Vis enkel innførsel

dc.contributor.authorFomin, Fedor
dc.contributor.authorGolovach, Petr
dc.contributor.authorLochet, William Alexandre
dc.contributor.authorSagunov, Danil
dc.contributor.authorSimonov, Kirill
dc.contributor.authorSaurabh, Saket
dc.date.accessioned2023-01-10T12:02:43Z
dc.date.available2023-01-10T12:02:43Z
dc.date.created2022-11-04T12:35:14Z
dc.date.issued2022
dc.identifier.issn1868-8969
dc.identifier.urihttps://hdl.handle.net/11250/3042296
dc.description.abstractWe study two "above guarantee" versions of the classical Longest Path problem on undirected and directed graphs and obtain the following results. In the first variant of Longest Path that we study, called Longest Detour, the task is to decide whether a graph has an (s,t)-path of length at least dist_G(s,t)+k (where dist_G(s,t) denotes the length of a shortest path from s to t). Bezáková et al. [Ivona Bezáková et al., 2019] proved that on undirected graphs the problem is fixed-parameter tractable (FPT) by providing an algorithm of running time 2^{O(k)}⋅ n. Further, they left the parameterized complexity of the problem on directed graphs open. Our first main result establishes a connection between Longest Detour on directed graphs and 3-Disjoint Paths on directed graphs. Using these new insights, we design a 2^{O (k)}· n^{O(1)} time algorithm for the problem on directed planar graphs. Further, the new approach yields a significantly faster FPT algorithm on undirected graphs. In the second variant of Longest Path, namely Longest Path above Diameter, the task is to decide whether the graph has a path of length at least diam(G)+k(diam(G)denotes the length of a longest shortest path in a graph G). We obtain dichotomy results about Longest Path above Diameter on undirected and directed graphs. For (un)directed graphs, Longest Path above Diameter is NP-complete even for k=1. However, if the input undirected graph is 2-connected, then the problem is FPT. On the other hand, for 2-connected directed graphs, we show that Longest Path above Diameter is solvable in polynomial time for each k ∈ {1,..., 4} and is NP-complete for every k ≥ 5. The parameterized complexity of Longest Detour on general directed graphs remains an interesting open problem.en_US
dc.language.isoengen_US
dc.publisherSchloss Dagstuhl – Leibniz Center for Informaticsen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleDetours in Directed Graphsen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2022 the authorsen_US
dc.source.articlenumber29en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doihttps://doi.org/10.4230/LIPIcs.STACS.2022.29
dc.identifier.cristin2069171
dc.source.journalLeibniz International Proceedings in Informaticsen_US
dc.source.pagenumber29:1-29:16en_US
dc.relation.projectNorges forskningsråd: 314528en_US
dc.identifier.citationLeibniz International Proceedings in Informatics. 2022, 219, 29:1-29:16.en_US
dc.source.volume219en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal