
the edges adjacent to the vertex. The number of edges in the graph, m, must be
replaced by the total edge weight, W , of the graph in order to provide a proper
normalization. The product sisj/2W is the expected weight of edge {i, j} in the
null model and this quantity has to be compared to its actual weight, w({i, j}).
Thus the modularity function for weighted graphs is as follows.

QW (C) =
1

2W

∑
ij

(
w({i, j})− sisj

2W

)
δ(Ci, Cj) (4.5)

21

4.3 The limitations of modularity
In this section we will explore the limitations of modularity. The first topic to
be discussed is the maximum obtainable value of modularity. The second topic
to be dealt with is the quality of the partitions found when using modularity as
a quality function. When dealing with this topic we will explain a problematic
concept called the resolution limit of modularity.

The maximum modularity value
The first issue to be discussed is the value of the maximum modularity Qmax for
a graph. Since the partition with all vertices in one community has zero mod-
ularity, we know that Qmax is non-negative. However, a large value for Qmax
does not necessarily imply that the graph has community structure. Guimerà et
al. [15] have demonstrated that random graphs may have partitions with large
modularity values due to variations in the edge distribution. The variations
may produce clustering of edges in subsets of the graph resulting in structures
with the appearance of communities.

The quality of the partitions found by modularity
Fortunato and Barthélemy [12] have drawn attention to the fundamental issue
concerning the ability of modularity to find good partitions. Given a graph
with an obvious community structure, one should expect that the value of
Qmax should reveal this. Recall that the expected number of edges between
vertices i and j is Pij = kikj/2m. Likewise, the expected number of edges be-
tween two communities A and B with total degrees kA and kB, respectively, is
PAB = kAkB/2m, and the change in modularity when A and B are merged is
∆QAB = `AB/m − kAkB/2m2, where `AB is the number of edges between the
two communities. If there is only one edge between A and B (`AB = 1), then the
two communities are expected to be kept as separate communities. Fortunato
and Barthélemy show that if the two communities have approximately the same
number m′ of edges, m′ <

√
2m, and they are connected, then modularity is

greater if they are merged, which is an unfortunate result, see [12] and [11]. To
see how this is possible, consider two subgraphs both of small total degree. In
this case it is possible that the expected number of edges in the null model may
be smaller than one and so it suffices to have only one edge between them in
order for them to be merged. In fact, it turns out that the subgraphs will be
merged (since this increases modularity) independently of their structure, such
that even complete subgraphs will be merged.

In figure 4.2 eight communities, each a complete graph on ` vertices, are
connected in a circle such that every community is connected to exactly two
other communities and every pair of connected communities is connected by
a single edge. Intuitively a good community detection algorithm should find
exactly eight communities in this graph but in fact it turns out that when
the number of communities nc is larger than about `2, where ` is the number

22

Figure 4.2: A circle of eight communities (the blue circles), each a complete
graph on ` vertices, such that if two communities are connected, then they are
connected by a single edge.

of vertices in each community, modularity will be higher for partitions where
communities are merged.

This implies that modularity optimization has what is known as a resolution
limit that may prevent community detection algorithms based on modularity
optimization from detecting communities that are small compared to the whole
graph, resulting in large communities swallowing up small communities or sev-
eral small communities being lumped together. If the partition corresponding to
Qmax has communities with total degree ≤

√
m, one cannot know beforehand

whether the resulting communities are single communities or amalgamations of
smaller weakly interconnected communities. In chapter 7 in the main part we
will see this problem when we implement and test a greedy modularity opti-
mization algorithm.

The resolution limit of modularity is due to the very definition of the null
model of modularity, in particular the underlying assumption that every vertex
can see every other vertex of the graph, in other words, that a vertex may
be connected to any other vertex of the graph with equal probability. This is
a wrong assumption especially for large social networks such as the Facebook
graph, since it is more likely, say, for a Norwegian to get in touch with other
Norwegians than with Chinese people.

One could imagine that a solution to the problem is to run a modularity
optimization algorithm to obtain a partition of the input graph and then to
run the same algorithm on each community that was found in the first round
in order to find artificial amalgamations of communities. This is however not a
fruitful approach since 1) the local modularities used to find partitions within
the communities have different null models and are thus inconsistent, and 2) one
has to design a stopping criterion for when to stop such a recursive approach,
but no such criterion is obvious.

23

Good et al. [14] have discovered that the modularity landscape is character-
ized by an exponential number of distinct partitions whose modularity values all
are very close to the global maximum. This explains why many heuristics are
able to obtain a partition whose modularity is close to Qmax and it also implies
that the global maximum is practically impossible to find with anything other
than a brute-force search. However, even though two arbitrary partitions both
may have modularity values close to Qmax, they are not necessarily structurally
similar to each other. Furthermore, the best partition from a structural view-
point is usually not the same as the partition that corresponds to Qmax, but
it may have a high modularity value. So to summarize, the structurally best
partition is almost impossible to find in the midst of a plethora of partitions of
high modularity that are structurally different from the best one.

4.4 Motif modularity
In this section we will present one alternative to the standard modularity func-
tion. The alternative is called motif modularity and it has inspired a divisive
algorithm that we will implement and test in chapter 8 in the main part.

Arenas et al. [1] have introduced the concept of motif modularity. A motif
M = (VM, EM) is an induced subgraph of a certain kind, e.g. a triangle or
a Ck (k ≥ 0). See Figure 4.3(a) for some examples. Given an unweighted
undirected graph and a partition C of it into communities, the number of motifs
fully included inside communities is given by

ψM(C) =

n∑
i1=1

n∑
i2=1

· · ·
n∑

iM=1

∏
(a,b)∈EM

wiawibδ(Cia , Cib) (4.6)

(a) Some motifs: C3, C4, C8, and P8 (b) Two degenerated C8 motifs.

Figure 4.3

The vertices of the motifs are labeled by the indices i1, i2, ..., iM . wiawib
is equal to 1 if there is an edge between vertices ia and ib and 0 otherwise.
δ(Cia , Cib) is equal to 1 if vertices ia and ib belong to the same community and
0 otherwise. It should be noted that this sum includes degenerated motifs, that
is, motifs where a single vertex is counted more than once. See Figure 4.3(b).

24

The maximum value of ψM corresponds to the partition consisting of a single
community containing all the vertices:

ψM =

n∑
i1=1

n∑
i2=1

· · ·
n∑

iM=1

∏
(a,b)∈EM

wiawib (4.7)

In a random undirected graph where the degrees of the vertices are preserved,
the number of motifs fully included inside communities is

ΩM(C) =

n∑
i1=1

n∑
i2=1

· · ·
n∑

iM=1

∏
(a,b)∈EM

kiakibδ(Cia , Cib) (4.8)

The maximum value of ΩM is given by

ΩM =

n∑
i1=1

n∑
i2=1

· · ·
n∑

iM=1

∏
(a,b)∈EM

kiakib (4.9)

Given these quantities motif modularity is defined as the fraction of motifs
inside the communities minus the fraction of motifs inside the communities of
a random graph where the degrees of the vertices are preserved:

QM(C) =
ψM(C)
ψM

− ΩM(C)
ΩM

(4.10)

To simplify the expression above, Arenas et al. introduces the following
three quantities.

• nij = kikj is the nullcase weight

• wij(C) = wijδ(Ci, Cj) is the masked weight

• nij(C) = nijδ(Ci, Cj) is the masked nullcase weight

Using these quantities QM(C) can be rewritten as

QM(C) =

∑
i1i2···iM

∏
(a,b)∈EM

wiaib(C)∑
i1i2···iM

∏
(a,b)∈EM

wiaib
−
∑
i1i2···iM

∏
(a,b)∈EM

niaib(C)∑
i1i2···iM

∏
(a,b)∈EM

niaib
(4.11)

Using QM(C) as a starting point, several subclasses of motif modularity can
be defined. Triangle modularity Q4(C) is based on the triangle motif E4 =
{(1, 2), (2, 3), (3, 1)}:

Q4(C) =

∑
ijk wij(C)wjk(C)wki(C)∑

ijk wijwjkwki
−
∑
ijk nij(C)njk(C)nki(C)∑

ijk nijnjknki
(4.12)

Arenas et al. have also defined a more general cycle modularity and path
modularity, and they have also devised definitions that apply to both directed
and weighted graphs, but we will not look any further at these definitions as
they are not important for the rest of this thesis.

25

Chapter 5

Community detection
algorithms

In this section we will present three different approaches or methods that can
be used to find clusters in complex networks. The first one, graph partitioning,
is the problem of partitioning a graph into a predefined number of smaller
components with specific properties. The second one, hierarchical clustering,
is a set of algorithms that can reveal the hierarchy of communities in complex
networks. Finally, modularity-based algorithms is a set of algorithms that seek
to maximize the modularity function. We will only investigate greedy algorithms
that maximize modularity.

The algorithms that will be presented in this chapter are given in Table 5.1.
Algorithms that build upon each other are grouped together.

This chapter is based on the review article Community detection in graphs
by Santo Fortunato [11], one the major authorities in the field of community
detection.

26

S
ec
ti
on

Y
ea
r

S
h
or
t

n
am

e
A
u
th
or
s

T
yp

e
P
ar
en
t

Is
im

p
le
m
en
te
d
?

se
ct
io
n
5.
1,

se
ct
io
n
5.
3.
3

19
70

K
L

K
er
ni
gh

an
-L
in

[1
6]

G
P

N
o

se
ct
io
n
5.
2.
2,

se
ct
io
n
8.
1.
1,

se
ct
io
n
8.
1.
2

20
02

G
N

M
ic
he
lle

G
ir
va
n
an

d
M
ar
k
N
ew

-
m
an

[1
3]

[2
4]

D
H

N
o

se
ct
io
n
5.
2.
2,

ch
ap

te
r
8

20
04

R
E
B

F
ili
pp

o
R
ad

ic
ch
i,

C
la
ud

io
C
as
te
lla

no
,

Fe
de
ri
co

C
ec
co
ni
,

V
it
to
ri
o

Lo
re
to
,

D
om

en
ic
o

P
ar
is
i[
28
]

D
H

G
N

N
o

se
ct
io
n

5.
2.
2,

ch
ap

te
r

8,
ch
ap

te
r
9

20
04

R
E
C
C

F
ili
pp

o
R
ad

ic
ch
i,

C
la
ud

io
C
as
te
lla

no
,

Fe
de
ri
co

C
ec
co
ni
,

V
it
to
ri
o

Lo
re
to
,

D
om

en
ic
o

P
ar
is
i[
28
]

D
H

G
N

Y
es

se
ct
io
n
5.
3.
1,

se
ct
io
n
5.
3.
2,

se
ct
io
n
5.
3.
3

20
04

N
M
ar
k
E
.J

.N
ew

m
an

[2
3]

G
A
H

N
o

se
ct
io
n
5.
3.
2,

se
ct
io
n
5.
3.
3,

ch
ap

te
r
7,

ch
ap

te
r
9

20
04

C
N
M

A
ar
on

C
la
us
et
,M

ar
k
E
.J

.N
ew

-
m
an

,a
nd

C
ri
st
op

he
r
M
oo

re
[5
]

G
A
H

N
Y
es

se
ct
io
n
5.
3.
3

20
07

W
T

K
en

W
ak

it
a
an

d
T
os
hi
yu

ki
T
su
-

ru
m
i[
35
]

G
A
H

C
N
M

N
o

se
ct
io
n
5.
3.
3

20
08

SC
P
hi
lip

p
Sc
hu

et
z

an
d

A
m
ed
eo

C
afl

is
c
[3
0]

G
A
H

C
N
M
,

K
L

N
o

T
ab

le
5.
1:

T
he

al
go
ri
th
m
s
st
ud

ie
d

in
th
is

ch
ap

te
r.

T
he

co
lu
m
n

"S
ec
ti
on

"
gi
ve
s
an

ov
er
vi
ew

of
th
e
se
ct
io
ns

of
th
is

th
es
is

w
he
re

th
e
gi
ve
n

al
go
ri
th
m
s
ar
e
m
en
ti
on

ed
.

T
he

fo
llo

w
in
g
ab

br
ev
ia
ti
on

s
ar
e
us
ed

in
th
e
co
lu
m
n

"T
yp

e"
,
w
hi
ch

ex
pl
ai
ns

w
ha

t
ty
pe

of
al
go
ri
th
m

th
e
gi
ve
n
al
go
ri
th
m

is
.

G
P

=
gr
ap

h
pa

rt
it
io
ni
ng

,
D
H

=
di
vi
si
ve

hi
er
ar
ch
ic
al
,
an

d
G
A
H

=
gr
ee
dy

ag
gl
om

er
at
iv
e
hi
er
ar
ch
ic
al
.
T
he

"P
ar
en
t"

co
lu
m
n
co
nt
ai
ns

th
e
al
go
ri
th
m
(s
)
th
at

th
e
gi
ve
n
al
go
ri
th
m

bu
ild

s
up

on
.
T
he

co
lu
m
n

"I
s
im

pl
em

en
te
d?

"
co
nt
ai
ns

"y
es
"
if
th
e
al
go
ri
th
m

is
im

pl
em

en
te
d
by

th
e
au

th
or

of
th
is

th
es
is
,a

nd
"n

o"
ot
he
rw

is
e.

27

5.1 Graph partitioning
Graph partitioning is the problem of partitioning a graph into a predefined
number of smaller components with specific properties. A common property
to be minimized is called cut size. A cut is a partition of the vertex set of a
graph into two disjoint subsets and the size of the cut is the number of edges
between the components. A multicut is a set of edges whose removal leaves a
graph of two or more components. When one is doing graph partitioning it is
necessary to specify the number of components one wishes to get and the size
of the components. Without a requirement on the number of components, the
solution would be trivial, just put all the vertices into one component to obtain a
cut size of zero. The size of the components must also be specified, as otherwise
a likely but not meaningful solution would be to put the minimum degree vertex
into one component and the rest of the vertices into another component.

The Kernighan-Lin algorithm is a O(n3) heuristic algorithm and one of the
earliest algorithms proposed to solve the graph partitioning problem. The orig-
inal motivation was to assign the "components of electronic circuits to circuit
boards to minimize the number of connections between boards" [16]. The al-
gorithm maximizes the difference Q between the number of edges inside the
components and the number of edges between the components. Initially the
algorithm partitions the graph into two components of a predefined size. This
may be done at random or by using some properties of the graph. Then a num-
ber of swaps of pairs of vertices are made until some maximum of Q is reached.
The algorithm also makes use of some swaps that decrease Q in order to escape
local maxima.

We will not look at other graph partitioning algorithms because they are
usually not suitable to do community detection with. Since the number of com-
munities in a social network usually is not known in advance, graph partitioning
methods are not fit to detect communities in such networks because they require
as input a number specifying the number of partitions to be output.

5.2 Hierarchical clustering
An interesting property of social networks is that they often exhibit a hierar-
chical structure with smaller communities dwelling inside larger communities.
This fact justifies a special group of algorithms called hierarchical community
detection algorithms that can reveal the hierarchy of communities in social net-
works. The hierarchical community detection algorithms are usually divided
into two groups:

1 Agglomerative hierarchical algorithms

2 Divisive hierarchical algorithms

Agglomerative algorithms are bottom-up algorithms in which two commu-
nities at a time are merged if they are sufficiently similar to each other. These

28

algorithms starts with each vertex as a community on its own and ends up
with the whole graph as one community if they are not stopped at some ear-
lier stage. Divisive algorithms, on the other hand, are top-down algorithms in
which communities are iteratively split into two parts by removing edges be-
tween the least similar vertices. The skeleton structures of the two algorithmic
approaches are given in Algorithm 1 and Algorithm 2, and schematic figures of
the two approaches are given in Figure 5.1(a) and Figure 5.1(b).

(a) A schematic figure of an agglomerative al-
gorithm.

(b) A schematic figure of a divisive algorithm.

Figure 5.1: Schematic figures of agglomerative and divisive algorithms.

Both categories of algorithms have in common that they initially compute
a similarity matrix X based on some similarity measure, e.g. one of those
mentioned in section 3.4. The similarity of every pair of vertices is computed,
also pairs of vertices not connected by an edge.

Although hierarchical community detection have some advantages over graph
partitioning it also has several disadvantages. The method does not distinguish
between the many communities that it finds, some of which are artificial and
some of which are in fact meaningful. The method tends to place some vertices
outside their communities, even vertices with an obvious central role in their
respective communities [25]. They also tend to make a one man community out

29

65

40

2 3

1

0 1 6542 3

Figure 5.2: The figure shows a graph at the top and at the bottom a dendro-
gram showing how vertices 0 and 1 first are merged into a community, which
then absorbs vertices 2 and 3. Next vertices 4 and 5 are joined into another
community, which then absorbs vertex 6. Finally communities {0, 1, 2, 3} and
{4, 5, 6} are joined into a single community {0, 1, 2, 3, 4, 5, 6}.

of vertices with a single neighbour, which usually doesn’t make sense in social
networks.

The complete hierarchy of partitions found by a hierarchical algorithm can
be neatly illustrated by a dendrogram, as illustrated in Figure 5.2. The den-
drogram shows successive joins done by the algorithm from the bottom and
upwards. Slicing the dendrogram horizontally at different levels yields the dif-
ferent partitions of the graph. The closer to the bottom of the dendrogram the
horizontal slicing is done, the higher the number of communities of the corre-
sponding partition is. The first join made in the algorithm is shown as a line at
the bottom of the dendrogram connecting two vertices and the last join made
by the algorithm is shown as the uppermost line connecting either two vertices,
two other lines, or one vertex and one line. Thus a dendrogram yields more
information than a simple rooted tree, as found in graph theory.

5.2.1 Agglomerative hierarchical algorithms
Several agglomerative algorithms run in O(n3) time. As mentioned a similarity
matrix X is computed, containing the similarity values for every pair of vertices,
either they are connected by an edge or not. At each iteration of the algorithm
it merges the two most similar communities. Three different approaches in how
to find the two most similar communities exist.

The single linkage clustering method [39] picks at each iteration the two
communities with the smallest element xij of the similarity matrix X, such that
vertex i is in one community and vertex j in the other community.

30

Agglomerative algorithm 1: A generic agglomerative algorithm
input : An input graph G
output: A partition into communities

Compute similarity of every vertex pair;
Put every pair of vertices with corresponding similarity value into a
priority queue Q;
Start with every vertex as a community on its own;
while stopping condition not met do

if Q is empty then
break;

if current partition satisfies the specified requirements then
break;

Remove the most similar pair of vertices from Q and merge their
corresponding communities into a single community;

Return the computed partition into communities;

The complete linkage clustering method does the quite opposite. At each
iteration it picks the maximum element xij of X and merges the communities
of vertices i and j, see [38] and [34].

The average linkage clustering method computes the average of all similarity
values.

5.2.2 Divisive hierarchical algorithms
The basic idea behind divisive hierarchical algorithms is to detect and then
remove edges between vertices of different communities in order to separate the
communities from each other. Initially there is one community containing all
the vertices of the graph.

The Girvan-Newman algorithm

The most well-known divisive algorithm is the algorithm of Girvan and Newman
[13] [24], presented in Algorithm 3. The key idea of the algorithm is to find the
edges that are most clearly candidates for being "between" communities, that
is, to find good inter-community edges. The underlying concept is called edge
betweenness and is defined to be the number of shortest paths between pairs of
vertices that go along the edge. If there are several shortest paths between a
pair of vertices, each path is given an equal weight. Edges between communities
will therefore have the highest edge betweenness values.

The algorithm keeps removing edges until none are left. At each iteration the
edge with the highest edge betweenness value is removed. As with all hierarchi-
cal algorithms, the sequence of edge removals defines a dendrogram describing

31

Algorithm 2: A generic divisive algorithm
input : An input graph G
output: A partition into communities

Compute similarity of every vertex pair
Put every pair of vertices with corresponding similarity value into a
priority queue Q
Start with all vertices as a single community
while stopping condition not yet met do

if Q is empty then
break

if current partition satisfies the specified requirements then
break

Remove the least similar pair of vertices from Q and remove the edge
between them

Return the computed partition into communities

the hierarchy of partitions into communities. The algorithm returns the parti-
tion with the highest modularity value.

Algorithm 3: The divisive algorithm of Girvan and Newman
input : A graph G = (V,E), where E = {e1, ..., em}
output: A partition of G into communities
Calculate the betweenness values of all edges;
while more edges left do

Remove the edge with the greatest betweenness value;
Recalculate betweenness values for all edges affected by the removal;
Compute the modularity value of the current partition;

Return the partition with the highest modularity value;

The betweenness of all edges can be calculated in O(mn) time on unweighted
graphs, orO(n2) on unweighted sparse graphs, andO(nm+n2log n) on weighted
graphs, with techniques based on breadth-first search [3].

A downside of the algorithm is that after calculating all the edge betweenness
values, if there are more than one edge between two communities, then only one
of them is guaranteed to have a high edge betweenness value. After removing
an edge of highest betweenness value one therefore has to recalculate all the
betweenness values in order for another inter-community edge between the same
two communities to exhibit a high value.

Several improvements of the algorithm of Girvan and Newman have been
proposed but we will not look any further at them.

32

Other divisive algorithms

Many other divisive algorithms have been proposed and they use different func-
tions to detect the edges to be removed. In chapter 8 in the main part we
will implement and test a divisve algorithm that uses the concept of an edge-
clustering coefficient to find and remove inter-community edges [28].

5.3 Greedy modularity based community detec-
tion

Modularity is the most used quality function, see chapter 4. There are several
techniques based on modularity, including greedy techniques, which we will
explore in this section, simulated annealing, extremal optimization, and spectral
optimization. The last three techniques are vast fields and quite different from
the focus area of this thesis and will therefore not be explored any further.

5.3.1 Newman’s algorithm
In 2004 Newman published an algorithm [23] that greedily maximizes the mod-
ularity function Q, which is the fraction of edges that exist inside communities
minus the expected value of the same quantity if the edges are spread ran-
domly across the graph. This is meaningful since the greater the value of Q is,
the better community structure the graph has. The algorithm falls within the
general category of agglomerative hierarchical algorithms, that we discussed in
section 5.2.1.

The algorithm starts with every vertex being a community of its own. Thus,
given an input graph on n vertices, we initially have n communities. In n − 1
iterations the algorithm joins pairs of communities, at each iteration the pair
that gives the highest increase or lowest decrease of Q is joined. The process can
be represented by a dendrogram that shows the order of the joins. Cuts through
the dendrogram at different levels give different partitions into communities.
The best cut can be found by taking the partition that gives the highest value
of Q. See Figure 5.2 for an example of a dendrogram.

Newman maintains a matrix e that for element eij stores the fraction of edges
in the network that connect vertices in community i to those in community j,
and an array a such that ai =

∑
i(eii − a2i). The change in Q when joining

communities i and j is given by ∆Q = eij + eji − 2aiaj = 2(eij − aiaj), which
can be computed in constant time.

At a given iteration there are at most m possible community joins, m being
the number of edges in the graph. For each possible join ∆Q is computed
and the join that gives the highest increase or lowest decrease of Q is picked.
When joining two communities i and j some elements of the matrix e must be
updated by adding together the rows and columns corresponding to the two
joined communities. For instance, if communities i and j are to be joined and
there are 2 edges between communities i and k (eik = 2/m) and 3 edges between

33

communities j and k (ejk = 3/m), and the new community is called i, then eik
must be updated to the value 5/m. Updating the matrix e in a single iteration
takes O(n) time. Thus finding the best join and then updating the matrix e
takes O(n+m) time. The algorithm performs n− 1 joins altogether and hence
the algorithm runs in O(n(n+m)) time or O(n2) time on sparse graphs.

5.3.2 The algorithm of Clauset, Newman and Moore
The improvements

In 2004 Clauset, Newman and Moore introduced an improvement [5] of the
greedy algorithm that Newman published earlier the same year [23]. Whereas
the original algorithm runs in time O((n + m)m), the improvement runs in
time O(m · d · log n), where d is the depth of the dendrogram describing the
hierarchy of partitions. (In the following the algorithm by Clauset, Newman
and Moore will be referred to as the CNM algorithm.) The improvement was
based on the observation that updating the adjacency matrix e in Newman’s
algorithm involved many unnecessary operations due to the sparseness of the
matrix. Clauset et al. maintains a sparse matrix ∆Q containing only values for
connected communities. ∆Qij contains the increase or decrease in modularity
if communities i and j are merged. Each row of the matrix is stored both as a
binary tree, in order to find and insert elements in O(log n) time, and as a max
heap, such that the maximum element of a row can be found in constant time,
that is, such that given a community i that is to be merged with some other
community, one can find the neighboring community of i whose amalgamation
with i will result in the highest increase (or lowest decrease) in modularity.
Henceforth the version of ∆Q being an array of binary trees is referred to as
∆Qt and the version being an array of max heaps is referred to as ∆Qh. When
something applies to both structures we will simply say ∆Q. Note that this
notational distinction is invented by the author of this thesis and is not found in
the paper of Clauset et al. Furthermore, yet another max heap H is maintained
that stores the maximum element from every row of ∆Q. See Figure 5.3 for an
illustration of the data structures used by the algorithm.

Overview of the algorithm

The algorithm starts with every vertex of the input graph G being a community
of its own. Thus there are initially n communities. At every iteration, the
maximum element from the max heap H is chosen if there still is more than one
community. Thus a total of n−1 join operations will be performed. The element
of H is a triple (i, j,∆Qij) consisting of the labels of the two communities (i and
j) whose amalgamation will result in the highest increase, ∆Qij , of modularity
Q (or lowest decrease if no increase is possible). Merging i and j includes
updating ∆Q, both the binary trees and the max heaps of rows i, j, and every
neighbor k of either i or j or both, the overall max heap H with respect to i, j
and every neighbor k, and the array a.

34

∆Q as binary trees

∆Q as heaps

3

3

0 1

2 3

4

5 6

(0,3)

(4,1)

(0,3)

(4,1)

binary tree

max heap

H : max heap

(0,3,∆Q[0,3])

(3,0,∆Q[3,0])

(3,4,∆Q[3,4])

(4,3,∆Q[4,3])

Figure 5.3: The CNM algorithm uses three main data structures. The ∆Q
values are stored both as an array of binary trees and as an array of max
heaps. Furthermore, a max heap H stores the maximum element from every
row of ∆Q. In this example we have a graph on seven vertices in the middle
of the community detection process. The graph is so far partitioned into three
communities {0, 1, 2}, {3}, and {4, 5, 6}. Not all details of the data structures
are shown. We can see the row of community {3} in both versions of ∆Q
pointing to a binary tree and a max heap, respectively. The element (0, 3) in
these data structures tells us that community {3} is connected to community
{0, 1, 2} (indexed by the lowest numbered vertex in this community) by 3 edges.
Since community {3} is connected to community {4, 5, 6} with only one edge,
element (0, 3) is the top element in the max heap and accidentally also in the
binary tree. The max heap H stores the maximum element from every row of
∆Q.

35

Updating the data structures

At a given iteration communities i and j are merged and the new community is
labeled as j. Thus row j must be updated in both versions of ∆Q whereas row
i can be removed. There are three update rules when updating row j.

1. If k is a common neighbor of i and j, then the element of k in row j is
updated according to ∆Q′jk := ∆Qik + ∆Qjk.

2. If k is a neighbor only of i, then we must add an element of k in row j
with the value ∆Q′jk := ∆Qik − 2ajak.

3. If k is a neighbor only of j, then the element of k in row j is updated
according to ∆Q′jk := ∆Qjk − 2aiak.

In the following we will let |i| and |j| denote the numbers of neighboring
communities of i and j, respectively.

Implementing the three rules above requires scanning rows i and j in both
∆Qt and ∆Qh. A single application of any of the three rules takes O(log |j|) =
O(n) time both for ∆Qt and ∆Qh. Thus it takes O(2(|i|+ |j|)log n) = O((|i|+
|j|)log n) time altogether.

We change the maximum element of at most |i| + |j| rows of ∆Q and we
therefore must do at most |i| + |j| updates of the max heap H, each taking
O(log n) time.

a′j = aj + ai is updated in constant time.

Time complexity

As discussed in the previous subsection a single join operation takes O((|i| +
|j|)log n) time. Since the total degree of all the vertices in the graph is 2m,
|i|+ |j| is at most 2m. If the depth of the dendrogram describing the hierarchy
of communities is d, then then running time of the algorithm is O(md log n).

A downside of the CNM algorithm

A downside of the CNM algorithm is that it tends to create large communities in
general, even when the communities apparently should have smaller sizes, and
hence gives poor values of modularity. The problem is due to the modularity
function itself. See section 4.3 for a further discussion on the quality of the
partitions found by the modularity function.

5.3.3 Improvements of the CNM algorithm
Several improvements of the CNM algorithm have been proposed, of whom we
will mention only a few.

Danon et al. [7] have proposed to normalize the ∆Q values in order to treat
all communities as equal. Each ∆Qij is normalized by dividing it on ai, the
fraction of edge stubs connected to vertices in community i. This implies that

36

∆Qij 6= ∆Qji, but the modified algorithm takes both values into consideration
when deciding which join operation to perform next. Another immediate conse-
quence is that the communities with the smallest amount of edge stubs have the
highest ∆Q values and are thus joined first. The algorithm finds better commu-
nities than that of Newman, especially when the sizes of the communities vary
a lot.

Figure 5.4: An example showing the data structures
used in the algorithm of Wakita and Tsurumi.

Wakita and Tsu-
rumi [35] have later
showed that the CNM
algorithm in practice
is not as fast as
Clauset et al. argue
. Clauset et al. ar-
gue that d, the depth
of the dendrogram,
grows as log n for
graphs that display
a significant hierar-
chical structure, and
that these graphs are
sparse, such that the

running time for such graphs is actually O(n log2n). However, Wakita and Tsu-
rumi have showed that since the CNM algorithm favors large communities over
small communities, the relation d ∼ log n does not hold and the running time
tends toward the worst time complexity in practice, i.e. O(n2 log n). To remedy
the unbalanced merge process they introduce the concept of consolidation ratio
of a community amalgamation, defined as ratio(ci, cj) = min{|ci|/|cj |, |cj |/|ci|}.
The size of community ci, |ci|, is defined as the number of edges going to other
communities. Whereas the CNM algorithm considers all ∆Qij values when it
is to decide the next amalgamation, the algorithm of Wakita and Tsurumi con-
siders ∆Qij · ratio(ci, cj). Furthermore, they make some changes to the data
structures to further improve the running time. See Figure 5.4 for an example
of the data structures used by Wakitra and Tsurumi.

• The balanced binary trees and max-heaps of the CNM algorithm are re-
placed by a doubly linked lists sorted by community ID.

• Each community ci is represented by a data structure storing a list of all
neighboring communities. The list actually consists of community pairs,
i.e. pairs of numbers, such that if community 1 is linked to communities
3, 7 and 9, the list is {(1, 3), (1, 7), (1, 9)}.

• The community data structure also holds a maximum pointer to the max-
imum community pair, i.e. a pair telling us which neighbor of community
ci will increase modularity the most if merged with ci.

• A max-heap storing the maximum community pair of every community is
maintained.

37

Maintaining pointers to the maximum community pair for all communities
needs some care. Say two communities, ci and cj , are merged at a certain
iteration of the algorithm, and among all the community pairs that have their
∆Q values updated, community pair p = (ci, ck) is one of them. If p is not the
largest community pair in the list of ck and the corresponding ∆Q decreases,
nothing has to be done. If on the other hand ∆Q increases such that it becomes
greater than the current maximum pair of ck, then the maximum pointer must
be updated to point to p. Furthermore, if p is the maximum community pair
of ck and its ∆Q value increases, then no work is needed. If on the other hand
∆Q decreases in this case, the whole list of ck must be scanned in O(m) time in
order to update the maximum pointer, which still may point at p. A worst case
may happen if this last scenario occurs most of the time. However, Wakita and
Tsurumi argue that if the given network adhere to the preferential attachment
law, then there will probably be a heavily linked pair in most of the lists that
the other pairs cannot compete with, and thus they will "hopefully" get fast
updates of the ∆Q values.

Another solution to avoid the formation of large communities absorbing
smaller ones has been presented by Schuetz and Caflisch [30]. They have made
a modified version of the CNM algorithm in which several community amal-
gamations may be done in a single iteration. The effect of this modification
is several community centres emerging from the very beginning and growing
simultaneously into larger communities. The algorithm is accompanied by a
refinement procedure named "vertex mover" (VM) that is somewhat similar
to the Kernighan-Lin algorithm described in section 5.1, the difference being
that the vertex mover has a completely local focus. The VM is started when
the algorithm converges toward some value. The procedure handles all ver-
tices in increasing order of degree and reassigns every vertex to the neighboring
community that gives the maximal modularity improvement. The procedure is
repeated until no further improvements are possible.

38

Part II

Main part

39

Chapter 6

Introduction to the main part

In the main part we will describe implementations of two hierarchical clustering
algorithms and present a community detection web service.

In chapter 7 we describe the implementation of the agglomerative hierarchi-
cal clustering algorithm by Clauset, Newman and Moore, that was presented in
section 5.3.2. The algorithm will later on be referred to as the CNM algorithm.
The algorithm greedily maximizes the modularity function described in chap-
ter 4. The chapter is concluded with some tests on benchmark graphs. The
results are not altogether good partly due to the simplicity of the modularity
function, partly due to some inherent weaknesses of the modularity function,
and partly due to the fact that there usually does not exist a partition of the
vertex set of the input graph into communities that can be considered a final
and definitive answer.

In chapter 8 we describe the implementation of a divisive hierarchical clus-
tering algorithm by Filippo Radicchi, Claudio Castellano, Federico Cecconi,
Vittorio Loreto, and Domenico Paris [28]. This algorithm makes use of a clus-
tering coefficient called the edge clustering coefficient (ECC) to detect and pos-
sibly remove edges that are good candidates to be inter-community edges. As
increasingly more edges are removed from the graph, the graph is split into
several connected components and when the algorithm finally ends, the ver-
tices of each connected component is considered as a separate community. This
algorithm is henceforth referred to as the RECC algorithm.

The RECC algorithm is not tested on benchmark graphs as was the CNM
algorithm. Instead, and in response to a challenge posed by Radicchi et al.
[28] that the results of a community detection algorithm on a given network
needs to be interpreted in order to receive a final evaluation we describe the
implementation of a community detection web service in chapter 9 that offers
community detection on the collaboration networks in the DBLP database using
the RECC algorithm.

Both the paper describing the CNM algorithm and the paper describing
the RECC algorithm lack fine algorithmic details as they only give high level
descriptions of the respective algorithms. This point has to be stressed when

40

the reader is considering the implementations described in this paper. Due
to the high level descriptions of the algorithms there may be and most likely is
differences between the implementations of this author and the implementations
by the designers of the two algorithms. In fact, for each of the two algorithms,
one can actually discern four different quantities to relate to.

• The mathematical description of the CNM and RECC algorithms in their
original papers.

• The implementation of the CNM and RECC algorithms by their authors.

• The more fine-grained mathematical descriptions of the CNM and RECC
algorithms offered by the author of this thesis.

• The implementations done by the author of this thesis based on his fine-
grained description of the CNM and RECC algorithms.

This makes it quite likely that for instance the implementation of the CNM
algorithm by Clauset et al. will not yield exactly the same results as this authors
implementation on all instances. This fact can be observed when considering
some iteration in the algorithm when there may be k > 1 community pairs
on the max heap H (recall the details described in section 5.3.2) that all have
equal modularity increase or decrease values if they are merged. Different heap
implementations may pick different community pairs first and this can have an
impact on the final community structure. Furthermore, it is not revealed in the
CNM paper how rows i and j are searched when the corresponding communities
are to be merged. This will also have an effect on the sequence of updates to
both ∆Q and H in a given iteration and thereby also to the configurations of
these structures after the two communities are successfully merged.

The same argument can be given in case of the RECC algorithm. We can
not rule out the possibility that different implementation details may have an
impact on the final results.

6.1 Implementation environment
The CNM and RECC algorithms and the web service are implemented on an
iMac with OX X Yosemite version 10.10.2, a 2.5 GHz Intel Core i5 processor,
and with 4 GB 1333 MHz DDR3 as memory. All code is written in Java version
8 using the IDE Eclipse, Luna Service Release 2 (4.4.2). The web service is
installed on a GlassFish Server Open Source Edition 4.1 application server and
is located at the address www.dblpcommunities.com.

41

Chapter 7

The CNM algorithm

In the following chapter we will give a detailed description of a slightly modified
version of the algorithm by Clauset, Newman and Moore, as described in sec-
tion 5.3.2, including pseudo code, and descriptions both of the data structures
used and of the time complexity. We will also show the results of running the
algorithm on some benchmark graphs.

7.1 Implementing the algorithm
In this section we describe our own implementation of the CNM algorithm.

7.1.1 Differences between the implementations
There are some main differences between how the CNM algorithm is imple-
mented and how the algorithm of this thesis is implemented.

In the following we refer the reader to the CNM algorithm description in
section 5.3.2.

The CNM algorithm keeps choosing the best element from the heap H until
H is empty and a single community remains. The author of this thesis has
chosen to stop the algorithm when every possible remaining community amal-
gamation will result in a decrease in the modularity Q, reasoning that in many
cases the a good enough result is obtained at this stage.

The second difference we will mention is that given two communities i and
j that are merged, the new community will have as id min{i, j}. The paper of
Clauset et al. does it the other way.

The third difference is a notational one. Both in the notation and in the
implementation we make a clear distinction between the two versions of ∆Q,
namely ∆Qt and ∆Qh, the first data structure being an array of binary trees
and the second data structure being an array of indexed maximum heaps. These
data structures are discussed in section 7.1.2.

42

The fourth difference is that our implementation has made an additional
abstract layer consisting of a Metagraph class dealing with high level community
information. No such thing is discussed in the CNM paper. We will discuss this
data structure further in section 7.1.2.

There are probably several other differences between the two implemen-
tations but these are not immediate since the CNM paper is lacking of fine
implementation details.

7.1.2 The Data Structures
In this subsection the main data structures used in the implementation of this
author is explained in detail. First we will give a short overview of the data
structures.

• ∆Qt. An array of binary trees, more precisely an ArrayList of TreeMaps
containing pairs of Integers and Doubles.

• ∆Qh.An array of max heaps, more precisely an ArrayList of IndexMaxPQs.

• H. A max heap, that is, an IndexMaxPQ.

• G. A Graph, storing the structural information of the input graph.

• M. A Metagraph, storing the high level community information, such as
the number of edges internal to a community and the number of edges
between two communities.

• a. An array holding the fraction of ends of edges that are attached to
vertices in each community.

The sparse matrix ∆Qt

∆Qt is an ArrayList of TreeMaps. Both classes are part of the java.util pack-
age. The TreeMap is a Red-Black tree implementation based on algorithms in
Introduction to Algorithms by Cormen, Leiserson, and Rivest. Table 7.1 shows
the names and running times of some operations in the TreeMap class used by
this algorithm. navigableKeySet runs in time O(deg(i)) = O(n) for a commu-
nity i and the running time is due to the fact that i may be a neighbor of n− 1
other communities in the worst case. Operation put inserts a (key,value) pair
to the tree. If the given key is already present in the tree, the previous value is
replaced by the new one.

43

Table 7.1: TreeMap<Key,Value>

Method Runtime
containsKey(Key) O(1)
Value get(Key) O(log n)
NavigableSet<Key> navigableKeySet() O(n)
Value put(Key, Value) O(log n)
Value remove(Key) O(log n)

The sparse matrix ∆Qh.

∆Qh is an ArrayList of IndexMaxPQs. The latter class is an indexed maxi-
mum priority queue based on an implementation of Sedgewick and Wayne [31].
The queue is heap based. This data structure offers contains, maxIndex,
and maxKey in constant time, whereas deleteMax, changeKey, increaseKey,
decreaseKey, and delete are all performed in logarithmic time. Especially the
operations offering some kind of change to the key associated with an index
are useful since java.util.PriorityQueue does not offer such methods and the
alternative would be to first delete a key and then to insert the increased or
decreased key. The index feature is also helpful since this gives us the possibil-
ity of retrieving ∆Qhij in constant time, although this is not strictly necessary
since ∆Qtij can be retrieved in constant time due to the underlying TreeMap and
∆Qtij = ∆Qhij . The methods and corresponding running times of IndexMaxPQ
are shown in Table 7.2.

Table 7.2: IndexMaxPQ<Key>

Method Runtime
changeKey(int, Key) O(log n)
contains(int) O(1)
decreaseKey(int, Key) O(log n)
delete(int) O(log n)
deleteMax(): (int, Key) O(log n)
increaseKey(int, Key) O(log n)
insert(int, Key) O(log n)
isEmpty(): boolean O(1)
keyOf(int): Key O(1)
maxIndex(): int O(1)
maxKey(): Key O(1)

The max heap H

H is an indexed maximum priority queue of type IndexMaxPQ. H stores the
maximum element of every row of ∆Q. That is, for every community i the
maximum element of ∆Qi is stored in H and this value can be retrieved from
∆Qh in constant time with operations maxIndex and maxKey. Since H is of

44

type IndexMaxPQ, it gives us the additional benefit of retrieving the maximum
element of ∆Qi in constant time by calling keyOf(i) on H, although this is
superfluous since this value also can be retrieved in constant time by calling
maxKey on ∆Qti.

The graph G

G is a graph of type Graph and it stores structural information about the input
graph and is never altered after it is constructed when reading the input. Graph
is based on an implementation of Sedgewick and Wayne [31]. The methods and
corresponding running times of Graph are shown in Table 7.3.

Table 7.3: Graph

Method Runtime
empty(): boolean O(1)
numNodes(): int O(1)
numEdges(): int O(1)
addEdge(int,int): void O(1)
neighborhood(int): Iterable<Integer> O(1)
areNeighbors(int,int): boolean O(log n)
numNeighbors(int): int O(1)

The metagraph M

M is implemented as the Metagraph class and the core of this class is a slightly
modified union-find structure using path compression. This structure offers two
methods, find and union, both running in Θ(1) amortized time. Metagraph
maintains an ArrayList of HashMaps called neighbors, storing information
about the neighboring communities of every community, an array parent hold-
ing the community ID of every vertex in the input graph G, and an array
degree, storing the degree of every community. Here the degree of a commu-
nity i is the number of ends of edges attached to vertices in i, so it includes
both edges internal to i and edges with exactly one endpoint in i. Operation
areNeighbors takes as input two community IDs and reports in constant time
whether the two communities are connected or not. The constant time factor is
due to an underlying HashMap offering operation contains in time O(1). Op-
eration areInSameCommunity takes as input two vertices and then returns in
constant amortized time whether they belong to the same community by call-
ing find on each of them and then comparing their community IDs. Operation
communityOf takes as input a vertex and then reports in constant amortized
time the community ID of this vertex by returning the value returned by calling
find on the vertex. Operation neighborhood takes as input a community ID
i and returns in time O(deg(i)) = O(n) a TreeSet<Integer> containing all
neighboring communities of i. Operation merge takes as input two community
IDs i and j and then merges the two communities by calling the union op-

45

eration. Then the array degrees is updated in time O(1). Furthermore, all
neighbors of j in neighbors(j) are moved to neighbors(i) in time O(deg(j)),
neighbors(j) is cleared in constant time and the number of communities is
reduced by one.

Table 7.4: Metagraph

Method Runtime
areNeighbors(int,int): boolean O(1)
areInSameCommunity(int,int): boolean Θ(1) amortized
numCommunities(): int Θ(1)
communityOf(int): int Θ(1) amortized
degree(int): int Θ(1)
neighborhood(int): TreeSet<Integer> O(deg(i))
merge(int,int): void O(max{deg(i), deg(j)})

7.1.3 The Algorithm
In this section the pseudo code of the CNM algorithm, as designed by the author
of this thesis, on the basis of the CNM article, is presented.

The main procedure of the algorithm is given in Algorithm 4. Initially
the data structures are initialized and then a while loop is entered and will
continue as long as the max heap H is not empty and the maximum community
pair of H will not result in a decrease in modularity Q. At each iteration the
maximum element, denoted (i, j,∆Qij), of H is removed and the corresponding
communities are merged. The amalgamation of the two communities includes
updating all of ∆Q, H, M , a, and Q. After the maximum element of H is
removed from H in time O(log n) and stored in a variable, operation merge is
called on M , with parameters i and j, taking time O(max{deg(i), deg(j)}) =
O(n). Then element (j, ·) is removed from both ∆Qh and ∆Qt, both operations
taking time O(log n). Then a set of neighbors of i and j are created in time
O(ki+kj) = O(n) by scanning ∆Qti and ∆Qtj . This set is then iterated over and
one of the three update rules, mentioned in section 5.3.2, is called, depending
on whether the given community is a neighbor of i or j or both of them. Then
row j is emptied in both ∆Qt and ∆Qh. Then the elements with indices i and
j on H are removed and the current maximum element in row i in ∆Q is placed
on H. There will no longer be an element with index j on H since this row is
emptied in ∆Q. Finally the algorithm outputs the communities after the while
loop has ended.

