Vis enkel innførsel

dc.contributor.authorKute, Preeti
dc.contributor.authorSoukarieh, Omar
dc.contributor.authorTjeldnes, Håkon
dc.contributor.authorTrégouët, David-Alexandre
dc.contributor.authorValen, Eivind Dale
dc.date.accessioned2022-06-08T08:22:33Z
dc.date.available2022-06-08T08:22:33Z
dc.date.created2022-05-20T11:26:34Z
dc.date.issued2022
dc.identifier.issn1664-8021
dc.identifier.urihttps://hdl.handle.net/11250/2997823
dc.description.abstractAdvances in genomics and molecular biology have revealed an abundance of small open reading frames (sORFs) across all types of transcripts. While these sORFs are often assumed to be non-functional, many have been implicated in physiological functions and a significant number of sORFs have been described in human diseases. Thus, sORFs may represent a hidden repository of functional elements that could serve as therapeutic targets. Unlike protein-coding genes, it is not necessarily the encoded peptide of an sORF that enacts its function, sometimes simply the act of translating an sORF might have a regulatory role. Indeed, the most studied sORFs are located in the 5′UTRs of coding transcripts and can have a regulatory impact on the translation of the downstream protein-coding sequence. However, sORFs have also been abundantly identified in non-coding RNAs including lncRNAs, circular RNAs and ribosomal RNAs suggesting that sORFs may be diverse in function. Of the many different experimental methods used to discover sORFs, the most commonly used are ribosome profiling and mass spectrometry. These can confirm interactions between transcripts and ribosomes and the production of a peptide, respectively. Extensions to ribosome profiling, which also capture scanning ribosomes, have further made it possible to see how sORFs impact the translation initiation of mRNAs. While high-throughput techniques have made the identification of sORFs less difficult, defining their function, if any, is typically more challenging. Together, the abundance and potential function of many of these sORFs argues for the necessity of including sORFs in gene annotations and systematically characterizing these to understand their potential functional roles. In this review, we will focus on the high-throughput methods used in the detection and characterization of sORFs and discuss techniques for validation and functional characterization.en_US
dc.language.isoengen_US
dc.publisherFrontiersen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleSmall Open Reading Frames, How to Find Them and Determine Their Functionen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2022 The Author(s)en_US
dc.source.articlenumber796060en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.3389/fgene.2021.796060
dc.identifier.cristin2025932
dc.source.journalFrontiers in Geneticsen_US
dc.identifier.citationFrontiers in Genetics. 2022, 12, 796060.en_US
dc.source.volume12en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal