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—— Abstract

In the BISECTION problem, we are given as input an edge-weighted graph G. The task is to find a
partition of V(G) into two parts A and B such that ||A| — |B|| < 1 and the sum of the weights of
the edges with one endpoint in A and the other in B is minimized. We show that the complexity of
the BISECTION problem on trees, and more generally on graphs of bounded treewidth, is intimately
linked to the (min, 4+)-CONVOLUTION problem. Here the input consists of two sequences (a[i])}=,
and (b[i])7=;, the task is to compute the sequence (c[i])7—,', where c[k] = min;—o,...x(a[i] + b[k — i]).

In particular, we prove that if (min, +)-CONVOLUTION can be solved in O(7(n)) time, then
BISECTION of graphs of treewidth ¢ can be solved in time O(8t°™® logn - 7(n)), assuming a tree
decomposition of width t is provided as input. Plugging in the naive O(n2) time algorithm for
(min, +)-CONVOLUTION yields a O(8/t°n?logn) time algorithm for BISECTION. This improves
over the (dependence on n of the) O(2'n?) time algorithm of Jansen et al. [SICOMP 2005] at the cost
of a worse dependence on ¢t. “Conversely”, we show that if BISECTION can be solved in time O(8(n))
on edge weighted trees, then (min, +)-CONVOLUTION can be solved in O(3(n)) time as well. Thus,
obtaining a sub-quadratic algorithm for BISECTION on trees is extremely challenging, and could even
be impossible. On the other hand, for unweighted graphs of treewidth ¢, by making use of a recent
algorithm for BOUNDED DIFFERENCE (min, +)-CONVOLUTION of Chan and Lewenstein [STOC 2015],
we obtain a sub-quadratic algorithm for BISECTION with running time O(8*t°)n!-%41ogn).
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1 Introduction

A bisection of a graph G is a partition of V(G) into two parts A and B such that ||A|—|B|| < 1.
The weight of a bisection (A, B) of an edge-weighted graph G is the sum of the weights of
all edges with one endpoint in A and the other in B. In the BISECTION problem the task
is to find a minimum weight bisection in an edge-weighted graph G given as input. The
problem can be seen as a version of MINIMUM CUT with a balance constraint on the sizes
of two sides of the cut. While MiniMUM CUT is solvable in polynomial time, BISECTION
is one of the classic examples of NP-complete problems [15]. BISECTION has been studied
extensively from the perspective of approximation algorithms [14, 13, 18, 21], parameterized
algorithms [7, 11, 22] heuristics [6, 8] and average case complexity [5].
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In this paper we consider BISECTION when the input graph is required to be a tree,
or more generally a graph with treewidth at most t. For trees, an O(n?) time algorithm
was given by MacGregor [20] already in 1978, this was improved to a parallel algorithm
running in time O(log® nloglogn) on O(n?) processors by Goldberg and Miller [16]. This
corresponds to a sequential algorithm running in time O(n? log? nloglog n). For graphs
of bounded treewidth Jansen et al. [17] gave an algorithm that solves BISECTION in time
O(2'n?) if a tree decomposition of width ¢ is given as input.

The majority of natural graph problems are solvable in linear time on trees and bounded
treewidth graphs (see e.g. Courcelle’s theorem [10]). Thus, it is quite natural to ask whether
the dependence on n in the algorithm of Jansen et al. [17] could be improved to linear. Our
first result goes “half the way” from Jansen et al’s cubic algorithm to a linear time one, and
matches (in fact slightly improves) the fastest known algorithm for BISECTION on trees!.

» Theorem 1. There is an algorithm that, given an edge-weighted graph G on n vertices
together with a tree decomposition of G of width at most t, computes a minimum weight
bisection of G in time O(8t -5 - n? . logn).

Our algorithm crucially uses the (min, +)-convolution operation. The (min, +)-convolution
of two number sequences (a[i])}=) and (b[i])7=; is a sequence (c[i])};, where c[k] =
min;—g,__ x(ali] + bk — ¢]). In the (min, +)-CONVOLUTION problem the input consists of the
two sequences (ali])!=; and (b[i])}, the task is to compute their convolution (c[i])};. A
direct application of the definition of (min, +)-convolution yields a O(n?) time algorithm
to compute it. The bulk of the work of our algorithm consists of making a series of
(min, +)-convolution steps. In fact, the running time of our algorithm can be stated as
O(8" - t - logn - 7(t?n)), where 7(n) is the running time of an algorithm computing the
(min, +)-convolution of two sequences of length n. Therefore, there are two natural avenues
for attempting to improve the algorithm of Theorem 1 to sub-quadratic. The first approach
is to design a sub-quadratic algorithm for (min, +)-convolution, the second is to design an
entirely different algorithm avoiding convolution altogether.

It turns out that the first approach is quite challenging, perhaps even impossible. Indeed,
in the spirit of fine-grained complexity [23] analysis, Cygan et al. [12] identified a number
of problems that admit algorithms with running time O(n?~¢) if and only if (min,+)-
CoONVOLUTION does. With this background they conjecture that (min, +)-CONVOLUTION
does not admit a O(n?~¢) time algorithm.

Thus, if we want to improve the algorithm of Theorem 1 to a sub-quadratic algorithm
without disproving the conjecture of Cygan et al. [12], we need to avoid (min, +)-convolution
altogether. However, it turns out that (min, +)-convolution is unavoidable! In particular,
we prove that a sub-quadratic algorithm for BISECTION on trees implies one for (min, +)-
CONVOLUTION as well.

» Theorem 2. If there exists an € > 0 such that BISECTION on weighted trees can be solved
in time O(n?~¢), then there exists § > 0 such that (min, +)-CONVOLUTION can be solved in
O(n?=%)-time.

Theorem 2 together with Theorem 1 (or rather its re-statement in terms of convolutions),
puts BISECTION on weighted trees in Cygan et al. [12]’s class of problems equivalent to
(min, +)-CONVOLUTION.

! Note that the Goldberg and Miller’s algorithm [16] is parallel, while ours is sequential.
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In light of Theorem 2, the BISECTION problem on unweighted graphs® becomes a natural
target. Our final contribution is a sub-quadratic algorithm for BISECTION on unweighted
graphs of bounded treewidth. Our algorithm also works for the case when all weights are
bounded by a constant W.

» Theorem 3. There is an algorithm that, given an edge-weighted graph G, where all edge
weights are integers between 1 and W, together with a tree decomposition of G of width t,
computes a minimum weight bisection of G in time O(8t - (tW)O) . 1864 19g p).

The key observation behind the algorithm of Theorem 3 is that the (min, +)-convolution
steps in the algorithm of Theorem 1 are applied to sequences (a[i])?=; and (b[i])7—; where
ali] and b[i] are both essentially equal to the minimum possible sum of weights of the edges
between the two sides A and B of a partition (A, B) of V(G) with |A| = i. Bounded treewidth
graphs have many vertices of small degree, and moving one vertex of small degree from A
to B or vice versa changes the number of edges between A and B by at most its degree.
Thus, a[é] and ali + 1] cannot be too different. This allows us to use the faster algorithm for
(min, +)-CoONVOLUTION of Chan and Lewenstein [9] for “bounded difference” sequences.

Organization of the paper. We start by setting up the needed notation in Section 2.
Section 3 is devoted to proving our algorithmic results - namely Theorems 1 and 3. Theorem 2
is proved in Section 4.

2 Preliminaries

2.1 The (min, +)-Convolution problem

For integer n, we let [n] := {0,1,...,n}. Given a vector or a sequence A € Z™ and an integer
i € [n — 1], we denote by A; the i-th coordinate of A.

» Definition 4 ((min,+)-CONVOLUTION problem). Given two sequences (ali])}—) and

(b[i))=y, compute a third sequence (c[i])=y, where c[k] = min;—o,_1(a[i] + bk —i]). Equi-
valently, we have c[k] = min,y j—x(a[i] + b[7]).

In the (min, +)-CONVOLUTION problem, we sometimes require the target sequence to
be computed all the way up to 2n — 2, i.e., (c[z])f’;gQ In both cases, the problem is
trivially solvabled in O(n?) time. Recent breakthroughs have shown that computing the
(min, +)-CONVOLUTION for monotone non-decreasing sequences with integer values bounded
by O(n) can be achieved in O(n!®#%) deterministic time [9]. Moreover, we can relax
these requirements [4] and simply require that the sequences have bounded differences, i.e.,

la[i] — ali + 1], |b]] — B¢ + 1]| € O(1).

2.2 Graphs and the Bisection problem

We assume that each graph G is finite, simple, and undirected. We let V(G) and E(G) denote
the vertex set and edge set of G, respectively. The open neighborhood of a vertex v is denoted
by Ng(v) = {u | {u,v} € E(G)} and the closed neighborhood by Ng[v] = Ng(v) U {v}.
For a set of vertices S C V(G), we define Ng(S) = {v & S | {u,v} € E(G),u € S} and
N¢g[S] = N¢(S)U S. The subgraph of G induced by S is denoted by G[S], where G[S] has
vertex set S and edge set {{u,v} € E(G) | u,v € S}. Welet G— S =G[V(G)\ 5].

2 where all weights are 1
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Given a graph G and two disjoint sets A, B C V(G), we denote by E(A, B) the subset of
edges of G with one endpoint in A and the other endpoint in B. Given an edge-weighted
graph G and a weight function w : E(G) — N over the edges of G, a bisection of G is a
partition of V(@) into two disjoint sets A, B C V(G) such that ||A| —|B]|| < 1 and the weight
of bisection (A, B) is EeeE(A’B) w(e). Formally, the BISECTION problem is defined as follows:

» Definition 5 (BISECTION problem). Given an edge-weighted graph G, find a bisection
(A, B) of G of minimum weight.

2.3 Treewidth and tree decompositions

» Definition 6. A tree decomposition of a graph G is a pair ({X; | i € I},T = (I, F)),
where {X; | i € I} is a collection of subsets of V(G), T = (I, F) is a rooted tree such that
the following conditions hold:

Uiel X; =V(G);

For all edges {u,v} € E(G), there exists i € I with u,v € X;;

For every vertex v € V(Q), the subgraph of T induced by {i € I | v € X;} is connected.

The width of a tree decomposition ({X;|i € I},T = (I,F)) is maz;er(|X;| —1). The
treewidth of a graph G, tw(G), is the minimum width over all possible tree decompositions of
the graph. We call the vertices of the tree T nodes and the sets X; bags. A graph of treewidth
O(1) is called a bounded treewidth graph.

Given a tree decomposition ({X; | i € I},T = (I, F)) of an n-vertex graph G of treewidth
k, we can turn this decomposition in time in O(k®™M) - n) into a nice tree decomposition
with at most O(k|V(G)|) nodes, i.e., a decomposition of the same width and satisfying the
following properties:
The root bag as well as all leaf bags are empty;
Every node of the tree decomposition is of one of four different types:
Leaf node: a node ¢ with X; = () and no children;
Introduce node: a node ¢ with exactly one child j such that X; = X, U {v} for some
vertex v € Xj;
Forget node: a node ¢ with exactly one child j such that X; = X, \ {v} for some vertex
v e Xj;
Join node: a node i with two children j; and js such that X; = X; = Xj,.

» Theorem 7 (Bodlaender et al. [2]). There exists an algorithm, that given an n-vertex graph
G and an integer k, in time 2°®nlogn either outputs that the treewidth of G is larger than
k, or constructs a tree decomposition of G of width at most 3k + 4.

Combining Theorem 8 below with standard arguments (we refer the reader to [2] for
more details), we arrive at Proposition 9, which is the form that will be required to obtain
our algorithms.

» Theorem 8 (Bodlaender and Hagerup [3]). There is an algorithm that, given a tree decom-
position of width k with O(n) nodes of a graph G, finds a rooted binary tree decomposition
of G of width at most 3k + 2 with depth O(logn) in O(kn)-time.

» Proposition 9. There is an algorithm that, given an n-vertex graph G and a tree decom-
position of G of width k, runs in O(kn)-time, and computes a nice tree decomposition of G
of width 3k + 2, height O(klogn), and with O(kn) nodes.
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3 Algorithms for Bisection on Bounded Treewidth Graphs

We start by reviewing the O(2!*! - n3)-time algorithm for solving the BISECTION problem
on graphs of treewidth at most ¢ by Jansen et al. [17]. The algorithm is a standard dynamic
programming algorithm over a tree decomposition. Given a graph G together with its nice
tree decomposition ({X;|i € I}, T = (I, F)) of width ¢ the algorithm works as follows.

For each node i € I, we let Y; denote the set of all vertices in X;, where either j is a descend-
ant of ¢ in T or j = ¢. The algorithm computes for each i € I, an array mwp, (which stands
for minimum weight partition) containing O(2¢ - |Y;|) entries. For each ¢ € {0,1,...,|Y;|}
and each S Q Xi, the entry Hlel(g, S) is set to minS'gYiJS'|:€7S'0Xi:»9(ZeeE(S’,Yi\S/) W(e))
That is, mwp, (¢, S) is equal to the minimum possible weight of a bisection where S and
X; \ S are in different parts of the bisection and the side including S is of cardinality exactly
¢. When such a partition is not possible, we set mwp,(¢,.S) to co.

We compute the entries of the array following the levels of the tree decomposition in a
bottom-up manner as follows.

Let i be a leaf in T'. Note that Y; = X; = (). We set mwp,(0,0) = 0.
Let i be a forget node with one child j such that X; C X;. Then, forall ¢ € {0,1,...,|Y;|}
and S C X, we set
— B . !/

mwp; (¢, S) = S/QXJI,I}SI’%X,;:S(HIWPJ (£,8").
Let i be an introduce node with one child j such that X; U{v} = X; and v € X;. Then,
for all £ € {0,1,...,|Y;[} and S C Xj, if v € S we set mwp; (¢, S) = mwp, (£ — 1,5\ {v}).
Otherwise, we set

mwp; (¢, S) = mwp; (£, S) + Z w(e).
ee{{v,s}|s€eS}

Let i be a join node with two children j; and j», where X; = X; = X,,. For all
£e€{0,1,...,|Y:|} and S C X;, we set

mwp; (£, S) = ming, 1o, |5|=t.6 £5>]5] | MWDy, (41, 8) +mwpy, (£2,8) = Y wle)
c€E(5,X:\S)

We omit the proof of correctness and refer the reader to [17] for more details. We focus
here on the runtime analysis. Analyzing the above algorithm on the tree decomposition of
width ¢ and height O(tlogn), we obtain the following lemma.

» Lemma 10. There is an algorithm that, given an edge-weighted graph G on n vertices
and a nice tree decomposition of width t, height O(tlogn), and O(tn) nodes, computes a
minimum weight bisection of G in time O(2!71 -t -logn - 7(t2n)), where 7(|Y;i|) is the time
required to compute the entries mwp,(¢,S) for all € € [|Y;]] and a fized S in a join node.

Proof. Let ({X;|i € I},T = (I, F)) be the nice tree decomposition of G given as input. The

time spent at each leaf node, introduce node, or forget node i is bounded by O(2!+1 . |v;|).

