Vis enkel innførsel

dc.contributor.authorMagnussen, Eirik Almklov
dc.contributor.authorZimmermann, Boris
dc.contributor.authorBlazhko, Uladzislau
dc.contributor.authorDzurendová, Simona
dc.contributor.authorDupuy--Galet, Benjamin Xavier
dc.contributor.authorByrtusova, Dana
dc.contributor.authorMuthreich, Florian
dc.contributor.authorTafintseva, Valeria
dc.contributor.authorLiland, Kristian Hovde
dc.contributor.authorTøndel, Kristin
dc.contributor.authorShapaval, Volha
dc.contributor.authorKohler, Achim
dc.date.accessioned2023-02-09T12:12:08Z
dc.date.available2023-02-09T12:12:08Z
dc.date.created2023-01-13T13:14:47Z
dc.date.issued2022
dc.identifier.issn2399-3669
dc.identifier.urihttps://hdl.handle.net/11250/3049682
dc.description.abstractInfrared spectroscopy delivers abundant information about the chemical composition, as well as the structural and optical properties of intact samples in a non-destructive manner. We present a deep convolutional neural network which exploits all of this information and solves full-wave inverse scattering problems and thereby obtains the 3D optical, structural and chemical properties from infrared spectroscopic measurements of intact micro-samples. The proposed model encodes scatter-distorted infrared spectra and infers the distribution of the complex refractive index function of concentrically spherical samples, such as many biological cells. The approach delivers simultaneously the molecular absorption, sample morphology and effective refractive index in both the cell wall and interior from a single measured spectrum. The model is trained on simulated scatter-distorted spectra, where absorption in the distinct layers is simulated and the scatter-distorted spectra are estimated by analytic solutions of Maxwell’s equations for samples of different sizes. This allows for essentially real-time deep learning-enabled infrared diffraction micro-tomography, for a large subset of biological cells.en_US
dc.language.isoengen_US
dc.publisherNatureen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleDeep learning-enabled Inference of 3D molecular absorption distribution of biological cells from IR spectraen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2022 The Author(s)en_US
dc.source.articlenumber175en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.1038/s42004-022-00792-3
dc.identifier.cristin2106580
dc.source.journalCommunications chemistryen_US
dc.identifier.citationCommunications chemistry. 2022, 5 (1), 175.en_US
dc.source.volume5en_US
dc.source.issue1en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal