Vis enkel innførsel

dc.contributor.authorLiu, Na
dc.contributor.authorHaugen, Malin
dc.contributor.authorBenali, Benyamine
dc.contributor.authorLanda-Marbán, David
dc.contributor.authorFernø, Martin
dc.date.accessioned2024-03-12T09:29:08Z
dc.date.available2024-03-12T09:29:08Z
dc.date.created2023-06-19T09:53:32Z
dc.date.issued2023
dc.identifier.issn1750-5836
dc.identifier.urihttps://hdl.handle.net/11250/3121906
dc.description.abstractThe naturally occurring bio-geochemical microbial-induced calcium carbonate precipitation (MICP) process is an eco-friendly technology for rehabilitating construction materials, reinforcement of soils and sand, heavy metals immobilization and sealing subsurface leakage pathways. We report pore-scale spatiotemporal dynamics of the MICP process in porous media, relevant for reduced environmental risk by leakage during CO2 geological storage. Effects of hydrodynamics and supersaturation on the MICP with Sporosarcina pasteurii stains were studied using a high-pressure, rock-on-a-chip microfluidic device. Bacterial cell numbers and variation in cementation concentration controlled the crystal size and pore-scale distribution by influencing the local supersaturation. Local pore structure determined crystal nucleation, where low velocity regions tended to nucleate more crystals. CaCO3 crystallization was observed at subsurface pressure (100 barg) with a reduced sealing performance due to the low microbial activity from elevated pressure. We identify that hydrodynamics and supersaturation determine crystal nucleation and growth in porous systems, providing important experimental evidence for subsurface environmental applications and validation of upscaled MICP models.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectHydrodynamikken_US
dc.subjectHydrodynamicsen_US
dc.titlePore-scale spatiotemporal dynamics of microbial-induced calcium carbonate growth and distribution in porous mediaen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2023 The Author(s)en_US
dc.source.articlenumber103885en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1
dc.identifier.doi10.1016/j.ijggc.2023.103885
dc.identifier.cristin2155659
dc.source.journalInternational Journal of Greenhouse Gas Controlen_US
dc.relation.projectNorges forskningsråd: 280341en_US
dc.relation.projectNORCE Norwegian Research Centre AS: 101070en_US
dc.relation.projectNorges forskningsråd: 325457en_US
dc.relation.projectNorges forskningsråd: 331841en_US
dc.subject.nsiVDP::Teknologi: 500en_US
dc.subject.nsiVDP::Technology: 500en_US
dc.identifier.citationInternational Journal of Greenhouse Gas Control. 2023, 125, 103885.en_US
dc.source.volume125en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal