Vis enkel innførsel

dc.contributor.authorFiedler, Johannes
dc.contributor.authorLefmann, Kim
dc.contributor.authorvon Klitzing, Wolf
dc.contributor.authorHolst, Bodil
dc.date.accessioned2023-08-15T12:32:09Z
dc.date.available2023-08-15T12:32:09Z
dc.date.created2023-08-10T14:45:50Z
dc.date.issued2023
dc.identifier.issn2469-9926
dc.identifier.urihttps://hdl.handle.net/11250/3084171
dc.description.abstractAtom and, more recently, molecule interferometers are used in fundamental research and industrial applications. Most atom interferometers rely on gratings made from laser beams, which can provide high precision, but cannot reach very short wavelengths and require complex laser systems to function. Contrary to this, simple monolithic interferometers cut from single crystals offer (sub) nanometer wavelengths with an extreme level of stability and robustness. Such devices were conceived and demonstrated several decades ago for neutrons and electrons. Here, we propose a monolithic design for a thermal-beam molecule interferometer based on (quantum) reflection. We show, as an example, how a reflective, monolithic interferometer (Mach-Zehnder type) can be realized for a helium beam using Si(111)−H(1 × 1) surfaces, which have previously been demonstrated to act as very robust and stable diffractive mirrors for neutral helium atoms.en_US
dc.language.isoengen_US
dc.publisherAPSen_US
dc.titleMonolithic atom interferometryen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2023 American Physical Societyen_US
dc.source.articlenumber023306en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.doihttps://doi.org/10.1103/PhysRevA.108.023306
dc.identifier.cristin2166220
dc.source.journalPhysical Review A (PRA)en_US
dc.identifier.citationPhysical Review A (PRA). 2023, 108, 023306.en_US
dc.source.volume108en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel