Vis enkel innførsel

dc.contributor.authorSzigetvari, Peter Daniel
dc.contributor.authorMuruganandam, Gopinath
dc.contributor.authorKallio, Juha
dc.contributor.authorHallin, Erik Ingmar
dc.contributor.authorFossbakk, Agnete
dc.contributor.authorLoris, Remy
dc.contributor.authorKursula, Inari
dc.contributor.authorMøller, Lisbeth Birk
dc.contributor.authorKnappskog, Per
dc.contributor.authorKursula, Petri
dc.contributor.authorHaavik, Jan
dc.date.accessioned2024-02-09T10:41:04Z
dc.date.available2024-02-09T10:41:04Z
dc.date.created2019-01-04T11:39:45Z
dc.date.issued2019
dc.identifier.issn0022-3042
dc.identifier.urihttps://hdl.handle.net/11250/3116580
dc.description.abstractTyrosine hydroxylase (TH) is a multi-domain, homo-oligomeric enzyme that catalyses the rate-limiting step of catecholamine neurotransmitter biosynthesis. Missense variants of human TH are associated with a recessive neurometabolic disease with low levels of brain dopamine and noradrenaline, resulting in a variable clinical picture, from progressive brain encephalopathy to adolescent onset DOPA-responsive dystonia (DRD). We expressed isoform 1 of human TH (hTH1) and its dystonia-associated missense variants in E. coli, analysed their quaternary structure and thermal stability using size-exclusion chromatography, circular dichroism, multi-angle light scattering, transmission electron microscopy, small-angle X-ray scattering and assayed hydroxylase activity. Wild-type (WT) hTH1 was a mixture of enzymatically stable tetramers (85.6%) and octamers (14.4%), with little interconversion between these species. We also observed small amounts of higher order assemblies of long chains of enzyme by transmission electron microscopy. To investigate the role of molecular assemblies in the pathogenesis of DRD, we compared the structure of WT hTH1 with the DRD-associated variants R410P and D467G that are found in vicinity of the predicted subunit interfaces. In contrast to WT hTH1, R410P and D467G were mixtures of tetrameric and dimeric species. Inspection of the available structures revealed that Arg-410 and Asp-467 are important for maintaining the stability and oligomeric structure of TH. Disruption of the normal quaternary enzyme structure by missense variants is a new molecular mechanism that may explain the loss of TH enzymatic activity in DRD. Unstable missense variants could be targets for pharmacological intervention in DRD, aimed to re-establish the normal oligomeric state of TH.en_US
dc.language.isoengen_US
dc.publisherWileyen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleThe quaternary structure of human tyrosine hydroxylase: effects of dystonia‐associated missense variants on oligomeric state and enzyme activityen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2018 the authorsen_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2
dc.identifier.doi10.1111/jnc.14624
dc.identifier.cristin1650305
dc.source.journalJournal of Neurochemistryen_US
dc.source.pagenumber291-306en_US
dc.identifier.citationJournal of Neurochemistry. 2019, 148 (2), 291-306.en_US
dc.source.volume148en_US
dc.source.issue2en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal