Show simple item record

dc.contributor.authorBulled, Johnathan M.
dc.contributor.authorPaddison, Joseph A. M.
dc.contributor.authorWildes, Andrew
dc.contributor.authorLhotel, Elsa
dc.contributor.authorCassidy, Simon J.
dc.contributor.authorPato-Doldán, Breogán
dc.contributor.authorGómez-Aguirre, L. Claudia
dc.contributor.authorSaines, Paul J.
dc.contributor.authorGoodwin, Andrew L.
dc.date.accessioned2023-01-23T12:59:39Z
dc.date.available2023-01-23T12:59:39Z
dc.date.created2022-10-19T11:20:20Z
dc.date.issued2022
dc.identifier.issn0031-9007
dc.identifier.urihttps://hdl.handle.net/11250/3045358
dc.description.abstractIn the dense metal-organic framework Na[Mn(HCOO)3], Mn2+ ions (S=52) occupy the nodes of a “trillium” net. We show that the system is strongly magnetically frustrated: the Néel transition is suppressed well below the characteristic magnetic interaction strength; short-range magnetic order persists far above the Néel temperature; and the magnetic susceptibility exhibits a pseudo-plateau at 13-saturation magnetization. A simple model of nearest-neighbor Heisenberg antiferromagnetic and dipolar interactions accounts quantitatively for all observations, including an unusual 2-k magnetic ground state. We show that the relative strength of dipolar interactions is crucial to selecting this particular ground state. Geometric frustration within the classical spin liquid regime gives rise to a large magnetocaloric response at low applied fields that is degraded in powder samples as a consequence of the anisotropy of dipolar interactions.en_US
dc.language.isoengen_US
dc.publisherAmerican Physical Societyen_US
dc.titleGeometric Frustration on the Trillium Lattice in a Magnetic Metal-Organic Frameworken_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2022 American Physical Societyen_US
dc.source.articlenumber177201en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.doi10.1103/PhysRevLett.128.177201
dc.identifier.cristin2062703
dc.source.journalPhysical Review Lettersen_US
dc.identifier.citationPhysical Review Letters. 2022, 128 (17), 177201.en_US
dc.source.volume128en_US
dc.source.issue17en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record