Vis enkel innførsel

dc.contributor.authorYamada, Shuntaro
dc.date.accessioned2023-09-22T09:40:54Z
dc.date.available2023-09-22T09:40:54Z
dc.date.issued2023-10-06
dc.date.submitted2023-09-04T09:34:53.302Z
dc.identifiercontainer/62/b3/ad/3d/62b3ad3d-987b-4078-995c-651de018b7c9
dc.identifier.isbn9788230853887
dc.identifier.isbn9788230845738
dc.identifier.urihttps://hdl.handle.net/11250/3091306
dc.description.abstractSkjebnen og veksten til mesenkymale stamceller (MSC) kan påvirkes av biologiske stimuli. I benvev regnes skjærspenning fra væske forårsaket av interstitiell væskestrøm som den primære mekaniske stimulien på celleplan, som virker som en fremmende stimulus for beinvekst, homeostase og reparasjon. For å forbedre det osteogene potensialet, har det blitt gjort forsøk på å mekanisk stimulere benmargens MSC (BMSC) i kultur ved å bruke denne kunnskapen. Det er imidlertid fortsatt uklart 1) hva som er den optimale dynamiske kulturtilstanden for å fremme osteogen differensiering av BMSC, 2) hvordan BMSC responderer, spesielt i et 3D-miljø, til en slik stimulus, og 3) om stimuli fra væske alene er tilstrekkelig til å indusere differensiering. I studiene inkludert i avhandlingen, med tanke på bruk av “tissue engineering” for regenereing av benvev, ble BMSC isolert fra Lewis-rotter dyrket på 3D-scaffolds utsatt for væskestimuli ved hjelp av en "laminar flow biorector” for å evaluere deres evne til osteogen differensiering. Spesielt i Artikkel Ⅰ ble 3D-scaffolds med svært porøse strukturer designet og produsert ved bruk av et polymert biomaterial, poly(L-lactide-co-trimethylene carbonate), og dets biokompatibilitet og in vitro osteokonduktivitet med og uten funksjonalisering av oksygenplasma ble testet. Ved hjelp av 3D-scaffoldsene ble det etablert en dynamisk cellekulturplattform i bioreaktoren gjennom grundig optimalisering for å definere eksperimentelle variabler og driftskonfigurasjoner i Artikkel Ⅱ. Den mekaniske reguleringen av BMSC-vekst og skjebne ble evaluert i Artikkel Ⅲ som en “proof of concept"-studie, som viste at den osteogene differensieringen av BMSC utelukkende ble indusert av væskestimuli i bioreaktoren uten behov for osteoinduktive tilskudd. Artikkel Ⅳ tok for seg antatte mekanismer bak den mekanisk induserte osteogene differensieringen og viste at Rho-ROCK-mediert cytoskjelettmodulering under væskestrøm var nødvendig for vekst og differensiering av BMSC. Til sammen gir avhandlingen innsikt i dynamisk cellekultur for "bone tissue engineering” med bevis for at væskestimuli er tilstrekkelig for å indusere osteogen differensiering av BMSC gjennom cytoskjelettreguleringer.en_US
dc.description.abstractThe fate and growth of mesenchymal stem cells (MSC) can be altered by biophysical stimuli. In bone, fluid shear stress caused by interstitial fluid flow is considered the primary mechanical stimulus at a cellular level, which drives mechanotransduction to regulate bone formation, homeostasis, and repair. Using this knowledge, attempts have been made to mechanically stimulate bone marrow-derived MSC (BMSC) in culture to improve their osteogenic potential. However, it remains unclear 1) what the optimal dynamic culture condition is to promote osteogenic differentiation of BMSC, 2) how BMSC respond, particularly in a 3D environment, to such a stimulus, and 3) whether fluid stimuli alone are sufficient to induce differentiation. In the studies included in this thesis, with the prospect of bone tissue engineering, BMSC isolated from Lewis rats cultured on 3D scaffolds were subjected to fluid stimuli using a laminar flow bioreactor to evaluate the biological response of BMSC to fluid stimuli. Specifically, in Paper Ⅰ, 3D scaffolds with highly porous structures were designed and fabricated using polymeric biomaterial, poly(L-lactide-co-trimethylene carbonate). The biocompatibility and osteoconductivity of the scaffolds were evaluated in vitro with and without functionalisation by oxygen plasma. Using the 3D scaffolds, a dynamic cell culture platform was established in the bioreactor through thorough optimisation to define experimental variables and operational configurations in Paper Ⅱ. The mechanical regulation of BMSC growth and fate was evaluated in Paper Ⅲ as a proof-of-concept study, showing that the osteogenic differentiation of BMSC was induced solely by fluid stimuli in the bioreactor without the need for osteoinductive supplements. Paper Ⅳ addressed putative mechanisms behind the mechanically induced osteogenic differentiation and showed that Rho-ROCK-mediated cytoskeletal modulation under fluid flow was required for the growth and differentiation of BMSC. Taken together, the thesis provides the insight of dynamic cell culture for bone tissue engineering with evidence that fluid stimuli alone can induce osteogenic differentiation of BMSC on 3D scaffolds through cytoskeletal regulations.en_US
dc.language.isoengen_US
dc.publisherThe University of Bergenen_US
dc.relation.haspartPaper I. Yamada S, Yassin MA, Weigel T, Schmitz T, Hansmann J, Mustafa K. Surface Activation with Oxygen Plasma Promotes Osteogenesis with Enhanced Extracellular Matrix Formation in Three-dimensional Microporous Scaffolds. Journal of Biomedical Materials Research Part A. 2021;109(9):1560-1574. The article is available at: <a href="https://hdl.handle.net/11250/2768941" target="blank">https://hdl.handle.net/11250/2768941</a>.en_US
dc.relation.haspartPaper II. Yamada S, Yassin MA, Schwarz T, Mustafa K, Hansmann J. Optimization and Validation of a Custom-Designed Perfusion Bioreactor for Bone Tissue Engineering: Flow Assessment and Optimal Culture Environmental Conditions. Frontiers in Bioengineering and Biotechnology. 2022;10:811942. The article is available at: <a href="https://hdl.handle.net/11250/2992304" target="blank">https://hdl.handle.net/11250/2992304</a>.en_US
dc.relation.haspartPaper III. Yamada S, Yassin MA, Schwarz T, Hansmann J, Mustafa K. Induction of Osteogenic Differentiation of Bone Marrow Stromal Cells on 3D Polyester-based Scaffolds Solely by Subphysiological Fluidic Stimulation in a Laminar Flow Bioreactor. Journal of Tissue Engineering. 2021;12:1-17. The article is available at: <a href="https://hdl.handle.net/11250/2768943" target="blank">https://hdl.handle.net/11250/2768943</a>.en_US
dc.relation.haspartPaper IV. Yamada S, Yassin MA, Torelli F, Hansmann J, Green JBA, Schwarz T, Mustafa K. Unique Osteogenic Profile of Bone Marrow Stem Cells Stimulated in Perfusion Bioreactor is Rho-ROCK-mediated Contractility Dependent. Bioengineering & Translational Medicine. 2023; 8(3),e10509. The article is available at: <a href="https://hdl.handle.net/11250/3064525" target="blank">https://hdl.handle.net/11250/3064525</a>.en_US
dc.rightsIn copyright
dc.rights.urihttp://rightsstatements.org/page/InC/1.0/
dc.title3D dynamic culture of mesenchymal stem cells under fluid flow : Implications for bone regenerationen_US
dc.typeDoctoral thesisen_US
dc.date.updated2023-09-04T09:34:53.302Z
dc.rights.holderCopyright the Author. All rights reserveden_US
dc.contributor.orcid0000-0003-0282-5498
dc.description.degreeDoktorgradsavhandling
fs.unitcode13-19-0


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel