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Abstract
Reading or viewing recommendations are a common feature on modern media sites. What is shown to consumers as recom-
mendations is nowadays often automatically determined by AI algorithms, typically with the goal of helping consumers 
discover relevant content more easily. However, the highlighting or filtering of information that comes with such recom-
mendations may lead to undesired effects on consumers or even society, for example, when an algorithm leads to the creation 
of filter bubbles or amplifies the spread of misinformation. These well-documented phenomena create a need for improved 
mechanisms for responsible media recommendation, which avoid such negative effects of recommender systems. In this 
research note, we review the threats and challenges that may result from the use of automated media recommendation tech-
nology, and we outline possible steps to mitigate such undesired societal effects in the future.
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1 Introduction

Many modern media sites nowadays provide content rec-
ommendations for their online consumers, e.g., additional 
news stories to read or related videos to watch (see Fig. 1). 
The selection of the content to be presented to the users is 
increasingly automated and done with the help of machine 
learning algorithms. Such recommender systems, which 
typically rely both on individual user interests and collec-
tive preference patterns in a community, are commonly 

designed to make it easier for consumers to discover rel-
evant content. At the same time, personalized recommen-
dations can also create value for the media providers, e.g., 
in terms of increased user retention or ad revenue, see 
[47] for an overview. Kirshenbaum et al. [53] and Garcin 
et al. [39] for example both report that recommendations 
increased the click-through rates on their news sites by 
more than 30%. In the online streaming domain [41], fur-
thermore, discuss the various ways recommendations can 
create business value at Netflix, e.g., in terms of customer 
retention.

However, the use of recommendation technology may 
also lead to certain undesired effects, some of which only 
manifest themselves over time. Probably the best known 
example is the phenomenon of the “filter bubble” [77]. Such 
a bubble can emerge when the algorithms learn about user 
interests and opinions over time, and then start to solely pre-
sent content that matches these assumed interests and opin-
ions. Ultimately, this can lead to self-reinforcing feedback 
loops which may then result in undesired societal effects, 
such as opinion polarization or the increased spread of one-
sided information [21].

A common argument is that the emergence of such phe-
nomena is often a result of how the underlying algorithms 
work or what they are optimized for. For example, when 
the goal is to maximize user interaction—and thus clicks 
and ad impressions—an algorithm may learn that the best 
choice is to recommend what the consumer liked in the past 
or what is generally popular or trending [4]. Recommen-
dation algorithms focused on such optimization goals can 
further lead to addicting users to social media platforms 
[8, 84, 101]. Furthermore, we cannot rule out that there 
are cases, where recommendations providers do not view 
this to be problematic, e.g., due to their goal to maximize 
short-term profitability [103]. Following a specific political 
agenda can also be a motivation, e.g., in the infamous case of 
Cambridge Analytica, who employed mechanisms of Face-
book to target voters in 2014 and 2015 [74]. In many other 
cases, however, organizations may have an interest to avoid 
negative effects through more responsible recommendations. 
Public broadcasters in Europe, for example, often have the 
explicit mission to provide unbiased political information or 
to deliver content that is diverse in nature. As an example, 
the Council of Europe has established standards for public 
broadcasters to produce programmes that reflect the cultural 
and linguistic diversity auf the audience [26]. Furthermore, 
the British Broadcasting Corporation (BBC) has formulated 
a set of principles on its own for the provision of news and 
TV programmes, with the goals, e.g., of representing the 
different cultures of their audience and to represent alter-
native opinions [11]. Another example is Norway, where 
the diversity of opinions is reflected in the official Norwe-
gian media policy [72] and anchored in Article 100 in the 

Fig. 1  Snapshot of the mobile app of Bergens Tidende, one of the 
largest newspapers in Norway, showing news recommendations
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Norwegian constitution. This mission should then also be 
reflected in the recommendations, which often have a major 
influence of what users consume online. But also private 
organizations might be interested in avoiding one-sided or 
unbalanced recommendations, as this might contradict their 
corporate mission or might simply hurt their public reputa-
tion in the long run.

Next, in Sect. 2, we review possible threats and undesired 
side effects of recommendations and we shed some light 
on the underlying reasons for the emergence of this effects. 
Afterwards, in Sect. 3, we discuss a selected set of exist-
ing approaches to deal with these challenges and to deliver 
responsible recommendations.

2  Undesired effects and underlying causes

Prior research has identified a number of undesired effects 
that can be unintentionally caused or intensified by recom-
mender systems. Some of these effects can be mainly attrib-
uted to characteristics of the algorithms that generate the 
recommendations. Other effects, in contrast, largely stem 
from particularities of the data that is used by the algorithms 
[24, 25], such as the history of recorded user interactions. 
Next, we review a number of such negative effects in some 
more depth before we summarize the potential underlying 
reasons.

2.1  Description of undesired effects

Filter bubbles,1 as mentioned above, are one of the most 
frequently discussed potential effects of personalization and 
recommendation, which assumedly may pose serious threats 
to individuals and societies. A filter bubble refers to a social 
environment that lacks the exposure to diverse beliefs and 
viewpoints. It can occur in undiversified communities, where 
people are encapsulated within a stream of media content 
(e.g., videos or news articles) that is optimized to match 
their specific preferences [70]. This effect can be created or 
reinforced by recommender systems, by over-personalizing 
the media content based on the users’ interests, and conse-
quently, trapping them within an unchanging environment 
[77]. While “good” personalization helps users to obtain 
relevant information and hence addresses information over-
load [71], overdoing it can lead the users to only view what 
they individually want and keeping them inside a closed 
world, cut out of the outside (or: diverse) world [96]. In the 

long term, this can harm users when they become isolated 
from outside of the “bubble” and create additional nega-
tive effects, such as partial information blindness [77]. As 
a result, it becomes unlikely that users will receive recom-
mendations of less attractive but important content. Instead, 
they will be surrounded by the viewpoints of like-minded 
users, and protected from surprising information, or infor-
mation that challenges their opinions. This may ultimately 
weaken their creativity, as well as their thinking and learning 
capabilities [70].2

Echo chambers—another potential effect of recommenda-
tions—refer to a polarized environment, where only certain 
viewpoints, information, and beliefs are shared via commu-
nication. In such an environment, the users’ viewpoints are 
repeatedly amplified through recurring exposure to similar 
media content [40]. This situation is more likely to occur 
within closed communities, where people will only share 
opinions that they are in high agreement, without free circu-
lation of information with the outside world [29, 46]. Echo 
chambers can be seen as an inevitable effect in social media 
networks, due to their particular characteristics, which can 
easily result in the formation of homogeneous and segre-
gated communities [40, 82]. Members of such polarized 
communities tend to ignore information that is conflicting 
with their beliefs and ideas [45, 55]. Recommender systems 
can even intensify the echo chamber effect by suggesting 
media content to users that reconfirms their background 
beliefs and existing viewpoints, and hence, decrease their 
exposure to more diverse opinions.

The reinforced spread of misinformation, i.e., the commu-
nication and circulation of false and misleading information, 
is another potential negative effect of recommendations. This 
information that is spread is, however, not necessarily meant 
to deceive people. Disinformation, in contrast, refers to false 
information that is created and communicated in order to 
deceive people [56]. Recommender systems can uninten-
tionally contribute to both of these undesired effects, thus 
posing serious threats to communities. A notable example 
is the spread of misinformation on the Swine Flu on Twitter 
[69]. Despite the lack of concrete evidence, it is commonly 
believed that the Twitter recommendation algorithm has 
facilitated and reinforced the spread of that misinformation 

1 A filter bubble can be considered as a stage of a bigger effect, 
Information Polarization, which occurs when the individuals have no 
or limited access to diverse media content, and hence, are exposed to 
a narrow range of information sources [66].