The details of how ∆Qt and ∆Qh are updated according to update rule 1 is
given in Algorithm 5. We have omitted the code for update rules 2 and 3 since it
is almost identical with the exception of how the new value ∆Qik is computed.
These computations were explained in section 5.3.2. For each of the three rules
we compute the new value of ∆Qik = ∆Qki and then we update ∆Qtik, ∆Qtki,
∆Qhik, and ∆Qhki with this new value. We also remove the element associated

46

Algorithm 4: The CNM algorithm
input : An input graph G
output: A partition of G into communities.

Initialize ∆Q, H, M , a, and Q
while H is not empty and H.max.modChange > 0 do

(i, j,∆Qij)← H.deleteMax()
// join communities i and j
M.merge(i, j)
∆Qti.remove(j)

∆Qhi .remove(j)
Let neighbors be an ascending list of communities that are neighbors
of i or j or both, excluding i and j
for every neighbor k ∈ neighbors do

if i, j, k are pairwise connected then
UpdateDeltaQCase1(∆Q, i, j)

else if i and k are connected but j and k are not then
UpdateDeltaQCase2(∆Q, i, j)

else if j and k are connected but i and k are not then
UpdateDeltaQCase3(∆Q, i, j)

UpdateMaxHeap(H, k)

∆Qtj .clear()

∆Qhj .clear()

H.delete(j)
H.delete(i)

(maxIndex,maxKey)← ∆Qhi .max()
H.insert(i, (i,maxIndex,maxKey))
UpdateA(a, i, j)
Q← Q+ ∆Qij

Output communities

with row j from both ∆Qtk and ∆Qhk since row j no longer is in use because
community i has eaten up community j.

Updating ∆Q involves making changes to the rows of community i and every
neighboring community k of i or j and thus we may have to update H with
regard to both i and k. Updating H with regard to k is shown in Algorithm 6.
The code is straightforward in that it compares the current maximum value in
row k of ∆Q to the value of the element on H with index k. If the current
maximum element in row k of ∆Q is greater than the previously recorded value
onH for row k (with index k), then we updateH such that the current maximum
value in ∆Qk is bound to index k on H.

47

Algorithm 5: Update rule 1. The subprocedure for updating ∆Q when
communities i and j are being merged.
input : ∆Q, three pairwise connected communities i, j, k
output: No output but ∆Qt and ∆Qh reflects that i and j are merged

into one community i

newV alue← ∆Qtik + ∆Qtjk
∆Qti.put(k, newV alue)
∆Qtk.put(i, newV alue)
∆Qtk.remove(j)

∆Qhi .increaseKey(k, newV alue)

∆Qhk .increaseKey(i, newV alue)

∆Qhk .remove(j)

Algorithm 6: The sucprocedure for updating the max heap H, that con-
tains the maximum element from every row of ∆Q.
input : Max heap H, integer k representing a community
output: H is updated such that the current maximum element in row k

of ∆Q is reflected in H for index k.

currentMaxIndexInRowK ← ∆Qhk .maxIndex()
currentMaxModChangeInRowK ←
∆Qhk .keyOf(currentMaxIndexInRowK)
currentMaxModChangeFromRowKOnMaxHeap←
H.keyOf(k).modularityChange()
if currentMaxModChangeInRowK >
currentMaxModChangeFromRowKOnMaxHeap then

H.increaseKey(k, (k, currentMaxIndexInRowK, currentMaxModChangeInRowK))

7.2 Testing the algorithm

Zachary’s karate club
When the algorithm is run on the famous Zachary’s karate club network [8], we
get a partition into three communities, as shown in Figure 7.1. The results are
rather good but we would prefer that vertices {25, 26, 29, 32} were included in
the community consisting of vertices {15, 16, 19, 21, 23, 24, 27, 28, 30, 31, 33, 34}.
With this single exception we deem this to be a good partition into communities.

Benchmark graphs by Lancichinetti and Fortunato
In this section we will test the algorithm on some benchmark graphs generated
by a C++ program and underlying algorithm developed by Lancichinetti and

48

31 10

19

21

23

16

15

27

30

26

24

25

28

29

32

34

33

14

9

3

5

11
6

17

7

2

22

18

84
13

20

1

12

Figure 7.1

Fortunato [17]. The program generates undirected unweighted random graphs
with the possibility of overlapping communities based on the following main
parameters:

• N : the number of nodes in the graph

• k : the average degree of the graph

• maxk : the maximum degree of the graph

• mu : the topological mixing parameter defined by kini = (1−mu)ki. Here,
kini is the number of neighbors of vertex i with at least one community in
common with i.

• minc : the minimum number of vertices in a community

• maxc : the maximum number of vertices in a community

The output of the program includes an edge list defining the generated graph
and a file containing the correct community partition of the graph. The format
of this file is two columns of numbers, the first one containing the vertices and
the second one their corresponding communities.

The actual testing is done as follows. The implementation of the CNM
algorithm by the author of this thesis includes a parser that parses the generated

49

graph file and constructs the corresponding graph. The algorithm is run on the
graph and a two column list is computed showing the vertices in the first column
and their corresponding communities in the second column. This two column
list is compared to the two column list generated by the program and the number
of misplaced vertices is counted.

Results of several tests using these benchmark graphs are given in Table 7.5.

Test # N k maxk mu minc maxc # misplaced
vertices

1 64 16 20 0.1 8 8 48
2 64 16 20 0.1 32 32 0
3 128 16 20 0.1 32 32 32
4 256 16 20 0.1 32 32 3
5 128 16 20 0.1 8 8 88 or 32
6 64 8 20 0.1 8 8 6
7 64 16 20 0.1 16 16 0
8 64 6 10 0.1 4 10 9
9 64 5 12 0.1 4 16 16
10 64 4 14 0.1 4 18 13
11 128 8 20 0.1 8 8 64
12 128 16 20 0.1 16 16 3
13 128 6 10 0.1 4 10 70
14 128 5 12 0.1 4 16 60

Table 7.5: Tests on benchmark graphs by Lancichinetti and Fortunato.

1. In test number 1 the algorithm found two big communities whereas the
graph really has eight distinct communities, each with eight vertices. Thus
6 ·8 = 48 vertices are misplaced. This is an example of the resolution limit
problem mentioned in section 4.3.

2. In test number 2 a graph on 64 vertices and all vertices are correctly placed
by our algorithm.

3. In test number 3 the result was 32 vertices (all actually belonging to the
same community) being absorbed into another community.

4. In test number 4 the result was 3 obviously misplaced vertices, each from
a separate community. The most likely explanation to this result is the
simplicity of the modularity function causing the algorithm to misplace
the vertices.

5. In test number 5 we are generating a graph on 128 vertices where the av-
erage degree is 16 and where every community has to consist of 8 vertices.
Thus the graph has 16 communities where pairs of them act as larger
communities. So we may actually conceive this as a graph consisting of
eight communities. The algorithm finds six communities of sizes 16, 16,

50

16, 19, 30, and 31. Three vertices in the group of 19 vertices are clearly
misplaced. The second last group of 30 vertices consists of four communi-
ties merged together and where one of them is missing two of its vertices.
The last group of 31 vertices consists of four communities merged together
and where one of them is missing one of its vertices. In total, 88 vertices
are misplaced if we should expect 16 communities, but only 32 vertices if
we expect eight communities, each of 16 vertices.

6. In test number 6 a graph on 64 vertices is built. It has four communities
of size eight and two communities of size 16. Our CNM algorithm found
six communities, of sizes 8, 9, 9, 10, 12, and 16. The first community is
perfect, the second and third both include a vertex that should not be
included, the foruth community includes two vertices that should not be
included, the fifth community misses four vertices that should be included,
and the sixth community misses two vertices it should have included and
includes two vertices it should not have included.

7. In test number 7 a graph on 64 vertices is built. It has three communities
of sizes 16, 16, and 32. The result of our CNM algorithm is totally equal
to the answer.

8. In test number 8 a graph on 64 vertices and nine communities of sizes
5, 5, 6, 6, 7, 7, 9, 9, and 10 is built. Our CNM algorithm found eight
communities of sizes 5, 6, 7, 7, 8, 9, 10, and 12. Two actual five vertex
communities are merged into one community by our algorithm and thus
five vertices are misplaced. The 12 vertex community found by our algo-
rithm contains three vertices that it should not contain, and one of the
communities on seven vertices contains one vertex it should not contain.
In total nine vertices are misplaced.

9. In test number 9 a graph on 64 vertices and seven communities of sizes 10,
6, 8, 6, 11, 13, and 10 is built. Our CNM algorithm found five communities
of sizes 10, 11, 21, 11, and 11. The community on ten vertices contains two
vertices that it should not contain, the community on eleven vertices is
perfect, the community on 21 vertices consists of three communities on 6,
6, and 10 vertices respectively merged together, but one of the vertices in
the 10 vertex community is missing. If we count the 10 vertex community
as the base community, this community contains 12 vertices it should not
contain and misses one vertex that it should contain. In total, 16 vertices
are misplaced.

10. In test number 10 a graph on 64 vertices and seven communities of sizes 16,
7, 10, 4, 11, 9, and 7 is built. Our CNM algorithm found five communities
with a total of 13 misplaced vertices. The communities on four and nine
vertices are merged into one community and one of the vertices in the
community on 16 vertices is also included. This accounts for five misplaced
vertices. Furthermore, the two communities on seven vertices each are
merged into one community, giving seven additional misplaced vertices.

51

11. In test number 11 a graph on 128 vertices and seven communities of sizes
16, 16, 16, 16, 16, 16, and 32 is built. Our CNM algorithm found three
communities of sizes 78, 34, and 16. The community on 16 vertices is per-
fect. The community on 78 vertices consists of four communities merged
together but with one of the communities missing exactly two vertices.
The community on 34 vertices consists of two merged communities to-
gether with the two missing vertices from the community on 78 vertices.
In total 64 vertices are misplaced.

12. In test number 12 a graph on 128 vertices and six communities of sizes 16,
16, 16, 16, 32, and 32 is built. Our CNM algorithm found six communities
of sizes 17, 16, 16, 18, 31, and 30. The community on 17 vertices includes
a vertex that should be part of the community on 31 vertices, and the
community on 18 vertices includes two vertices that should be part of the
community on 30 vertices. Thus three vertices are misplaced in total.

13. In test number 13 a graph on 128 vertices and 19 communities of sizes 9, 7,
5, 5, 6, 6, 6, 7, 9, 5, 6, 5, 7, 6, 9, 10, 7, 7, and 6 is built. Our CNM algorithm
found eight communities of sizes 12, 35, 14, 12, 20, 20, 9, and 6. The first
community on 12 vertices consists of two communities on seven and five
vertices merged together. The community on 35 vertices consists of five
communities merged together but with two of the communities missing
one vertex each. The community on 14 vertices consists of two six vertex
communities merged together plus two misplaced vertices from different
communities. The second community on 12 vertices consists of two six
vertex communities merged together. The first community on 20 vertices
consists of three communities merged together plus one misplaced vertex
from another community. The second community on 20 vertices consists
of three communities merged together but with one of the missing one
vertex. The community on nine vertices is perfect, and the community on
six vertices is nearly perfect, missing only one of its vertices.

14. In test number 14 a graph on 128 vertices and 15 communities of sizes 9,
14, 8, 9, 9, 5, 6, 6, 7, 6, 12, 8, 12, 8, and 9 is built. Our CNM algorithm
found seven communities of sizes 24, 22, 29, 13, 14, 9, and 17. The com-
munity on 24 vertices is the amalgamation of two 12 vertex communities.
The community on 22 vertices is the amalgamation of three communities
of sizes 9, 5, and 7 together with one additional misplaced vertex from
another community. The community on 29 vertices is the amalgamation
of four communities of sizes 6, 6, 9, and 8 but with the 9 vertex commu-
nity missing one of the vertices and including one additional vertex from
another community. The community on 13 vertices consists of one com-
munity missing one of its vertices. The community on 14 vertices consists
of two communities of sizes 6 and 8 merged together. The community
on nine vertices consists of a nine vertex community lacking one vertex
together with one additional misplaced vertex from another community.
The community on 17 vertices consists of two communities on eight and

52

nine vertices merged together. If we, when two or more communities are
merged together by our algorithm, regard the largest community as the
base community and the vertices from the other communities as misplaced
vertices, we get a total of 60 misplaced vertices.

Conclusion

We have learned the following from the previous 14 tests on benchmark graphs.

• The resolution limit problem mentioned in section 4.3 manifests itself in
several of the tests such that small communities are merged to form larger
communities and such that large communities swallow up small commu-
nities.

• The resolution limit problem gives us poor results when we only look
at the final numbers of correctly placed vertices. However, as long as
for instance two small communities are merged in their entirety into one
larger community, the results are not altogether bad. The results are still
meaningful and the vertices are still related to each other but we get a more
coarse grained view of the communities. A bad result would be that the
vertices of a community were swallowed up by several larger communities.
We saw some cases where some vertices of a community were spread across
several other communities.

• Evaluating the results of running a community detection algorithm on a
network is not a straightforward task and giving a single number repre-
senting the number of correctly placed vertices is not a fair evaluation of
the algorithm. Another aspect is that the results need to be interpreted
on the given network before a final judgement is made, since the vertices
and edges usually encode real world structural relationships, such as in
collaboration networks.

53

Chapter 8

A divisive algorithm based on
the edge clustering coefficient

Filippo Radicchi, Claudio Castellano, Federico Cecconi, Vittorio Loreto, and
Domenico Paris [28] have devised two divisive algorithms, the first one is an
improvement of the divisive algorithm of Girvan and Newman [13] (and will
henceforth be called the REB algorithm), and the second one is based on the
concept of the edge clustering coefficient (and will henceforth be called the
RECC algorithm). In this chapter we will present both algorithms, and then we
will implement a slightly modified version of the latter algorithm. In chapter 9
we will incorporate the algorithm in a community detection web service.

8.1 The algorithms by Radicchi et al.

8.1.1 The REB algorithm
We first present the REB algorithm that is an improvement of the original algo-
rithm of Girvan and Newman (the GN algorithm), as presented in section 5.2.2.

The problem that Radicchi et al. seek to solve is the fact that the GN
algorithm [13] keeps removing edges until none are left and what is left is simply
a dendrogram describing the hierarchy of partitions. The algorithm does not say
which partition is the best. A couple of years later they introduced an improved
version of the algorithm [24] where they use the modularity function, described
in chapter 4, to determine the best partition.

Radicchi et al. consider two community definitions in their paper and use
them in both the REB algorithm and in the RECC algorithm, discussed in
section 8.1.2.

Definition 8.1.1. Given an input graph G = (V,E), a strong community is
a set of vertices W ⊆ V with the property that every vertex v ∈ W has strictly
more neighbors in W than in W , in other words, if ∀v ∈W : kinv > koutv .

54

Definition 8.1.2. Given an input graph G = (V,E), a weak community is
a set of vertices W ⊆ V with the property that the sum of neighbors inside
W is greater than the sum of neighbors in W , in other words, if

∑
v∈W kinv >∑

v∈W koutv .

The algorithm can be defined in five steps. In the algorithm a graph structure
that is repeatedly changed by edge removals is used and referred to as the
workbench graph. Note that this concept is not explicitly mentioned in the
paper of Radicchi et al. but it should be in line with their intentions. When the
algorithm in steps 4 and 5 tests whether the two connected components satisfy
the community definition, the test is done not using the workbench graph but
using an adjacency matrix storing the initial structure of the graph.

1. Choose either the weak or strong community definition.

2. Compute the edge betweenness value for every edge in the workbench
graph.

3. If there are no more edges left for consideration, then stop the algorithm.

4. Remove the edge {u, v} with the highest edge betweenness value from the
workbench graph.

5. Recalculate the edge betweenness value for every edge that was affected
by the last edge removal.

6. If the connected component of u and v is not split into two connected
components, then go to step 3.

7. If the connected component of u and v is split into two connected compo-
nents Gu and Gv, and if both of them satisfy the community definition,
define Gu and Gv as separate subcommunities of the initial community.
See Figure 8.1. Go to step 3.

8. If the connected component of u and v is split into two connected com-
ponents Gu and Gv, and if not both of them satisfy the community def-
inition, then discard this split, put edge {u, v} back into the workbench
graph, mark it such that it is never considered for removal again, and go
to step 3.

The justification of steps 4 and 5 is the following observation. If a network is
split randomly into two connected components, where one of them is very large
and the other one correspondingly small, the very large connected component is
almost always a community. The problem is addressed by observing a random
ER graph (see section 2.3) with n vertices. If we split the graph into two parts
with αn and (1 − α)n vertices each, for α > 0.5, what is then the probability
that the largest connected component, containing αn vertices, satisfies one of the
community definitions defined above? Raddichi et al. points out that when n is
sufficiently large, the probability is very close to a step function around α = 0.5,

55

2 3 4 51 6 7 8 9

2 3 4 51 6 7 8 9

Figure 8.1: An example of step 3 in the algorithm of Radicchi et al. Vertices
{1, 2, 3, 4, 5, 6, 7, 8, 9} form a community and is split into two subcommunities,
{1, 2, 3, 4} and {5, 6, 7, 8, 9}. The red line represents an edge whose removal will
split community {1, 2, ..., 9} into communities {1, 2, 3, 4} and {5, 6, 7, 8, 9}.

and hence, when a random ER graph is randomly split into two parts, the
largest one is a community with high probability, whereas it is very unlikely that
both parts are communities. Therefore, when the algorithm only accepts splits
when both the resulting connected components are communities, we are able
to correctly identify random graphs. Since they lack community structure the
algorithm will not permit the deletion of an edge with the result that we get one
connected component that is a community and another connected component
that is not a community. Thus when the algorithm is given a random ER graph
as input, the result will, with high probability, be exactly one large community
comprising all the vertices of the graph.

8.1.2 The RECC algorithm
The second algorithm devised by Radicchi et al. is identical to the divisive
algorithm of Girvan and Newman with the exception that it uses the concept of
an edge clustering coefficient instead of the edge betweenness concept. Whereas
the algorithm of Girvan and Newman at every iteration removes the edge with
the highest edge betweenness value, the algorithm of Radicchi et al. removes the
edge with the lowest edge clustering coefficient. The edge clustering coefficient
of an edge {i, j} is given by the equation

56

i j

c d

e f

g

h

a

b

Figure 8.2: The edge clustering coefficient of edge {i, j} is 3/5 since it is part of
3 triangles and the best achievable scenario is that every neighbor of i, except
j, that is, 5 neighbors, was a neighbor of j as well.

C
(3)
ij =

z
(3)
ij + 1

min{ki − 1, kj − 1}
(8.1)

z
(3)
ij is the number of triangles that edge {i, j} is part of andmin{ki−1, kj−1}

is the maximum possible number of triangles that edge {i, j} can be part of.
Adding 1 to the numerator ensures that edges not part of any triangle gets a
positive value. Also C(3)

ij should be set to +∞ if min{ki− 1, kj − 1} = 0, which
happens when at least one of the vertices has only one neighbor. Setting the
coefficient to +∞ signals that such an edge should not be removed and the edge
is considered last in the algorithm.

Radicchi et al. thus states that min{ki− 1, kj − 1} is the maximum number
of triangles that edge {i, j} can be part of. The idea behind this seems to be that
the best achievable scenario is that the vertex of minimum degree, say i, shares
all his ki−1 neighbors other than j with j, that is, that N(i)\{j} = N(j)\{i}.
See Figure 8.2 for an example.

This definition is used in a divisive algorithm where at every iteration the
edge with the lowest edge-clustering coefficient is removed from the graph. The
intuition behind this algorithm is that edges connecting different communities
are included in few or no triangles, whereas edges inside communities appear
in considerably more triangles (see Figure 8.3). Thus C(3)

ij is a measure of
how highly a given edge is embedded in a community. A high value of C(3)

ij

indicates that edge {i, j} is well embedded in some community, whereas a low
value indicates that edge {i, j} is an inter-community edge.

A more general definition can also be defined by considering cycles of length
g:

57

Figure 8.3: The idea behind the edge clustering coefficient based algorithm of
Radicchi et al. is that edges connecting different communities are included in
few or no triangles, whereas edges inside communities appear in considerably
more triangles. The red triangle in the figure is something we don’t expect to
see much of. The green edge, however, is a typical inter-community edge.

C
(g)
ij =

z
(g)
ij + 1

s
(g)
ij

(8.2)

where z(g)ij is the number of cycles of length g edge {i, j} is part of, and s(g)ij
is the maximum possible number of cycles of length g that edge {i, j} can be
part of.

For the sake of completeness we first present the new algorithm in prose.
The reader should note that this listing is more elaborate than the presentation
of the algorithm in the paper of Radicchi et al. The triangle counting is not
mentioned as an initial step in the original paper, and neither is any priority
queue mentioned in the paper. However, the red line in the presentation below
should be in accordance with the paper of Radicchi et al.

1. Choose either the weak or strong community definition.

2. Count the number of triangles that every edge in the graph is part of.

3. Compute the edge clustering coefficient Ce for every edge e and put every
pair (e, Ce) into an indexed minimum priority queue Q, ordered by the
clustering coefficient Ce.

4. Retrieve and remove the minimum pair (e, Ce), where e = {u, v}, from Q
and then remove e from the workbench graph.

5. If the connected component of u and v is split into two connected compo-
nents Gu and Gv, and if not both of them satisfy the community definition
chosen in step 1, then discard this split, put edge {u, v} back into the work-
bench graph, mark it such that it is never again considered for removal,
and go to step 8.

58

6. Else if the connected component of u and v is split into two connected
components Gu and Gv, and if both of them satisfy the community defi-
nition, define Gu and Gv as separate subcommunities of the initial com-
munity (see Figure 8.1), and go to step 8.

7. Else if the connected component of u and v is not split into two connected
components, then go to step 8.

8. If e was removed (and not put back into the workbench graph), then
update in Q the pair of every edge that was affected by the removal of e.
Go to step 4.

8.1.3 The running time of the RECC algorithm
Radicchi et al. states that the running time of the algorithm is O(m2), whereas
Fortunato [11] in his review article claims that the running time is O(m4/n2),
or O(n2) on sparse graphs.

In the following we give an independent analysis of the algorithm where we
make several assumptions about how the implementation is done. We will here
define a sparse graph to be a graph such that m < n. Radicchi et al. do not
analyze the triangle counting part, for which we refer the reader to section 8.2.3,
but no matter what kind of implementation one chooses, one can not hope to
achieve a running time better than O(nd2max), where dmax is the maximum
vertex degree in the graph.

The algorithm handles all m edges in the graph and possibly removes them.
Testing whether an edge removal results in its component being split into two
connected components can be done with DFS or BFS and this takes O(n+m)
time (and O(n) if the graph is sparse). If the component is split into two
components, then in the worst case both components have to be tested against
the community definition. To test a component C against a community definition
we have to loop through every vertex of C and for every vertex we have to loop
through its entire neighborhood to see if each neighbor is inside or outside C.
The number of vertices in C is upper bounded by n and the number of neighbors
of a vertex in C is upper bounded by dmax. So testing if C is a community takes
time O(ndmax) = O(nm) (and time O(n2) if the graph is sparse). Thus for
the main part of the algorithm, not including the triangle counting, we get the
running time O(m(n + m + 2ndmax)) = O(nmdmax) (and the running time
O(n2dmax) for sparse graphs).

All in all we get the running timeO(nmdmax), and O(n2dmax) for sparse
graphs.

8.2 Implementing the algorithm
In this section we describe our own implementation of the RECC algorithm.

59

8.2.1 The Data Structures
In this subsection we briefly present the main data structures that are used in
our own implementation of the algorithm by Radicchi et al. that uses the edge
clustering coefficient. The algorithm is presented in section 8.2.2.

• H. This is a Graph that is never altered and that shows how the input
graph looks like.

• G. This is the workbench graph of type Graph. It is modified during the
course of the algorithm. Both G and H are stored both as adjacency lists
and as edge lists.

• NT. This is a HashMap storing key-value pairs where the keys are Edges
and the values are Integers that represent the number of triangles that
the edges is part of.

• M. This is a Metagraph structure that offer union-find operations and is
quite similar to the metagraph described in chapter 7.

• Q. This is an indexed minimum priority queue used to store tuples (e, Ce),
where e is an edge and Ce is the corresponding edge clustering coefficient.
The front element of the queue is always the tuple with the lowest valued
edge clustering coefficient Ce.

• EdgeToId. This is a HashMap mapping Edges to unique Integers and is
used to support the indexed minimum priority queue Q.

8.2.2 The Algorithm
The pesudo code of our own implementation of the algorithm based on the
edge-clustering coefficient is given more formally in Algorithm 7.

The algorithm takes as input a graph H that is stored both as an adjacency
list and as an edge list. H will never be altered and will be used when we need
to know how the original input graph looks like. Initially a copy is made of H
and is later on referred to as G. This is the workbench graph from which we
will repeatedly remove edges.

Two things are done initially. First, the number of triangles that every edge
is part of in H is computed and the results are stored in a HashMap referred
to as NT . The edges are the keys and the corresponding numbers of edges the
values in NT . See section 8.2.3 for a thorough description of how the triangle
counting is done.

Secondly, an indexed minumum priority queue Q is filled with one tuple
(e, Ce) for every edge e with its corresponding edge clustering coefficient Ce.
Q is ordered by the Ce values such that the minimum element of Q at any
time is the tuple (e, Ce) containing the edge with lowest valued edge clustering
coefficient in G. Every tuple gets a unique integer id and this information is
stored in a HashMap called EdgeToId. Since Q is indexed and we can retrieve

60

the unique integer id of every edge from EdgeToId in constant time, we can
easily change the edge clustering coefficients stored in Q during the course of
the algorithm.

After these two steps have been made, the algorithm enters the main loop,
that runs until Q have been emptied for all its elements. At every iteration
the minimum element (e, Ce) of Q is retrieved and removed from Q, and then
e = {i, j} is removed from the workbench graph G. If removing e does not make
vertices i and j end up in different components, then we continue with the next
iteration. If removing e from G leaves i and j in separate connected components
and both components are communities, which we determine from the original
input graph H, then we are happy and continue with the next iteration. If on
the other hand not both components are communities, then we put e back into
G.

If e was removed from G and not replaced, then we update Q and NT
correspondingly. The code of this subprocedure is given formally in Algorithm 8.
This involves scanning the neighborhood of e that consists of every edge f that
together with e form a triangle. The value of f in NT must be decreased
by 1 since it after the removal of e is part of one less triangle. Then the edge
clustering coefficient of f must be computed again from the current version of the
workbench graph G and the tuple of f in Q must be updated correspondingly.
Here EdgeToId is used to retrieve the unique integer id of f and then this id is
used to get hold of the tuple of f in Q.

The main loop ends when Q is empty and then we use DFS to find the con-
nected components of G. Each connected component is a separate community
in H.

8.2.3 Efficient triangle counting
In order to make the algorithm described in the previous subsection as efficient
as possible we need to count the number of triangles in the input graph as
efficient as possible. To be even more precise, we need to count the number of
triangles every edge is part of. In this subsection we first investigate efficient
triangle counting algorithms for undirected graphs and then we pick the one
that best suits our needs.

Schank and Wagner [29] have described and experimentally tested several
triangle counting algorithms, of which we will mention only three. They have
measured both the execution times of the algorithms and counted the number
of triangle operations done by each algorithm on several both real and artificial
networks. The rest of this subsection is based on their article.

We consider an undirected input graph G = (V,E), where n = |V |. The
degree d(v) := |{u ∈ V : ∃{v, u} ∈ E}| of node v is the number of neighbors
u ∈ V of v. The maximal degree of G is defined as dmax := max{d(v) : v ∈ V }.
A triangle 4 = (V4, E4) of G is a subgraph of G with V4 = {u, v, w} and
E4 = {{u, v}, {v, w}, {w, u}}. The number of triangles in G is denoted by
δ(G).

61

RadicchiAlgorithm 7:
input : A graph H = (V,E)
output: A partition into communities

Let G, a copy of H, be the workbench graph;
NT is a HashMap mapping edges to the number of triangles they are
part of;
NT ← NumTriangles(A,H);
Let Q be an indexed minimum priority queue storing tuples (e, Ce),
where e is an edge and Ce is the edge clustering coefficient of e, ordered
by the values Ce;
for (e = {i, j}) ∈ H do

c← (NT.get(e) + 1)/(min{ki − 1, kj − 1});
Q.put((e, c));

while Q is not empty do
((e = {i, j}), Cij)← Q.deleteMin();
Remove e from G;
if areInDifferentComponents(G, i, j) then

Let Gi and Gj be the connected components of i and j
respectively;
if not (isCommunity(Gi) and isCommunity(Gj)) then

Add e back to G

if e was really removed then
UpdateDataStructures(Q,NT,e);

Compute and output all connected components of G

UpdateDataStructures 8:
input : An indexed minimum priority queue Q, a HashMap NT

mapping edges to integers representing the number of triangles
the edges are part of, and an edge e = {u, v} that has been
removed from the workbench graph.

output: No output but changes may have been made to both NT and Q.

NT.put(e,0);
for every vertex w that together with u and v form a triangle in G do

NT.put({u,w}, NT.get({u,w})-1);
idOfUW ← EdgeToId({u,w});
newCoefficient ← NT.get({u,w})+1

min{G.numNeighbors(u)−1,G.numNeighbors(w)−1} ;
Q.changeKey(idOfUW, (idOfUW,{u,w},newCoefficient));
NT.put({v, w}, NT.get({v, w})-1);
idOfVW ← EdgeToId({v, w});
newCoefficient ← NT.get({v,w})+1

min{G.numNeighbors(v)−1,G.numNeighbors(w)−1} ;
Q.changeKey(idOfVW, (idOfVW,{v, w},newCoefficient));

62

The simplest triangle counting algorithm is a
(
n
3

)
= O(n3) time algorithm

that for every subset of three vertices checks if there is an edge between every
pair of them.

The node-iterator algorithm iterates over all vertices in the graph and for
every pair of neighbors checks if there is an edge between them. Thus the
running time of this algorithm is∑

v∈V

(
d(v)

2

)
≤
∑
v∈V

(
dmax

2

)
= O(nd2max). (8.3)

The last algorithm is the edge-iterator. This algorithm iterates over every
edge {u, v} of the graph and compares the neighbors of u and v. {u, v, w} induce
a triangle if and only if w is a neighbor both of u and v. If the neighbor list
of u is sorted, then the comparison can be done in time d(u) + d(v). Sorting of
all neighbor lists can be done in

∑
v∈V d(v)log d(v) time. If we disregard the

sorting part, the running time is given by∑
{u,v}∈E

d(u) + d(v) = O(mdmax) (8.4)

where O(mdmax) is not a very accurate bound. A more accurate bound is
given by the following amortized analysis. For every edge {u, v} we split the
cost d(u) + d(v) into two parts, d(u) and d(v), and assign d(u) to u and d(v) to
v. Thus in the outer loop a vertex v is passed d(v) times and the running time
can equivalently be expressed as

∑
v∈V

d(v)2 ≤
n∑
i=1

d2max = O(nd2max) (8.5)

and so we can see that the running time of the edge iterator is the same as
for the node-iterator.

A result from the experimental analysis of Schank and Wagner is that the
edge-iterator in practice has the best running time of all the algorithms (includ-
ing the ones not mentioned here). This is fortunate since we want to know the
number of triangles that every edge is part of and this is easy to count with the
approach of the edge-iterator.

A more detailed presentation of the edge-iterator algorithm is given in Al-
gorithm 9. The algorithm assumes that the input graph is given both as an
unsorted adjacency list and as an edge list. Since the adjacency list is not
sorted, the algorithm starts by sorting the neighbor list of every vertex. The
number of triangles an edge is part of is stored in a HashMap. The total number
of triangles in the graph is also kept track of and the algorithm can easily be
changed to return this number instead of the HashMap that it actually returns.

The default load factor of the Java class HashMap is 0.75 and we will use
this load factor in our algorithm since it gives a good tradeoff between time and
space costs. We are so fortunate that we know the number of key-value pairs,
|E|, that we will store in the HashMap. By setting the initial capacity of the

63

HashMap to a number slightly larger than |E|/0.75, we ensure that no rehash
operations will occur during the course of the algorithm.

NumTriangles 9: NumTriangles is an edge-iterator that iterates over
every edge e of the graph and counts the the number of triangles that e is
part of.
input : A graph G = (V,E) represented both by an adjacency list A and

an edge list EL.
output: A HashMap storing the number of triangles that every edge of

the graph is part of.

for v ∈ V do
Sort A[v];

totalNumTriangles← 0;
Let NT be a HashMap storing the number of triangles that every edge is
part of;
for {u, v} ∈ EL do

numEdgeTriangles← 0;
pu ← 0;
pv ← 0;
while pu < A[u].size() or pv < A[v].size() do

if A[u][pu] = A[v][pv] then
+ + totalNumTriangles;
+ + numEdgeTriangles;
+ + pu;
+ + pv;

else if A[u][pu] < A[v][pv] then
+ + pu;

else if A[u][pu] > A[v][pv] then
+ + pv;

NT.put({u, v}, numEdgeTriangles);
Return NT

8.2.4 The running time
Let H = (V,E) be the input graph with n = |V | and m = |E|.

The number of triangles is initially counted and stored in the HashMap NT
using the edge iterator in time O(nd2max) = O(n3), where dmax is the maximum
vertex degree in the input graph.

Then the indexed minimum priority queue Q is filled with one tuple for every
edge in H in O(m) time. Computing the edge clustering coefficient for a single
edge takes constant time provided that we have access to NT . Adding a tuple
to Q also takes constant time.

64

The main loop of the algorithm has m iterations. After removing an edge
e = {u, v} from the workbench graph, a depth-first search (DFS) is initiated
from u to check if vertices u and v are still in the same connected component
in O(n+m) time. This reveals the community of u but one additional DFS is
needed in order to retrieve the community of v as well.

Then, we test at least one of the components to see if they satisfy the commu-
nity definition. Testing a community C for both the weak and strong community
definition involves iterating over all |C| = O(n) vertices in C and for every such
vertex v ∈ C we have to iterate over its entire neighborhood in kv = O(m) time.
Thus the total time spent is |C| · kmax = O(n) · O(m) = O(nm), where kmax is
the maximum vertex degree in C.

Therefore, the main loop of the algorithm takes O(m(n + m + nm)) =
O(nm2), which is not the same as O(m2) found by Radicchi et al.

8.3 Introducing one additional parameter to the
Radicchi algorithm

In this thesis we introduce one external parameter, `, to the algorithm by Radic-
chi et al., namely a lower percentage bound in the range [0, 1] on the size of every
community in the graph. This parameter is used both in the weak and strong
community definitions as follows. A strong community is a set of verticesW ⊆ V
with the property that every vertex v ∈ W has strictly more neighbors in W
than in W , and that at the same time satisfies the property that |W | ≥ n · `. A
weak community is a set of vertices W ⊆ V with the property that the sum of
neighbors inside W is greater than the sum of neighbors in W , and that at the
same time satisfies the property that |W | ≥ n · `.

The motivation behind this additional parameter is that if a user of the
algorithm is given a specific network, e.g. a collaboration network in the DBLP
database, then he may have a certain idea of how big the communities outputted
by the algorithm should be. With this parameter he can make sure this need is
met.

The relationship between the new parameter, `, and the dendrogram revealed
by the original algorithm, which corresponds to ` = 0, should be noted. Given
a connected network as input, the original algorithm reveals a dendrogram of
partitions into communities, that is, several layers of community partitions. The
very first partition found by the algorithm is simply one community comprising
all the vertices of the network. The second partition found by the algorithm is
the partition into two communities, the third partition found by the algorithm
is the partition into three communities, etc. Whereas the last partition found
by the GN algorithm consists of one community for every vertex, the RECC
algorithm usually ends up with larger communities due to the restriction set
by the weak/strong community definition. However, when we introduce ` to
the algorithm and set the value to a value greater than 0, then the community
partition returned by the algorithm may be one further down in the dendrogram.

65

See Figure 5.2.
If the user of the algorithm wishes to partition two different networks into

exactly k communities each, then he may may need to use different values of `.
Thus it is not possible to hard code any universal values of ` for such a purpose
and thus, given a specific network, a user has to experiment with ` in order to
find the value that gives the desired result.

This need for algorithm customization is some of the motivation for the web
service presented in chapter 9 that offers community detection in the DBLP
database.

8.4 Introducing weighted networks, weighted com-
munity definitions, and a weighted ECC

In chapter 9 we are going to present a web service that offers community detec-
tion in the DBLP database. This web service will offer community detection in
both unweighted and weighted collaboration networks where the weight of an
edge represents the number of publications two authors have in common.

For weighted networks, we will define weighted versions of the weak and
strong community definitions. Extending the definitions to the weighted case
is straightforward and was already done by Castellano et al. [4] the same year
Radicchi et al. [28] published their article.

Definition 8.4.1. Given an input graph G = (V,E) and a lower bound ` ∈
[0, 1], a strong weighted community is a set of vertices W ⊆ V such that
for every v ∈W , we have that

∑
u∈N(v),u∈W w(uv) >

∑
u∈N(v),u/∈W w(uv), and

with the additional requirement that |W | ≥ n · `.

Definition 8.4.2. Given an input graph G = (V,E) and a lower bound ` ∈
[0, 1], a weak weighted community is a set of vertices W ⊆ V such that∑
u∈W

∑
v∈N(u),v∈W w(uv) >

∑
u∈W

∑
v∈N(u),v /∈W w(uv), and with the addi-

tional requirement that |W | ≥ n · `.

Castellano et al. [4] has introduced a weighted version of the edge clustering
coefficient, that we will make use of in chapter 9 when the algorithm is run on
weighted networks.

C
(3)(W)
ij =

z
(3)
ij · w({i, j}) + 1

min{ki − 1, kj − 1}
(8.6)

Thus strong edges will tend to have high edge clustering coefficients and will
be considered for removal later than edges part of the same number of triangles
but of weaker strength.

Counting the number of triangles, z(3)ij , that edge {i, j} is part of, is done
precisely as before.

In addition we will also define a bounded community. This is actually not
much of a definition as it only requires that a set of vertices contains at least a

66

certain percentage of all the vertices in the graph. When this definition is used
an edge marked for removal by the edge clustering coefficient will be removed as
long as it does not result in a split into two communities where one or both of
them is below the specified lower bound. If this definition is used with the lower
bound equal to 0, then the output will be n = |V | communities, each containing
one of the vertices of the graph. With this definition we get an algorithm that
resembles the original GN algorithm more in that it indiscriminately removes
edges without considering if resulting components are communities.

Definition 8.4.3. Given an input graph G = (V,E) and a lower bound ` ∈
[0, 1], a bounded community is a set of vertices W ⊆ V such that |W | ≥ n · `.

Experiments show not very surprisingly that this definition does not give
good partitions, at least not with small lower bounds. The resulting partitions
have low modularity value and the number of inter-community edges exceeds
the number of intra-community edges.

8.5 Testing the algorithm
We will not test the algorithm by Radicchi et al. on any benchmark graphs. In
chapter 7 we tested the CNM algorithm on some artificially generated networks
with little luck, if we are only going to compare the number of correctly placed
vertices. We saw several cases where two smaller communities were merged into
one larger community, when the answer was two separate communities, but how
bad is this? As long as the two communities in their entirety are merged into
one community, this is not altogether bad. It is much worse when the vertices
of one community is absorbed by several larger communities. Also one needs to
evaluate who the nodes represent and what the edges represent in order to say
a final word on the quality of the partition.

Radicchi et al. [28] addresses this problem in their article and poses the
following questions. "One may directly inspect the dendrogram to answer ques-
tions like: Are the communities representative of real collaborations between
the corresponding scientists? Do they identify specific research areas? Would a
generic scientist agree about his or her belonging to a given community? Ob-
viously, all these questions cannot be answered in a definitive and quantitative
way."

Defining "good" and "bad" communities thus has a certain subjective aspect
to it. Therefore, in the case of the RECC algorithm, and in response to the
challenging questions of Radicchi et al., instead of testing the algorithm against
benchmark graphs, we will make a web service where anybody can run the
RECC algorithm on the real collaboration networks in the DBLP database, and
choose which of the community definitions they want to use and which value
they want to use for `, and then they can decide for themselves whether the
algorithm gives good results or not.

67

8.5.1 Running the algorithm on a collaboration network
In this subsection we give an example of the results obtained by running the
algorithm with the web service introduced in chapter 9 with the weak community
definition and the lower bound ` = 0.1 on the following four collaboration
networks of researcher Fredrik Manne:

1. The unweighted network including Manne

2. The unweighted network excluding Manne

3. The weighted network including Manne

4. The weighted network excluding Manne

The results of running the algorithm on the weighted networks include the
number of coauthored publications with Manne in parentheses behind each au-
thor. These results also include the total internal edge weight inside the com-
munity in parentheses behind the community number. In the results of running
the algorithm on networks excluding Manne the text CC appears behind some
community numbers to indicate that the community is a connected component.

The unweighted network including Manne

The unweighted collaboration network including Manne contains 51 + 1 authors
and 146 coauthor relationships. We obtain a partition into 3 communities with
the modularity value 0.3321917808219178, where 100 edges are intra-community
edges and the remaining 46 edges are inter-community edges. The communities
are as follows.

• Community 1 (size: 24): Fredrik Manne, Bengt Aspvall, Ferdinando Ci-
calese, Michelangelo Grigni, Mahantesh Halappanavar, Magnús M. Halldórs-
son, Johannes Langguth, Phillip Merkey, Rodica Mihai, Morten Mjelde,
Randi Moe, Bjørn Olstad, Laurence Pilard, Peter Sanders, Sadia Sharmin,
Alicia Thorsen, Sébastien Tixeuil, Bora Uçar, Jianping Wang, Xin Wang
0001, Qin Xin, Xiaolan Yao, Yan Zhang, Zeyu Zheng.

• Community 2 (size: 23): Ankit Agrawal, Ariful Azad, Rob H. Bissel-
ing, Jean R. S. Blair, Erik G. Boman, Doruk Bozdag, Ümit V. Çatalyürek,
Alok N. Choudhary, Pradeep Dubey, Assefaw Hadish Gebremedhin, Salman
Habib, Kamer Kaya, Wei-keng Liao, Füsun Özgüner, Diana Palsetia, Md.
Mostofa Ali Patwary, Alex Pothen, Peder Refsnes, Nadathur Satish, Tor
Sørevik, Narayanan Sundaram, Arijit Tarafdar, Tom Woods.

• Community 3 (size: 5): Petr A. Golovach, Pinar Heggernes, Pim van ’t
Hof, Daniël Paulusma, Michal Pilipczuk.

68

The unweighted network excluding Manne

The unweighted collaboration network excluding Manne contains 51 authors
and 95 coauthor relationships. We obtain a partition into 9 communities with
the modularity value 0.4105263157894737, where 78 edges are intra-community
edges and the remaining 17 edges are inter-community edges. The communities
are as follows.

• Community 1 (size: 18): Ankit Agrawal, Jean R. S. Blair, Erik G. Bo-
man, Alok N. Choudhary, Pradeep Dubey, Assefaw Hadish Gebremedhin,
Salman Habib, Wei-keng Liao, Randi Moe, Diana Palsetia, Md. Mostofa
Ali Patwary, Alex Pothen, Peder Refsnes, Nadathur Satish, Tor Sørevik,
Narayanan Sundaram, Arijit Tarafdar, Tom Woods.

• Community 2 (size: 2, CC): Bengt Aspvall, Magnús M. Halldórsson.

• Community 3 (size: 10): Ariful Azad, Rob H. Bisseling, Doruk Bozdag,
Ümit V. Çatalyürek, Mahantesh Halappanavar, Kamer Kaya, Johannes
Langguth, Füsun Özgüner, Peter Sanders, Bora Uçar.

• Community 4 (size: 7): Ferdinando Cicalese, Jianping Wang, Xin Wang
0001, Qin Xin, Xiaolan Yao, Yan Zhang, Zeyu Zheng.

• Community 5 (size: 9): Petr A. Golovach, Pinar Heggernes, Pim van
’t Hof, Rodica Mihai, Morten Mjelde, Daniël Paulusma, Laurence Pilard,
Michal Pilipczuk, Sébastien Tixeuil.

• Community 6 (size: 1, CC): Michelangelo Grigni.

• Community 7 (size: 2, CC): Phillip Merkey, Alicia Thorsen.

• Community 8 (size: 1, CC): Bjørn Olstad.

• Community 9 (size: 1, CC): Sadia Sharmin.

The weighted network including Manne

The weighted collaboration network including Manne contains 51 + 1 authors
and 146 coauthor relationships. We obtain a partition into 3 communities with
the modularity value 0.339041095890411, where 100 edges are intra-community
edges and the remaining 46 edges are inter-community edges. The total weight
on the intra-community edges is 590 and the total weight on the inter-community
edges is 228. The communities are as follows.

• Community 1 (size: 30, internal edge weight: 140): Fredrik Manne,
Bengt Aspvall (2), Doruk Bozdag (3), Ferdinando Cicalese (2), Pradeep
Dubey (1), Michelangelo Grigni (1), Salman Habib (1), Magnús M. Halldórs-
son (2), Phillip Merkey (1), Rodica Mihai (1), Morten Mjelde (7), Randi
Moe (1), Bjørn Olstad (1), Füsun Özgüner (1), Daniël Paulusma (2), Lau-
rence Pilard (5), Peder Refsnes (1), Nadathur Satish (1), Sadia Sharmin

69

(1), Narayanan Sundaram (1), Arijit Tarafdar (1), Alicia Thorsen (1),
Sébastien Tixeuil (5), Jianping Wang (1), Xin Wang 0001 (1), Tom Woods
(1), Qin Xin (7), Xiaolan Yao (1), Yan Zhang (2), Zeyu Zheng (1).

• Community 2 (size: 17, internal edge weight: 368): Ankit Agrawal
(2), Ariful Azad (1), Rob H. Bisseling (1), Erik G. Boman (3), Ümit V.
Çatalyürek (3), Alok N. Choudhary (2), Assefaw Hadish Gebremedhin
(8), Mahantesh Halappanavar (2), Kamer Kaya (1), Johannes Langguth
(4), Wei-keng Liao (2), Diana Palsetia (2), Md. Mostofa Ali Patwary (7),
Alex Pothen (2), Peter Sanders (1), Tor Sørevik (3), Bora Uçar (1).

• Community 3 (size: 5, internal edge weight: 82): Jean R. S. Blair (6),
Petr A. Golovach (2), Pinar Heggernes (2), Pim van ’t Hof (2), Michal
Pilipczuk (2).

The weighted network excluding Manne

The weighted collaboration network excluding Manne contains 51 authors and
95 coauthor relationships. We obtain a partition into 9 communities with the
modularity value 0.37894736842105264, where 72 edges are intra-community
edges and the remaining 23 edges are inter-community edges. The total weight
on the intra-community edges is 457 and the total weight on the inter-community
edges is 246. The communities are as follows.

• Community 1 (size: 11, internal edge weight: 111): Ankit Agrawal (2),
Pradeep Dubey (1), Salman Habib (1), Wei-keng Liao (2), Diana Palsetia
(2), Md. Mostofa Ali Patwary (7), Alex Pothen (2), Peder Refsnes (1),
Nadathur Satish (1), Narayanan Sundaram (1), Arijit Tarafdar (1).

• Community 2 (size: 2, internal edge weight: 2, CC): Bengt Aspvall (2),
Magnús M. Halldórsson (2).

• Community 3 (size: 11, internal edge weight: 34): Ariful Azad (1), Rob
H. Bisseling (1), Erik G. Boman (3), Doruk Bozdag (3), Alok N. Choud-
hary (2), Assefaw Hadish Gebremedhin (8), Mahantesh Halappanavar (2),
Randi Moe (1), Füsun Özgüner (1), Tor Sørevik (3), Tom Woods (1).

• Community 4 (size: 10, internal edge weight: 212): Jean R. S. Blair (6),
Petr A. Golovach (2), Pinar Heggernes (2), Pim van ’t Hof (2), Rodica
Mihai (1), Morten Mjelde (7), Daniël Paulusma (2), Laurence Pilard (5),
Michal Pilipczuk (2), Sébastien Tixeuil (5).

• Community 5 (size: 5, internal edge weight: 73): Ümit V. Çatalyürek
(3), Kamer Kaya (1), Johannes Langguth (4), Peter Sanders (1), Bora
Uçar (1).

• Community 6 (size: 7, internal edge weight: 24): Ferdinando Cicalese
(2), Jianping Wang (1), Xin Wang 0001 (1), Qin Xin (7), Xiaolan Yao (1),
Yan Zhang (2), Zeyu Zheng (1).

70

• Community 7 (size: 1, internal edge weight: 0, CC): Michelangelo Grigni
(1).

• Community 8 (size: 2, internal edge weight: 1, CC): Phillip Merkey (1),
Alicia Thorsen (1).

• Community 9 (size: 1, internal edge weight: 0, CC): Bjørn Olstad (1).

Conclusion

The algorithm seems to give meaningful communities in both the weighted and
unweighted case, and both when including Manne in the network and when
excluding him from the network. Excluding Manne from the network help us
easily detect the most obvious communities. When it comes to the modularity
values we recall from section 4.3 that the maximum modularity value of a given
network is dependent both on the size of the graph and on the number of well
defined communities and is not necessarily as high as 1. Therefore, it is not
possible to compare the modularity value of a network excluding Manne with
the modularity value of a network including Manne. We note, however, that
the unweighted and weighted networks including Manne have the modularity
values 0.3321917808219178 and 0.339041095890411, respectively. We also note
that the unweighted and weighted networks excluding Manne have the modular-
ity values 0.4105263157894737 and 0.37894736842105264, respectively. When
we compare the number of intra-community edges with the number of inter-
community edges, the results seem reasonable as well, since in every case the
number of intra-community edges is higher than the number of inter-community
edges.

Fredrik Manne gave us the following evaluation of the results: "Out of the
four suggestions I prefer the solutions excluding myself, mainly because they
partition the list into more clusters. Comparing the weighted and unweighted
solutions I believe the weighted one gives most meaning. There are two changes
I would have made, "Alex Pothen" belongs in Community 3, and "Randi Moe"
and "Tor Sørevik" could have been a group by themselves."

71

Chapter 9

A community detection web
service

In this chapter we present a community detection web service offering commu-
nity detection in the DBLP database (available at the URL http://dblp.uni-
trier.de/) using our implementation of the RECC algorithm presented in chap-
ter 8. DBLP is a service providing open bibliographic information on major
computer science journals and proceedings.

The web service is created with the Spring Framework, an open source appli-
cation framework for the Java platform. A nice and authoritative introduction
to the Spring Framework can be found in Spring in Action, fourth edition, by
Craig Walls [36], senior engineer with Pivotal Software, the developer of the
Spring Framework.

The motivation for this web service is twofold. Firstly, as Radicchi et al.
[28] points out in their article, the quality of a partition of a network into
communities can not be answered in a definitive and quantitative way and one
has to evaluate the results on each network in order to say if they are reasonable
or not. Also, it is a matter of taste how large communities one wants in the
results. Secondly, an algorithm such as the RECC algorithm, where one can
choose between community definitions, and choose a lower bound on the size of
every community, lends itself to be customized by the user. Each community
definition may give meaningful results and they do not necessarily exclude each
other. The combination of these two motivating factors have spawned the web
service presented in this chapter.

9.1 An overview of the software used
The web service is simply called DBLP Communities and is published on the
address www.dblpcommunities.com on a GlassFish Server Open Source Edition
4.1 application server. The service is written in Java 8 using version 4.0.3 of the
Spring Web MVC Framework. Thus the web service applies the MVC pattern

72

URL Returned
http://dblp.uni-trier.de/pers/xc/
d/Doe:John.xml

The coauthor list of John Doe, contain-
ing the name and URL pointer of every
coauthor of John Doe and the number
of articles they have in common.

http://dblp.uni-
trier.de/search/author/api?
q=John+Doe&h=1000&c=0
&rd=1a&format=xml

List of hits on authors when search-
ing for John Doe, including names and
URL pointers.

Table 9.1: The subset of the XML API of the DBLP database used by our web
service.

but also makes use of a service layer that handles the business logic and keeps
the controllers nice and clean. The service utilizes Apache Maven as build
automation tool, Hibernate Validator 4.0.3.Final for input validation, Jackson
Mapper ASL 1.9.5 for mapping POJOs to the JSON format, and a SAXParser
for parsing XML documents. The view of the web service utilizes JavaServer
Pages (JSP) on the server side. On the client side, the Bootstrap framework is
used to give the web service a stylish look that easily adapts its view to both
desktop computers, pads, and smart phones, jQuery is used to give user-friendly
features to the view, the JavaScript display engine MathJax is used to display
mathematical notation, and the JavaScript graph visualization library vis.js is
used to draw the collaboration networks.

9.2 The DBLP XML API
Communication with the DBLP server is done through its XML API, which is
summarized in Table 9.1. A ceoncept that is much used in the DBLP database
is a URL pointer, or urlpt as it is actually called, which is a string that
uniquely identifies an author in the DBLP database. For John Doe it would
be d/Doe:John.

The API consists of a set of GET requests for different URL resources
that results in the server returning certain XML files. Only two kinds of re-
quests are made use of by DBLP Communities. When a GET request with
the URL http://dblp.uni-trier.de/pers/xc/d/Doe:John.xml is sent to the DBLP
server, it responds with an XML file containing the coauthor list of John Doe,
including both the name and URL pointer of every coauthor of John Doe,
and also the number of publications he or she has written with John Doe.
A GET request for the resource http://dblp.uni-trier.de/search/author/api?
q=John+Doe&h=1000&c=0 &rd=1a&format=xml results in an XML file con-
taining all hits on authors when searching for John Doe.

73

results page
results

change to layer 2

results

run algorithm on network

POST dblpcommunities.com/changeLayer
layer = 2

results page

Build collaboration network

«create»
:AlgorithmService

POST dblpcommunities.com/person
urlpt=d/Doe:John
name=John Doe
definition=strong
showNumEdges=false

display result page including fields for setting
algorithm parameters

results XML file

GET http://dblp.uni-trier.de/search/author/api?
q=John+Doe&h=1000&c=0&rd=1a&format=xml

:DBLP

POST dblpcommunities.com
personName=John Doe

start page

GET www.dblpcommunities.com

:DBLPCommunities:Client

Figure 9.1: A sequence diagram showing typical non-erroneous client interaction
with www.dblpcommunities.com.

9.3 How the web service works
Typical non-erroneous client interaction with www.dblpcommunities.com is sketched
in the sequence diagrams in Figure 9.1 and Figure 9.3. Note that these diagrams
are highly simplified and are only intended to show the most important stuff
that is going on in a typical interaction with the web service. Five participants
are shown in the diagrams:

• Client. A browser guided by a human user.

• DBLP. The DBLP server

• DBLPCommunities. Our web service that utilizes many different classes
to get its work done.

• AlgorithmService. One of the many classes used by DBLPCommuni-
ties.

• Graph. A graph class.

The typical non-erroneous interaction starts when the client sends a GET
request to www.dblpcommunities.com. The web service then returns the start

74

(a) The front page of
www.dblpcommunities.com offering the
user to search for an author in the DBLP
database.

(b) The page offering the user to set various
algorithm parameters.

Figure 9.2

page, shown in Figure 9.2(a), offering the user to search for an author in the
DBLP database. The user enters "John Doe" in the search field on the start
page and presses the search button. The client then sends a POST request to
www.dblpcommunities.com with the parameter personName set to "John Doe".
Then DBLP Communities sends a GET request to the DBLP server for the
resource http://dblp.uni-trier.de/search/author/api? q=John+Doe &h=1000
&c=0 &rd=1a &format=xml, whereupon the DBLP server responds with an
XML document containing the hits. DBLP Communities then returns a new
page where the user can set various algorithm settings, shown in Figure 9.2(b).
The hits are shown in a drop-down list, together with a drop-down list where
the user can choose one of the community definitions, a drop-down list where
one can specify whether to use a weighted or unweighted network, a drop-
down list where the lower bound can be set, a checkbox that can be marked
if detailed inter-community information is to be shown on the result page, and
a checkbox that can be marked if the main author is to be included in the
network. When the user has made his choices and presses a "Detect" button,
a POST request is sent to DBLP Communities that includes parameters called
urlpt and name. The corresponding values were set by the choice of element in
the person drop-down list and the values were injected by DBLP Communities
when the page was sent to the client. The request also includes parameters
definition, showNumEdges, and includeMainAuthor – containing the values
of the remaining algorithm settings explained above.

9.3.1 Building the collaboration network
DBLP Communities then starts a dialogue with the DBLP server in order to
build the collaboration network of John Doe. This part is shown in the sequence
diagram in Figure 9.3. First the coauthor list of John Doe is requested in a GET
request for the resource http://dblp.uni-trier.de/pers/xc/d/Doe:John.xml. The
DBLP server responds with an XML file containing a list of all coauthors of John

75

John Doe's collaboration network

addEdge(X,Y)
[Y is also a coauthor of John Doe]

loop: for every coauthor Y of X

coauthor XML list of X

addEdge(John Doe,X)

GET coauthor list of X

loop: for every coauthor X of John Doe

«create»
:Graph

coauthor XML list of John Doe

GET http://dblp.uni-trier.de/pers/xc/d/Doe:John.xml
buildNetwork(John Doe)

:DBLP:AlgorithmService:DBLPCommunities

Build collaboration network

Figure 9.3: A sequence diagram showing how the collaboration network of au-
thor John Doe is built.

Doe, including numbers indicating how many publications John Doe has coau-
thored with each of them. DBLP Communities then downloads the coauthor
list of every coauthor of John Doe. Next four different collaboration networks
are built:

• An unweighted collaboration network without John Doe

• An unweighted collaboration network with John Doe

• A weighted collaboration network without John Doe

• A weighted collaboration network with John Doe

Every coauthor of John Doe is included as a node in each of the four net-
works. If two coauthors of John Doe have published together, then an edge is
created between them. In the networks containing John Doe, an edge is created
between John Doe and every coauthor of his. All four networks are stored in
the session for quick access if the user wishes to run the algorithm again on any
of them.

9.3.2 The results page
An example of a results page is shown in Figure 9.4. The results page includes
an information pane with the following information:

76

• Whose collaboration network this is

• The definition that was used

• The lower bound that was used

• Whether John Doe is included in the network or not

• The number of communities found

• The number of coauthors of John Doe

• The modularity of the obtained community partition

• The total number of edges in the collaboration network

• The total number of intra-community edges

• The total number of inter-community edges

The results page also contains a pane from which the user can run the algo-
rithm again on the same author but with different settings. When the algorithm
is run again with different settings the collaboration network is retrieved from
the session and is not rebuilt. The page also contains a pane from which the
user can choose a specific layer from the partition hierarchy. Recall that the
RECC algorithm is a hierarchical algorithm that starts out with all vertices in
one community, then finds a partition into two communities, then into three
communities, etc. The whole partition hierarchy, that is, the dendrogram found
by the algorithm, is stored in session and can be retrieved by the server in
constant time.

At the bottom of the result page the collaboration network is drawn using the
JavaScript graph visualization library vis.js, which retrieves the graph in JSON
format via a GET request for the resource www.dblpcommunities.com/json/John
Doe. A JSON representation of the graph of John Doe is then returned, given
that John Doe was the last author the user did community detection on. If this
is not the case, then an error message is returned in JSON format. Thus DBLP
Communities does not support the creation of arbitrary collaboration networks
in JSON format at arbitrary times. The actual layout of the network is done by
a graph drawing algorithm implemented in the vis.js library and has nothing to
do with the community detection algorithm by Radicchi et al.

9.4 A drawback and its solution
A drawback of DBLP Communities is the way it builds the collaboration net-
works. The DBLP server limits the number of requests that can be made to it
during a certain amount of time. A consequence of this is that the collabora-
tion network of authors with large coauthor lists can not be built. The current
version of DBLP Communities notifies the user about this drawback.

77

A solution to this problem is already created and can be put into production
but needs some funding since you can’t have your database on a server for free.
The solution is described in the following and sketched in Figure 9.5.

A stand-alone Spring Boot application downloads the XML file containing
all the publications in the DBLP database. The application goes through every
publication in the XML file and creates a node for every author in memory.
For every pair of coauthors an edge is made, which is simply a reference from
one author object to another author object. As soon as 500 or more authors
have been stored in memory a transaction is made to the database with these
authors. Authors and coauthor relationships that are not already present in the
database are added and the rest is discarded.

