Vis enkel innførsel

dc.contributor.authorGraham, D. B.
dc.contributor.authorKhotyaintsev, Yu V
dc.contributor.authorNorgren, Astrid Elisabet Cecilia
dc.contributor.authorVaivads, Andris
dc.contributor.authorAndre, M.
dc.contributor.authorDrake, J. F.
dc.contributor.authorEgedal, J.
dc.contributor.authorZhou, M.
dc.contributor.authorLe Contel, O
dc.contributor.authorWebster, J.M.
dc.contributor.authorLavraud, B.
dc.contributor.authorKacem, Imed
dc.contributor.authorGénot, V.
dc.contributor.authorJacquey, C.
dc.contributor.authorRager, AC
dc.contributor.authorGershman, Daniel J
dc.contributor.authorBurch, J. L.
dc.contributor.authorErgun, Robert E
dc.date.accessioned2021-07-07T08:52:46Z
dc.date.available2021-07-07T08:52:46Z
dc.date.created2020-02-28T21:14:48Z
dc.date.issued2019
dc.PublishedJournal of Geophysical Research (JGR): Space Physics. 2019, 124 (11), 8727-8760.en_US
dc.identifier.issn2169-9380
dc.identifier.urihttps://hdl.handle.net/11250/2763675
dc.description.abstractWaves around the lower hybrid frequency are frequently observed at Earth's magnetopause and readily reach very large amplitudes. Determining the properties of lower hybrid waves is crucial because they are thought to contribute to electron and ion heating, cross-field particle diffusion, anomalous resistivity, and energy transfer between electrons and ions. All these processes could play an important role in magnetic reconnection at the magnetopause and the evolution of the boundary layer. In this paper, the properties of lower hybrid waves at Earth's magnetopause are investigated using the Magnetospheric Multiscale mission. For the first time, the properties of the waves are investigated using fields and direct particle measurements. The highest-resolution electron moments resolve the velocity and density fluctuations of lower hybrid waves, confirming that electrons remain approximately frozen in at lower hybrid wave frequencies. Using fields and particle moments, the dispersion relation is constructed and the wave-normal angle is estimated to be close to 90° to the background magnetic field. The waves are shown to have a finite parallel wave vector, suggesting that they can interact with parallel propagating electrons. The observed wave properties are shown to agree with theoretical predictions, the previously used single-spacecraft method, and four-spacecraft timing analyses. These results show that single-spacecraft methods can accurately determine lower hybrid wave properties.en_US
dc.language.isoengen_US
dc.publisherAmerican Geophysical Unionen_US
dc.titleUniversality of Lower Hybrid Waves at Earth's Magnetopauseen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2019 American Geophysical Union.en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.doi10.1029/2019JA027155
dc.identifier.cristin1798575
dc.source.journalJournal of Geophysical Research (JGR): Space Physicsen_US
dc.source.40124en_US
dc.source.1411en_US
dc.source.pagenumber8727-8760en_US
dc.identifier.citationJournal of Geophysical Research (JGR): Space Physics. 2019, 124, 8727-8760.en_US
dc.source.volume124en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel