Vis enkel innførsel

dc.contributor.authorBarthelemy, Sebastien Jean-Claude
dc.contributor.authorBrajard, Julien
dc.contributor.authorBertino, Laurent
dc.contributor.authorCounillon, Francois Stephane
dc.date.accessioned2022-12-29T13:56:12Z
dc.date.available2022-12-29T13:56:12Z
dc.date.created2022-08-24T15:17:45Z
dc.date.issued2022
dc.identifier.issn1616-7341
dc.identifier.urihttps://hdl.handle.net/11250/3039920
dc.description.abstractIncreasing model resolution can improve the performance of a data assimilation system because it reduces model error, the system can more optimally use high-resolution observations, and with an ensemble data assimilation method the forecast error covariances are improved. However, increasing the resolution scales with a cubical increase of the computational costs. A method that can more effectively improve performance is introduced here. The novel approach called “Super-resolution data assimilation” (SRDA) is inspired from super-resolution image processing techniques and brought to the data assimilation context. Starting from a low-resolution forecast, a neural network (NN) emulates the fields to high-resolution, assimilates high-resolution observations, and scales it back up to the original resolution for running the next model step. The SRDA is tested with a quasi-geostrophic model in an idealized twin experiment for configurations where the model resolution is twice and four times lower than the reference solution from which pseudo-observations are extracted. The assimilation is performed with an Ensemble Kalman Filter. We show that SRDA outperforms both the low-resolution data assimilation approach and a version of SRDA with cubic spline interpolation instead of NN. The NN’s ability to anticipate the systematic differences between low- and high-resolution model dynamics explains the enhanced performance, in particular by correcting the difference of propagation speed of eddies. With a 25-member ensemble at low resolution, the SRDA computational overhead is 55% and the errors reduce by 40%, making the performance very close to that of the high-resolution system (52% of error reduction) that increases the cost by 800%. The reliability of the ensemble system is not degraded by SRDA.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleSuper-resolution data assimilationen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2022 the authorsen_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.1007/s10236-022-01523-x
dc.identifier.cristin2045751
dc.source.journalOcean Dynamicsen_US
dc.source.pagenumber661-678en_US
dc.relation.projectSigma2: NS9039ken_US
dc.relation.projectTrond Mohn stiftelse: BFS2018TMT01en_US
dc.relation.projectNorges forskningsråd: 270733en_US
dc.relation.projectNorges forskningsråd: 309562en_US
dc.relation.projectSigma2: nn9039ken_US
dc.relation.projectEC/H2020/727852en_US
dc.identifier.citationOcean Dynamics. 2022, 72 (8), 661-678.en_US
dc.source.volume72en_US
dc.source.issue8en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal