Vis enkel innførsel

dc.contributor.authorMaliniemi, Ville Aleksi
dc.contributor.authorArsenovic, Pavle
dc.contributor.authorSeppälä, Annika
dc.contributor.authorTyssøy, Hilde Nesse
dc.date.accessioned2023-03-08T14:06:05Z
dc.date.available2023-03-08T14:06:05Z
dc.date.created2022-09-28T10:56:38Z
dc.date.issued2022
dc.identifier.issn1680-7316
dc.identifier.urihttps://hdl.handle.net/11250/3057135
dc.description.abstractChlorofluorocarbon (CFC) emissions in the latter part of the 20th century reduced stratospheric ozone abundance substantially, especially in the Antarctic region. Simultaneously, polar stratospheric ozone is also destroyed catalytically by nitrogen oxides (NOx = NO + NO2) descending from the mesosphere and the lower thermosphere during winter. These are produced by energetic particle precipitation (EPP) linked to solar activity and space weather. Active chlorine (ClOx = Cl + ClO) can also react mutually with EPP-produced NOx or hydrogen oxides (HOx ) and transform both reactive agents into reservoir gases, chlorine nitrate or hydrogen chloride, which buffer ozone destruction by all these agents. We study the interaction between EPP-produced NOx , ClO and ozone over the 20th century by using free-running climate simulations of the chemistry–climate model SOCOL3-MPIOM. A substantial increase of NOx descending to the polar stratosphere is found during winter, which causes ozone depletion in the upper and mid-stratosphere. However, in the Antarctic mid-stratosphere, the EPP-induced ozone depletion became less efficient after the 1960s, especially during springtime. Simultaneously, a significant decrease in stratospheric ClO and an increase in hydrogen chloride – and partly chlorine nitrate between 10–30 hPa – can be ascribed to EPP forcing. Hence, the interaction between EPP-produced NOx /HOx and ClO likely suppressed the ozone depletion, due to both EPP and ClO at these altitudes. Furthermore, at the end of the century, a significant ClO increase and ozone decrease were obtained at 100 hPa altitude during winter and spring. This lower stratosphere response shows that EPP can influence the activation of chlorine from reservoir gases on polar stratospheric clouds, thus modulating chemical processes important for ozone hole formation. Our results show that EPP has been a significant modulator of reactive chlorine in the Antarctic stratosphere during the CFC era. With the implementation of the Montreal Protocol, stratospheric chlorine is estimated to return to pre-CFC era levels after 2050. Thus, we expect increased efficiency of chemical ozone destruction by EPP-NOx in the Antarctic upper and mid-stratosphere over coming decades. The future lower stratosphere ozone response by EPP is more uncertain.en_US
dc.language.isoengen_US
dc.publisherCopernicus Publicationsen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleThe influence of energetic particle precipitation on Antarctic stratospheric chlorine and ozone over the 20th centuryen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2022 The Author(s)en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.doi10.5194/acp-22-8137-2022
dc.identifier.cristin2056254
dc.source.journalAtmospheric Chemistry and Physics (ACP)en_US
dc.source.pagenumber8137-8149en_US
dc.identifier.citationAtmospheric Chemistry and Physics (ACP). 2022, 22 (12), 8137-8149.en_US
dc.source.volume22en_US
dc.source.issue12en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal