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Chapter 1

Introduction

Graphs are mathematical objects that formalize the behavior of many differ-
ent concepts. The problems defined on them arise from practical situations,
i.e. internet traffic flow or schedule planning, or provide mathematical in-
sight. A class of problems that might fit both of these characterizations
are extremal problems on graphs. These problems seek to determine how
large or small a set of elements defined on a graph can be, while satisfying
some set of conditions. In this text we will ask how many edges a graph
can have under restrictions on its maximum degree and matching number.
We will call this the edge-extremal problem. The answer to this problem is
known for arbitrary graphs. We will find the corresponding answer when the
graphs belong to chosen graph classes. A graph class is a collection of graphs
sharing some common property. Graph classes provide a systematic way to
study how extremal values change when we impose some structure on the
given graphs. If the maximum number of edges changes upon narrowing the
graph class, we might be able to pinpoint exactly which structural features
of the class allow the solution. The edge extremal problem is related to the
notoriuosly hard problem of Ramsey numbers on graphs, as will be explained
further on. This serves as a motivation to solve the problem in its own rights.

1.1 Terminology

A graph G = (V,E) is a set of nodes V and edges E ⊆ V × V . We may
emphasize that V or E is the set of nodes or edges in G by writing V (G) or
E(G), respectively. For an edge e = (u, v), u and v are called its endpoints.
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2 CHAPTER 1. INTRODUCTION

We say that e is incident with u and v. For a node u, the number of edges
incident with u is called its degree, denoted by degG(u). We may omit the
subscript if it is clear of which graph we are speaking. The maximum degree
in G is denoted by ∆(G). If there is an edge that has nodes u and v as
endpoints, u and v are adjacent. A node adjacent to all nodes of G except
itself is universal in G. The set of all nodes adjacent to u in G is called the
open neighbourhood of u, denoted by NG(u). The closed neighbourhood of u
is its open neighbourhood and itself, denoted by NG[u]. For a set of nodes
U ⊆ V , the neighourhood of U is defined by N(U) = (∪u∈UN(u)) \ U . The
subscript G will be dropped if it is clear of which graph we are speaking. A
set of nodes U ⊆ V where no two nodes are adjacent, is an independent set.
Two edges are said to be adjacent if they share a common endpoint. Edges
that are not adjacent are independent. A set of independent edges of G is
called a matching. The size of a largest matching in G is called its matching
number, denoted by ν(G). A matching is said to saturate all nodes that are
incident to some edge in the matching. A matching that saturates all nodes
of G, is a perfect matching. If it sataurates all but one node of G, it is a
near-perfect matching. If G \u has a perfect matching for all u ∈ V (G), G is
factor-critical. The complement of G, denoted by G, is the graph on V (G)
where two nodes are adjacent if and only if they are not adjacent in G.

A graph H = (VH , EH) with VH ⊆ V and EH ⊆ E is a subgraph of G. If
all edges of G between nodes in VH are present in H, then H is an induced
subgraph of G. For a set of nodes U ⊆ V the induced subgraph of G with U as
the set of nodes is denoted by G[U ]. U is said to induce the subgraph G[U ] in
G. If G does not contain some graph H as an induced subgraph, G is H-free.
A subgraph H, with V (H) = V (G), is a spanning subgraph, or a graph that
spans G. A graph on n nodes where all possible edges are present, is called
a complete graph, denoted by Kn. A subset of V that induces a complete
graph in G is a clique. A bipartite graph with partition (U,W ) where every
node of U is adjacent to every node of W , is called a complete bipartite graph,
denoted by K|U |,|W |. The complete bipartite graph K1,i−1 is called an i-star.
K1,3 is called a claw.

The union of G = (V,E) and G′ = (V ′, E ′) is defined by the new graph
G∪G′ = (V ∪V ′, E∪E ′). Nodes are labeled in some way, and two nodes are
equal if their labels are equal. If we label the nodes such that V ∩ V ′ = ∅,
the union of G and G′ is equal to the disjoint union of G and G′, denoted
by G ]G′.

A sequence of distinct nodes v1, v2, v3, ..., vi−1, vi with (vj−1, vj) ∈ E, for
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2 ≤ j ≤ i is a path in G. The length of a path is the number of edges it
contains. If the first and last nodes in a path are the same, it is a cycle. A
cycle on n nodes is denoted bt Cn. An edge between non-consecutive nodes
of a cycle is a chord. A cycle with no chord is an induced cycle.

A node u ∈ G is said to cover all edges incident to it. A set U ⊆ V (G),
covering all edges of G, is called a vertex cover. The size of the smallest
vertex cover of G is denoted by τ(G).

1.2 Graph classes

A graph class is a set of graphs sharing a common property. When con-
sidering a problem on graphs, it is often useful to restrict the instances to a
certain graph class. The common structural feature of the class might change
the character of the problem. This approach is often applied in algorithmic
graph theory. We will not be concerned with algortihms in this text. How-
ever, we will be considering the egde extremal problem on different graph
classes. These classes will be presented in this section. Further properties
will be given when needed.

1.2.1 Chordal graphs

A graph is chordal if it does not contain an induced cycle of length 4 or more.
This is equivalent to saying that a graph is chordal if every cycle of length 4
or more has a chord. Figure 1.1 illustrates this.

Figure 1.1: The left graph is not chordal since it contains and induced cycle
with length 4 or more. Filling in the dashed chords, shown to the right,
makes it chordal
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1.2.2 Interval graphs

Many graph classes are defined in terms of a model based on some mathe-
matical structure. This may be geometrical figures or even other graphs. In
the class of interval graphs, each node corresponds to a closed interval on the
real line. There is an edge between two nodes if and only if the correspond-
ing intervals overlap. The set of intervals representing the nodes is called the
interval representation of the graph. This is illustrated in Figure 1.2. If we
restrict the length of the invervals to be the same, we have a unit interval
graph.

i1

i2 i3

i4 i5

u1

u2 u3

u4 u5

Figure 1.2: An interval graph and its interval representation. Node uk cor-
responds to interval ik

1.2.3 Bipartite graphs

A graph is bipartite if its nodes can be partitioned into two sets U and W
such that every edge is between a node in U and a node in W . Equivalently,
one may say that its nodes can be colored black or white such that each
edge is between nodes of different colors. Figure 1.3 shows some examples of
bipartite graphs.

Figure 1.3: Bipartite graphs. The colors of the nodes are indicated

An important subclass of bipartite graphs is the class of forests, graphs
that do not contain a cycle. A connected forest is a tree.
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1.2.4 Split graphs

A split graph is a graph G whose set of nodes can be partitioned into sets I
and C, such that G[I] is an independent set and G[C] is complete. We say
that G has split partition (C, I). A full split graph is a split graph where all
possible edges between C and I are present. The class of split graphs is a
subclass of chordal graphs. Figure 1.4 shows some examples.

Figure 1.4: Split graphs. The graph to the right is a full split graph. The
independent set is circled in each instance

1.2.5 Line graphs

Let G = (V,E) be a graph. Construct a new graph where each node cor-
responds to an edge in G and two nodes are adjacent if and only if their
corresponding edges in G have a common endpoint. This is called the line
graph of G, denoted by L(G). In general, a graph H is a line graph if
H = L(G) for some G. This is illustrated with an example in Figure 1.5.

1

2 3

G
1 2

3

L(G)

Figure 1.5: A graph G and its line graph L(G). The labels show the cor-
resonding edges and node



6 CHAPTER 1. INTRODUCTION

1.3 Overview of the thesis

The necassary terminology and overview of graph classes are now presented.
In the next chapter, Chapter 2, we will present the main problem of the
thesis, the edge-extremal problem. We will do so by giving its solution on
general graphs. This result is not worked out by us. The connection with
Ramsey numbers will also be explained in this chapter. From Chapter 3,
the results presented are ours. In Chapter 3 we present the solution of the
edge-extremal problem on bipartite graphs. This is our way of introducing
the problem on narrower graph classes than general graphs. Also, some
necassary mathematical machinery will be given in this chapter. Chapter 4
gives the solution of the edge-extremal problem on split graphs and disjoint
union on split graphs. In Chapter 5 we solve the edge-extremal problem
on unit interval graphs. A result obtained as a by-product of the work
on the edge-extremal problem on chordal graphs is presented in Chapter 6.
This result is a characterization of factor-critical chordal graphs in terms of
spanning subgraphs. Finally, summary, comments on the work and open
problems are given in Chapter 7.



Chapter 2

Extremal graph theory

Given that a graph does not contain Kr as a subgraph, for some r, what is
the maximum number of edges it can have? How large may the matching
number of an acyclic graph on n nodes be? These are examples of questions
studied in extremal graph theory. Generally, it is the study of how large or
small some parameter of a graph can be, satisfying certain constraints. The
main problem of this thesis is of this nature. Here we seek to maximize the
number of edges, given constraints on maximum degree and matching num-
ber. We will consider this problem for graphs from different graph classes.
This section gives more details and presents the solution for the problem on
general graphs, which is already known. For a more elaborate treatment of
extremal graph theory, see [2].

2.1 The edge-extremal problem on general

graphs

In this section we have our first look at the main problem studied in this
thesis, the edge-extremal problem. Its solution on general graphs is already
known from [1], and we give a brief description of it here. For a more detailed
presentation, we direct the reader to this paper.

Let S denote a graph class. MS(i, j) denotes all graphs G from S sat-
isfying ∆(G) < i and ν(G) < j. Also, no other graph than K1 in MS(i, j)
contains isolated nodes. The edge-extremal problem studied in this thesis
is the following: Given i,j and S, what is the maximum number of edges
a graph in MS(i, j) can have? A graph achieving the maximum number of

7



8 CHAPTER 2. EXTREMAL GRAPH THEORY

edges is called edge-extremal in MS(i, j).
Let GEN denote the class of general graphs. Recall that a graph G is

factor critical if G \ u has a perfect matching for all u ∈ V (G). For a proof
of the next lemma, see [6].

Lemma 2.1. [Gallai’s lemma] Let G be a connected graph. If ν(G) = ν(G\v)
for all v ∈ V (G), then G is factor-critical.

For the next lemma, recall that an i-star is the complete bipartite graph
K1,i−1. The proof is recited from [1].

Lemma 2.2. Let G be an edge-extremal graph in MGEN (i, j) containing the
maximum number of i-stars. Then all connected components of G not an
i-star are factor critical.

Proof. The proof is by contradiction. Assume that a connected component
H of G, not an i-star, is not factor critical. This implies that there exists a
node v ∈ H, such that ν(H) > ν(H \ v), by Gallai’s lemma. Consider the
graph G′ = (G \ v) ]K1,i−1. Since ν(K1,i−1) = 1 and ν(G′) < ν(G) < j, it
follows that ν(G′) < j. Clearly, ∆(G′) < i. Also, since deg(v) < i, we have

|E(G′)| = |E(K1,i−1)|+ |E(G \ v)| = (i− 1) + |E(G \ v)|
≥ (i− 1) + (|E(G)| − (i− 1)) = |E(G)|.

So G′ is also edge-extremal. This contradicts the assumption that G contains
the largest possible number of i-stars, and completes the proof.

It follows that edge-extremal graphs G in MGEN (i, j) have two types of
connected components; factor-critical and i-stars. Let C be a factor-critical
component of G. Observe that Gallai’s lemma implies that C has a near-
perfect matching and |V (C)| = 2ν(C) + 1. The value of |E(C)| can not be

larger than b |V (C)|(i−1)
2

c = b (2ν(C)+1)(i−1)
2

c. We can make this bound tighter
in the case where |V (C)| = 2ν(C) + 1 < i. Then |E(C)| is no more than
|V (C)|(|V (C)|−1)

2
= (2ν(C)+1)2ν(C)

2
. This gives

|E(C)| ≤ min{(2ν(C) + 1)ν(C), b(2ν(C) + 1)(i− 1)

2
c}. (2.1)

If G has A i-stars and B factor critical components, this implies

|E(G)| ≤ (i− 1)A+ ΣB
i=1{(2ν(C) + 1)ν(C), b(2ν(C) + 1)(i− 1)

2
c}. (2.2)
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The bound on matching number is expressed by

A+ ΣB
i=1ν(Ci) < j, (2.3)

where Ci is the ith factor-critical component. This leads to a linear program,
which gives an uppper bound on edges in edge-extremal graphs. For details,
see [1].

The solution obtained with this procedure depends on i being odd or
even. For odd i, G is a disjoint union of Ki and i-stars, where the number of
Ki is as large as possible. Without going into the details of the calculation,
the number of edges in edge-extremal G is given by

|E(G)| = (i− 1)(j − 1) +
i− 1

2

⌊j − 1
i−1
2

⌋
. (2.4)

An edge-extremal instance in MGEN (5, 8) is shown in Figure 2.1. For this
example, Equation 2.4 gives |E(G)| = (5− 1)(8− 1) + 5−1

2

⌊
8−1
5−1
2

⌋
= 34.

Figure 2.1: An edge-extremal instance in MGEN (5, 8)

In the case where i is even, the factor-critical components are created by
the following process: Remove a maximum matching from Ki, introduce a
new node v and add an edge from v to any of the i− 1 nodes in the modified
graph. This is illustrated in Figure 2.2.

v

Figure 2.2: Transforming K4 to a factor-critical component in the edge-
extremal instance for i = 4. The removed matching is bold and added edges
are dashed
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We refer to this modified Ki as K ′i. An edge-extremal instance for even i
is a disjoint union of K ′i and i-stars, where the number of K ′i is as large as
possible. Again, without giving details, the number of edges in this case is
given by

|E(G)| = (i− 1)(j − 1) +
i

2

⌊j − 1
i
2

⌋
. (2.5)

An edge-extremal graph in MGEN (4, 8) is shown in Figure 2.3. For this
example, Equation 2.5 gives |E(G)| = (4− 1)(8− 1) + 4

2

⌊
8−1
4
2

⌋
= 24.

Figure 2.3: An edge-extremal instance in MGEN (4, 8)

2.2 Relation to Ramsey numbers

In Ramsey theory we investigate how global assumptions imply local proper-
ties. In particular, we ask the following question: for some m,n, how many
nodes does a graph G need to have to make sure that it contains Km or Kn

as an induced subgraph? This number of nodes is called the Ramsey number
R(m,n). As an example, consider a graph G on 6 nodes. Look at a node
u ∈ V (G). There has to be at least three nodes v1, v2, v3 ∈ V (G) adjacent
to u, or else G contains K3. At least two of v1, v2, v3 have to be adjacent.
Assume without loss of generality that (v1, v2) ∈ E(G). But then u, v1, v2
induces K3. This shows that R(3, 3) ≤ 6. This bound is tight, which is seen
by considering a cycle on 5 nodes, C5. This graph does not contain K3 or
K3, so 6 nodes is the smallest number to ensure this. Some examples are
shown in Figure 2.4.

Ramsey theory has been formulated in many different manners. What
is presented in this section, is commonly referred to as Ramsey theory on
graphs. The calculation of Ramsey numbers is a notoriously difficult problem,
and no general method is known. A bound due to Erdõs and Szekeres [3] is
given by:

R(m,n) ≤
(
m+ n− 2

m− 1

)
. (2.6)
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Figure 2.4: Some graphs on 6 nodes. Nodes inducing K3 or K3 are circled

So why are Ramsey numbers presented in this thesis? The problem we are
trying to solve can actually be formulated in terms of determining Ramsey
numbers on line graphs. To see this, consider the problem on general graphs.
We are looking for the maximum number of edges in graphs G, with ∆(G) < i
and ν(G) < j. Let L(G) be a line graph of G. Edges that meet in a node
in G are mutually adjacent nodes in L(G) and vice versa. By limiting how
many edges that can meet in a single node in G, we are limiting how many
nodes that can be mutually adjacent in L(G), which is the same as limiting
the size of the largest clique in L(G). Similarly, independent edges in G, a
matching, are independent nodes in L(G) and vice versa. So by limiting the
matching number of G, we are limiting the size of the largest independent
set in G. Maximizing edges in G is the same as maximizing nodes in L(G).
The edge-extremal graphs G with ∆(G) < i and ν(G) < j correspond to the
line graphs with the largest possible number of nodes that do not contain
Ki or Kj as an induced subgraph. This is exactly R(i, j) − 1 for L(G). By
considering a particular graph class, we are in essence finding the Ramsey
numbers for the line graphs of this graph class. We will not elaborate any
further on this through the text.
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Chapter 3

Mathematical prelimenaries

This chapter will start with solving the edge extremal problem on bipartite
graphs. Hopefully, this will familiarize the reader with the problem on other
graph classes than general graphs, before embarking on more demanding
classes. Upon solving the problem on unit interval graphs in Chapter 5, we
will encounter some mathematical problems that are best treated separately.
The rest of the section will be devoted to these. This includes some properties
of the floor and ceiling functions and a special type of equation we have chosen
to call optimization Diophantine equations. Where no references are given,
the results are worked out by us.

3.1 Bipartite graphs

The class of bipartite graphs will be denoted by BIP . To solve the edge-
extremal problem on this graph class, we start by introducing a classical
theorem in graph theory. For a proof of this, see [6].

Theorem 3.1. [König’s theorem] Let G be a bipartite graph. Then ν(G) =
τ(G).

We will also be needing the next observation, given as a lemma.

Lemma 3.2. Let G be a graph with ∆(G) < i. Then |E(G)| ≤ τ(G)(i− 1)

Proof. Let V C be a vertex cover of G. Every edge of G is incident with a
node in V C. Also, every node in V C is associated with at most i− 1 edges,
and the lemma follows.

13
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The next theorem gives a tight bound on the number of edges for graphs
in MBIP(i, j).

Theorem 3.3. Let G be a graph inMBIP(i, j). Then |E(G)| ≤ (i−1)(j−1).
This bound is tight.

Proof. From Theorem 3.1 we know that τ(G) = ν(G) ≤ j − 1. Lemma 3.2
then implies |E(G)| ≤ τ(G)(i − 1) ≤ (j − 1)(i − 1). The disjoint union of
j − 1 i-stars is bipartite and has (i − 1)(j − 1) edges. Thus, the bound is
tight and the proof is complete.

Figure 3.1: An edge-maximal graph in MBIP(6, 5)

An edge-extremal graph in MBIP(i, j) is shown in Figure 3.1.

3.2 The floor and ceiling functions

In this section we define and describe properties of the floor and ceiling
functions that will be useful later. The first lemma is clear, so we have
omitted its proof.

Lemma 3.4. Let k ∈ N. If n = 2k, then⌊n
2

⌋
=
⌈n

2

⌉
= k. (3.1)

If n = 2k + 1, then ⌈n
2

⌉
− 1 =

⌊n
2

⌋
= k. (3.2)

Lemma 3.5. For n, x, y ∈ N, and n = x+ y we have⌊n
2

⌋
≥
⌊x

2

⌋
+
⌊y

2

⌋
(3.3)
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Proof. We split the proof into two parts; n odd and n even. First, assume
that n is odd, such that n = 2k + 1 for some k ∈ N. Also, assume, without
loss of generality, that x is odd and y is even, such that x = 2l + 1, y = 2m
for l,m ∈ N. We have n = x + y = 2k + 1 = 2(l + m) + 1, so k = l + m.
According to Lemma 3.4 this gives⌊n

2

⌋
= k = l +m =

⌊x
2

⌋
+
⌊y

2

⌋
(3.4)

For n even, n = 2k, we have two choices; x and y both even, or both odd.
This gives, respectively,⌊n

2

⌋
= k =

⌊x
2

⌋
+
⌊y

2

⌋
=
⌊2l

2

⌋
+
⌊2m

2

⌋
= l +m, (3.5)

and ⌊n
2

⌋
= k = l +m+ 1 >

⌊x
2

⌋
+
⌊y

2

⌋
= l +m. (3.6)

The second equality is because n = 2k = x + y = 2l + 1 + 2m + 1 =
2(l +m+ 1)⇒ k = l +m+ 1.

3.3 Optimization Diophantine equations

In this section we will look at equations in variables x, y and r on the form

j = ax+ by + r, (3.7)

where j, a, b ∈ N and a− b = 1. We will call these optimization Diophantine
equations. To solve this equation we must assign non-negative integer values
to x, y and r such that 0 ≤ r < b. Only if b = 0, the value of r may be equal
to b. We will refer to r as the remainder. We are interested in solutions
where r is as small or as large as possible. More specifically, we seek the
values or r in these cases. If there is a solution such that r = r1, we say that
r1 is an admissable value of r. Before we work out this equation, we need a
lemma from [4]. For a proof, we direct the reader there.

Lemma 3.6. If m is a positive integer and n is any integer, there exist
unique integers q and p such that

n = mq + p, (3.8)

where 0 ≤ p < m.
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The following two lemmas give the smallest and largest admissable value
of r for a given optimization Diophantine equation.

Lemma 3.7. Given an equation on the form of Equation 3.7, let

j = aq1 + r1 = bq2 + r2

such that 0 ≤ r1 < a and 0 ≤ r2 < b. The smallest admissable value of r is
max{0, r2 − q2}.

Proof. Let us first show that max{0, r2− q2} is an admissable value of r. We
know that a− b = 1, so a− b− 1 = 0. We add this k times to both sides of
j = bq2 + r2 for some non-negative k. This gives

j + 0 · k = bq2 + r2 + k(a− b− 1) = (q2 − k)b+ ak + (r2 − k).

q2 − k and r2 − k have to be non-negative in a solution. So we can not add
a− b− 1 more than min{q2, r2} times. We have two cases; if q2 ≥ r2, we can
set k = r2 to get a remainder of 0. If q2 < r2, we get the smallest remainder
by setting k = q2. This gives a remainder of r2 − q2. Since r2 − q2 ≤ r2 < b,
the remainder is strictly smaller than b in this case, as demanded. Note that
when q2 < r2, the smallest value of r is the remainder when j is divided by
a. This shows the existence of a solution where r = max{0, r2 − q2}.

Let us now show that this is the smallest admissable value of r. In the
case where r takes value 0 there is nothing to prove; it can not be less than
this by definition. So assume that q2 < r2 and assume for contradiction
that r′ is the smallest admissable value of r, where 0 ≤ r′ < r2 − q2. There
must exist non-negative integers x′ and y′ such that j = ax′ + by′ + r′. Note
that y′ must be equal to 0, or else we would add a − b − 1 to both sides to
obtain an even smaller value of r than r′. So we must have j = ax′+ r′ with
0 ≤ r′ < r < b. As noted above, r2 − q2 is the remainder of j divided by
a. But we know that the value of the remainder by division is unique, so r′

has to be equal to r2 − q2. This contradicts the assumption, and the lemma
follows.

Lemma 3.8. Given an equation on the form of Equation 3.7, let

j = aq1 + r1 = bq2 + r2 (3.9)

such that 0 ≤ r1 < a and 0 ≤ r2 < b. The largest admissable value of r in
this equation is min{b− 1, q1 + r1}.
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Proof. The proof is similar to that of the previous lemma. Let us first show
that min{b− 1, q1 + r1} is an admissable value of r. We know that a− b = 1,
so −a + b + 1 = 0. We add this k times to both sides of j = aq1 + r1 k for
some non-negative integer k. This gives

j + 0 · k = aq1 + r1 + k(−a+ b+ 1) = (q1 − k)a+ bk + (r1 + k). (3.10)

To keep q1−k non-negative, we must have k ≤ q1. Also, since the remainder
must be strictly less than b, we must have r1 + k ≤ b− 1. As in Lemma 3.7,
there are two cases; if r1 + q1 ≥ b − 1, the largest value of the remainder is
achieved by setting k = (b−1)−r1. This will give r = b−1. If r1+q1 < b−1,
k is constrained by k ≤ q1, and the largest value of r is achieved by setting
k = q1. Inserting this into the last term of 3.10 gives r = r1 + q1. Note that
when r1 +q1 < b−1, the largest value of r is the remainder when j is divided
by b. This show the existence of a solution where r = min{b− 1, q1 + r1}.

Let us now show that this is the largest admissable value of r. In the case
where r takes value b− 1, there is nothing to prove; it can not be larger than
this by definition. So assume that r1+q1 < b−1 and assume for contradiction
that r′ is the largest admissable value of r, where r < r′ < b. There must
exist non-negative integers x′ and y′ such that j = ax′ + by′ + r′. Note that
a has to be equal to 0, or else we would add −a + b + 1 to both sides to
obtain an even larger value of r than r′. So we must have j = by′ + r′ with
0 ≤ r < r′ < b− 1. As noted above, q1 + r1 is the remainder of j divided by
b. But we know that the value of the remainder by division is unique, so r′

has to be equal to q1 + r1. This contradicts the assumption, and the lemma
follows.
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Chapter 4

Split graphs and disjoint union
of split graphs

In this chapter, we solve the edge-extremal problem on split graphs and
disjoint union of split graphs.

4.1 Split graphs

In this section we will solve the edge-extremal problem on split graphs. Since
we do not allow isolated nodes, this graph class has a fundamental difference
from general graphs; they are connected. The flavour of the edge-extremal
problem therefore becomes a little different from the cases we have already
seen. For instance, we can not use factor-criticality, because this relies on
the possibility of adding stars to the graph.

We will follow a general scheme when solving the edge-extremal problem
on split graphs. First, we will introduce lemmas that impose some struc-
tural properties on the edge-extremal instances of split graphs. When we
have enough information about the structure of these instances, we will ap-
proach the problem analytically. This will result in different variants of
edge-extremal instances and a closed formula for the number of edges in
each case.

Some necassary results on bipartite graphs will be presented now. These
are already known. Let G be a bipartite graph with bipartition (A,B) and
let X be a subset of A. The deficiency of the set X in G, written as defG(X),

19
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is defined by
defG(X) = |X| − |N(X)|. (4.1)

The subscript G is omitted when it is clear of which graph we are speaking.
This is exemplified in Figure 4.1. The maximum deficiency of all subsets of
A is called the A-deficiency of G, or just the deficiency of G, denoted by
def(G). Note that defG(∅) = |∅| − |N(∅)| = 0, so def(G) ≥ 0.

A B

X

N(X)

Figure 4.1: The deficiency of X is defG(X) = |X| − |N(X)| = 4− 3 = 1

The A-deficiency of a bipartite graph is closely related to the size of the
maximum matching, as shown by the next lemma. This lemma is given in
[6], but the proof is omitted there. We have worked out a proof here based
on König’s theorem, Theorem 3.1..

Lemma 4.1. Let G be a bipartite graph with bipartition (A,B). Then ν(G) =
|A| − def(G).

Proof. We will prove the lemma by showing that the size of the minimum
vertex cover of G is equal to |A| − def(G). From König’s theorem we then
know that ν(G) = |A| − def(G). First we show that there exists a vertex
cover of size |A| − def(G). Let X ⊆ A be the set for which |X| − |N(X)| is
maximized, so def(G) = |X|− |N(X)|. The set V C = (A \X)∪N(X) forms



4.1. SPLIT GRAPHS 21

a vertex cover of G. The size of V C is given by |V C| = |A|− |X|+ |N(X)| =
|A| − (|X| − |N(X)|) = |A| − def(G).

Next we show that this is the minimum possible vertex cover can have.
We do this by contradiction, so assume that there is a minimum vertex cover
V C with |V C| < |A| − def(G). Let VA = V C ∩ A. Then A \ VA is the set
of nodes in A that are not in V C. We can form a vertex cover by adding
these nodes to N(VA), obtaining a vertex cover of size |A| − |VA|+ |N(VA)|.
Since V C is minimum, we have |V C| ≤ |A| − |VA| + |N(VA)|. This implies
the following strict inequalities

|A| − |VA|+ |N(VA)| < |A| − def(G)

−|VA|+ |N(VA)| < −def(G)

−def(VA) < −def(G)

def(VA) > def(G)

We have inserted −|VA| + |N(VA)| = −def(VA). This is a contradiction,
since def(G) is the maximum deficiency of all subsets of A, and the proof is
complete.

For the rest of this section, let SPLIT be the class of split graphs and G
a graph in MSPLIT (i, j) with split partition (C, I). The rest of the results
in this section are new. We start with two easy properties, stated as lemmas
for the sake of reference.

Lemma 4.2. Assume that we add or remove edges between nodes in C and
I in G, while keeping (C, I) a valid partition. This will never make a node
in I violate ∆(G) < i.

Proof. We can safely assume that I and C are non-empty, since in that
case there is nothing to prove. Graphs in MSPLIT (i, j) have no isolated
nodes. Therefore there is a node c ∈ C that is adjacent to some node in
I and degG(c) ≥ |C|. A node in i1 ∈ I can not have higher degree than
|C| as long as (C, I) is kept a valid partition. It follows from degG(c) < i
and degG(i1) ≤ degG(c) that degG(i1) < i no matter how the connectivity
between I and C is altered. The proof is complete.

We will make frequent references to the bipartite subgraph of G with bi-
partition (N(I), I) and all edges with an endpoint in I. Denote this subgraph
by BIP (G). This is illustrated in Figure 4.2.

It is central in deciding the maximum matching of G.



22 CHAPTER 4. SPLIT AND DISJOINT UNION OF SPLIT

Figure 4.2: The subgraph BIP (G) is colored black

Lemma 4.3. ν(G) = ν(BIP (G)) +
⌊ |C|−ν(BIP (G))

2

⌋
.

Proof. The formula in the statement expresses the size of the maximum
matching is equal to that which saturates as many nodes in BIP (G) as pos-
sible. To see that this is indeed maximum, look at a maximal matching that
does not saturate the maximum possible number of nodes in BIP (G). Rear-
ranging the matching, keeping it maximal, such that more nodes in BIP (G)
are saturated and will never decrease the size of the maximal matching. It
will only liberate nodes in C.

Our goal is to transform G to a form suitable for analysis. The trans-
formation must preserve membership in MSPLIT (i, j) and not decrease the
number of edges. As a first step towards this, we introduce the following
operation:

Definition 4.4. The transformation φ takes four parameters: split graph G,
node x ∈ C and nodes y1, y2 ∈ I. It returns a modified graph φ(G, x, y1, y2)
according to the following scheme:

If (x, y1) ∈ E(G) and (x, y2) /∈ E(G):

Remove (x, y1) and add (x, y2). In addition, for all nodes x′ ∈ C
that are adjacent to y1 and not y2, remove (x′, y1) and add (x′, y2).

If not:

Do nothing.

If this isolates any nodes of G, remove them.
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This is illustrated in Figure 4.3. For every edge that is removed by φ,
another edge is added, so it is clear that this operation conserves the number
of edges of G.

x
y1

y2

G

x
y1

y2

φ(G, x, y1, y2)

Figure 4.3: An example of φ. The dashed edges to the left are removed, and
those to the right are added. We also need to remove the isolated node y1.

The next lemma proves that φ conserves membership in MSPLIT (i, j).

Lemma 4.5. If G ∈ MSPLIT (i, j), then φ(G, x, y1, y2) ∈ MSPLIT (i, j) for
all x ∈ C and y1, y2 ∈ I.

Proof. We have to show that ∆(φ(G, x, y1, y2)) < i and ν(φ(G, x, y1, y2)) < j.
For the sake of notational simplicity we write Gφ = φ(G, x, y1, y2).

We first show that the bound on maximum degree is conserved. The
operation φ only alters the connectivity between nodes in C and nodes in
I. Lemma 4.2 says that this does not alter ∆(G), so ∆(φ(G, c, i1, i2)) < i is
satisfied.

Now to the bound on the matching number. From Lemma 4.3 we know
that, given G, ν(G) is only dependent on ν(BIP (G)). Furthermore, from
Lemma 4.1 we know that ν(BIP (G)) is determined by def(BIP (G)), or
ν(BIP (G)) = |I| − def(BIP (G)). So if φ conserves def(BIP (G)), then
ν(Gφ) < j. We will show that this is the case. def(BIP (G)) is changed by
φ if and only if |C ′| − |N(C ′)| is changed by φ, for some C ′ ⊆ C. Since φ
only changes the connectivity of G, the only magnitude that can change in
this expression is |N(C ′)|. It is only necassary to consider those C ′ ⊆ C for
which N(C ′) contains y1 or y2, since every other set is left unchanged by φ.
There are three possibilities to consider; N(C ′) contains only y1, only y2 or
both. If N(C ′) contains only y1 in G, then it does not contain y1 in Gφ.
However, it does contain y2 in Gφ, so |N(C ′)| is the same in G and Gφ. If
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N(C ′) contains only y2 in G, then G = Gφ and |N(C ′)| is the same in G and
Gφ. Lastly, if N(C ′) contains y1 and y2 in G, then it only contains y2 in Gφ,
so |N(C ′)| is less in Gφ than in G. |N(C ′)| does not increase in any of these
instances, which implies that def(BIP (G)) does not decrease, which again
implies that ν(Gφ) ≤ ν(G) and Gφ < j. This completes the proof.

We will be using φ to transform G to a form that is suitable to approach
analytically. But first we need to extend the operation.

Definition 4.6. The transformation χ takes a split graph G with partition
(C, I) and two nodes y1, y2 ∈ I and returns G after the following loop:

for all x ∈ C:

G = φ(G, x, y1, y2)

A little informally, χ(G, y1, y2) is φ(G, x, y1, y2) performed for all nodes x ∈ C.
Assume that α is some ordering of the nodes of I, (i1, i2, ..., i|I|). Let αk

denote the tuple (ik, ik+1, ..., i|I|). We define a last operation, building on χ:

Definition 4.7. The transformation ψk takes a split graph G with partition
(C, I) and one node y1 ∈ I and returns G after the following loop:

for all y2 ∈ αk:

G = χ(G, y1, y2)

In programming terminology, ψk this is similar to a double for-loop with
φ in the innermost loop. From Lemma 4.5 it is clear that ψk conserves
membership in MSPLIT (i, j); after all, ψk is just φ performed repeatedly.

An ordering of the nodes in I, (i1, i2, ..., i|I|), such that N(ij) ⊆ N(ij−1),
for 2 ≤ j ≤ |I| will be called a inclusion ordering of G. Note that this does
not exist in all split graphs. A node in I that is adjacent to all nodes in N(I)
will be called locally universal. We are now ready to prove the next lemma,
which is the most technically demanding in this section.

Lemma 4.8. For each i and j, there is an edge-extremal graph G ∈MSPLIT (i, j)
such that G has an inclusion ordering.

Proof. Assume that G has partition (C, I). The proof is by induction on the
nodes of I. Consider the following procedure on G: perform ψk(G, x) for
k = 1, 2, 3, ... in that order. Our claim is that this leaves G with an inclusion
ordering. As the base case, we show that ψ1(G, i1) leaves i1 locally universal.
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Consider some node c ∈ N(I). If it already is adjacent to i1, then we are
done. If not, there exists a node i′1 which is adjacent to c, since c is in N(I).
When φ(G, c′, i′1, i1) is performed, c and i1 becomes adjacent. Since ψk never
removes edges from i1, this node is left locally universal by ψ1. This implies
that N(ik) ⊆ N(i1) for all 1 ≤ k ≤ |I|.

For the inductive case, assume that N(i1) ⊇ N(i2) ⊇ ... ⊇ N(ik). Con-
sider some node c′ ∈ N(I) which is adjacent to ik+1 after ψk+1(G, ik+1) is per-
formed. We will show by contradiction that c′ is always adjacent to ik. Note
that ψk+1 does not remove any edges from il, where 1 ≤ l ≤ k. There are two
possibilities for c′; it was adjacent with ik+1 before ψk+1 was performed, or it
was made adjacent by ψk+1. For each case, assume that c′ is not adjacent to
ik. Assume first that c′ was adjacent with ik+1 before the application of ψk+1.
c′ can not be adajcent to any node il, with l ≥ k + 2, as the application of
ψk(G, ik), in particular φ(G, c′, ik, il), would have made c′ adjacent to ik. But
then φ(G, c′, ik, ik+1) must have been performed as a part of ψk. This would
have made c′ and ik adjacent, and we have reached the desired contradiction
in the first case. Secondly, assume that c′ was made adjacent to ik+1 by the
application of ψk+1. This means that before the application of ψk+1, c

′ is
adjacent to some il, where l ≥ k + 2. But this would also be the case when
ψk(G, ik) is performed. And since ψk is performed before ψk+1, ik must have
been made adjacent by ψk. Again, ψk+1 does not remove any edges from il,
where l ≤ k + 1, so we have reached the desired contradiction in the second
case. Thus, if c′ is adjacent to ik+1, it is also adjacent to ik. This implies
that N(ik+1) ⊆ N(ik), so we have N(i1) ⊇ N(i2) ⊇ ... ⊇ N(ik) ⊇ N(ik+1).
The proof by induction is now complete.

Corollary 4.9. For each i and j, there is an edge-extremal graph G in
MSPLIT (i, j) that has a universal node.

Proof. Let G have partition (C, I) and let i1, i2, ..., i|I| be the nodes of I.
Also, let U = N(i1) ∩N(i2) ∩ ... ∩N(i|I|). From Lemma 4.8 we can assume
that G has an inclusion ordering. This implies that U 6= ∅. Every node c ∈ U
is adjacent to all of I. Also, since c ∈ C, it is also adjacent to all of C \ {c}.
The nodes of U are thus universal and the proof is complete.

Corollary 4.10. For each i and j, there is an edge-extremal graph G in
MSPLIT (i, j) such that |V (G)| ≤ i.

Proof. From Corollary 4.9 we can assume that G has a universal node. But
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then |V (G)| ≤ i, or else the bound on the maximum degree, ∆(G) < i, would
be violated.

Lemma 4.11. Let G be an edge-extremal graph in MSPLIT (i, j) with parti-
tion (C, I). If one node in I is locally universal, then all nodes in I are.

Proof. The proof is by contradiction. Assume that G is an edge-extremal
graph in MSPLIT (i, j) with partition (C, I) where not all nodes in I are
universally local. We can assume thatG has an inclusion ordering, soN(i1) ⊇
N(i2) ⊇ ... ⊇ N(i|I|) for nodes i1, i2, ..., i|I| ∈ I. i1 is universally local,
so assume for contradiction that this does not imply that all nodes are so.
Also, assume that k is the least subindex such that ik is not universally
local. Recall from Lemma 4.3 that given a split graph G, ν(G) is decided
by ν(BIP (G)). In particular, we have from Lemma 4.1 that ν(BIP (G)) =
|I|−def(BIP (G)). Let X ⊆ I be a set for which |X|− |N(X)| is maximized,
that is, def(BIP (G)) = |X|− |N(X)|. Then X can not contain a universally
local node, since removing a node different from it from X would decrease
|X| − |N(X)|. This implies that all locally universally nodes can be made
adjacent to all nodes of C, thus becoming a part of C. Since no locally
universal node is part of X, this would not affect ν(BIP (G)) and ν(G).
Also, from Corollary 4.10 we might assume that |V (G)| ≤ i, so that adding
edges to G never violate ∆(G) < i. This is valid even if G is not edge-
extremal, because the proof of Corollary 4.10 does not rely on on G having
this property. But the fact that we can add edges to G while keeping it
in MSPLIT (i, j) contradicts the assumption that G is edge-extremal. This
completes the proof.

Lemma 4.12. Let G be an edge-extremal graph in MSPLIT (i, j) with parti-
tion (C, I). Either I is empty or |C| < |I|.

Proof. The proof is by contradiction. So assume that I is non-empty and
|C| ≥ |I|. From Lemma 4.8 we can assume that G has an inclusion ordering,
which implies that it has a locally universal node. Lemma 4.11 then tells us
that all nodes of I are locally universal. Since |C| ≥ |I| there is a maximum
matching that saturates I, and G has a perfect or near-perfect matching.
Since |V (G)| ≤ i, from Lemma 4.10, we can obtain a graph inMSPLIT (i, j)
with more edges in G by making y universal, for some y ∈ I. This contradicts
the assumption that G is edge-extremal and completes the proof.
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Let G be an edge-extremal graph in MSPLIT (i, j) with partition (C, I).
The lemmas presented in this section tell us that we can assume that all
possible edges between I and C are present. So G is uniquely decided by the
sizes of C and I. We do not yet know these. We can immediately decide G
in one particalar situation; if i ≤ 2j+1, we can form a complete graph of size
i. Since we know that |V (G)| ≤ i, this has the maximum number of edges
possible. If i > 2j+ 1, it is not clear that a complete graph is edge-extremal.
The lemmas in this section have provided us with enough information to
attack the problem analytically.

Let N be a maximum matcing in G. We can make a distinction between
two types of edges inN : edges with two endpoints in C and with one endpoint
in C and one in I. Call these types of edges C-edges and I-edges, respec-
tively. Also, let CE and IE be the set of C- and I-edges in N , respectively.
Consistent with earlier notation, we denote |IE| by ν(BIP (G)). We know
that I is either empty or |C| < |I|. In any case, N saturates the nodes in
V (BIP (G)) that belongs to C. Thus, the number of edges with an endpoint
in C ∩ V (BIP (G)) can not exceed ∆(G)ν(BIP (G)). The rest of the edges
are between nodes in C that are not in BIP (G). These nodes induce a clique
in G, so there is no more than 2(ν − ν(BIP (G))) + 1 of them. This means

that the rest of the edges in G does not exceed (2(ν−ν(BIP (G)))+1)2(ν−ν(BIP (G)))
2

.
Thus, we have

|E(G)| ≤ ∆(G)ν(BIP (G)) +
(2(ν − ν(BIP (G))) + 1)2(ν − ν(BIP (G)))

2
.

This bound can be made tighter. Edges between nodes in V (BIP (G)) ∩ C
are counted twice in the term ∆(G)ν(BIP (G)). Because |C| < |I|, the nodes
of N(I) are saturated by the maximum matching and |V (BIP (G)) ∩ C| =

ν(BIP (G)). The number of edges counted twice is therefore ν(BIP (G))(ν(BIP (G))−1)
2

.
Subtracting this term from the bound on |E(G)| gives

|E(G)| ≤∆(G)ν(BIP (G))− ν(BIP (G))(ν(BIP (G))− 1)

2

+
(2(ν − ν(BIP (G))) + 1)2(ν − ν(BIP (G)))

2
.

We are interested in how this upper bound varies as ν(BIP (G)) varies, and
differentiate the expression with respect to ν(BIP (G)). This gives

∂E

∂ν(BIP (G))
= ∆(G) + 3ν(BIP (G))− 4ν − 1

2
. (4.2)
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To identify possible extremal points, top- or bottom-points, we set the ex-
pression for ∂E

∂ν(BIP (G))
to 0 and solve for ν(BIP (G)):

∆(G) + 3ν(BIP (G))− 4ν − 1

2
= 0⇒ ν(BIP (G)) =

1

3
(4ν −∆(G) +

1

2
).

We know that ∆ > 2ν + 1, which implies that in this extremal point, we
have ν(BIP (G)) < 2ν

6
− 1

6
. Since ∂2E

∂ν(BIP (G))2
= 3 > 0, this extremal point is

a bottom-point. This means that the candidates for top-points are the end-
points of the domain of |E(G)|, which are ν(BIP (G)) = 0 or ν(BIP (G)) = ν.

If ν(BIP (G)) = 0, then |E(G)| ≤ (2ν+1)(2ν)
2

. This bound is tight, as it is
realized by a complete graph with 2ν + 1 nodes. Note that such a graph
will never violate ∆(G) < i, since we have ∆(G) > 2ν + 1 in this case. If

ν(BIP (G)) = ν, we have |E(G)| ≤ ∆(G)ν(BIP (G))− ν(BIP (G))(ν(BIP (G))−1)
2

.
This bound is also tight, as it is realized by a full split graph with N(I) = C,
|C| = j − 1 and |V (G)| = i.

The following theorem summarizes these results.

Theorem 4.13. Let G be an edge-extremal graph inMSPLIT (i, j). We have
two different cases:

1. If i− 1 ≤ 2(j − 1) + 1, then G = Ki and |E(G)| = i(i−1)
2

.

2. If i− 1 > 2(j − 1) + 1, then |E(G)| = max{ (2(j−1)+1)(2(j−1))
2

, (i− 1)(j −
1)− (j−1)((j−1)−1)

2
}. We create a subcases, depending on which term is

largest:

(a) When the first term is largest, G = K2(j−1)+1.

(b) When the second term is largest, G is a full split graph with
N(I) = C, |C| = j − 1 and |V (G)| = i.

Let us conclude the section with an example. Consider the case i = 12 and
j = 5. Here, i−1 > 2(j−1)+1, so we are in case 2 of Theorem 4.13. We have
(2(j−1)+1)(2(j−1))

2
= (2(5−1)+1)(2(5−1))

2
= 36. Also, (i−1)(j−1)− (j−1)((j−1)−1)

2
=

(12 − 1)(5 − 1) − (5−1)((5−1)−1)
2

= 38, so we are in case 2a. The candidates
for edge extremal graphs in this case are shown in Figure 4.4, with the edge-
extremal graph to the right.
If we decrease i and let i = 11 and j = 5, the situation changes. We are in case
2b, since the first term in Theorem 4.13 is largest; |E(G)| = max{36, 34} =
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Figure 4.4: Candidates for edge-extremal graph in MSPLIT (12, 5)

36. The candidates are shown in Figure 4.5, with the edge-extremal graph
to the right.

If we decrease i further, such that i = 10 and j = 5, we reach case 1
of Theorem 4.13. The edge-extremal graph is thus K9 in this case. In this
example, we see that a larger i, relative to 2(j−1)+1 favorizes the complete
split graph being edge-extremal. This is intuitive, since the complete graph
would not be exploiting the large matching number; the bound on i will
hinder it doing so.

4.2 Disjoint union of split graphs

Recall from Chapter 2 that for general graphs an edge-extremal instance is a
disjoint union of factor-critical components and stars. The proof of this relies
on adding stars to the graph when some connected component is not factor-
critical. This is not allowed to do for graphs inMSPLIT (i, j), since they are
connected. But what if we remove the requirement of being connected by
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Figure 4.5: Candidates for edge-extremal graph in MSPLIT (11, 5)

considering a disjoint union of split graphs? What would the edge-extremal
instances look like in this case? This question is answered in this section.

Let DSPLIT be the class of disjoint union of split graphs. For general
graphs and odd i, an edge-extremal instances is a disjoint union of complete
graphs and stars- This is a disjoint union of split graphs, so the edge-extremal
instances for odd i in MDSPLIT (i, j) is covered for. In this section we will
solve the edge-extremal problem when i is even.

We start with two lemmas that give some structure to the edge-extremal
graphs in MDSPLIT (i, j).

Lemma 4.14. There is an edge-extremal graph G ∈ MDSPLIT (i, j) where
every factor-critical connected component is complete.

Proof. Let H be a factor-critical connected component of G with partition
(I, C) where I is maximal. We will prove the theorem by giving two opera-
tions on H that preserves |E(G)|, ∆(G) < i, ν(G) < j but decreases |I|. |I|
is equal to 1 if and only if H is complete. So by performing these operations
enough times, we can transform G to an instance where every factor-critical
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component is complete.
If H is complete, there is nothing to prove. If not, let u and v be two

nodes of I. Consider first the case N(u) ∩ N(v) = ∅. Since nodes in I
are mutually non-adjacent, and the size of C can not exceed i − 1 without
violating ∆(G) < i, we must have deg(u) + deg(v) < i. So we can delete
u and v and replace them with K1,i−1, without decreasing |E(H)|. It is
clear that ∆(G) < i is preserved in doing is. Also, H is factor-critical, so
removal of u and v makes ν(H) decrease by 1, which is balanced by adding
K1,i−1. Thus, the operation does not decrease |E(G)|, preserves membership
in MDSPLIT (i, j) and decreases |I|. Note that it does not depend upon H
being factor-critical. If it is not, there is a node we can remove to make ν(H)
decrease and then add K1,i−1. We can do this until it becomes either factor-
critical or a single node, which is complete. This is illustrated in Figure
4.6.

Figure 4.6: We remove circled nodes

Second, consider the case N(u)∩N(v) 6= ∅. For every node w ∈ C \N(u),
add the edge (u,w) to H. Should the bound on maximum degree be violated,
remove edge (w, z), for some z ∈ I \ {u}. Such a node z will always exist if
the bound is violated. Note that as long as I 6= ∅, we have |C| − 1 < i− 1 or
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|C| < i. If this was not the case, a node in C adjacent to a node in I would
violate ∆(G) < i. So for w to violate ∆(G) < i it has to be adjacent to some
z ∈ I \ {u}, which implies the existence of an edge that we can remove to
keep deg(w) < i. The component H is factor-critical, so moving edges does
not increase ν(H). When this operation is performed, the indpendent set
and clique become I \ {u} and U ∪ {u}, respectively. So it decreases |I| but
not |E(H)| while conserving membership in MDSPLIT (i, j). This process is
illustrated in Figure 4.7.

u

v

u

v

u

v

Figure 4.7: The dashed edges are removed and bold edges are added

We can always perform these operations on the components of an edge-
extremal graph G to make them complete. Since |E(G)| is not decreased in
the process, there will always exists an edge-extremal graph where all factor-
critical connected components are complete. This completes the proof.

Lemma 4.15. Let G ∈ MDSPLIT (i, j) be a disjoint union of complete
graphs. Then |E(G)| ≤ (i− 1)(j − 1).

Proof. Denote the connected components ofG byH1, H2, ..., H`. WriteGk for
]kl=1Hl. The proof is by induction on the number of connected components
of G, `. For some complete component Hk, we have |V (Hk)| ≤ ∆(Hk) and
|V (Hk)| ≤ 2ν(Hk) + 1. Using this for ` = 1, we get

|E(G1)| ≤
|H1|(|H1| − 1)

2
≤ ∆(H1)(2ν(H1) + 1− 1)

2
≤ ∆(H1)ν(H1).

For the inductive case, assume that the lemma is true for ` = `′. For ` = `′+1,
without loss of generality, assume that ∆(G`′) ≥ ∆(H`). Note that this
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implies ∆(G`′) = ∆(G`). We also have that ν(G`′) + ν(H`) = ν(G`). Using
this gives us the following chain of inequalities:

|E(G`)| ≤ |E(G`′)|+ |E(H`)| ≤ ∆(G`′)ν(G`′) + ∆(H`)ν(H`)

≤ ∆(G`′)(ν(G`′) + ν(H`)) ≤ ∆(G`)(ν(G`′) + ν(H`))

≤ ∆(G`)ν(G`)

We now know that |E(G`)| ≤ ∆(G`)ν(G`) for any `. This implies that
G ≤ ∆(G)ν(G) ≤ (i− 1)(j − 1), and the proof is complete.

We are now ready to bound the number of edges of a graph inMDSPLIT (i, j).

Theorem 4.16. Let G be a graph inMDSPLIT (i, j). Then we have |E(G)| ≤
(i− 1)(j − 1). This bound is tight.

Proof. We know that G is a disjoint union of factor-critical components and
i-stars. From Lemma 4.14, we know that there exists an edge-extremal
graph where every factor-critical component is complete. Assume that G
is edge-extremal and on this form. Let FC and S be the graph consisting
of the factor-critical components and i-stars of G, respectively. We know
from Lemma 4.15 that |E(FC)| ≤ ∆(FC)ν(FC). It is clear that |E(S)| ≤
∆(S)ν(S). Assume, without loss of generality, that ∆(S) ≥ ∆(FC). Using
that ν(FC) + ν(S) ≤ ν(G) ≤ j − 1, ∆(FC) ≤ i− 1 and ∆(S) ≤ i− 1 we get
the following chain of inequalities:

|E(G)| ≤ |E(FC)|+ |E(S)| ≤ ∆(FC)ν(FC) + ∆(S)ν(S)

≤ ∆(S)(ν(FC) + ν(S)) ≤ ∆(G)(ν(FC) + ν(S))

≤ ∆(G)ν(G) ≤ (i− 1)(j − 1).

To see that the bound is tight, consider the graph where FC = ∅. It consists
of j − 1 i-stars, and has (i− 1)(j − 1) edges. This completes the proof.
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Chapter 5

Unit interval graphs

In this section we solve the edge-extremal problem on the class of unit interval
graphs. All results presented here are worked out by us. When proving
properties of unit interval graphs, we will often make use of the underlying
interval representation. The intervals have a natural ordering, and it is often
useful to reference a node which is represented by a certain interval in this
ordering. To make this clear, we use the unit interval ordering, defined next.

Definition 5.1. Let G be a unit interval graph, and I its interval represen-
tation. Let (i1, i2, ..., in) be an ordering of I, sorted in non-decreasing order
on the left endpoint of the intervals. Let (v1, v2, ..., vn) be an ordering of the
nodes in G, such that vj corresponds to ij. This is called a unit interval
ordering of G.

Figure 5.1 illustrates this definition.

i1

i2

i3

i4

i5i5

i6

i7

v1 v2

v3 v4

v5 v6

v7

Figure 5.1: A unit interval graph with its corresponding unit interval ordering

Let G be a unit interval graph and (v1, v2, ..., vn) the unit interval ordering
of its nodes. A well known observation that we will make use of, is the
following: Let vk and vl be nodes in a unit interval graph, with k < l.
If there is an edge between these nodes, ik and il intersect. All im with

35
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k < m < l, will lie between ik and il in the unit interval ordering. Thus, all
vm are adjacent to vl. This is illustrated in figure 5.2.

ik
im1

im2

il

Figure 5.2: im1 and im2 intersect il

We start the solving of the edge-extremal problem on unit interval graph
with a useful lemma:

Lemma 5.2. Every connected unit interval graph has a Hamiltonian path.

Proof. LetG be a unit interval graph, with unit interval ordering (v1, v2, ..., vn).
We will show that v1v2...vn is a Hamiltonian path in G.

Every node vi, 1 ≤ i ≤ n−1 has an edge to vi+1. If not, vi could not have
any edges to vj, j > i, but this would contradict the fact that G is connected.
So we can always traverse the nodes in the order of the unit interval ordering
without visiting any node twice.

Figure 5.3 shows a Hamiltonian path in a unit interval graph.

i1

i2

i3

i4

i5

i6

i7

v1 v2

v3 v4

v5 v6

v7

Figure 5.3: Constructing a Hamiltonian path from unit interval ordering

Corollary 5.3. Let G = (V,E) be a connected unit interval graph. Then

ν(G) =
⌊ |V |

2

⌋
.

Proof. Let G have unit interval ordering (v1, v2, ..., vn). By Lemma 5.2,
v1, v2, ..., vn is a Hamiltonian path in G. We can construct a matching by
using every other edge of this path, i.e. (v1, v2), (v3, v4), .... If |V | is even, the

matching is perfect and has size
⌊ |V |

2

⌋
. If |V | is odd, we have a near-perfect

matching, with size |V |−1
2

=
⌊ |V |

2

⌋
. The corollary follows.
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Through the rest of the section, let UNIT denote the class of unit interval
graphs.

Corollary 5.4. Every edge-extremal graph in MUNIT (i, j) with at most i
nodes is complete.

Proof. The proof is by contradiction. Let G be edge-extremal inMUNIT (i, j)
with |V (G)| ≤ i and assume that G is not complete. So there are two nodes
u, v ∈ V (G), with (u, v) /∈ E(G). Add (u, v) to G to obtain a new graph
G′. We know by Corollary 5.3 that G has a perfect or near-perfect matching.
Adding (u, v) to G can not increase ν(G), so ν(G′) = ν(G) < j. Also, since
G′ has no more than i nodes, G′ can not violate the bound ∆(G′) < i. This
implies that G′ is in MUNIT (i, j) but |E(G′)| > |E(G)|. We assumed that
G was edge-extremal, so this is a contradiction, implying that G has to be
complete. This completes the proof.

For a unit interval graph G = (V,E), let Vk(G) denote the first k nodes
in the unit interval ordering of G.

Lemma 5.5. There is an edge-extremal graph G ∈ MUNIT (i, j) where no
connected component has more than i nodes.

Proof. Assume for contradiction that G has a connected component H with
more than i nodes. We will show that G can be transformed in a way that
conserves membership in G ∈ MUNIT (i, j) without decreasing the number
of edges. The transformation consists of two steps:

1. Disconnect Vi(H) from H to obtain the connected components H ′1 and
H ′2 on Vi(H) and V (H) \ Vi(H), respectively.

2. Add all possible edges to H ′1, making it isomorphic to Ki.

Let G′ be the result of the transformation; G′ ' (G \ Vi)]Ki. The transfor-
mation is exemplified in Figure 5.4. Clearly, G′ does not violate ∆(G′) < i.

Let us show that ν(G′) < j We have ν(G) =
⌊ |V |

2

⌋
and ν(G′) =

⌊
i
2

⌋
+
⌊
n−i
2

⌋
.

Since n = i+(n− i), we have ν(G′) ≤ ν(G) < j by Lemma 3.5. The result of
the operation is the same as if we had removed Vi from G and disjointly added
Ki. The class of unit interval graphs are closed under deletion of nodes, and
Ki is unit interval. It follows that G′ is unit interval and G′ ∈MUNIT (i, j).

It remains to show that |E(G′)| ≥ |E(G)|. Refer to edges between nodes
in Vi(G) as internal, and edges between Vi(G) and V (G) \ Vi(G) as external.
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In step 1 of the transformation, all external edges are removed. We will show
that the edges added in step 2 is at least as large as those removed in step
1. In G, let vk be a node in Vi(G) with an external edge, and say that vk
has d edges to nodes in Vi(G). So there are (i − 1) − d nodes in Vi(G) that
does not have an edge to vk. We call these nodes available, and their number
equals the number of edges added in step 2 of the transformation. We must
therefore show that the number of available nodes is greater or equal to the
number of external edges adjacent to vk. There are deg(vk)−d external edges
adjacent to vk. The desired inequality is thus (i− 1)− d ≥ deg(vk)− d. This
is easily obtained by adding −d to both sides of deg(vk) ≤ i−1. This is valid
for all vk ∈ Vi, so |E(G′)| ≥ |E(G)|. This completes the proof.

v1

v2

v3

v4 v5

v6 v7

v8

V4

v1

v2

v3

v4

v5

v6

v7

v8

G G′

Figure 5.4: Illustrating the transformation for G ∈MUNIT (4, 5)

Lemma 5.6. No edge-extremal graph in MUNIT (i, j) have more than one
connected component with strictly less than i− 1 nodes.

Proof. Let G be an edge-extremal graph inMUNIT (i, j). Assume for contra-
diction that G has two or more connected components with strictly less than
i− 1 nodes. Let us call two of these connected components H1 and H2. All
nodes in H1 or H2 have strictly less than i− 2 neighbours, so ∆(H1) < i− 2
and ∆(H2) < i − 2. By Corollary 5.4 we know that H1 and H2 must be
complete. Assume, without loss of generality, that ∆(H1) ≥ ∆(H2) and per-
form the following operation: Add two universal nodes to H1 and remove two
nodes from H2. This yields two new complete connected components H ′1 and
H ′2 of a new graph G′. The operation is exemplified in Figure 5.5. We will
show that G′ is inMUNIT (i, j) and that |E(G′)| > |E(G)|, contradicting the
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edge-extremality of G. The operation does not make ∆(H ′1) increase with
more than 2, and ∆(H ′2) does not increase. So ∆(H ′1) < (i − 2) + 2 = i,
∆(H ′2) < i and thus ∆(G′) < i. For the combined maximum matching sizes
we have

ν(H ′1) + ν(H ′2) =
⌊ |V (H ′1)|

2

⌋
+
⌊ |V (H ′2)|

2

⌋
=
⌊ |V (H1)|+ 2

2

⌋
+
⌊ |V (H2)| − 2

2

⌋
=
⌊ |V (H1)|

2
+ 1
⌋

+
⌊ |V (H2)|

2
− 1
⌋

=
⌊ |V (H1)|

2

⌋
+ 1 +

⌊ |V (H2)|
2

⌋
− 1 =

⌊ |V (H1)|
2

⌋
+
⌊ |V (H2)|

2

⌋
= ν(H1) + ν(H2).

So ν(G′) = ν(G) < j. Also, since G′ is clearly a unit interval graph, it is in
MUNIT (i, j).

Now we show that |E(G′)| > |E(G)|. In adding the nodes to H1 we
gain |V (H1)| + (|V (H1)| + 1) = 2|V (H1)| + 1 edges and we lose |V (H2)| +
(|V (H2)|−1) = 2|V (H2)|−1 edges when removing the nodes from H2. Since
|V (H1)| ≥ |V (H2)|, we have that 2|V (H1)|+ 1 > 2|V (H2)| − 1.

So G′ ∈ MUNIT (i, j) and |E(G′)| > |E(G)|, which is the desired contra-
diction. Our assumption of G having more than two connected components
with strictly less than i−1 nodes must be false. This completes the proof.

Delete

Add

H1 H2 H ′
1 H ′

2

Figure 5.5: The operation described in Lemma 5.6. Edges lost is 5, edges
gained is 9

Up to now, have not made the distinction between odd or even i in
MUNIT (i, j). But we are going to treat the two cases differently from now
on. To determine the edge-extremal instances when i is odd, we need one
more lemma:
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Lemma 5.7. Let i be odd and G an edge-extremal graph in MUNIT (i, j).
Then all connected components of G have an odd number of nodes.

Proof. The proof is once more by contradiction. We know from previous
lemmas that all connected components of G are complete components on no
more than i nodes. Assume for contradiction that some connected component
H of G has an even number of nodes, k. Since i is odd, we know that k+1 ≤ i,
so we can add a universal node to H without violating ∆(H) < i. Call the
result of this operation H ′. We have ν(H ′) =

⌊
k+1
2

⌋
=
⌊
k
2

⌋
= ν(H). But H ′

has more edges than H so G is not edge-extremal. This is a contradiction
and the lemma follows.

Now we have enough information to determine the maximum number of
edges for odd i:

Theorem 5.8. Let i be odd and G an edge-extremal graph in MUNIT (i, j).
Then G has i(j − 1) + (2r + 1− i)r edges, where r = (j − 1) mod

(
i−1
2

)
.

Proof. From Lemma 5.5 we know that no component has more than i nodes,
and Lemma 5.4 tells us that they are all complete. Lemma 5.7 says that all
connected components of G have an odd number of nodes. Since i−1 is even,
Lemma 5.6 implies that there is no more than one connected component with
fewer than i nodes. This leaves us with just one possibility; H is a disjoint
union of Ki’s and possibly one smaller complete graph. Every connected
component has matching size i−1

2
. The smaller component exists when j − 1

does not divide i−1
2

, and we have to make an extra component to ”exploit”
all the matching edges. The matching size of this component is then (j −
1) mod i−1

2
. It can not be larger, as this would violate ν(G) < j. Also, it

can not be smaller, since then we could add nodes to it without violating
ν(G) < j and ∆(G) < i, obtaining a new graph with more edges.

We want to find a closed expression for the number of nodes in such a
graph. There exist q and r such that

j − 1 =

(
i− 1

2

)
q + r, 0 ≤ r <

i− 1

2
(5.1)

From the above discussion, we see that q must be the number of Ki’s and
r = (j−1) mod

(
i−1
2

)
is the matching number of the smaller component. This

smaller component will then have 2r + 1 nodes, and so (2r+1)2r
2

= (2r + 1)r
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edges. The Ki’s have i(i−1)
2

edges. Therefore the number of edges of G is
given by

|E(G)| =
(
i(i− 1)

2

)
q + (2r + 1)r = i

(
i− 1

2
q

)
+ (2r + 1)r. (5.2)

Inserting i−1
2
q = (j − 1)− r, implied by Equation 5.1, we get

|E(G)| = i((j − 1)− r) + (2r + 1)r = i(j − 1) + (2r + 1− i)r (5.3)

Note that from Equation 5.1 we have r < i−1
2
⇒ 2r + 1 − i < 0. So the

second term is never larger than 0, and only 0 when j − 1 divides i−1
2

. This
is the desired closed expression and the proof is complete.

Let us consider an example. Look at an edge-extremal graph from the
familyMUNIT (5, 7). Here we have r = (j− 1) mod

(
i−1
2

)
= 6 mod 2 = 0, so

|E(G)| = i(j−1)+(2r+1−i)r = 5·6+0 = 30. G is a disjoint union of 3 Ki. If
we increase j and let G be edge-extremal inMUNIT (5, 8), r = 7 mod 2 = 1.
In this case we have |E(G)| = 5 · (8 − 1) + (2 · 1 + 1 − 5)1 = 33. G in this
case is shown in Figure 5.6.

Figure 5.6: Edge-extremal instance in MUNIT (5, 8)

The uniqueness of the edge-extremal graph follows quite easily from the
previous theorem.

Corollary 5.9. The extremal unit interval graph for odd i is unique.

Proof. From the proof of Theorem 5.1, we know that the extremal graph is
uniquely decided by q and r in the expression j =

(
i−1
2

)
q + r, with 0 ≤ r <

i−1
2

. These are unique by Lemma 3.6, and so is the solution.
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We now turn our attention to the case where i is even. In this case, we
know that an edge-extremal graph consists of complete connected compo-
nents on i and i − 1 nodes and possibly one smaller complete component.
For odd i, there were only two different components, as opposed to three
in this case. This makes the edge-extremal problem for even i considerably
harder than for odd i, as reflected in the solution. As we will see, we want
to compose the collection of these components such that the smaller one is
either as small or as large as possible. The following theorem makes this
more precise and solves the case for even i:

Theorem 5.10. Let i be even and G an edge-extremal graph inMUNIT (i, j).
Also, let a = i

2
and b = i−2

2
, j − 1 = q1a + r1 = q2b + r2. Then G has

(i − 1)(j − 1) − R edges, where R = min{(i − 2(p + 1))p, (i − 2(s + 1))s},
where p = max{0, r2 − q2} and s = min{q1 + r2, b− 1}.

Proof. From previous lemmas, we know that G consists of complete con-
nected components on i and i−1 nodes, possibly toghether with one smaller
complete connected component. Let A and B be the number of connected
components with i

2
and i−2

2
nodes, respectively. Also, let the r be the

matching number of the smaller component. This component then has
(2r+1)2r

2
= (2r + 1)r edges. The number of edges of G can then be expressed

by

|E(G)| = A
i(i− 1)

2
+B

(i− 1)(i− 2)

2
+ (2r + 1)r. (5.4)

Also, we can safely assume that ν(G) = j − 1 which implies j − 1 = A i
2

+
B i−2

2
+ r. We write this euation as (j − 1)− r = A i

2
+B i−2

2
and insert into

Equation 5.4:

E = (i− 1)

(
A

(
i

2

)
+B

(
i− 2

2

))
+ (2r + 1)r

= (i− 1)(j − 1− r) + (2r + 1)r = (i− 1)(j − 1)− (i− 2(r + 1))r.

By varying A and B, we can change only the second term, (i − 2(r + 1))r.
Since 2r + 1 < i− 1 and thus 2r + 2 < i, this term will always be negative,
so we want to chose A and B so to minimize this terms absolute value. To
see how it behaves when r varies, we differentiate it with respect to r:

∂

∂r
(i− (2(r + 1))r) = i− 4r + 2. (5.5)
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Setting this equal to 0, to locate possible extremal points, we get r = i−2
4

.
Repeated differentiation reveals that this is in fact a top point; ∂

∂r
(i−4r+2) =

−4. So the bottom points lie on the edge of the interval [0, i−2
2

]. In other
words, the term (i−(2(r+1))r has its lowest value either when r is as small or
as large as possible. What then are the smallest and largest values r can take?
Note that the equation j = A i

2
+B i−2

2
+ r is the type of equation described

in Section 3.3. This case was actually the sole motivation for writing that
section. According to Lemma 3.7 and 3.8, the smallest and largest values r
can take are max{0, r2− q2} and min{q1 + r2, b− 1}, respectively. We choose
the one that minimizes (i− (2(r + 1))r. The theorem follows.

Consider an edge-extremal instanceG from the graph familyMUNIT (10, 7).
In this case we have

- a = 10
2

= 5, b = 10−2
2

= 4

- j − 1 = 6 = 1 · 5 + 1 = 1 · 4 + 2, q1 = 1, r1 = 1, q2 = 1, r2 = 2

- p = max{0, 2− 1} = 1, s = min 3, 3 = 3

- R = min{12, 6} = 6

This gives |E(G)| = (i− 1)(j − 1)− 6 = 9 · 7− 6 = 48. This is realized by a
disjoint union of K10 and K3.
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Chapter 6

Factor-critical chordal graphs

Split graphs, disjoint union of split graphs and unit interval graphs are all
subclasses of chordal graphs. The edge-extremal instances for odd i in the
general case, are chordal. It would have been interesting to see how the edge-
extremal chordal graphs for even i compared to these classes. Although we
are not able to present such a solution, we conjecture that the edge-extremal
bound for chordal graphs is the same as in disjoint union of split graphs.

Our effort on trying to find a solution on chordal graphs resulted in some
interesting observations. In particular, we are able to give a characterization
of factor-critical chordal graphs in terms of spanning subgraphs. Since we
think this might provide insight in its own right, we present the result in this
section.

We start with presenting an already known result from [6]. Let G1 =
(V1, E1) and G2 = (V1, E1) be two graphs. The operation of adding the
graphs together produces a new graph defined by G1 + G2 = (V (G1) ∪
V (G2), V (G1) ∪ V (G2)). The following lemma is presented as a theorem in
[6]. We omit the proof here, it is given in [6].

Lemma 6.1. Every factor-critical graph G can be represented as P0 + P1 +
. . .+Pr where P0 = K1 and for each i, Pi+1 is either (1) an odd path having
only its two endpoints in common with P0 + P1 + . . . + Pi or (2) Pi+1 is an
odd cycle with precisely one node in common with P0 + P1 + . . .+ Pi.

The two cases are illustrated in Figure 6.1.
The rest of the section consists of new results. We start with a recursive

definition of a graph class we have chosen to call triangle trees.

45
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Pi+1Pi+1

Figure 6.1: Case 1 to the left, case 2 to the right

Definition 6.2. The empty graph and K1 are triangle trees. Assume that
T is a triangle tree. We can make a new triangle tree by adding two nodes,
u, v, to T , together with edges (u, v), (u,w) and (v, w) for some w ∈ V (T ).

An example of a sequence of triangle trees are shown in Figure 6.2. The
following theorem presents the main result of the chapter.

Figure 6.2: A sequence of triangle trees. Added edges in each step are dashed

Theorem 6.3. Every chordal and factor-critical graph is spanned by a tri-
angle tree.

Proof. Let G be a chordal and factor-critical graph. Also, let P0+P1+. . .+Pr
be a decomposition of G as described in Lemma 6.1 and i some non-negative
integer with i ≤ r. We then know from Lemma 6.1 that Pi+1 is either (1)
an odd path with two nodes in common with P0 + P1 + . . . + Pi or (2) an
odd cycle with one node in common with P0 + P1 + . . . + Pi. We will prove
the theorem by showing that in each case Pi+1 can be spanned by repeatedly
adding triangles to the graph as in the recursive step in Definition 6.2. That
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is, we build each cycle by adding pairs of nodes u, v and edges (u, v), (u,w)
and (v, w) for some w from the part of the graph already spanned by triangle
trees. This process is illustrated in Figure 6.3. Since P0 = K1 is a triangle
tree, we will then know that G can be spanned by triangle trees by spanning
each individual Pi+1.

Figure 6.3: Spanning a cycle with triangle trees

Consider first case (2), the case where Pi+1 is an odd path with exactly one
point in common with P0 +P1 + . . .+Pi. We will show that this case reduces
to case (1). Let Pi+1 = u1, u2, u3, ..., u`, where u1 is in P0 +P1 + ...+Pi. Since
G is chordal, it does not have a induced cycle of length 4 or more. Consider
the path u`, u1, u2, u3. This is a potential induced cycle of length 4 or more,
if not at least one of edges (u2, u`) or (u1, u3) are present. Assume first that
(u2, u`) is present. We can then span these nodes with a triangle by adding
u2 and u`). u2, u3, .., u` is then an odd cycle with two nodes in common with
P0 + P1 + ...+ Pi, which is case (1). If (u1, u3) is present, we add u2 and u3
and we again have case (1). Both these cases are illustrated in Figure 6.4.

u1

u`u2

u3

u1

u`u2

u3

u1

u`u2

u3

Figure 6.4: At least one of the dashed edges in the leftmost graph must be
present. The added triangles are shown with bold edges

Now we show that the odd path in case (1) can be spanned by a triangle
tree. We do so by induction on the odd length of the path, ` − 1. Again,
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let Pi+1 = u1, u2, u3, ..., u` and u1 and u` the two nodes Pi+1 has in common
with P0 +P1 + ...+Pi. The base case is a path of length 1. We can then add
an edge between u1 and u2, and the path is spanned by the empty graph,
which is a triangle tree.

For the inductive case, we show that if a path of length k− 2, with k ≥ 3
can be spanned by triangles, then so can a path of length k. We will do so by
showing that there has to be a node w ∈ V (P0 +P1 + ...+Pi) that is adjacent
to u2 and u3 or u2 and u`−1. In the latter case, the edge (u2, u`−1) is also
present. Either way, there is a triangle we can add to P0 + P1 + ...+ Pi. We
are then left with a cycle of length k− 2, which we know can be spanned by
triangles. So assume that u`, u`+1, u`+2, ..., u`+`′ , u1 is the shortest path from
u` to u1 in P0 + P1 + ...+ Pi. Look at the path u`+`′ , u1, u2, u3. Since we do
not have induced cycles of length 4 or more, at least one of the edges (u1, u3)
or (u2, u`+`′) must be present. If (u1, u3) is present, then we have can add
u2 and u3 to P0 + P1 + ... + Pi to obtain a shorter cycle. If not, (u2, u`+`′)
has to be present. In this case, consider the path u`+`′−1, u`+`′ , u2, u3. In the
same manner as before, at least one of the edges (u2, u`+`′−1) or (u3, u`+`′)
is present. If (u3, u`+`′) is present, we are done. If not, then (u2, u`+`′−1)
has to be present. In general, consider the path u`+`′−x, u`+`′−(x−1), u2, u3 for
increasing x. If edge (u3, u`+`′−(x−1)) is present, there is a triangle. If not,
(u2, u`+`′−x) has to be present, and so forth, until ` + `′ − x equals ` − 1.
Then at least one of (u2, u`−1) or (u3, u`) has to be present. If we have
not encountered a triangle for smaller x, then (u2, u`) has to be present. If
(u2, u`−1) is present, the nodes u2, u` and u`−1 constitutes our triangle. Or if
(u3, u`) is present, the nodes u2, u3 and u` constitutes our triangle. In either
case, we obtain a cycle of length k − 2. This process is illustrated in Figure
6.5. The proof is complete.

u1

u2

u3

u`+1

u3

u2

u`u`+1

u3

u2

u`

u`−1

Figure 6.5: Illustrating the proof of Theorem 6.3. At least one of the dashed
edges must be present. In the rightmost case, we have a triangle either way
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Figure 6.6: A factor-critical chordal graph with a possible spanning triangle
tree with bolded edges.

Figure 6.6 shows a chordal factor-critical graph with a possible spanning
triangle tree.

If a graph is spanned by a triangle tree, then it is clearly factor-critical
but not necassarily chordal. It is not hard to add an edge to a triangle tree
which creates an induced cycle of length 4 or more.

The edge-extremal instances for chordal graphs consists of factor-critical
components and i-stars. We might imagine that Theorem 6.3 may help us in
identifying these factor-critical components or at least bound their number
of edges. One possible plan is to build every component by adding edges to
triangle trees. The problem we encountered when trying this, was that it is
hard to formalize the adding of edges such that we can bound their number.
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Chapter 7

Conclusive remarks

This section will summarize the results of the thesis, give some general re-
marks about the work done and provide some open questions for future work.

7.1 Summary

The thesis have looked at edge-extremal graphs with bounded degree and
matching number on specific graph classes. In particular, we let S be a
graph class and MS(i, j) all graphs G from S which satisfy ∆(G) < i and
ν(G) < j. We have asked: what is the maximum number of edges a graph
in MS(i, j) can achieve, for given S, i and j. Such graphs are called edge-
extremal in MS(i, j). This is equivalent to asking for the Ramsey number
of line graphs for graphs in S. We have answered this question for bipartite
graphs, split graphs, disjoint union of split graphs and unit interval graphs.
The solution on general graphs has been presented, but this is not our work.
In addition we have presented a characterization of factor-critical chordal
graphs.

The results for edge-extremal graphs are summarized in Table 7.1.

51
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Table 7.1: Summary of results

Graph class Condition Tight bound on edges

Bipartite - E ≤ (i− 1)(j − 1)

Split i−1 ≤ 2(j−1)+1 E ≤ i(i−1)
2

i−1 > 2(j−1)+1 E ≤ max{ (2(j−1)+1)(2(j−1))
2

,

(i− 1)(j − 1)− (j−1)((j−1)−1)
2

}

Disjoint
union of split

Even i E ≤ (i− 1)(j − 1)

Unit interval Odd i E ≤ i(j − 1) + (2r + 1− i)r,
r = (j − 1) mod

(
i−1
2

)
Even i E ≤ (i− 1)(j − 1)−R,

R = min{(i− 2(p+ 1))p, (i− 2(s+ 1))s},
a = i

2
and b = i−2

2
,

j − 1 = q1a+ r1 = q2b+ r2
p = max{0, r2 − q2} and s = min{q1 + r2, b− 1}

We have only included results worked out by us in the table. The prod-
uct (i − 1)(j − 1) is present in many of the tight bounds on edges, possibly
together with another term which contributes negatively. This other term
seems like a measure of how many edges a graph from that class can have,
under restrictions on maximum degree and matching number. This is some-
what loose, but we can still point at one particular tendency; the negatively
contributing term is larger for the graph classes that do not allow i-stars and
absent for those who do. i-stars seems to play a central role in the bound
on edges. We have therefore posed some open questions later in the chap-
ter, concerning how allowing and disallowing stars affects the bound on the
number of edges.

7.2 Comment on working with the thesis

The solution of the edge-extremal problem on bipartite graph was used as
a familirization to the problem. This solution was produced immediately.
When this warm-up was done, our main goal was to solve the edge-extremal
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problem on chordal graphs. We wanted to begin with subclasses of chordal
grahps, starting with interval graphs and gradually move up in the graph
hierarchy. Interval graphs did not yield any solution, so we moved futher
down in the hierarchy to unit interval graphs. After spending some time
with this class, we came up with the solution presented here. However, we
did not feel that this provided any more insight to the problem on interval
graphs, so we jumped straight up to chordal graphs again. Attacking this
problem from any angle we could come up with did not solve it. Along the
way, however, we did some interesting observations, one of which is presented
in Chapter 6, concerning factor-critical chordal graphs. We have chosen not
to present any other insight obtained on the work on chordal graphs, as we
did not feel it was solid enough. This led us to start with subclasses of
chordal graphs, and we thought that the problem was easy on split grahps.
It did turn out to be way more complex than expected. A natural extension
of this work was disjoint union of split graphs, relaxing the connectedness
of split graphs. Again, the problem on this graph class did not help with
the chordal graphs. At that point, we were very pleased with the solutions
obtained, and chose to give up chordal graphs. We do however have strong
reasons to believe that the solution on chordal graphs is the same as the one
on disjoint union of split graphs.

For the most part, a top-down approach has been used; we started with
conjecturing properties that the edge-extremal instances might have, trying
to prove this. It the result were positive, we inestigated if these properties
could be used to anything reasonable. The attempts at proving these con-
jectured properties were sometimes fruitful, yielding usful lemmas or insight
in other ways. Most of the times, however, they resulted in nothing. While
the thesis might present the way to the solutions as streamlined, it has been
all but.

The process of puzzling with all the subproblems and patching them to-
gether to a solution has been very satisfying. We feel that the work presented
provides interesting insight and hope that the reader shares this feeling.

7.3 Open problems

The work on the thesis has left som unanswered questions:

• What is the solution to the edge-extremal problem on chordal graphs?
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• An interval graph is a unit interval graph if and only if it is claw-free
[5]. What happen to the edge-extremal unit interval graphs when we
allow them to have claws? In other words, what do the edge-extremal
interval graphs look like?

• How are the edge-extremal instances for general graphs affected if we
do not allow claws?
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