The application utilizes Spring Data Neo4j to create a Neo4j database con-
taining one node per author in the DBLP database and with an edge labeled is
coauthor of between two nodes if their corresponding authors have published
together. The database model is shown in Figure 9.6. The resulting database
takes almost 430 MB of storage. The application can be put on a server and
included in a task scheduler to be run once a month since the XML file of the
DBLP database is updated once a month.

The Neo4j database will run in server mode on e.g. GrapheneDB (a service
that hosts Neo4j databases for 50 dollars a month if you need 1 GB of stor-
age) and be available through the standard Neo4j server mode REST API. The
Neo4j server includes an unmanaged server extension that extends the standard
REST API of Neo4j with an additional GET request on the form addressOf-
Neo4jDatabase/unmanaged/neighborhood/John Doe. The server responds with
the collaboration network of John Doe in JSON format. DBLP Communities,
on the other hand, consumes this resource with the help of Spring Data Rest,
which automatically transforms the JSON content to a predesigned POJO.

If John Doe has k coauthors, then k + 1 GET requests for XML files to
the DBLP server are replaced by one GET request to the Neo4j server for the
neighborhood of John Doe. The Neo4j database already stores the entire col-
laboration network of the DBLP database and simply has to return the induced
subgraph containing the neighborhood of John Doe, so a drastic speedup can
be achieved for authors with many coauthors.

It should, however, be noted that a Neo4j database supporting weighted
networks has not been created due to lack of time.

78

(a) The top of the results page.

(b) The middle of the results page.

(c) The bottom of the results page.

Figure 9.4

79

Glassfish 4
Application server

Neo4j server

Embedded web
server

REST APIDBLP
Communities HTTP Neo4j

data
store

Unmanaged
server

extension

Figure 9.5: The alternative application setup. DBLP Communities is backed
by a Neo4j database running on a separate server. The REST API is extended
with an unmanaged server extension to provide JSON export of collaboration
networks.

John
Doe

Jane
Roe

IS_COAUTHOR_OF
count = x

Figure 9.6: The Neo4j database model. John Doe and Jane Roe are two fictional
authors in the DBLP database and they have published x articles together. The
count attribute is not implemented in the database due to lack of time.

80

Chapter 10

Conclusion and further
research

10.1 Summary
In this thesis, implementations of the CNM and RECC algorithms have been
presented together with a web service offering community detection in the DBLP
database using the the RECC algorithm and giving the user the opportunity
to set various parameters in this algorithm. Testing community detection algo-
rithms is not altogether easy, as was shown in the chapter on the CNM algo-
rithm, as social networks often are hierarchically organized with smaller com-
munities living inside larger communities, and people having different opinions
on how large the outputted communities should be. This was some of the moti-
vation for making a web service offering to reveal the different partitions in the
dendrogram found by the algorithm and offering to give as output communities
of a certain size.

Both the modularity function used by the CNM algorithm and the edge
clustering coefficient used by the RECC algorithm are simple functions and
are therefore not able to help find the very best partitions into communities.
However, they are able to find relatively good partitions and for many purposes
they may be good enough. In the end it will be up to the knowledgeable user
to evaluate the results on each network, and our web service may help achieve
this.

10.2 Further research and application improve-
ments

This sections presents one possible improvement of the RECC algorithm and
two ideas on improvements of the web service presented in this thesis.

81

10.2.1 Improving the RECC algorithm
Radicchi et al. [28] presented results both using the edge clustering coefficient
counting triangles, C(3)

ij , and the edge clustering coefficient counting length four
cycles, C(4)

ij . In our thesis we only implemented the triangle version. Due to the
simplicity of the ECC the overall objective of a continued research should be
to make a better and more complex coefficient or function that in a better way
detects community structures. We pose two questions that should be further
investigated.

• Can qualitatively better results be obtained by using a combination of the
length three and length four edge clustering coefficients?

• Given a weighted network, can a qualitatively better weighted edge clus-
tering coefficient for an edge {i, j} be defined that takes into consideration
not only the weight of {i, j} but also the weight of every edge of every tri-
angle that {i, j} is part of? The rationale for this suggestion is that if i and
j both have strong relationships with a third vertex k, then this should
perhaps increase the chances of i and j ending up in the same community,
even though they are not strongly related themselves.

10.2.2 Improving DBLP Communities
Many improvements can be made to DBLP Communities. However, we think
that the following three improvements are the most important.

• A database supporting community detection in both unweighted and weighted
collaboration networks in the DBLP database.

• An API offering researchers to easily implement and incorporate their
algorithms into DBLP Communities. Thus DBLP Communities could
be made into a collaborative testing ground for the community detection
community.

• A rating mechanism that harvests user ratings on the combination of al-
gorithm, settings, and collaboration network. Thus one can get a clearer
picture on which algorithms and which settings that achieves the best
results on each network.

82

Appendices

83

Appendix A

Graph theory

In this chapter we present the very basic graph theory – nothing more than is
needed to keep pace with the flow of this master thesis.

A.1 Basic terminology

Figure A.1: An example of a
graph.

A graph is a pair G = (V,E) of sets, where
V is a finite set of vertices (or nodes) and
E ⊆

(
V
2

)
is a collection of edges. Thus,

E is a collection of 2-element subsets of V .
The edge between vertices 1 and 2 is denoted
{1, 2} and is equivalent to {2, 1}. Note that
E being a collection allows multiple edges be-
tween a fixed pair of vertices. Vertices are
usually drawn as dots and edges as lines be-
tween two of these dots if the corresponding
vertices form an edge, see Figure A.1. If an
edge e joins two vertices x and y, then x and y
are said to be adjacent and e is incident with
both x and y. An edge joining a vertex x to
itself is called a loop. A graph without loops
or multiple edges is called a simple graph. The number of edges incident with
a vertex v is called the degree of v and is denoted d(v). A vertex of degree 1 is
called a leaf.

A simple graph with n vertices and where every pair of vertices is connected
by a single edge is called a complete graph and is denoted by Kn. K3 is the
complete graph on three vertices and is sometimes called a triangle.

If G = (V,E) and G′ = (V ′, E′) are two graphs such that V ′ ⊆ V and
E′ ⊆ E, then G′ is a subgraph of G and we write this as G′ ⊆ G. If G′ ⊆ G and
G′ contains every edge uv ∈ E where u, v ∈ V ′, then G′ is an induced subgraph
of G.

84

Figure A.2: A graph with three
connected components.

A sequence of edges in a graph G of
the form v0v1, v1v2, v2v3, ..., vn−1vn or equiv-
alently v0 → v1 → v2 → ... → vn is called
a walk in G. v0 is the initial vertex of the
walk, vn is the final vertex of the walk, and
n is the length of the walk. A walk where no
two edges are equal is called a trail. A trail
where no two vertices are equal, except pos-
sibly v0 = vn, is called a path. A path where
v0 = vn is called a cycle. The shortest path
between two vertices u and v is the minimum
length path between u and v. The length of
such a path is called the geodesic distance be-
tween u and v. When computing the shortest
path between every pair of vertices, the diam-

eter of the graph is the maximum length shortest path. A graph G is connected
if there is a path between every pair of vertices in G. A graph that is not
connected consists of a number of connected components, see Figure A.2.

Two vertices are neighbors if they are connected by an edge. The neighbor-
hood of a vertex v is denoted N(v) and is the set of every neighbor of v.

85

Bibliography

[1] A Arenas, A Fernández, S Fortunato, and S Gómez. Motif-based com-
munities in complex networks. Journal of Physics A: Mathematical and
Theoretical, 41(22):224001, 2008.

[2] Stephen P. Borgatti, Martin G. Everett, and Paul R. Shirey. {LS} sets,
lambda sets and other cohesive subsets. Social Networks, 12(4):337 – 357,
1990.

[3] Ulrik Brandes. A faster algorithm for betweenness centrality. Journal of
Mathematical Sociology, 2001.

[4] C. Castellano, F. Cecconi, V. Loreto, D. Parisi, and F. Radicchi. Self-
contained algorithms to detect communities in networks. The European
Physical Journal B - Condensed Matter and Complex Systems, 38(2):311–
319, 2004.

[5] Aaron Clauset, M. E. J. Newman, and Cristopher Moore. Finding com-
munity structure in very large networks. Phys. Rev. E, 70:066111, Dec
2004.

[6] Reuven Cohen and Shlomo Havlin. Complex Networks: structure, robust-
ness, and function. Cambridge University Press, New York, 2010.

[7] Leon Danon, Albert Díaz-Guilera, and Alex Arenas. The effect of size
heterogeneity on community identification in complex networks. Journal
of Statistical Mechanics: Theory and Experiment, 2006(11):P11010, 2006.

[8] David Easley and Jon Kleinberg. Networks, Crowds, and Markets: Rea-
soning About a Highly Connected World. Cambridge University Press, New
York, 1st edition, 2010.

[9] Erlend Eindride Fasmer. Cnm on github. https://github.com/erlfas/
CNM.

[10] Erlend Eindride Fasmer. Dblp communities on github. https://github.
com/erlfas/DBLPCommunities.

[11] Santo Fortunato. Community detection in graphs. 2010.

86

https://github.com/erlfas/CNM
https://github.com/erlfas/CNM
https://github.com/erlfas/DBLPCommunities
https://github.com/erlfas/DBLPCommunities

[12] Santo Fortunato and Marc Barthélemy. Resolution limit in community
detection. Proceedings of the National Academy of Sciences, 104(1):36–41,
2007.

[13] M. Girvan and M. E. J. Newman. Community structure in social and
biological networks. Physical Sciences - Applied Mathematics, 2002.

[14] Benjamin H. Good, Yves-Alexandre de Montjoye, and Aaron Clauset. Per-
formance of modularity maximization in practical contexts. Phys. Rev. E,
81:046106, Apr 2010.

[15] Roger Guimerà, Marta Sales-Pardo, and Lu´A. Nunes Amaral. Modularity
from fluctuations in random graphs and complex networks. Phys. Rev. E,
70:025101, Aug 2004.

[16] B. W. Kernighan and S. Lin. An efficient heuristic procedure for partition-
ing graphs. Bell System Technical Journal, 1970.

[17] Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. Bench-
mark graphs for testing community detection algorithms. Phys. Rev. E,
78:046110, Oct 2008.

[18] F. Luccio and M. Sami. On the decomposition of networks in mini-
mally interconnected subnetworks. Circuit Theory, IEEE Transactions on,
16(2):184–188, May 1969.

[19] Duncan Luce. Connectivity and generalized cliques in sociometric group
structure. 1950.

[20] R. Duncan Luce and Albert D. Perry. A method of matrix analysis of group
structure. Psychometrika, 14(2):95–116, 1949.

[21] H. Matsuda, T. Ishihara, and A. Hashimoto. Classifying molecular se-
quences using a linkage graph with their pairwise similarities. Theoretical
Computer Science, 1999.

[22] Robert J. Mokken. Cliques, clubs and clans. Quality and Quantity,
13(2):161 – 173, 1979.

[23] M. E. J. Newman. Fast algorithm for detecting community structure in
networks. Phys. Rev. E, 69:066133, Jun 2004.

[24] M. E. J. Newman and M. Girvan. Finding and evaluating community
structure in networks. Phys. Rev. E, 69(2):026113, February 2004.

[25] M.E.J. Newman. Detecting community structure in networks. The Euro-
pean Physical Journal, 2004.

[26] Vreda Pieterse and Paul E. Black. Sparse graph — dictionary of algorithms
and data structures, August 2008.

87

[27] M. A. Porter. Small-world network. 7(2):1739, 2012. revision 142132.

[28] Filippo Radicchi, Claudio Castellano, Federico Cecconi, Vittorio Loreto,
and Domenico Parisi. Defining and identifying communities in networks.
Proceedings of the National Academy of Sciences of the United States of
America, 101(9):2658–2663, 2004.

[29] Thomas Schank and Dorothea Wagner. Finding, counting and listing all
triangles in large graphs, an experimental study. In Proceedings of the
4th International Conference on Experimental and Efficient Algorithms,
WEA’05, pages 606–609, Berlin, Heidelberg, 2005. Springer-Verlag.

[30] Philipp Schuetz and Amedeo Caflisch. Efficient modularity optimization
by multistep greedy algorithm and vertex mover refinement. Phys. Rev. E,
77:046112, Apr 2008.

[31] Robert Sedgewick and Kevin Wayne. http://algs4.cs.princeton.edu/
24pq/IndexMinPQ.java.html. [Online; accessed April 2015].

[32] Stephen B. Seidman. Network structure and minimum degree. Social Net-
works, 5(3):269 – 287, 1983.

[33] Stephen B. Seidman and Brian L. Foster. A graph-theoretic generalization
of the clique concept. The Journal of Mathematical Sociology, 6(1), 1978.

[34] Stanford.edu. Single-link and complete-link clustering, 2015.

[35] KenWakita and Toshiyuki Tsurumi. Finding community structure in mega-
scale social networks: [extended abstract]. In Proceedings of the 16th In-
ternational Conference on World Wide Web, WWW ’07, pages 1275–1276,
New York, NY, USA, 2007. ACM.

[36] Craig Walls. Spring in Action. Manning Publications Co, Shelter Island,
4th edition, 2014.

[37] Stanley Wasserman and Katherine Faust. Social Network Analysis, Meth-
ods and Applications. Cambridge University Press, 1994.

[38] Wikipedia. Complete-linkage clustering, 2015.

[39] Wikipedia. Single-linkage clustering, 2015.

88

http://algs4.cs.princeton.edu/24pq/IndexMinPQ.java.html
http://algs4.cs.princeton.edu/24pq/IndexMinPQ.java.html

	I Preliminaries
	Introduction
	What is community detection?
	Outline of this thesis

	Complex networks
	Complex networks in the real world
	Mathematical properties of complex networks
	Random Network Models

	Communities
	Basic definitions
	Local definitions
	Global definitions
	Definitions based on vertex similarity

	Modularity
	Partitions and quality functions
	Introducing modularity
	The limitations of modularity
	Motif modularity

	Community detection algorithms
	Graph partitioning
	Hierarchical clustering
	Agglomerative hierarchical algorithms
	Divisive hierarchical algorithms

	Greedy modularity based community detection
	Newman's algorithm
	The algorithm of Clauset, Newman and Moore
	Improvements of the CNM algorithm

	II Main part
	Introduction to the main part
	Implementation environment

	The CNM algorithm
	Implementing the algorithm
	Differences between the implementations
	The Data Structures
	The Algorithm

	Testing the algorithm

	A divisive algorithm based on the edge clustering coefficient
	The algorithms by Radicchi et al.
	The REB algorithm
	The RECC algorithm
	The running time of the RECC algorithm

	Implementing the algorithm
	The Data Structures
	The Algorithm
	Efficient triangle counting
	The running time

	Introducing one additional parameter to the Radicchi algorithm
	Introducing weighted networks, weighted community definitions, and a weighted ECC
	Testing the algorithm
	Running the algorithm on a collaboration network

	A community detection web service
	An overview of the software used
	The DBLP XML API
	How the web service works
	Building the collaboration network
	The results page

	A drawback and its solution

	Conclusion and further research
	Summary
	Further research and application improvements
	Improving the RECC algorithm
	Improving DBLP Communities

	Appendices
	Graph theory
	Basic terminology

