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Abstract
A clique coloring of a graph is an assignment of colors to its vertices such that no maximal clique is
monochromatic. We initiate the study of structural parameterizations of the Clique Coloring
problem which asks whether a given graph has a clique coloring with q colors. For fixed q ≥ 2,
we give an O?(qtw)-time algorithm when the input graph is given together with one of its tree
decompositions of width tw. We complement this result with a matching lower bound under the
Strong Exponential Time Hypothesis. We furthermore show that (when the number of colors is
unbounded) Clique Coloring is XP parameterized by clique-width.
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1 Introduction

Vertex coloring problems are central in algorithmic graph theory, and appear in many variants.
One of these is Clique Coloring, which given a graph G and an integer k asks whether G
has a clique coloring with k colors, i.e. whether each vertex of G can be assigned one of k
colors such that there is no monochromatic maximal clique. The notion of a clique coloring
of a graph was introduced in 1991 by Duffus et al. [16], and it behaves quite differently
from the classical notion of a proper coloring, which forbids monochromatic edges. Any
proper coloring is a clique coloring, but not vice versa. For instance, a complete graph on
n vertices only has a proper coloring with n colors, while it has a clique coloring with two
colors. Moreover, proper colorings are closed under taking subgraphs. On the other hand,
removing vertices or edges from a graph may introduce new maximal cliques, therefore a
clique coloring of a graph is not always a clique coloring of its subgraphs, not even of its
induced subgraphs.
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49:2 Structural Parameterizations of Clique Coloring

Also from a complexity-theoretic perspective, Clique Coloring behaves very differently
from Graph Coloring. Most notably, while it is easy to decide whether a graph has a
proper coloring with two colors, Bacsó et al. [2] showed that it is already coNP-hard to
decide if a given coloring with two colors is a clique coloring. Marx [26] later proved Clique
Coloring to be Σp2-complete for every fixed number of (at least two) colors.

On the positive side, Cochefert and Kratsch showed that the Clique Coloring problem
can be solved in O?(2n) time,1 and the problem has been shown to be polynomial-time
solvable on several graph classes. Mohar and Skrekovski [27] showed that all planar graphs
are 3-clique colorable, and Kratochvíl and Tuza gave an algorithm that decides whether a
given planar graph is 2-clique colorable [24]. For several graph classes it has been shown that
all their members except odd cycles on at least five vertices (which require three colors) are
2-clique colorable [2, 3, 6, 7, 14, 23, 28, 31]. Therefore, on these classes Clique Coloring is
polynomial-time solvable. Duffus et al. [16] even conjectured in 1991 that perfect graphs are
3-clique colorable, which was supported by many subclasses of perfect graphs being shown to
be 2- or 3-clique colorable [1, 2, 9, 14, 16, 27, 28]. However, in 2016, Charbit et al. [8] showed
that there are perfect graphs whose clique colorings require an unbounded number of colors.

In this work, we consider Clique Coloring from the viewpoint of parameterized
algorithms and complexity [13, 15]. In particular, we consider structural parameterizations of
Clique Coloring by two of the most commonly used decomposition-based width measures
of graphs, namely treewidth and clique-width. Informally speaking, the treewidth of a graph
G measures how close G is to being a forest. On dense graphs, the treewidth is unbounded,
and clique-width can be viewed as an extension of treewidth that remains bounded on several
simply structured dense graphs.

Our first main result is a fixed-parameter tractable algorithm for q-Clique Coloring
parameterized by treewidth. More precisely: we show that for any fixed q ≥ 2, q-Clique
Coloring (asking for a clique coloring with q colors) can be solved in time O?(qtw), where
tw denotes the width of a given tree decomposition of the input graph. We also show
that this running time is likely the best possible in this parameterization; we prove that
under the Strong Exponential Time Hypothesis (SETH), for any q ≥ 2, there is no ε > 0
such that q-Clique Coloring can be solved in time O?((q − ε)tw). In fact, we rule out
O?((q − ε)t)-time algorithms for a much smaller class of graphs than those of treewidth t,
namely: graphs that have both pathwidth and feedback vertex set number simultaneously
bounded by t.

Our second main result is an XP algorithm for Clique Coloring with clique-width as
the parameter. The algorithm runs in time kf(w) · n ≤ nO(f(w)), where w is the clique-width
w of a given clique-width expression of the input n-vertex graph, k the number of colors, and
f(w) = 22O(w) . The double-exponential dependence on w in the degree of the polynomial
stems from the notorious property of clique colorings which we mentioned above; namely,
that taking induced subgraphs does not necessarily preserve clique colorings. This results in
a large amount of information that needs to be carried along as the algorithm progresses.

This algorithm raises two questions. First, if Clique Coloring is FPT parameterized
by clique-width even if k is a priori unbounded. Second, if the triple exponential dependence
on w can be avoided under for instance the Exponential Time Hypothesis (ETH), also in the
case when k is fixed. Intuitively, a positive answer to the first question only seems feasible
via a proof that all graphs of clique-width w can be clique colored with at most some g(w)

1 The O?-notation suppresses polynomial factors in the input size, i.e. for inputs of size n, we have that
O?(f(n)) = O(f(n) · nO(1)).
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colors, for some function g. However, the current literature appears to be far from providing
such a result. On the other hand, hardness proofs for Graph Coloring parameterized
by clique-width [17, 18] rely on the fact that cliques require many colors while keeping the
clique-width small; since cliques can be clique colored with two colors, these tricks are of no
use in the setting of Clique Coloring. For the second (possibly more tangible) question,
one could search for an algorithm for 2-Clique Coloring running in time 222o(w)

· nO(1), or
rule out the existence of such an algorithm under ETH.

2 Preliminaries

Throughout this work, proofs of statements marked with “♣” are deferred to the full version.
For basic terminology in graph theory we refer the reader to [5] (or the full version). Let Ω
be a set and ∼ an equivalence relation over Ω. For an element x ∈ Ω the equivalence class of
x, denoted by [x], is the set {y ∈ Ω | x ∼ y}. We denote the set of all equivalence classes of
∼ by Ω/ ∼.

Parameterized Complexity and SETH. We give the basic definitions of parameterized
complexity that are relevant to this work and refer to [13, 15] for details. Let Σ be an
alphabet. A parameterized problem is a set Π ⊆ Σ∗ × N, the second component being the
parameter which usually expresses a structural measure of the input. A parameterized
problem Π is said to be fixed-parameter tractable, or in the complexity class FPT, if there is
an algorithm that for any (x, k) ∈ Σ∗ × N correctly decides whether or not (x, k) ∈ Π, and
runs in time f(k) · |x|c for some computable function f : N→ N and constant c. We say that
a parameterized problem is in the complexity class XP, if there is an algorithm that for each
(x, k) ∈ Σ∗ × N correctly decides whether or not (x, k) ∈ Π, and runs in time f(k) · |x|g(k),
for some computable functions f and g.

In 2001, Impagliazzo et al. conjectured that a brute force algorithm to solve the q-SAT
problem which given a CNF-formula with clauses of size at most q, asks whether it has a
satisfying assignment, is “essentially optimal”. This conjecture is called the Strong Exponential
Time Hypothesis, and can be formally stated as follows. (For a survey of conditional lower
bounds based on SETH and related conjectures, see [32].)

I Conjecture (SETH, Impagliazzo et al. [19, 20]). For every ε > 0, there is a q ∈ O(1) such
that q-SAT on n variables cannot be solved in time O?((2− ε)n).

Treewidth. We now define the treewidth and pathwidth of a graph.

I Definition 1 (Treewidth, Pathwidth). Let G be a graph. A tree decomposition of G is a
pair (T,B) of a tree T and an indexed family of vertex subsets B = {Bt ⊆ V (G)}t∈V (T ),
called bags, satisfying the following properties.
(T1)

⋃
t∈V (T )Bt = V (G).

(T2) For each uv ∈ E(G) there exists some t ∈ V (T ) such that {u, v} ⊆ Bt.
(T3) For each v ∈ V (G), let Uv ..= {t ∈ V (T ) | v ∈ Bt} be the nodes in T whose bags contain

v. Then, T [Uv] is connected.
The width of (T,B) is maxt∈V (T )|Bt|−1, and the tree-width of a graph is the minimum width
over all its tree decompositions. If T is a path, then (T,B) is called a path decomposition,
and the path-width of a graph is the minimum width over all its path decompositions.

MFCS 2020
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Branch Decompositions and Module-Width. We skip the definition of clique-width and
refer to [11]; instead, we define the equivalent measure of module-width that we will use
in our algorithm. The definition of module-width is based the notion of a rooted branch
decomposition.

I Definition 2 (Branch decomposition). Let G be a graph. A branch decomposition of G is a
pair (T,L) of a subcubic tree T and a bijection L : V (G)→ L(T ). If T is a caterpillar, then
(T,L) is called a linear branch decomposition. If T is rooted, then we call (T,L) a rooted
branch decomposition. In this case, for t ∈ V (T ), we denote by Tt the subtree of T rooted at
t, and we define Vt ..= {v ∈ V (G) | L(v) ∈ L(Tt)}, Vt ..= V (G) \ Vt, and Gt ..= G[Vt].

Module-width is attributed to Rao [29, 30]. On a high level, the module-width of a rooted
branch decomposition bounds, at each of its nodes t, the maximum number of subsets of Vt
that make up the intersection of Vt with the neighborhood of some vertex in Vt.

I Definition 3 (Module-width). Let G be a graph, and (T,L) be a rooted branch decomposition
of G. For each t ∈ V (T ), let ∼t be the equivalence relation on Vt defined as follows:

∀u, v ∈ Vt : u ∼t v ⇔ NG(u) ∩ Vt = NG(v) ∩ Vt

The module-width of (T,L) is mw(T,L) ..= maxt∈V (T )|Vt/∼t|. The module-width of G,
denoted by mw(G), is the minimum module width over all rooted branch decompositions of G.

We introduce some notation. For a node t ∈ V (T ) and a set S ⊆ V (Gt), we let eqct(S) be
the set of all equivalence classes of ∼t which have a nonempty intersection with S, and eqct(S)
be the remaining equivalence classes of ∼t. Formally, eqct(S) ..= {Q ∈ Vt/∼t | Q ∩ S 6= ∅}
and eqct(S) ..= Vt/∼t \ eqct(S). Moreover, for a set of equivalence classes Q ⊆ Vt/∼t, we let
V (Q) ..=

⋃
Q∈QQ.

Let (T,L) be a rooted branch decomposition of a graph G and let t ∈ V (T ) be a node
with children r and s. We now describe an operator associated with t that tells us how the
graph Gt is formed from its subgraphs Gr and Gs, and how the equivalence classes of ∼t
are formed from the equivalence classes of ∼r and ∼s. Concretely, we associate with t a
bipartite graph Ht on bipartition (Vr/∼r, Vs/∼s) such that:
(i) E(Gt) = E(Gr) ∪ E(Gs) ∪ F , where F = {uv | u ∈ Vr, v ∈ Vs, {[u], [v]} ∈ E(Ht)}, and
(ii) there is a partition P = {P1, . . . , Ph} of V (Ht) such that Vt/∼t = {Q1, . . . , Qh}, where

for 1 ≤ i ≤ h, Qi =
⋃
Q∈Pi

Q. For each 1 ≤ i ≤ h, we call Pi the bubble of the resulting
equivalence class

⋃
Q∈Pi

Q of ∼t.

As auxiliary structures, for p ∈ {r, s}, we let ηp : Vp/∼p → Vt/∼t be the map such that
for all Qp ∈ Vp/∼p, Qp ⊆ ηp(Qp), i.e. ηp(Qp) is the equivalence class of ∼t whose bubble
contains Qp. We call (Ht, ηr, ηs) the operator of t.

I Theorem 4 (Rao, Thm. 6.6 in [29]). For any graph G, mw(G) ≤ cw(G) ≤ 2 ·mw(G), where
mw(G) denotes the module-width of G and cw(G) denotes the clique-width of G, and given a
decomposition of bounded clique-width, a decomposition of bounded module-width, and vice
versa, can be constructed in time O(n2), where n = |V (G)|.

Colorings. Let G be a graph. An ordered partition C = (C1, . . . , Ck) of V (G) is called a
coloring of G with k colors, or a k-coloring of G. (Observe that for i ∈ {1, . . . , k}, Ci may
be empty.) For i ∈ {1, . . . , k}, we call Ci the color class i, and say that the vertices in Ci
have color i. C is called proper if for all i ∈ {1, . . . , k}, Ci is an independent set in G.
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A coloring C = (C1, . . . , Ck) of a graph G is called a clique coloring (with k colors) if
there is no monochromatic maximal clique, i.e. no maximal clique X in G such that X ⊆ Ci
for some i. In this work, we study the following computational problem.

Input: Graph G, integer k
Question: Does G have a clique coloring with k colors?

Clique Coloring

For q ≥ 2, we denote by q-Clique Coloring the problem when the number of colors q is
fixed and not part of the input. The q-Coloring and q-List Coloring problems also make
an appearance. In the former, we are given a graph G and the question is whether G has a
proper coloring with q colors. In the latter, we are additionally given a list L(V ) ⊆ {1, . . . , q}
for each vertex v ∈ V (G), and additionally require the color of each vertex to be from its list.

Whenever convenient, we alternatively denote a coloring of a graph with k colors as a map
φ : V (G)→ {1, . . . , k}. In this case, a restriction of φ to S is the map φ|S : S → {1, . . . , k}
with φ|S(v) = φ(v) for all v ∈ S. For any T ⊆ V (G) with S ⊆ T , we say that φ|T extends φ|S .

3 Parameterized by Treewidth

In this section, we consider the q-Clique Coloring problem, for fixed q ≥ 2, parameterized
by treewidth. First, in Section 3.1, we show that if we are given a tree decomposition of
width tw of the input graph, then q-Clique Coloring can be solved in time O?(qtw). After
that, in Section 3.2, we show that this is tight according to SETH, by providing one reduction
ruling out O?((2− ε)tw)-time algorithms for 2-Clique Coloring and another one ruling
out O?((q − ε)tw)-time algorithms for q-Clique Coloring when q ≥ 3.

3.1 Algorithm
The algorithm is bottom-up dynamic programming along a nice tree decomposition (T,B) of
the input graph G. At each bag Bt, we enumerate all colorings of G[Bt] and verify for each
such coloring if it can be extended to Gt such that there are no monochromatic maximal
cliques that use a vertex from Vt \Bt. Necessarily, we have to allow monochromatic maximal
cliques S that are contained inside G[Bt], since further up in the tree decomposition, there
may be a vertex v that is complete to S. Therefore, all vertices in S may receive the same
color, as long as v (or another such vertex) receives a different color. If on the other hand a
monochromatic maximal clique has a vertex that has already been “forgotten” at t, i.e. it is
contained in Vt \Bt, then this vertex has no neighbors in V (G) \Vt; therefore, no vertex from
V (G) \ Vt can “fix” this monochromatic maximal clique, and we can disregard the coloring
at hand.

As a subroutine, we will have to be able to check at each bag Bt, if some subset S ⊆ Bt
contains a maximal clique in Gt. Doing this by brute force would add a multiplicative factor
of roughly 2tw ·n to the runtime which we cannot afford. To avoid this increase in the runtime,
we use fast subset convolution2 [4] to build an oracle that, once constructed, can tell us in
constant time whether or not any subset S ⊆ Bt contains a maximal clique in Gt, for each
node t. We give a dynamic programming algorithm (♣) that constructs such oracles for all

2 Similar ideas have been used by Cochefert and Kratsch [10] to give an O?(2n)-time algorithm for Clique
Coloring.
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49:6 Structural Parameterizations of Clique Coloring

nodes in the tree decomposition, to ensure that we can maintain a runtime that is linear
in n. Since it suffices to construct this oracle once per node, this will infer only an additive
factor of 2tw · twO(1) · n to the runtime, which does not increase the worst-case complexity
for any q ≥ 2.

I Theorem 5 (♣). For any fixed q ≥ 2, there is an algorithm that given an n-vertex graph
G and a tree decomposition of G of width tw which has O(tw · n) nodes, decides whether
G has a clique coloring with q colors in time O(qtw · twO(1) · n), and constructs one such
coloring, if it exists.

3.2 Lower Bound
In this section we show that the previously presented algorithm is optimal under SETH. In
fact, we prove hardness for a much larger parameter, namely the distance to a linear forest
(for q = 2), and the distance to a caterpillar forest (for q ≥ 3). Note that both paths and
caterpillars have pathwidth 1, and clearly, they do not contain any cycles. Therefore, a lower
bound parameterized by the (vertex deletion) distance to a linear/caterpillar forest implies a
lower bound for the parameter pathwidth plus feedback vertex set number.

We first give the lower bound for the case q = 2. We would like to remark that Kratochvíl
and Tuza [24] gave a reduction from Not-All-Equal SAT to 2-Clique Coloring as
well, but their reduction does not imply the fine-grained lower bound we aim for here: the
resulting graph is at distance 2n to a disjoint union of cliques of constant size (at most s).
This only rules out O?((

√
2− ε)t)-time algorithms parameterized by pathwidth, and does

not give any lower bound if the feedback vertex set number is another component of the
parameter.

I Theorem 6. For any ε > 0, 2-Clique Coloring parameterized by the distance t to a
linear forest cannot be solved in time O?((2− ε)t), unless SETH fails.

Proof. We give a reduction from the well-known s-NAE-SAT problem, in which we are
given a boolean CNF formula φ whose clauses are of size at most s, and the question is
whether there is a truth assignment to the variables of φ, such that in each clause, at least
one literal evaluates to true and at least one literal evaluates to false.

Let φ be a boolean CNF formula on n variables x1, . . . , xn with maximum clause size s.
We denote by clauses(φ) the set of clauses of φ and by vars(C) the set of variables that
appear in the clause C of φ.

Given φ, we construct an instance Gφ for 2-Clique Coloring as follows. For each
variable xi, we create a vertex vi in G. Let V ′ = {v1, . . . , vn}. For each set S of variables,
let VS = {vi | xi ∈ S}. For each clause Ci of φ, we add the following clause gadget to
Gφ. If Ci is monotone, add a path on four vertices to Gφ, the end vertices of which are
ai and bi. Make N(ai) ∩ V ′ = N(bi) ∩ V ′ = Vvars(Ci), and make Vvars(Ci) ⊂ V ′ a clique.
If Ci is not monotone, let pos(C) (resp. neg(C)) denote the set of variables with positive
(resp. negative) literals in C. Add a path on three vertices to Gφ, the end vertices of which
are ai and bi, make N(ai) ∩ V ′ = Vpos(C) and make Vpos(C) a clique. Analogously, make
N(bi) ∩ V ′ = Vneg(C) and make Vneg(C) a clique. Finally, add two adjacent vertices u, v to
Gφ and make N [u] = N [v] = {u, v} ∪ V ′. See Figure 1.

B Claim (♣). Gφ is a yes-instance to 2-Clique Coloring if and only if φ is a yes-instance
to s-NAE-SAT.
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a2 b2a1 b1

V ′

u v

v1 v2 v3 v4 v5 v6 v7

Figure 1 Depiction of Gφ with two clauses, namely a monotone clause C1 = ¬x1∨¬x2∨¬x3∨¬x4

and a non-monotone clause C2 = x4 ∨ x5 ∨ ¬x6 ∨ ¬x7. Note that Gφ − V ′ is a linear forest.

Finally, note that G − V ′ is a disjoint union of paths of length at most four. Hence,
G is at distance n to a linear forest. Therefore, if for some ε > 0, 2-Clique Coloring
parameterized by the distance t to a linear forest can be solved in time O?((2− ε)t), then
s-NAE-SAT can be solved in time O?((2− ε)n), which would contradict SETH [12]. This
concludes the proof. J

We now turn to the case q ≥ 3. Our reduction is from q-List-Coloring parameterized by
the distance t to a linear forest, which has no O?((q − ε)t)-time algorithms under SETH [21].
We require the lower bound to hold even when the input graphs are triangle-free, and in the
full version we sketch that this is indeed the case, by the reduction presented in [21].

I Theorem 7 (Jaffke and Jansen [21]). For any ε > 0 and any fixed q ≥ 3, q-List Coloring
on triangle-free graphs parameterized by the distance t to a linear forest cannot be solved in
time O?((q − ε)t), unless SETH fails.

The main ingredient in the proof of the next theorem is a construction based on Mycielski
graphs. We would like to remark that also Marx [26] used Mycielski graphs and their
properties in hardness proofs for the Clique Coloring problem.

I Theorem 8. For any ε > 0 and any fixed q ≥ 3, q-Clique Coloring parameterized by
the distance t to a caterpillar forest cannot be solved in time O?((q − ε)t), unless SETH fails.

Proof. We give a reduction from q-List Coloring on triangle-free graphs parameterized by
distance to linear forest. In this proof we use the phrases “q-colorable” as short for “can be
properly colored with at most q colors”, and “q-coloring” as short for “a proper coloring with
at most q colors”. To construct our instance of q-Clique Coloring, we will first describe
the construction of a color selection gadget, and then describe how this gadget is attached to
the rest of the graph. The description of the color selection gadget makes use of the famous
Mycielski graphs (♣). For each p ≥ 2, the graph Mp is p-colorable (but not (p− 1)-colorable)
and edge-critical, that is, the deletion of any edge of Mp leads to a (p− 1)-colorable graph
(see for instance [5, 25]). Moreover, |V (Mp)| = 3 · 2p−2 − 1. We use the graph M ′p, obtained
from Mp by the deletion of an arbitrary edge xy.

B Observation 9. Let M ′p be the graph obtained from Mp by the deletion of an edge xy.
Then, M ′p is (p− 1)-colorable, and in any (p− 1)-coloring of M ′p, the vertices x and y receive
the same color.

MFCS 2020
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x1

y12

y13

v

v3v2

S
V ′

x2

y21

y23
x3

y31

y32

Figure 2 Here, q = 3 and L(v) = {1}. Note that G′ − (S ∪ V (Hq)) is a caterpillar forest.

Color selection gadget. We construct a gadget Hq in the following way. Consider q disjoint
copies of M ′q+1. For 1 ≤ i ≤ q, let xiyi be the edge removed from Mq+1 in order to obtain
the ith copy of M ′q+1. For each i, add q − 1 false twins to yi. We denote these vertices by
yij , with 1 ≤ j ≤ q, j 6= i. Then delete the vertex yi, for every i. Note that this graph is
still q colorable and, by Observation 9, in every such q-coloring, for each i, the vertices xi
and yij , for all j 6= i, receive the same color. Now we add

(
q
2
)
edges to connect the copies of

M ′q+1: for 1 ≤ i < j ≤ q, add the edge yijyji to Hq. Note that Hq remains triangle-free after
the addition of these edges, since for all 1 ≤ i < j ≤ q, N(yij) ∩N(yji) = ∅. We will need
the following property of the q-colorings of Hq.

B Claim (♣). The graphHq is q-colorable. Moreover, in any q-coloring φ ofHq, φ(xi) 6= φ(xj)
for all 1 ≤ i < j ≤ q.

We are now ready to describe the construction of our instance G′ to q-Clique Coloring.
Let (G,L) be an instance of q-List Coloring on triangle-free graphs that is at distance t
from a linear forest. We construct G′ as follows. Add a copy of G and a copy of Hq to G′.
We denote by V ′ the set of vertices corresponding to V (G) in G′. For each v ∈ V ′, add
q − |L(v)| vertices adjacent to v. We denote these vertices by {vj | j /∈ L(v)}. Finally, make
vj adjacent to all the vertices of {x` | ` 6= j}. See Figure 2. Let S ⊆ V (G) be a set such that
G− S is a linear forest and |S| = t. Then each connected component of G′ − (S ∪ V (Hq)) is
a caterpillar and |S ∪ V (Hq)| = t+O(1), since q is a constant.

B Claim (♣). (G,L) is a yes-instance to q-List Coloring if and only if G′ is a yes-instance
to q-Clique Coloring.

Now, if q-Clique Coloring admits an algorithm running in time O?((q − ε)t′), for
some ε > 0, then we can solve q-List-Coloring in time O?((q − ε)t+O(1)) = O?((q − ε)t),
contradicting SETH by Theorem 7, where t′ and t denote the distance to a caterpillar forest
and linear forest, respectively. J

4 Parameterized by Clique-width

In this section, we give an XP-time algorithm for Clique Coloring parameterized by clique-
width, more precisely, parameterized by the equivalent measure module-width. We provide
an algorithm that given an n-vertex graph G with one of its rooted branch decompositions
(T,L) of module-width w and an integer k, decides whether G has a clique coloring with k
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colors in time nf(w), where f(w) = 22O(w) . Before we describe the algorithm, we give a high
level outline of its main ideas. The algorithm is bottom-up dynamic programming along the
given branch decomposition of the input graph. Let t ∈ V (T ). To keep the number of table
entries bounded by something that is XP in the module-width, we group color classes into a
number of types that is upper bounded by a function of w alone. Two color classes of the
same type are interchangeable with respect to the underlying coloring being completable
to a valid clique coloring of the whole graph. Partial solutions can then be described by
remembering, for each type, how many color classes of that type there are. If the number
of types is f(w) for some function f , this gives an upper bound of nf(w) on the number of
table entries at each node of the branch decomposition.

Let us discuss what kind of information goes into the definition of a type. We maintain
information about cliques in Gt that are or may become monochromatic maximal cliques in
some extension of the coloring at hand. It is not sufficient to consider only maximal cliques
in Gt; given a maximal clique X in Gt, it may happen that in Vt there is a vertex v that is
adjacent to a strict subset Y ⊂ X of that clique, forming a maximal clique with Y – which
does not fully contain X – in a supergraph of Gt. Considering the equivalence classes of ∼t,
this implies that the equivalence classes containing Y and the ones containing X \ Y are
disjoint. We therefore consider cliques X that are maximal in the subgraph induced by the
equivalence classes containing vertices of X. We call such cliques X eqc-maximal, and observe
that with a little extra information, we can keep track of the forming and disintegrating
of eqc-maximal cliques along the branch decomposition. If an eqc-maximal clique is fully
contained in some set of vertices (/color class) C, then we call it potentially bad for C. A
potentially bad clique is described via its profile, which consists of the intersection pattern
with the equivalence classes of ∼t, and some extra information. At each node, there are at
most 2O(w) profiles.

Equipped with this definition, we can define the notion of a t-type of a color class C,
which is simply the subset of profiles at t, such that Gt contains a potentially bad clique with
that C-profile. It immediately follows that the number of t-types is 22O(w) . Now, colorings Ct
of Gt are described by their t-signature, which records how many color classes of each type
Ct has. There are at most kf(w) many t-signatures, where f(w) = 22O(w) , and this essentially
bounds the runtime of the resulting algorithm by nf(w).

At the root node r ∈ V (T ), there is only one equivalence class, namely Vr = V (G), and if
in a coloring, there is a clique that is potentially bad for some color class, then it is indeed a
monochromatic maximal clique. Therefore, at the root node, we only have to check whether
there is a coloring all of whose color classes have no potentially bad cliques.

4.1 Potentially Bad Cliques
We now introduce the main concept used to describe color classes in partial solutions of our
algorithms, namely potentially bad cliques. These are cliques that are monochromatic in
some subgraph induced by a set of equivalence classes.

I Definition 10 (Potentially Bad Clique). Let G be a graph with rooted branch decomposition
(T,L) and let t ∈ V (T ). A clique X in Gt is called eqc-maximal (in Gt) if it is maximal in
Gt[V (eqct(X))]. Let C ⊆ Vt and let X be a clique in Gt. Then, X is called potentially bad
for C (in Gt), if X is eqc-maximal in Gt and X ⊆ C.

Naturally, it is not feasible to keep track of all potentially bad cliques. We therefore
capture the most vital information about potentially bad cliques in the following notion of
a profile. For our algorithm, it is only important to know for a color class whether or not
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X

Q1 Q2 Q3 Q4 Q5

Figure 3 Illustration of the C-profile of a clique X that is potentially bad for a color class C,
depicted as the shaded areas within the equivalence classes. In this case, we have that π(X | C) =
({Q1, Q2}, {Q3, Q4}).

it has some potentially bad clique with a given profile, rather than how many, or what its
vertices are. This is key to reduce the amount of information we need to store about partial
solutions. There are two components of a profile of a potentially bad clique X; the first one
is the set of equivalence classes Q containing its vertices, and the second one consists of the
equivalence classes P /∈ Q that have a vertex that is complete to X. This is because, at a
later stage, P may be merged with an equivalence class containing vertices of X (via the
bubbles), in which case X is no longer potentially bad. We illustrate the following definition
in Figure 3.

I Definition 11 (Profile). Let G be a graph with rooted branch decomposition (T,L) and
let t ∈ V (T ). Let C ⊆ Vt and let X be a clique in Gt that is potentially bad for C. The
C-profile of X is a pair of subsets of Vt/∼t, π(X | C) ..= (Q,P), where

Q = eqct(X) and P = {P ∈ eqct(X) | ∃v ∈ P : X ⊆ N(v)}.

We call the set of all pairs of disjoint subsets of Vt/∼t, where the first coordinate is nonempty,
the profiles at t, formally, Πt

..= {(Q,P) | Q,P ⊆ Vt/ ∼t : Q 6= ∅ ∧ Q ∩ P = ∅}.

B Observation 12. Let (T,L) be a rooted branch decomposition. For each t ∈ V (T ), there
are at most 2O(w) profiles at t, where w = mw(T,L).

Let t ∈ V (T ) \ L(T ) be an internal node with children r and s and operator (Ht, ηr, ηs),
and let πr ∈ Πr and πs ∈ Πs be a pair of profiles. We are now working towards a notion
that precisely captures when and how a potentially bad clique in Gr for some Cr ⊆ Vr with
Cr-profile πr can be merged with a potentially bad clique in Gs for some Cs ⊆ Vs with
Cs-profile πs to obtain a potentially bad clique for Cr ∪ Cs in Gt. As it turns out, if this is
possible, then the profile of the resulting clique only depends on πr, πs, and the operator of t.
Note that for now, we focus on the case when the cliques in Gr and Gs are both nonempty,
and we discuss the case when one of them is empty below.

Before we proceed with this description, we need to introduce some more concepts.
We illustrate all of the following concepts in Figure 4. For a set of equivalence classes
S ⊆ Vr/∼r ∪ Vs/∼s, its bubble buddies at t, denoted by bbt(S), are the equivalence classes of
Vr/∼r ∪ Vs/∼s that are in the same bubble as some equivalence class in S, i.e.

bbt(S) ..=
⋃

p∈{r,s}
{Qp ∈ Vp/∼p | ηp(Qp) ∈ ηp(S ∩ Vp/∼p)} .

We call πr = (Qr,Pr) and πs = (Qs,Ps) compatible if Qr ∪ Qs is a maximal biclique in
H ′t(πr, πs) ..= Ht[(Qr ∪Qs) ∪ ((Pr ∪ Ps) ∩ bbt(Qr ∪Qs))]. As we show below, the notion of
compatibility precisely captures the “merging behavior” of potentially bad cliques. Moreover,
for πr and πs compatible, we can immediately construct the profile of the resulting potentially
bad clique: the merge profile of πr and πs is the profile µ(πr, πs) = (Qt,Pt) such that
Qt = ηr(Qr) ∪ ηs(Qs) and
Pt =

⋃
{o,p}={r,s}{η(Qp) | Qp ∈ Pp \ bbt(Qr ∪Qs) : Qo ⊆ NHt(Qp)}.
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Q1

Q2

Q3

Q4

P1

P2

P3

P4

X

Y

Vr Vs

Figure 4 Merging a potentially bad clique X in Gr with a potentially bad clique Y in Gs to obtain
a potentially bad clique in Gt. The color class at hand is depicted in blue and the gray and yellow
areas show the (three) bubbles. Note that the equivalence classes P1 and Q2 are bubble buddies
of eqcr(X) and eqcs(Y ). Moreover, the types of X and Y are compatible, since {Q1, P2, P3} is a
maximal biclique in Ht[{Q1, P1, P2, P3}]. Finally, note that the equivalence class of ∼t corresponding
to the bubble containing Q3 will have a vertex that is complete to the potentially bad clique X ∪ Y .

I Lemma 13 (♣). Let t ∈ V (T )\L(T ) be an internal node with children r and s and operator
(Ht, ηr, ηs). For all p ∈ {r, s}, let Cp ⊆ Vp, let Xp be a clique in Gr that is potentially bad for
Cp, and let πp ..= π(Xp | Cp) = (Qp,Pp). If πr and πs are compatible, then Xt

..= Xr ∪Xs

is a clique that is potentially bad for Ct ..= Cr ∪ Cs, and π(Xt | Ct) = µ(πr, πs).

I Lemma 14 (♣). Let t ∈ V (T ) \ L(T ) be an internal node with children r and s and
operator (Ht, ηr, ηs). Let Ct ⊆ Vt, and let Xt be a clique in Gt that is potentially bad for
Ct. For all p ∈ {r, s}, let Xp

..= Xt ∩ Vp and Cp ..= Ct ∩ Vp. Suppose that for all p ∈ {r, s},
Xp 6= ∅. Then, for all p ∈ {r, s}, Xp is a potentially bad clique for Cp, and πr ..= π(Xr | Cr)
and πs ..= π(Xs | Cs) are compatible.

As mentioned above, we treat the case when a clique Xp in one of the children p ∈ {r, s}
remains potentially bad in Gt separately. This is because in that case, the notion of a
maximal biclique in H ′t as defined above does not hold up very naturally. We formulate the
analogous requirements for this case here, and we skip some of the details.

Let t ∈ V (T ) \ L(T ) be an internal node with children r and s and operator (Ht, ηr, ηs).
Let πr ∈ Πr. We say that πr is liftable if there is no Qs ∈ bbt(Qr) that is complete to Qr
in Ht, and bbt(Qr) ∩ Pr = ∅. The lift profile of πr, denoted by λ(πr), is constructed as the
merge profile of πr with the empty set; i.e. we take (Qs,Ps) = (∅, Vs/∼s) and apply the
definition given above, meaning λ(πr) = µ(πr, (∅, Vs/∼s)).

I Lemma 15 (♣). Let t ∈ V (T ) \ L(T ) be an internal node with children r and s. Let
Cr ⊆ Vr, Cs ⊆ Vs, let Xr be a clique in Gr, and let πr ..= π(Xr | Cr). Then, Xr is a
potentially bad clique for Cr ∪Cs in Gt if and only if Xr is a potentially bad clique for Cr in
Gr and πr is liftable, in which case πt(Xr | Cr ∪ Cs) = λ(πr).

4.2 The type of a color class

We now describe the t-type of a color class C, which is the subset of profiles at t such that
there is a clique in Gt that is potentially bad for C, with that C-profile. For our algorithm,
two color classes with the same type will be interchangeable, therefore we only have to
remember the number of color classes of each type.
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I Definition 16 (t-Type). Let G be a graph with rooted branch decomposition (T,L), and let
t ∈ V (T ). For a set C ⊆ Vt, the t-type of C, denoted by γt(C) is

γt(C) ..= {πt ∈ Πt | ∃ clique X in Gt which is potentially bad for C and π(X | C) = πt}.

With slight abuse of notation, we call the set Γt = 2Πt of all subsets of profiles at t the t-types.

B Observation 17. Let (T,L) be a rooted branch decomposition, and let t ∈ V (T ). There
are at most 22O(w) many t-types, where w ..= mw(T,L).

The previous observation follows from Observation 12. In our algorithm we want to be
able to determine the t-type of the union of a color class in Gr and a color class in Gs. This
is done via the following notion of a merge type.

I Definition 18 (Merge Type). Let G be a graph with rooted branch decomposition (T,L),
let t ∈ V (T ) \ L(T ) with children r and s. For a pair of an r-type γr ∈ Γr and an s-type
γs ∈ Γs, the merge type of γr and γs, denoted by µ(γr, γs), is the t-type obtained as follows.

µ(γr, γs) ..= {µ(πr, πs) | πr ∈ γr, πs ∈ γs,where πr and πs are compatible}⋃
p∈{r,s}

{λ(πp) | πp ∈ γp,where πp is liftable}

The proof of the following lemma which shows that the merge type faithfully represents
the merging of two color classes can be done using Lemmas 13, 14, and 15.

I Lemma 19 (♣). Let G be a graph with rooted branch decomposition (T,L), let t ∈ V (T ) \
L(T ) with children r and s. Let Cr ⊆ Vr and Cs ⊆ Vs. Then, γt(Cr∪Cs) = µ(γr(Cr), γs(Cs)).

4.3 The algorithm
We are now ready to describe the algorithm. As alluded to above, partial solutions at a node
t, i.e. colorings of Gt, are described via the notion of a t-signature which records the number
of color classes of each type in a coloring. If two colorings have the same t-signature, then
they are interchangeable as far as our algorithm is concerned. We show that this information
suffices to solve the problem in a bottom-up dynamic programming fashion.

I Definition 20 (t-Signature). Let k be a positive integer. Let G be a graph with rooted
branch decomposition (T,L), let t ∈ V (T ), and let C = (C1, . . . , Ck) be a k-coloring of Gt.
Then, σC : Γt → {0, 1, . . . , k} where ∀γt ∈ Γt : σC(γt) ..= |{i ∈ {1, . . . , k} | γ(Ci) = γt}|, is
called the t-signature of C. The set of t-signatures is defined as:

sigt ..=
{
σt : Γt → {0, 1, . . . , k}

∣∣∣ ∑
γt∈Γt

σt(γt) = k
}

The following bound on the number of t-signatures immediately follows from Observa-
tion 17, stating that the number of t-types is upper bounded by 22O(w) .

B Observation 21. Let (T,L) be a rooted branch decomposition of an n-vertex graph, and
let t ∈ V (T ). There are at most k22O(w)

≤ n22O(w)

many t-signatures, where w ..= mw(T,L).

B Definition of the table entries. For each t ∈ V (T ) and σt ∈ sigt, we let tab[t, σt] = 1 if and
only if there is a k-coloring C of Gt such that σC = σt.

I Lemma 22 (♣). Let G be a graph with rooted branch decomposition (T,L), and let r be
the root of T . G has a clique coloring with k colors if and only if tab[r, σ?] = 1, where σ? is
the r-signature for which σ?(∅) = k.
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B Leaves of T . Let t ∈ L(T ) be a leaf node in T and let v ∈ V (G) be the vertex such that
L(v) = t. We show how to compute the table entries tab[t, ·]. Note that Gt = ({v}, ∅), and
that {v} is the only equivalence class of ∼t. To describe the types of color classes of Gt,
observe that the only eqc-maximal clique in Gt is {v} =.. Xv, which is potentially bad for
Cv ..= {v} = Xv. In that case, we have that πv ..= π(Xv | Cv) = ({v}, ∅), and the type of
color class Cv is {πv}. The type of the remaining k − 1 color classes is ∅, since they are all
empty. Therefore, for each t-signature σt, we set tab[t, σt] ..= 1 if and only if σt({πv}) = 1
and σt(∅) = k − 1.

Next, we move on to the computation of the table entries at internal nodes of the branch
decomposition. To describe this part of the algorithm, we borrow the following notion of a
merge skeleton from [22].

I Definition 23 (Merge skeleton). Let G be a graph and (T,L) one of its rooted branch
decompositions. Let t ∈ V (T ) \ L(T ) with children r and s. The merge skeleton of r and s is
an edge-labeled complete bipartite graph (J,m) where

V (J) = Γr ∪ Γs, and
for all γr ∈ Γr, γs ∈ Γs, m(γrγs) = µ(γr, γs).

B Internal nodes of T . Let t ∈ V (T ) \ L(T ) be an internal node with children r and s. We
discuss how to compute the table entries at t, assuming the table entries at r and s have
been computed. Each coloring of Gt can be obtained from a coloring of Gr and a coloring of
Gs, by merging pairs of color classes. Therefore, for each pair σr ∈ sigr, σs ∈ sigs such that
tab[r, σr] = 1 and tab[s, σs] = 1, we do the following. We enumerate all labelings of the edge
set of the merge skeleton with numbers from {0, 1, . . . , k}, with the following interpretation.
If an edge γrγs has label j, then it means that j color classes of r-type γr will be merged
with j color classes of s-type γs; this gives j color classes of t-type µ(γr, γs) = m(γrγs). Each
such labeling that respects the number of color classes available of each type will produce a
coloring of Gt with some signature σt, which can then be read off the edge labeling. For all
such σt, we set tab[t, σt] = 1. We give the formal details in the full version.

The proof of the following lemma which asserts the correctness of our algorithm can be
done via induction on the height of t and using Lemma 19.

I Lemma 24 (♣). Let G be a graph and (T,L) one of its rooted branch decompositions, and
let t ∈ V (T ). The above algorithm computes the table entries tab[t, ·] correctly, i.e. for each
σt ∈ sigt, it sets tab[t, σt] = 1 if and only if Gt has a k-coloring C with σC = σt.

The details of the runtime discussion (based on Observation 21 and the fact that |V (T )| =
O(n)) are deferred to the full version; correctness is shown in Lemma 24, and by Lemma 22,
the solution to the problem can be read off the table entries at the root. Using memoization
techniques, the above algorithm can return a coloring if one exists.

I Theorem 25. There is an algorithm that given an n-vertex graph G together with one of
its rooted branch decompositions (T,L) and a positive integer k, decides whether G has a
clique coloring with k colors in time k22O(w)

· n ≤ n22O(w)

, where w ..= mw(T,L). If such a
coloring exists, the algorithm can construct it.
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