Moreover, by our assumption the time spend in each join node is O(2F17(|Y;])).

Now let us split the nodes of T into r = O(tlogn) levels Ly,..., L, depending on
the distance of the node from the root of 7. We analyze the running time on each level
separately. Clearly, the running time at level k is at most O(3,c,, 2°7'7(|Y;])). Moreover,
given i, j € Ly the nodes ¢ and j cannot be descendants of each other. Therefore, from the
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definition of a tree decomposition and Y; and Y respectively, it follows that ¥;NY; C X;N.X;.
Hence, Y ,cp Vil <3 0icp, [Xil+n <3 [Xil+n < O(t?n). Clearly 7(|Yi|) = Q(|Yi]) and
it follows that O(,c,, 2" 7([Yil)) < O™ (e, T(IVil)) < O2" 7 (#%n)). Combined
with the fact that the height of the tree decomposition is O(tlogn), we get the claimed
running time of O(2!1 -t - logn - 7(%n)). <

» Lemma 11. Let i be a join node with children ji and jo, where X; = X;, = X;,. There
is an algorithm that, for a fired S C X;, computes all the entries mwp,(¢,S), for all
¢ e [|Yil], in time O(7(|Yi])) if and only if there is an (9(7’(\YZ|)P time algorithm solving
an instance of (min, +)-CONVOLUTION with two sequences (a[p})p}zo and (b[P])LE('), where
alp] = mwp, (p,S) for p € [|Y},[] and a[p] = oo otherwise and blp] = mwp; (p,S) for
p € [|Y},]] and a[p] = oo otherwise.

Proof. Recall that

mwp; (£, S) = ming, 14, |s|=t.6 £23)5] | MWDy, (41, 8) +mwpy, (b2, $) = Y wie)
c€E(5,X;\5)

Let W =3 cp(s x:\s) W(e). Note that for a fixed i and a fixed S, both }_.c (s x,\5) W(e)
and |S| are fixed. Hence,

mwp; (£, S) = ming, 4o, |s|=t,61,0,>|s| (mwp;, (€1, ) + mwp;, (£2,5)) — W.

Let (C[p})§%|71 be the (min, +)-convolution of the sequences (a[p])z‘ﬁlJ and (b[p])g;(‘),
that is c[k] = ming4,=x(alg] + b[r]). Finally, we set mwp,(p,S) = c[p — |S|] — W, for

p € {|S],|S]+1,...,|Yi|}. All other entries are set to oco. <

Combining Lemmas 10 and 11 with Theorem 8 we conclude the proof of Theorem 1. We
remark that if a tree decomposition is not given then we can compute it, using the algorithm
of Theorem 7, at the cost of a worse dependence on t.

Proof of Theorem 1. We assume that (min, 4+)-CONVOLUTION can be solved in O(7(n))
time. Using Proposition 9, we can compute in O(tn) time a nice tree decomposition
({X;li € I},T = (I, F)) of G, such that the width of the decomposition is 3¢ + 2, the height
is O(tlogn), and the number of nodes of T" is O(tn). Afterwards, we invoke the algorithm
of Lemma 10 to compute the minimum weight bisection in time O(23*3 . (3t + 2) - logn -
7((3t +2)%n)) = O(8" - t -logn - 7(t°n)) using the O(7(]Y;])) time algorithm to compute the
(min, +)-convolution needed in the join nodes. Plugging in the naive O(n?) time algorithm
for (min, +)-CONVOLUTION gives 7(n) = O(n?), completing the proof. <

3.1 Bounded Edge Weights

We now turn our attention to the case when the maximum weight of every edge in the input
graph is bounded by some constant . We show that in this case, we can actually compute a
minimum bisection of a bounded treewidth graph of size n in time O(8- (tW)© (1) .n1-864 1og 1)
or, equivalently, O(8* - (tW)O(1) . p1:864+¢) “for € > 0.