2 We acknowledge that a growing body of literature suggests that 
today’s technology and use of recommender systems actually may 
have not isolated large segments of the audience into bubbles to a 
large extent (e.g., [12, 37, 38, 42, 68], or that filter bubbles are rather 
mainly formed in our heads [15, 16]. In addition, the threats of creat-
ing filter bubbles might be much more pronounced for large content 
aggregators such as Google and Facebook than for more traditional 
media sites that mainly provide curated content. Similar considera-
tions apply for echo chambers. It is nonetheless important to highlight 
that the situation can quickly change when technology improves and 
their use increases [105].
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so that it has reached a very large user community and 
consequently caused panic in parts of the population [33]. 
Online social platforms are a primary medium for the spread 
of such misinformation, often due to the lack of editorial 
control. As a result, these platforms are often considered as 
unreliable and untrustworthy sources of news [18].

Popularity bias, i.e., the tendency of a recommender sys-
tem to focus on popular items, is an effect that often origi-
nates from the characteristics of the data that is used to gen-
erate the recommendations. In real-world data collections, 
a large fraction of the contained information is often related 
to a small set of popular (“blockbuster”) items, known as 
the short head. The rest of the data, in contrast, is related 
to the long tail of average or niche items [1, 2, 13, 32]. For 
example, Fig. 2 shows recent data from TV 2 Play,3 one 
of the largest movie streaming platforms in Norway. The 
numbers clearly indicate that a small fraction of the mov-
ies that are recommended on the front page accounts for 
a large number of the recorded page impressions. Interest-
ingly, while recommender systems are often considered as 
means to increase sales in the long tail, the concentration on 
the short head can in fact be increased by a recommender 
system [36, 48, 60]. A popularity bias can be amplified by 
a recommender system when it learns from the recorded 
data to recommend popular items more frequently than less 
popular items. Not all recommendation algorithms exhibit 
such tendencies to the same extent, as discussed in Ref. [48]. 
In general, while recommending popular items is often con-
sidered a safe strategy in practice, it is not beneficial for the 
discovery of fresh or niche items. Moreover, such a strategy 
also leads to a limited level of personalization and can push 
the choices and consumption behavior of users towards the 
mainstream, which is not always a desired effect. Several 

works have studied popularity biases and reported the exist-
ence of such effects for various online platforms that serve 
their users with some forms of recommendation, see, e.g., 
[64] for the case of Spotify.

Discrimination is another potential side effect of recom-
mendations that may harm individuals or certain groups 
in a society. Discrimination can be defined as the unfair or 
unequal treatment of individuals, groups, classes or social 
categories according to certain characteristics, e.g., gender, 
age, income, education, religion, or ethnicity race [35, 79]. 
When discrimination is the result of using an intelligent sys-
tem like a recommender system, the phenomenon is often 
referred to as “digital discrimination”. Nowadays, digital 
discrimination is becoming more prevalent. Today, it is con-
sidered a serious challenge due to the increasing number of 
decisions that are either made automatically by such systems 
or due to human decisions that are based on the output of 
algorithms. Discrimination through recommendation can 
occur in different forms and can affect certain individuals 
or groups within a social environment. As an example, it has 
been shown that collaborative filtering algorithms—which 
are among the most popular recommendation techniques in 
the media industry—may intensify existing gender biases 
that are inherited from the input data [85]. When such algo-
rithms are used, it may become much less likely that female 
artists are pushed compared to male artists [34].

Finally, unfairness (or: the lack of fairness) is among the 
most important challenges that may result as a side effect 
of automated recommendations. Research on fairness and 
unfairness can be traced back to well over 50 years [44], and 
it has received renewed attention in the most recent years, 
in particular also in the areas of machine learning or artifi-
cial intelligence in general. Informally speaking, unfairness 
refers to a social environment, where individuals perceive 
a severe lack of fairness. Fairness, in turn, may be char-
acterized as the absence of any bias, prejudice, favoritism, 
mistreatment toward individuals, group, classes, or social 
categories based on their inherent or acquired characteristics 
[25]. While such a characterization of fairness is certainly 
helpful, the notion of fairness often remains vague and no 
common definition has been established within the relevant 
literature. Prior studies on algorithmic fairness reported that 
the perception of fairness may strongly vary across indi-
viduals. For instance, [95] found that the perception of fair-
ness largely differed across hundreds of participants of an 
experiment. This can be due to the complexity of the topic 
or the highly sensitive, contextual, and subjective nature of 
fairness [57].

In the context of recommender systems, different forms 
of fairness can be defined. [3] recently proposed a taxon-
omy of different classes of fairness in recommender sys-
tems according to the various stakeholders. They defined 
C-fairness, where the focus is on the perspective of those 

Fig. 2  Impressions of movies recommendations on the front page of 
TV 2 Play, plotted in logarithmic scale. The yellow bars represent the 
top 50 popular movies based on the number of playbacks made by 
users (colour figure online)

3 https:// play. tv2. no.

https://play.tv2.no
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who receive the recommendations (consumers); P-Fairness 
for those who provide the items or content (providers); and 
S-fairness for those who neither receive nor provide the rec-
ommendations yet are influenced by the recommendations 
as side stakeholders.

2.2  Discussion of underlying reasons

Various of the discussed phenomena, including unfairness 
and discrimination, can be caused by different forms of bias 
in the data. The potential undesired effects of recommen-
dations, therefore, often enter the system through the data, 
since the system learns from the data to replicate preexist-
ing biases [30]. As an example, it is estimated that 68.5% of 
Twitter users are male, where only 31.5% are female [91]. It 
is, therefore, easy to imagine that a system may recommend 
disproportionately more male users to follow than female 
users. As another example, according to data by TV 2 Play 
shown in Fig. 2, a narrow range of movies (44 out of about 
1000 movies) recommended on the front page received 
almost half of the impressions. This may indicate that the 
implemented recommendation algorithms have a tendency 
to recommend already popular items, e.g., movies that have 
been watched frequently previously. The popularity of mov-
ies and the number of impressions through the recommenda-
tions on TV 2 Play are plotted in Fig. 3, where a correlation 
can be clearly observed.

Technically, bias can be defined as a deviation from the 
standard, indicating the existence of some form of statisti-
cal patterns in the data [27, 35]. Bias in the data can come 
from how the data are collected. Selection bias, for example, 
refers to an ill-designed process of data collection and sam-
pling, where the data have been obtained from subgroups 

of a population through a specific form of process (e.g., a 
non-random process). As a result of such a selection bias, 
the trends estimated for a population cannot generalize to 
data collected from a new population [63]. For example, 
consider a dataset collected by a social media company sur-
veying the video tastes of its users. If the website is mainly 
used by experts users, with a degree in art or cinema, the 
elicited preferences will be biased, and hence, not repre-
sentative of the entire society. Another type of bias is the 
population bias, which refers to situations, where statistics, 
demographics, representatives, and user characteristics are 
different in the user population represented in the data set 
from the target population [75]. As an example, this bias can 
arise when relying on data collected from a social network 
(e.g., Snapchat, which is mostly used by younger individu-
als) to make recommendations for a population with differ-
ent demographics (e.g., forum users on Reddit).

But not only biases in the data can contribute to the crea-
tion or intensification of the described phenomena. In par-
ticular, the recommendation algorithms can be another root 
cause for several of them, as discussed. As an example, it 
has been found that the number of friends for a Facebook 
user does not only reflect the popularity of a user, but is also 
dependent on the bias of the recommendation algorithm of 
Facebook [94]. Algorithms can also amplify already existing 
biases. For example, recommendation algorithms that are 
trained on the MovieLens data set4—a very popular data set 
in the research community— were found to strongly inten-
sify the preexisting popularity bias they inherited from the 
data set [7, 60].

A bias amplification tendency of certain algorithms is 
often rooted in their specific optimization goal (or techni-
cally, their objective function). Real-world recommender 
systems typically focus on optimizing the underlying algo-
rithm according to the given Key Performance Indicators, 
e.g., to increase sales by converting visitors into buyers. 
Therefore, the goal is to create recommendation lists that 
maximize the probability that a customer makes an order, 
i.e., to create lists that increase the conversion rate [89]. 
While the conversion rate is a common metric in different 
business sectors, it has been shown that it can create a severe 
case of popularity bias [97]. Hence, the negative effects of 
recommendations can go beyond the users (consumers of 
items) and also damage the business (suppliers of items).

In a different study [22], it has been shown that recom-
mendation algorithms, biased towards popular items, might 
undermine the consumption (or sales) of unpopular items 
(long tail), hence, preventing such items to ever gain visibil-
ity and become popular. This may not be a big challenge for 
companies, where the majority of the revenue comes from 

Fig. 3  Comparing the popularity of movies recommended on the 
front page of TV 2 Play and the impressions (views) they received 
from the users

4 https:// group lens. org/ datas ets/ movie lens/.

https://grouplens.org/datasets/movielens/
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a few popular items. However, it may represent a problem if 
the main business of a company is based on selling from the 
long tail of less-popular items. Such biased algorithm can 
thus negatively impact the revenue of such a company and 
cause significant damage [10].

Recent research has addressed this problem, for example 
by defining novel optimization objectives that also consider 
the diversity of the recommendations [9], or are able to bal-
ance the popularity, novelty, or diversity of the items that are 
recommended to users [1, 50, 88].

3  Mitigating the undesired effects

There has been a rising attention paid by the research com-
munity on the threats posed by recommender systems and 
their potential impact on individuals or societies [76]. Cor-
respondingly, numerous research works have focused on 
designing solutions as countermeasures to mitigate these 
threats.

Each of the solutions may target a specific key component 
of the environment of a recommender systems, i.e., user, 
data, and model, and may be applied at different stages of 
the feedback loop of recommender systems shown in Fig. 4 
[25]:

• user → data refers to the preference elicitation stage, 
where the users provide data to the system as explicit or 
implicit feedback;

• data → model refers to the learning stage, where machine 
learning algorithms are exploited to build user models 
based on the elicited data;

• model → user refers to the process of predicting prefer-
ences of users based on the elicited information and to 
the process of generating recommendations accordingly.

In this section, we briefly describe various solution 
approaches from the literature, categorized into data-driven 

approaches, algorithmic approaches, and user-centric 
approaches.

3.1  Data‑oriented approaches

3.1.1  Data de‑biasing

Several techniques have been proposed to de-bias the data. 
As an example, various techniques addressed the selection 
bias in recommender systems, which typically impacts the 
evaluation phase [25]. The primary reason for this bias can 
be that the available data often is not a representative sample 
of the user preferences, as discussed above. This is in parts 
due to the fact that users are free to decide for which items 
they provide their feedback (e.g., in the form of ratings). A 
potential solution to mitigate the selection bias is to redefine 
the prediction model to learn to predict which data is miss-
ing. Hence, in addition to predicting the relevance of items 
for a target user, a second task is to predict the likelihood 
that an item is chosen by the user to rate. The assumption 
is that the chance of choosing an item by a user to rate will 
depend on the value of the rating the user will provide [25]. 
Technically, the probability of observing a user-item interac-
tion can for example be modelled by mixture of multinomi-
als [62], logit [61] or matrix factorization models [43].

Another known phenomenon is the conformity bias, 
which happens when users are influenced by the opinions 
of others (e.g., on social media) and when their expressed 
preferences deviate from their true preferences. An example 
solution can be to treat the observed preferences of users as 
a synthetic outcome of combining the true preferences with 
social influence. As a result, social influence is taken directly 
into account in the recommendation model [25].

Data biases and de-biasing approaches are highly relevant 
in practice. At Bergens Tidende, for example, an age-related 
bias is often observed in the data, resulting from the demo-
graphics of the subscriber population, which has a high pro-
portion of readers above the age of 50. This bias may make 
it difficult to appropriately serve younger audiences, which 
is, however, desirable both from a societal and commercial 
perspective. Hence, it can be important to apply methods to 
mitigate these types of biases when serving recommenda-
tions, e.g., by incorporating additional user features (e.g., 
age) within the user profile [59]. However, incorporating 
such extended features needs further considerations regard-
ing fairness in user modelling, as discussed in the next 
section.

3.1.2  Fair user modeling

User modeling refers to the process of creating and modi-
fying a conceptual representation of the users, and it deals 
with the personalization and adaptation of systems according 

Fig. 4  Feedback loop of recommender systems
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the specific preferences and needs of the user [58]. In this 
context, fairness can refer to a modeling process that does 
not create any unfair discrimination or unjust consequences 
[99]. Accordingly, fairness in user modeling describes the 
condition, where the model, built on top of the user data, can 
fairly represent the values of the users.

Various approaches have addressed fairness in user mode-
ling. Existing recommender systems tend to collect user data 
in high volumes and large varieties. It is often believed that 
every single action of online media users is carefully moni-
tored and precisely recorded. While some of the recorded 
data can be essential, others may not necessarily be needed 
or may expose sensitive information about the users. Build-
ing user models on top of such data can cause serious issues 
of user privacy. To address such issues, some approaches 
proposed to eliminate sensitive attributes of the users (e.g., 
gender, religion, or race) when building models [23, 100]. 
While this can be effective in avoiding unfairness, it may fail 
to work properly in certain cases, e.g., when the sensitive 
attributes are highly correlated with other attributes [52]. In 
addition to that, eliminating certain attributes of users can 
reduce the recommendation quality. In order to address this, 
some approaches utilized embedding techniques to encode 
the attributes before building the models. Consequently, the 
resulting user models do not directly measure the sensitive 
attributes and instead compute latent features for describing 
the users [100].

3.2  Algorithmic countermeasures

A number of algorithmic approaches were proposed to deal 
with the potential undesired effects and biases of recom-
mender systems [25, 90]. Increasing the diversity of the 
returned recommendations is often a central approach [71]. 
Technically, some existing works in this direction enhance 
the diversity of the recommendation output by modifying the 
core recommendation algorithms. Others rely on re-ranking 
the output of an existing recommendation algorithm [2, 6, 
50, 93]. In the former case, the rating prediction model is 
extended with additional terms aiming to improve the fair-
ness of the system, e.g., by reducing the bias. In the latter 
case, re-ranking techniques are applied on top of the existing 
recommendation algorithm, e.g., to post-process the recom-
mendation output and to build a more diversified list [4]. In 
this section, we briefly review such approaches.

3.2.1  Enhancing diversity, novelty, and serendipity

Over the past years, several approaches were proposed to 
enhance the diversity of the recommendations created by a 
system. One of the early works on diversity is [14], where 
an algorithm based on Bounded Random Selection was pro-
posed. Another example for an early work on diversity is 

[104], where the authors developed an algorithmic frame-
work focusing on topic diversification. In addition, a dis-
similarity metric was proposed to measure the level of diver-
sification and the effectiveness of the underlying algorithm. 
Another notable work is [78], where the authors proposed 
a technique that can positively enhance the diversity of a 
recommender system for different stakeholders, i.e., users 
(consumers of items) and business (suppliers of items). The 
technique sets a minimum threshold for the exposure of dif-
ferent items, ensuring that a wider range of suppliers are 
listed in the recommendations generated for users. Various 
other techniques, however, exist as well, which were pro-
posed earlier but are not directly tied to the problems of 
responsible recommendation, see, e.g., [6, 51, 50].

Serendipity is another important dimension in recom-
mender systems which can contribute to the perceived fair-
ness of a system. Serendipity as a concept typically is con-
sidered to reflect the surprise element of recommendations. 
Recommending serendipitous items can also be considered 
as an attempt to reduce potential biases and hence improve 
the fairness of a recommender system. Remember that the 
continuous recommendation of items that are already known 
to users may reinforce the recommendation of popular items, 
hence intensifying the popularity bias. Emphasizing ser-
endipity and novelty can help to promote items that have 
not had many chances to receive user feedback. It has been 
shown that a certain lack of novelty and serendipity in rec-
ommender systems can contribute to an overall dissatisfac-
tion of users [102]. However, introducing higher serendip-
ity levels has to be done carefully as some users are more 
engaged when surprising recommendations are suggested to 
them, while others may become disengaged, even dissatis-
fied, with such recommendations. Different research works 
exist which focus on designing recommender algorithms that 
can deliver relevant recommendations while including new 
items that the users might be less familiar with [5]. This is 
in fact a crucial capability, since there is a known trade-off 
between relevance, serendipity and novelty within recom-
mender systems. Ultimately, it is important that the the sys-
tem fairly deals with different types of user with different 
attitudes towards novel and serendipitous content.

3.2.2  Technical approaches for enhancing 
recommendations

Looking at technical approaches, the problem of fair rank-
ings has traditionally been dealt with from the perspective of 
search engines and the results they provide to users. In this 
context, fairness refers to the condition, where the gener-
ated ranking contains a sufficiently diverse set of items that 
reflects the interest of different groups of the society (e.g., 
underrepresented groups) and avoids statistical discrimina-
tion against such groups [20].
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In the context of recommender systems, re-ranking algo-
rithms have been typically employed to post-process the out-
put of recommender systems to achieve a certain goal (e.g., 
improving fairness). An example is the work of [2], where 
the authors propose a post-processing technique (dubbed 
xQuAD) in order to balance the exposure of the different 
items in the catalog. This approach empowers the systems 
to tune the output towards the generation of fair recom-
mendations. Another example of a re-ranking techniques is 
called ReGularization (RG), which aims to improve fairness 
through balancing the ratio of popular and less popular items 
in the recommendation output. Technically, this is done by 
extending the objective function with an additional regu-
larization term. Accordingly, recommendations containing 
more popular items are penalized in order to better create a 
balance between popular and unpopular items [1]. A similar 
technical approach was proposed in Ref. [88] for the prob-
lem of news recommendation. In their approach, the goal 
was, however, to balance item novelty with relevance, allow-
ing the system, for example, to promote novel content that 
is not yet too popular. In addition to the above described 
approaches, there are some works that adopt techniques to 
perform multi-objective optimization by simultaneously 
optimizing both accuracy and diversity [19, 90]. Another 
example is the work by [80], which utilizes genetic algo-
rithms capable of balancing accuracy, diversity, and novelty 
when generating recommendations for users.

3.3  User‑centric approaches

Algorithmic fairness, as described in the previous section, 
can play an important role in mitigating the negative impacts 
of the noted phenomena. However, it could also be too sim-
plistic to believe that this type of fairness can solve the entire 
problem. Hence, one should not ignore the other, more user-
centric aspects of fairness, which can play an important role 
as well.

3.3.1  Dimensions of user‑centric fairness

User-centric fairness can be studied along different dimen-
sions, including in particular Engagement, Representation, 
and Action and Expression [31]. Engagement refers to how 
different users are engaged with the recommender system 
and interact with the provided recommendations. A wide 
range of factors can impact the engagement of users, e.g., 
culture, beliefs, personal characteristics, ethnicity, or edu-
cation. The Representation dimension refers to the adop-
tion of different means when presenting recommendations 
to users. This will enable different groups of users, with 
different characteristics (e.g., with different abilities), to 
properly comprehend the presented recommendations. Pro-
viding explanations for the recommendation or summarizing 

the key features of the recommendations, e.g., through sup-
porting materials, are examples to improve the fairness of a 
recommender system from the representation point of view. 
The Action and Expression dimensions refers to support-
ing users in expressing their feedback on the recommenda-
tions through different channels. This may be required due 
to the fact that different users may prefer different ways of 
interacting with a recommender system and expressing their 
opinion. Some may prefer to provide their feedback to the 
recommendations via pressing a button and some via writ-
ing it down. The system should offer different ways to give 
feedback and hence allow users to gain a certain level of 
control on the provided recommendations.

3.3.2  Creating transparency

Research on transparency dates back to nearly 40 years 
ago, where early works on expert systems proposed basic 
forms of explanations and justifications for the advice made 
by these systems [17]. Later on, research works on search 
engines indicated that transparency may largely improve the 
performance of a search engine from the users’ perspective, 
often leading to higher satisfaction with the system [54].

While no common definition can be found within the rel-
evant literature for the concept of transparency, some works 
provide a generic description of transparency as an infor-
mation exchange between a subject and an object, where 
the subject receives the information describing a service or 
a system that the object is responsible for [65, 98]. Other 
works characterize transparency as a set of best practices 
regarding how users should be provided with insights about 
a system, hence, enabling them to understand why and how 
it works [83].

In the context of recommender systems, the need for 
transparency has been articulated more frequently in recent 
years, see [73]. Traditionally, users of recommender systems 
mainly expect the recommendations to be accurately per-
sonalized. In future fairness-aware and responsible recom-
mender systems, however, users may more often expect the 
recommendation to be communicated and presented trans-
parently. In the literature, different forms of transparency are 
discussed. One predominant form of establishing transpar-
ency is to provide explanations about how the system works. 
Accordingly, the system should be able to provide sufficient 
information on the relationship between the input of the 
system (e.g., user preferences) and the mechanism that led 
to its output (i.e., the recommendations). This information 
helps users to gain a better understanding of the recommen-
dation process, thereby enabling them to revise their input 
in order to improve the recommendations. An example of 
such research work is given in Ref. [86], where the authors 
conducted a user study comparing five music recommender 
systems. The results of the study showed that users felt more 
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confident when the recommendation process is perceived by 
them as being transparent.

3.3.3  Increasing awareness

One of the key areas of interest in user-centric approaches 
is user awareness, and a number of studies investigated the 
potential impact of this factor. Some of the studies focused 
only on raising the awareness of users towards the potential 
threats in recommender systems by providing some form 
of explanations to them on why and how the system is act-
ing responsibly [87, 92]. An example can be a news recom-
mender systems that notifies users that some of the articles 
might be disputed and may need careful attention by the user 
[67]. Other studies have gone beyond such a simple approach 
and devised tools and methods that can further support users 
to act properly in problematic situations, e.g., methods that 
can automatically detect fake news in recommended news 
articles and inform the users appropriately on how to get rid 
of them [28, 81]. The argument for such approaches is that 
while raising the awareness of users regarding fairness issues 
is an essential objective, offering solutions to address these 
issues is another equally important objective. Addressing 
both objectives can better help users to gain knowledge, and 
at the same time, support them to find and use the concrete 
countermeasures provided by the system. Such countermeas-
ures are often among the more hidden features of the system 
and their functionalities may not always very clear to the 
users [49]. An example of a work in this area is [87], where 
the authors conducted an exploratory study to investigate 
the user perception of fairness and fairness-aware objectives 
in a recommender system. The study concluded with three 
important suggestions:

– Recommender systems should offer explanations to 
describe the fairness objective of the system for the users.

– Recommender systems should not provide explanations 
in order to nudge users into making a choice, although 
the goal might be fairness.

– Recommender systems should explain the motivation for 
considering fairness as an objective of the system.

Regardless of the goals and methodology, any form of trans-
parency as discussed above may be beneficial for users and 
improve the perceived fairness of the system.

4  Conclusion

Algorithm-generated recommendations are nowadays 
ubiquitous on the Web, in particular on media sites, where 
recommender systems are used to suggest news content or 
videos to watch for users. While there are many industry 

reports on the benefits of recommender systems, such per-
sonalized systems may also lead to undesired effects on indi-
viduals, communities, or a society as a whole. In this paper, 
we have reviewed the corresponding challenges and threats 
and outlined existing approaches to mitigate problems such 
as biases or the lack of fairness. Overall, while there is an 
increasing awareness in the community of these problems, 
more research is still needed to develop future techniques for 
responsible media recommendation.

A coordinated effort to address these problems is cur-
rently made in the recently established  MediaFutures 
Research Centre for Responsible Media Technology & 
Innovation.5 The centre involves a number of partners from 
academia and industry, including the most important play-
ers in media in the Nordic region as well as a partner from 
the global tech industry, such as TV2 and NRK (two main 
TV broadcasters in Norway); Schibsted, including Bergens 
Tidende (BT), and Amedia as the two largest news media 
houses in Norway; and the global tech and media player 
IBM. One main objective of the project is to study and tackle 
negative effects of recommendation technologies and to 
develop a new generation of responsible media technology 
by leveraging state-of-the-art AI technology for the media 
sector.
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