Vis enkel innførsel

dc.contributor.authorKurki, Milla
dc.contributor.authorPoso, Antti
dc.contributor.authorBartos, Piia
dc.contributor.authorMiettinen, Markus
dc.date.accessioned2023-01-19T09:13:25Z
dc.date.available2023-01-19T09:13:25Z
dc.date.created2023-01-04T18:26:30Z
dc.date.issued2022
dc.identifier.issn1549-9596
dc.identifier.urihttps://hdl.handle.net/11250/3044496
dc.description.abstractIt is crucial for molecular dynamics simulations of biomembranes that the force field parameters give a realistic model of the membrane behavior. In this study, we examined the OPLS3e force field for the carbon−hydrogen order parameters SCH of POPC (1-palmitoyl-2-oleoylphosphatidylcholine) lipid bilayers at varying hydration conditions and ion concentrations. The results show that OPLS3e behaves similarly to the CHARMM36 force field and relatively accurately follows the experimentally measured SCH for the lipid headgroup, the glycerol backbone, and the acyl tails. Thus, OPLS3e is a good choice for POPC bilayer simulations under many biologically relevant conditions. The exception are systems with an abundancy of ions, as similarly to most other force fields OPLS3e strongly overestimates the membrane-binding of cations, especially Ca2+. This leads to undesirable positive charge of the membrane surface and drastically lowers the concentration of Ca2+ in the surrounding solvent, which might cause issues in systems sensitive to correct charge distribution profiles across the membrane.en_US
dc.language.isoengen_US
dc.publisherACSen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectMolecular dynamics simulationsen_US
dc.subjectMolecular dynamics simulationsen_US
dc.subjectNMRen_US
dc.subjectNMRen_US
dc.subjectMembranlipideren_US
dc.subjectMembrane Lipidsen_US
dc.subjectCelle membran modelleringen_US
dc.subjectCellular membrane modellingen_US
dc.titleStructure of POPC Lipid Bilayers in OPLS3e Force Fielden_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2022 The Author(s)en_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.doi10.1021/acs.jcim.2c00395
dc.identifier.cristin2100896
dc.source.journalJournal of Chemical Information and Modelingen_US
dc.source.pagenumber6462-6474en_US
dc.relation.projectTrond Mohn stiftelse: BFS2017TMT01en_US
dc.subject.nsiVDP::Fysikalsk kjemi: 443en_US
dc.subject.nsiVDP::Physical chemistry: 443en_US
dc.subject.nsiVDP::Fysikalsk kjemi: 443en_US
dc.subject.nsiVDP::Physical chemistry: 443en_US
dc.subject.nsiVDP::Fysikalsk kjemi: 443en_US
dc.subject.nsiVDP::Physical chemistry: 443en_US
dc.subject.nsiVDP::Fysikalsk kjemi: 443en_US
dc.subject.nsiVDP::Physical chemistry: 443en_US
dc.subject.nsiVDP::Fysikalsk kjemi: 443en_US
dc.subject.nsiVDP::Physical chemistry: 443en_US
dc.identifier.citationJournal of Chemical Information and Modeling. 2022, 62 (24), 6462-6474.en_US
dc.source.volume62en_US
dc.source.issue24en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal