Show simple item record

dc.contributor.authorDarelius, Elin Maria K.
dc.contributor.authorFer, Ilker
dc.contributor.authorRasmussen, Till
dc.contributor.authorGuo, Chuncheng
dc.contributor.authorLarsen, Karin Margretha Húsgarð
dc.date.accessioned2016-11-04T13:24:49Z
dc.date.available2016-11-04T13:24:49Z
dc.date.issued2015-10-26
dc.PublishedOcean Science 2015, 11(5):855-871eng
dc.identifier.issn1812-0792en_US
dc.identifier.urihttps://hdl.handle.net/1956/13059
dc.description.abstractThe Faroe Bank Channel (FBC) is one of the ma- jor pathways where dense, cold water formed in the Nordic Seas flows southward as a bottom-attached energetic plume towards the North Atlantic. The plume region downstream of the FBC sill is characterized by high mesoscale variability, quasi-regular oscillations and intense mixing. Here, 1 year long time series of velocity and temperature from ten moor- ings deployed in May 2012 in the plume region are analysed to describe variability in the strength and period of the os- cillations. The eddy kinetic energy (EKE) associated with the oscillations changes by a factor of 10 during the year and the dominant period of the oscillations is modulated and varies between 3 to 4 and 6 days, where the shorter-period oscillations are more energetic. The dense water is observed on a wider portion of the slope (both deeper and shallower) during periods with energetic, short-period oscillations. The observations are complemented by results from a regional, high-resolution model that shows a similar variability in EKE and a gradual change in oscillation period of between 3 and 4 days. The observed variability in oscillation period is di- rectly linked to changes in the volume transport across the sill: the oscillation period increases from approximately 3 days to about 6 days when the transport decreases from 2.4 to 1.9 Sv. A similar relation is obtained from the model. This is in agreement with results from a linear baroclinic instability analysis, which suggests that the period increases while the growth rate decreases for decreased plume thickness. Advec- tive effects, caused by the variable background current, fur- ther modulate the observed periodicity by up to 1 day. In ad- dition, it is shown that about 50 % of the transport variability across the sill is explained by changes in the local sea surface height gradient.en_US
dc.language.isoengeng
dc.publisherCopernicus Publicationsen_US
dc.rightsAttribution CC BYeng
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/eng
dc.titleOn the modulation of the periodicity of the Faroe Bank Channel overflow instabilitiesen_US
dc.typePeer reviewed
dc.typeJournal article
dc.date.updated2016-10-24T08:15:41Z
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright Author(s) 2015en_US
dc.identifier.doihttps://doi.org/10.5194/os-11-855-2015
dc.identifier.cristin1298645
dc.relation.projectNorges forskningsråd: 204867


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution CC BY
Except where otherwise noted, this item's license is described as Attribution CC BY