» Lemma 12. Let G be an edge-weighted graph with maximum weight of an edge W with a tree
decomposition ({X; |i € I}, T = (I, F)) of width t. Then for every node i € I, every S C X;
and every £ € {|S|,...|Y;|—|X;\S|—1} it holds that | mwp, (¢, S)—mwp, ({+1,S)| < (2t+1)-W.
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Proof. It is easy to see that mwp;(¢,S) = mwp,(|Y;| — 4, X; \ S). Hence, without loss of
generality, we can assume that mwp,(¢,S) > mwp,(£ + 1,5). Now let A be a set of size
¢ such that S = AN X; and mwp,((,5) = > a7 W(e). It is well-known that we can
order the vertices of a graph G such that every vertex has at most tw(G) neighbors earlier
in the ordering [19]. Let us denote such an ordering o and let v be the last vertex from
Y\ (AU X;) in 0. Now E(AU {v}, AU {v}) = (B(4,A)\ E({v},A) UE({v}, AU {v}). It
follows that mwp, (£ + 1,5) < mwp,(¢,S) + |[E({v}, AU {v})| - W. By the choice of v, all
the vertices in AU {v} are either earlier in ¢ than v or in X;. Moreover, v has only at most

tw(G) many neighbors that are earlier in o than v and there are at most ¢ + 1 vertices in Xj,
hence |E({v}, AU {v})| < tw(G) 4+t + 1. Since tw(G) < t, the lemma follows. <

Observe, that the bound of Lemma 12 is tight up to a multiplicative constant. As an
example achieving difference | mwp;(¢,S) — mwp,({+ 1,5)| < (t+ 1) - W take S = X, and
an instance where the edges in Y; have all weight W and are precisely all the pairs with one
endpoint in X; and the other in Y; \ X;.

Lemma 12 tells us that the restriction of the sequences (a[p])]l:g) and (b[p])gﬂ) for which
we need to compute the (min, +)-CONVOLUTION in Lemma 11 to entries that are not co
has bounded difference. However, these two restricted sequences might not have the same
length and it is not straightforward how to adapt the algorithm by Chan and Lewenstein [9)].
To overcome this issue, we use a standard trick to change these sequences to monotone
non-decreasing sequences with integer values bounded by O(n) and pad the shorter sequence
by some large value. This trick is outlined by Chan and Lewenstein [9] but never formally
stated, we repeat it here for completeness.

» Theorem 13 ([9]). MONOTONE (min, +)-CONVOLUTION with all entries in {0,...,nD}
can be solved in time O((nD)'®%%) by a randomized algorithm, or in time O((nD)-86%)

deterministically.

We remark that Chan and Lewenstein [9] do not explicitly state the dependence on D. It
is easy to see from their arguments that the dependence on D is at most O(D'#%) but we
suspect that it is much better.

> Lemma 14. Let ny,ny be two integers such that ny < ng and let sequences (a[p]),L, and

(b[p)p2o be two sequences with the difference bounded by a constant D and all entries in
{0,...,n2D'}, for some constant D'. Then we can compute the sequence (c[p])z;gnz such
that c[k] = min, 4 j—x(ali] + b[j]) in time O((2n2(D + D’))1-864),

Proof. To compute (c[p]);;‘gnz we start by changing the sequences (a[p]),, and (b[p]),2,

to bounded monotone sequences (a'[p]),L, and (b'[p]),2, by adding D -i to a’[i] and '[i],
respectively. Note that min,j—x(ali] + b[j]) = min;4;j—x(a’[i] + V'[j]) — D - k. Now let
C = max(a'[n1],V'[nz]). Finally, we create sequence (a”[p]),2, by setting a”[p] = a'[p]
if a'[p] is defined and a”[p] = 2C' + 1 otherwise. It is easy to see that min,;—x(a’[i] +
b'[j]) = mingyj—p(a”[i] + U'[j]) for all k£ € {0,...,n1 + na}. Therefore, to compute the
(min, +)-convolution of the sequences (a[p])y* and (b[p])y? it suffices to compute the (min, +)-
convolution of the sequences (a”[p]);2, and (b'[p]); 2, which are both monotone with integer

entries between 0 and C' < 2(D-ng +n2D’) 4+ 1 and the proof follows due to Theorem 13. <«
We are now in position to prove Theorem 3.

Proof of Theorem 3. Same as in the proof of Theorem 1, we start by using Proposition 9
to compute a nice tree decomposition ({X;|i € I}, T = (I, F)) of G, such that the width of
the decomposition is 3t + 2, the height is O(tlogn), and the number of nodes of T is O(tn).
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Afterwards, we invoke the algorithm of Lemma 10 to compute the minimum weight
bisection in time O(8! - t - logn - 7(t?n)), where O(7(|Y;|)) is the time required to compute
the entries mwp, (¢, 5) for all £ € [|Y;|] and a fixed S in a join node.

It remains to show that we can compute mwp,(¢,S) for all £ € [|Y;|] and a fixed S in
time O((tW)°M . |v;|1864). By Lemma 11, this is equivalent to solving an instance of
(min, +)-convolution with two sequences (a[p])lpi‘o and (b[p])gi(lj, where a[p] = mwp,, (p, S)
for p € [|Y},]] and a[p] = oo otherwise and b[p] = mwp,, (p, S) for p € [|Y},]] and a[p] = oo
otherwise. Note that mwp, (£,.5) (mwp,, (£,5)) is set to oo if £ < [S| or £ > [V}, | —|X;, \ S|
(£ > |Y;,| — |X;, \ S|). Hence, from Lemma 12 it follows that if both a[p] and a[p + 1]
(respectively b[p] and b[p + 1]) are finite, then |a[p + 1] — a[p]| (respectively |b[p + 1] — b[p]|)
is bounded by (2t + 1) - W, where W is the maximum weight of an edge in G, and hence it is
constant. To finish the proof, let n;, = |Y;,|—|S| —|X;, \ S| and n;, = |Y},| — 5] — | X, \ S|
and let sequences (a'[p]),”; and (b/[p]),% be such that a’[p] = a[p+|S|] and b'[p] = blp+|S|].
That is @’ and b are created from a and b by removing oo from the sequences. For all
ke {2|S],...,nj, +nj, +2|S|} (that is whenever min; ;- (a[i] + b[j]) # o0o) it holds that
wming g (ali] + ) = mingsgm(@/[i' — S]] + V[ — S]) = min iy (@[] + V7).
Therefore, to compute the (min, +)-convolution of the sequences (a[p})(‘)y"l and (b[p])gyi‘7
it suffices to compute the sequence (¢’ [p])g“Jrnj2 such that ¢'[k] = min,y;j—x(a'[i] + V'[5])-
Clearly, due to Lemma 12, (a’ [p])ZQO and (b [p])ZfO have difference bounded by (6t + 5) - W.
Moreover, let n’ = max(n;,,n;,), then it is easy to see that both a[|S|] and b[|S|] are at
most |S|-n'- W < (3t +3)-n/- W and hence the entries in (a'[p]),”}, and (b'[p]), %, are all
integers between 0 and (3t +3)-n'- W + (6t +5) - W -n’ = (9t + 8) - W - n/. Therefore,
we can compute the sequence (c/[p])gt "2 in O(((30t + 26) - W - n/)1864) by Lemma 14,
finishing the proof. <

4 Tree Bisection is as Hard as (min, +)-Convolution

We complement Theorem 3 by showing that if the BISECTION problem can be solved in
subquadratic time, i.e., in time O(n?~¢) for € > 0, on weighted trees than the (min, +)-
convolution problem can be solved in subquadratic time as well, i.e., in time O(n?~%) for
d > 0. We follow a strategy similar to that of [1] used for proving a lower bound on the
TREE SPARSITY problem.

» Definition 15 (SUMS3 problem). Given three sequences A, B,C € Z", decide if the following
statement is true: 3i,j 1 A; + B; + Ci; < 0.

» Theorem 16 ([1, 24]). The (min, +)-CONVOLUTION problem can be solved in time O(n?~¢),
for € > 0, if and only if the SUM3 problem can be solved in O(n?>~%) time, for § > 0.

Hence, given Theorem 16, we prove the main theorem of this section by a reduction from
SUMS3 to the BISECTION problem on weighted trees. We start by describing the construction.

Let W be equal to 10 times the largest absolute value of an entry in A, B, and C. We
create a root vertex r. Consider A € Z™. We first construct a path P4 = {r,ag,a1,...,an-1}
of n vertices (excluding r) such that the weight of the ith edges is W+ A;, fori =0,1,...,n—1.
Similarly, for B € Z", we construct a path Pg = {r,bg,b1,...,b,_1} of n vertices (excluding
r) such that the weight of the ith edges is W + B;, for ¢ = 0,1,...,n — 1. We then create a
new vertex ¢ and a path Po = {¢,cp,¢1,...,Cn1,CnyCnt1,---,Can—1,7} of 2n + 1 vertices
such that the weight of the ith edges is W + C;, for : = 0,1,...,n — 1 and the weight is nW
otherwise (i > n — 1). Finally, we attach 30n pendant vertices to r, 10n pendant vertices to
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30n pendant vertices‘ @ @ @ {10” pendant vertices‘
@ @ @ @ {1071 pendant vertices‘
C—C)——)———C)———@ ¢

10n — 1 pendant vertices

Figure 1 The reduction from SUMS3 (for n = 4) to the BISECTION problem on weighted trees.

an—1, 10n pendant vertices to b,—_1, and 10n — 1 pendant vertices to c¢. The weight of each
of those edges is nW. We let T' denote the resulting tree (see Figure 1). Note that the total
number of vertices in T is 60n + 4n = 64n.

» Lemma 17. Let A, B,C € Z™ be an instance of SUM3 and let T be the corresponding
instance of BISECTION. Then 3i,j: A; + Bj + Ci; <0 if and only if T has a bisection of
weight less than or equal 3W .

Proof. Assume that 3i,5 : A; + Bj + Ci1; < 0. We claim that T" admits a bisection whose
weight is at most 3. We pick one edge from each of the three paths P4, Pg, and Pc. In
particular, we pick the i-th edge from P4, the j-th edge from Pg, and the k-th edge from
Pc, where k =i + j. The total weight is therefore 3SW + A; + B; + Ciy; < 3W. The total
number of vertices in the r-partition is 30n 4+ i 4+ j + 2n — k = 32n and the total number of
vertices in the abe-partition is 30n + 2n + k — (i + j) = 32n, as needed.

For the other direction, assume that 7" admits a bisection (X,Y") whose weight is at most
3W . Notice, that from the choice of W and the construction, it follows that the weight of
any at least four edges is at least 3W + %, and consequently |F(X,Y)| < 3. We claim
that E(X,Y) contains exactly three edges from T, each edge from a different path. Assume
otherwise, i.e., that at least one path remains untouched. Then, the corresponding partition
will contain at least 40n vertices which is greater than 32n vertices. Now, let E(X,Y") contain
the i-th edge from P4, the j-th edge from Pg, and the k-th edge from Po. It remains
to show that &k = ¢ 4+ j. The size of the partition containing r is 30n + ¢ + j + 2n — k.
Since the number of vertices in 7" is 64n and both partitions must have equal size, we get
30n 41+ j + 2n — k = 32n and therefore ¢ + j = k, as needed. <

The construction, together with Proposition 16 and Lemma 17 conclude the proof of
Theorem 2.
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