Vis enkel innførsel

dc.contributor.authorLynn, Joshua Scott
dc.contributor.authorFridley, Jason D.
dc.contributor.authorVandvik, Vigdis
dc.date.accessioned2022-12-15T07:56:12Z
dc.date.available2022-12-15T07:56:12Z
dc.date.created2022-05-25T12:45:33Z
dc.date.issued2022
dc.identifier.issn0906-7590
dc.identifier.urihttps://hdl.handle.net/11250/3037834
dc.description.abstractHerbivory rates have classically been hypothesized to decrease from the tropics towards higher latitudes because the more benign abiotic conditions in tropical systems foster greater ecosystem complexity including greater intensity of biotic interactions. However, attempts to quantify latitudinal patterns of herbivory often fail to support this hypothesis. While biases have been offered as explanations for null results, here, we argue that framing the question of latitudinal variation in herbivory around nutrient and energetic constraints of insect herbivores and plants may provide mechanistic explanations of latitudinal herbivory patterns. As a case study, we focused on sodium as an uncoupled nutrient between herbivore and plant communities: sodium is a key limiting micronutrient for herbivore neural and muscular development while present at orders of magnitude lower concentrations in plants. We compared sodium deposition with latitude, mean annual temperature (MAT) and actual evapotranspiration (measure of primary productivity, AET) in their ability to predict consumed percentage leaf area from published datasets. Leaf percent herbivory increased with sodium deposition and MAT and decreased with latitude but was unrelated to AET. Sodium had comparable effect size and predictive ability to either MAT or latitude. Additionally, herbivory was highest in locales with both high sodium deposition and high MAT. Our hypothesis that geographic variation in herbivory is driven by an interaction of unrestrictive temperature environments (high MAT) and limiting nutrient supply to herbivores (high sodium deposition) was strongly supported. We propose that greater generality, predictability and theoretical development on geographic variation in herbivory will arise from a refocus on the biophysical constraints (e.g. productivity, micronutrient availability, leaf mass consumed) that ultimately control consumer interactions rather than latitude per se. This refocus is likely to open new hypotheses for the evolution of defense syndromes across plant populations and communities based on the specific geography of limiting nutrients.en_US
dc.language.isoengen_US
dc.publisherWileyen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleMore than what they eat: uncoupled biophysical constraints underlie geographic patterns of herbivoryen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2022 the authorsen_US
dc.source.articlenumbere06114en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.doi10.1111/ecog.06114
dc.identifier.cristin2027350
dc.source.journalEcographyen_US
dc.identifier.citationEcography. 2022, e06114.en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal