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Abstract

Motivation: Single nucleotide polymorphism (SNP) genotyping arrays remain an attractive platform for assaying
copy number variants (CNVs) in large population-wide cohorts. However, current tools for calling CNVs are still
prone to extensive false positive calls when applied to biobank scale arrays. Moreover, there is a lack of methods
exploiting cohorts with trios available (e.g. nuclear family) to assist in quality control and downstream analyses fol-
lowing the calling.

Results: We developed SeeCiTe (Seeing CNVs in Trios), a novel CNV-quality control tool that postprocesses output
from current CNV-calling tools exploiting child-parent trio data to classify calls in quality categories and provide a
set of visualizations for each putative CNV call in the offspring. We apply it to the Norwegian Mother, Father and
Child Cohort Study (MoBa) and show that SeeCiTe improves the specificity and sensitivity compared to the common
empiric filtering strategies. To our knowledge, it is the first tool that utilizes probe-level CNV data in trios (and single-
tons) to systematically highlight potential artifacts and visualize signal intensities in a streamlined fashion suitable
for biobank scale studies.

Availability and implementation: The software is implemented in R with the source code freely available at https://
github.com/aksenia/SeeCiTe

Contact: Ksenia.Lavrichenko@mpi.nl, Inge.Jonassen@uib.no or Stefan.Johansson@uib.no

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The term copy number variant (CNV) commonly refers to a segment
of DNA (typically >1 kb in size) that varies among individuals in
the number of copies. There is an established and ever-growing evi-
dence of significant role that CNVs (and other types of structural
genomic variation) play in disease and evolution (Bailey and Eichler,
2006, Feuk et al., 2006; Girirajan et al., 2011; Zarrei et al., 2015).

Among the technologies employed to assay genomic data for
variation in tens of thousands of individuals, single nucleotide poly-
morphism (SNP) genotyping arrays remain attractive due to their
permissive cost and established methodology. Importantly, SNP
arrays data already exist for a number of population-wide cohorts
combined with appropriate tools allow for detection of CNVs.

Notable examples are the UK Biobank (Kendall et al., 2017), the
Norwegian Mother, Father and Child Cohort Study (Magnus et al.,
2016) and a growing number of studies in agriculturally important
species (Bhanuprakash et al., 2018). These projects were often
designed with focus on SNPs and thus were assayed on arrays that
may pose difficulties in consequent CNV calling (Pinto et al., 2011).

For this reason, a plethora of methods have been developed in
the past decades that may be utilized for CNV calling in the data
produced using various array platforms and chip designs. Among
the most often used are PennCNV (Wang et al., 2007) (1398 cita-
tions at the time of the writing), QuantiSNP (Colella et al., 2007)
(580 citations), cnvPartition (Illumina proprietary software) and
Birdsuite (Affymetrix proprietary software). Common to all existing
methods are persisting issues with precision in CNV calling. Array-
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based CNV calling methods are known to have false positive rates
as high as 24% (PennCNV, Eckel-Passow et al., 2011) and inter-
software reproducibility below 50% (Pinto et al., 2011). This led in
turn to numerous efforts and strategies aimed at increasing the speci-
ficity of a given CNV calling pipeline (Li et al., 2018; Zhang et al.,
2014), e.g. involving visual inspection of array intensity signals
along the genomic axis for candidate CNV regions.

Importantly, higher precision may be possible to achieve for
case-parent (trio) studies, as parental array-data can be utilized to
inform interpretation of offspring data and vice versa. Few methods
exist ready for trio-based CNV calling or postcalling assessment
from SNP arrays with high specificity of calls and inheritance delin-
eation. Nutsua et al. (2015) exploited offspring-parent CNV call
concordance to benchmark CNV callers on a trio cohort; however,
the approach only used CNV segments coordinates and genomic
overlap of those in a manner unaware of the signal intensities, which
may be problematic if both offspring and parental calls are artifacts.
Scharpf et al. (2012) CNV calling method involves a distance metric
between probe intensities in an offspring and a parent. However, it
requires a reprocessing of the entire cohort and is not applicable to
assessment of already existing calls.

Here, we present SeeCiTe, a postprocessing method for trios that
assesses evidence for CNVs in an offspring (or singleton) and when
possible, suggests inheritance patterns using simultaneously raw sig-
nal data from all individuals in the trio. Differently from other meth-
ods, SeeCiTe provides intuitive quality categories, a wider range of
summary statistics and visual panels displaying raw signal in all
three individuals around potential CNVs in the offspring. Thus,
SeeCiTe facilitates (i) minimization of the number of cases for which
visual inspection is needed and (ii) visual representations that sup-
port inspection with quality classification labels.

Another vexing challenge for the large-scale CNV studies is the
need for benchmark datasets enabling quantitative assessment and
comparison of CNV calling pipelines. Here, we pursue two
approaches to develop benchmark data for the evaluation of our
tool. The first is based on manual curation of a subset of CNV calls
performed by an expert examining signal intensity panels for each
potential CNV. The second is exploiting published sequencing-
based CNV calls from the International HapMap Consortium
(International HapMap, 2003).

We use SeeCiTe to refine calls from the Norwegian Mother,
Father and Child Cohort GWAS Study (Helgeland et al., 2019) and
find that it helps to identify and flag a fraction of CNV calls (includ-
ing de novo) of lower quality thus increasing the specificity of the
calling. The method shows competitive performance with standard
filtering strategies while improving on both sensitivity and specifi-
city. The quality categories are well correlated with published
sequencing-based CNV sets.

2 Materials and methods

2.1 Outline
SeeCiTe workflow consists of the following steps (Fig. 1), (i) prepro-
cessing of the input; (ii) within-individual summaries calculations;
(iii) pedigree analysis; (iv) classification and (v) output generation,
where (ii–iv) are the core steps in the method. To maximize the util-
ity of SeeCiTe, we recommend to apply it after merging and filtering
of initial CNV calls done by PennCNV-trio.

2.1.1 Preprocessing: PennCNV inheritance mapping and data points

extraction

The input CNV calls need to be converted to the PennCNV format
first, to which then the PennCNV-trio module can be applied. The
merging and filtering by frequencies and size are then done on this
trio-processed file, and the two files together are supplied as input to
SeeCiTe. In the preprocessing phase, the original PennCNV-trio
(tested with versions 1.0.3 and 1.0.4) calls are mapped onto merged
segments and for each CNV, the corresponding set of Hidden
Markov Model (HMM) trio states is parsed into an inheritance sta-
tus (Wang et al., 2007; Supplementary Data S1.1).

Next, to collect the probe-level information, the raw Log R
Ratio (LRR) and B Allele Frequency (BAF) data values are extracted

from the GenomeStudio export files for all markers in the region
defining the CNV and a flanking area around it (flank), for each in-
dividual in a trio using a SeeCiTe wrapper around PennCNV’s

infer_snp_allele.pl script. LRR represents normalized total allele in-
tensity at each probe, while BAF is a proxy for A and B alleles ratio,

as defined in Peiffer et al. (2006). The size of flanks is a parameter
set by default to 50 probes, but possible to adjust by the user.

2.1.2 Within-individual summary statistics collection

In the following, the standard notation for CNV types is used:
del for deletion, dup for duplication, ‘normal state’ for normal
copy number state (i.e. CN¼2 for autosomes). LOH stands for

Loss of Heterozygosity, which is a necessary but not sufficient
condition for calling a del. A region subject to a (one allele) de-

letion will only have one allele represented and thus appear as
an LOH stretch, but not all LOH regions will correspond to a
del.

For each CNV and each individual in the trio, the following sum-
mary statistics are calculated (Figs 2A and 3 header):

1. Allele ratio (BAF)-based summaries (left top panel in Fig. 2A):

CNV type (del, dup or normal state) prediction from the rule-

based heuristic classification of the BAF values around the

expected allele ratio clusters (Peiffer et al., 2006, detailed in the

Supplementary Data S1.2).

2. Normalized total intensity (LRR)-based summaries (right top

panel in Fig. 2A):

Standard deviation of LRR (LRR_SD) in the flanks (up- and

downstream pooled together) as a local measure of noise.

Number and percentage of LRR values above zero for a del, and

below zero for a dup; if this percentage is below a given cutoff (a

parameter set to 20% by default) a CNV locus is labeled as sup-

ported by LRR.

Test whether the LRR values within a CNV locus are shifted

from those of the flanks (using the kernel density-based test to re-

ject or accept the null hypothesis that the LRR values in the CNV

and in the flanks come from the same distributions, detailed in

Supplementary Data S1.3).

Fig. 1. Schematic of the CNV curation for the trio cohort with SeeCiTe. The LRR

and BAF signal intensities are used both for initial calling with PennCNV and later

for validation. Using PennCNV-trio, typically, a fraction of CNVs will be errone-

ously split into several fragments that then need to be merged. Filtering by fre-

quency, size and problematic genomic loci is also a standard step to increase

specificity of the call set. SeeCiTe then combines all of the inputs to further classify

CNV calls, producing output text and pdf files
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3. Individual-level consistency summary (middle of the top panel in

Fig. 2A):

Offspring is consistent with the CNV if both BAF and LRR sum-

maries in (1) and (2) support a CNV.

A parent is consistent with the normal state if both BAF and LRR

support no CNV change, otherwise a parent is consistent with a

CNV if BAF supports a CNV.

2.1.3 Use of pedigree information to assess a CNV call in offspring

The pairwise Hellinger distances (hellinger() in the statip package in
R) between LRR distributions for the CNV locus under analysis are
calculated for all pairwise combinations of individuals in a trio
(Fig. 2B). The pair with the smallest distance is recorded as a test re-
sult. Then three scenarios are considered:

• De novo: When the parents have the smallest Hellinger distance

in the CNV locus AND both parents are consistent with normal

copy number by BAF, while the offspring is consistent with a

CNV (del or dup) (Fig. 2B, bottom left).
• Inherited: When a pair offspring-parent has the smallest

Hellinger distance for the CNV locus AND both individuals are

consistent with a CNV of the same type (Fig. 2B, bottom right).
• Unclear: If none of the above, the CNV inheritance status is

labeled unclear.

2.1.4 Quality categorization of the calls in offspring

The final quality classification takes into consideration the input
PennCNV-trio inheritance and its consensus with the SeeCiTe
assignments:

• UNLIKELY: All putative de novo calls (before or after SeeCiTe

inheritance revision) for which LRR_SD value in flank exceeds a

given threshold (a value of 0.2 performed well in the datasets in

this study).
• BORDERLINE: When the inheritance assignments from

PennCNV-trio and SeeCiTe differ OR contain an ambiguous/un-

clear label OR when offspring is not consistent with a suggested

CNV.
• PROBABLE: When an offspring is consistent with a CNV AND

SeeCiTe inheritance assignment agrees with PennCNV-trio

status.

2.1.5 Visual panels

For each CNV call in an offspring, SeeCiTe generates a panel of
probe-level data for LRR and BAF plotted according to their genom-
ic position for each individual in a trio, for the CNV locus and its
flanking regions. Summary statistics are condensed in the header for
all three individuals. Boxplots (for all individuals) and decile plots
(for the offspring) for LRR are visualized (Fig. 3). In the singleton
module, only the relevant individual-level statistics are calculated
and visualized (Fig. 2A).

2.2 Evaluation on the real cohort and public HapMap

trio data
2.2.1 MoBa cohort

The Norwegian Mother, Father and Child Cohort Study (MoBa) is
a population-based pregnancy cohort study conducted by the
Norwegian Institute of Public Health (Magnus et al., 2016).
Participants were recruited from all over Norway from 1999 to
2008. The women consented to participation in 41% of the preg-
nancies. The cohort now includes 114 500 children, 95 200 mothers
and 75 200 fathers. The current study is based on version 9 of the
quality-assured data files released for research. The establishment of
MoBa and initial data collection was based on a license from the

Fig. 2. Map of the SeeCiTe method. (A) Starting from a candidate CNV call coordinates in an offspring, the method (i) extracts LRR and BAF data values for all probes inside

the candidate region as well as for flanking 50 probes upstream and downstream (collectively termed as flanks) for each family member—offspring (O), father (F) and mother

(M); (ii) collects and calculates a set of summary statistics for the locus in each individual. (B) The core of the method is direct comparison of the LRR and BAF distributions

between the individuals to classify the calls into categories and assign inheritance (left—a dup inherited from the father, right—putative de novo del)
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Norwegian Data protection agency and approval from The
Regional Committees for Medical and Health Research Ethics
(#2012/67). Blood samples were obtained from both parents during

pregnancy and from mothers and children (umbilical cord) at birth.

2.2.2 MoBa data preprocessing

Two batches of MoBa trio samples were processed in the current
study, MoBa1 was assayed on Illumina’s HumanCoreExome-12
v.1.1 (MoBa1.12) and HumanCoreExome-24 v.1.0 (MoBa1.24)

and MoBa2 was genotyped using the Illumina’s Global Screening
Array v.1.0 as described in Helgeland et al. (2019). CNVs were only

called in samples that had passed SNP-based genotyping and quality
control (with the settings adapted for CNV calling). Full details on
CNV calling and filtering prior to SeeCiTe can be found in

Supplementary Data S2.

2.2.3 Public HapMap CEU trio

Publicly available CEL files for HapMap CEU trio (NA12878,
NA12891 and NA12892) (Utah residents with Northern and
Western European ancestry from the CEPH collection) and YRI trio

(NA19240, NA19239 and NA19238) (from Yoruba in Ibadan,
Nigeria) were obtained from ftp://ftp.ncbi.nlm.nih.gov/hapmap/

raw_data/hapmap3_affy6.0/. We used PennCNV-Affy module to
generate the signal intensity data for two replicas of the CEU trio
assay (Tesla and Scale) and one replica of YRI (yri), suitable for

CNV calling. The data were processed as in Supplementary Data S2,
except for frequency filtering, which was not done on the HapMap

trio data. For comparisons, Birdsuit calls made in the same
Affymetrix SNP6.0 platform for CEU trio were downloaded from
dbVar with accession nstd22. For the YRI individual, the final CNV

set was further filtered by the blacklist from the corresponding
benchmark (Chaisson et al., 2019).

2.2.4 Benchmark datasets

Two manually curated datasets were produced for MoBa and one
for public short-reads sequencing-based data:

1. Of the SeeCiTe output classification categories of MoBa1.24, all

UNLIKELY and BORDERLINE calls, as well as all de novo

calls were examined visually by an experienced clinical labora-

tory geneticist using LRR intensity and BAF plots of the trio,

resulting in inspection labels for each CNV, either ‘bona fide’ for

likely real CNVs or ‘noise’ for highly likely artifacts.

2. The above was repeated for MoBa2. Furthermore, for the

�2000 probable inherited calls in the MoBa2 set, visual inspec-

tion was performed on 180 calls, randomly obtained using the

same distribution of events per chromosome as in a de novo call

set for visual inspection. Additionally, some calls on the

extremes of quality parameters were examined: (a) 10 inherited

CNV events in which the offspring had high fraction of probes

in direction discordant with the copy number predicted and (b)

10 CNV events with the highest LRR_SD in flanks.

3. For the CEU individual, we used high confidence published gold-

en standard CNV calls from 1000 Genomes (GS1) (Parikh et al.,

2016; Sudmant et al., 2015) (GS2). The two sets were combined

as follows: (1) at least 80% reciprocal overlap of GS1 and GS2

resulting in a more stringent set, Ref_intersection (1540 dels, 0

dups) and (2) the union of GS1 and GS2, Ref_union (3021 dels,

78 dups/ins). As only deletions are available in the intersection

set, we used only deletion calls for the sequencing-based bench-

mark. For the YRI individual, we used the deletion calls from

the recent pan-technology SV callset (Chaisson et al., 2019),

lifted over from hg38 to hg19 genome build.

Fig. 3. Example of SeeCiTe visual panel for HapMap CEU trio. Header lines numbered for clarity (grey boxes), from top to bottom (1) sample identifier, CNV coordinates,

CNV length in kb and probes spanned, genome-wide LRR_SD and waviness factor; (2) PennCNV-trio derived inheritance and original triostate, count of total merged seg-

ments (a single segment means the region was not merged as in this example); (3) between-individuals pairwise LRR comparisons ordered from largest to smallest (Hellinger

distance), LRR mean and LRR_SD in the flanks for each individuals; (4) shift of CNV from flanks as FALSE (no shift detected) or TRUE (with kernel density test p-value); (5)

BAF-derived CNV states, counts of probes with LRR values above and below zero; (6) conclusions of which individuals LRR and BAF distributions appears to be most similar,

LRR and BAF consistency for offspring
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2.2.5 CNV-quality control strategies tested

Using the benchmark datasets defined above, we compared SeeCiTe
with other frequently used methods (Table 1). The details of how
the CNVs and their scoring between the methods were matched

(when possible) are expanded in Supplementary Data S3.1.

2.2.6 Receiver operating characteristic (ROC) curves

The ROC and precision–recall curves and area under the curve
(AUC) values were calculated using an R package precrec (Saito and
Rehmsmeier, 2017) on the benchmark dataset MoBa1.24.

2.2.7 HapMap comparisons

Due to the restricted resolution of the array, we limited the compari-

sons to deletion calls that span>20 kb (>10 probes) in both refer-
ence segments and arrays. To compare array calls with the
reference, we considered genomic overlap of the two sets. A CNV

was tagged as none if zero overlap existed between an array call and
any of the (size filtered) reference sets; concordant in case of the re-

ciprocal overlap of at least 50% and Low_overlap otherwise.

3 Results

3.1 SeeCiTe software
SeeCiTe is implemented as an R package (developed in R version
3.5.1) and is freely available at https://github.com/aksenia/SeeCiTe,
distributed under the MIT license. Input files should be formatted

according to the much used native PennCNV output formats. This
allows both application of additional tools in PennCNV suit, and
easy reformatting from other tools output. The final classified data

are written in generic UCSC bed and plink data types. The software
comes with a tutorial, documentation and example data from the

public HapMap repository for both trio and single samples study
designs.

3.2 CNV refinement with SeeCiTe in the Norwegian

mother, father and child cohort study
We analyzed two trio datasets from MoBa (MoBa1 and MoBa2,

Table 2). MoBa1.12 was used for parameter calibration while
MoBa1.24, MoBa2 and a publicly available CEU HapMap trio
were used to validate and assess the performance of the tool.

3.3 Evaluation of SeeCiTe
3.3.1 Assessing SeeCiTe performance on the benchmark datasets

We assessed SeeCiTe quality classification by calculating the percen-
tages of bona fide calls in each examined category for the bench-

mark set from MoBa2 (see Section 2.2.4).
SeeCiTe classified candidate CNVs in good concordance with

the benchmark (expert assigned) labels (Table 3), ranging from the

PROBABLE category, as expected, capturing the majority of bona
fide calls (94–98%), to the BORDERLINE category with less bona

fide calls and the UNLIKELY category that was enriched in artifacts
(only 4–5% bona fide calls).

All 200 inspected putatively inherited calls classified as bona fide
inherited CNVs, which is expected due to their double support from
two individuals (Supplementary Fig. S3A and Supplementary Data

S3.2). SeeCiTe likelihood categories closely followed the trends of
LRR intensity variation (LRR_SD) in flanks. (Supplementary Fig.

S3B for separation by local versus global LRR_SD).

3.3.2 Comparing the accuracy of SeeCiTe with other methods

We next compared SeeCiTe with other PennCNV pipelines and a

consensus method (Table 1) on the benchmark dataset MoBa1.24
(see Section 2.2.4). The relationships between PennCNV-based pipe-

lines considered are shown in the Supplementary Fig. S2.
SeeCiTe is a direct downstream step of PennCNV-trio in which

the quality control step included filtering by frequency and size
(Supplementary Fig. S2). The majority of the calls in the benchmark
MoBa1.24 (84.3%) were classified as PROBABLE inherited calls,

and as section above demonstrated, were high confidence calls, on
which PennCNV-trio and SeeCiTe methods agree. However, 2.5%
of the total calls in PennCNV-trio in this set was labeled as ‘noise’ in

our benchmark set and could be potential artifacts. In SeeCiTe cate-
gories, the majority of calls identified as noise were in the

UNLIKELY category (84%), while 7.6% was in BORDERLINE
and only 1.4% (two calls) in the PROBABLE category. This shows
that applying the SeeCiTe tool to postprocess the output from

PennCNV-trio aided in identifying likely false positive calls, while
losing few high-quality CNVs.

For the purpose of this analysis, the consensus method was
implemented using the calls in the intersection of PennCNV and

QuantiSNP. We defined a call as consensus if any probes overlapped
between the two callers. With this definition, the agreement between
SeeCiTe and consensus methods was high (Supplementary Data

S3.3). However, the consensus method was overly conservative as it
rejected 53 inherited calls (Supplementary Fig. S4A) which upon

additional manual inspection were validated as bona fide inherited

Table 1. Methods and quality control strategies used for CNV filtering

Method Short name Quality categories Reference

PennCNV merged PennCNV Confidence score (and size) Wang et al. (2007)

Quality Score for PennCNV merged QS Probability of being detected by other method Mace et al. (2016)

PennCNV-trio merged (iterative) PennCNV-trio Frequency and size Wang et al. (2007)

SeeCiTe SeeCiTe UNLIKELY, BORDERLINE, PROBABLE Current study

Consensus Consensus Intersection of PennCNV and QuantiSNP Common practice

Table 2. Statistics of CNV calling in MoBa cohorts

Dataset Array Full trios Rare CNVs de novo before

SeeCiTe

de novo after

SeeCiTe

MoBa1 (�500k probes) HumanCoreExome-12 v.1.1 and HumanCoreExome-24 v.1.0 7986 11 011 368 108

MoBa2 (�700k probes) Global Screening Array v.1.0 4266 6700 191 96

Note: Left to right, dataset and resolution; array used; count of full trios in the core set of Norwegian ancestry; count of CNVs after the frequency and size fil-

tering according to Supplementary Data S2.3; count of de novo CNVs before and after SeeCiTe.

*Rare defined as seen in <1% of the parent population.

1880 K.Lavrichenko et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/37/13/1876/6103561 by guest on 19 January 2022

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab028#supplementary-data
https://github.com/aksenia/SeeCiTe
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab028#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab028#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab028#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab028#supplementary-data


calls. This behavior of the consensus methods is well known (Pinto
et al., 2011).

Next, we compared the quality score distribution for the meth-
ods that provide a score. As SeeCiTe does not report a single unified
quality score (rather relying on several discrete and continuous vari-
ables in the decision process) we used the LRR_SD in flanks as a
contiguous indicator of uncertainty in the CNV call and genotyping
quality in SeeCiTe. For all four methods, the overall score distribu-
tions had an apparent peak for noise, but the ability to separate be-
tween the bona fide calls and noise varied, with SeeCiTe proxy score
and and a score from Mace et al. (2016) (QS) performing better
than two other methods (Supplementary Fig. S5A). Note that, if fol-
lowing recommendation of Mace et al. (2016) on the cutoff of 0.5
for QS, one would lose in sensitivity without gaining in specificity,
as the discriminative value of the score was at its highest at around
0.15 in this dataset.

We further assessed all methods using ROC and precision–recall
to calculate the AUC on the balanced subset of 166 bona fide and
111 noise CNV calls (as judged by an expert clinical geneticist based
on visual and statistical summaries provided by SeeCiTe) of the
benchmark set MoBa1.24 (Supplementary Fig. S5B and S5C). This
also confirmed SeeCiTe representative score as the top performer in
separating the two categories with most optimal specificity to sensi-
tivity trade off.

3.3.3 Validation in HapMap CEU trio

To complement our assessments of the SeeCiTe method on an inde-
pendent dataset with an existing set of sequencing-based CNV calls,
we used publicly available data for the HapMap CEU (NA12878,
NA12891 and NA12892) and YRI (NA19240, NA19239 and
NA19238) trios.

We ran SeeCiTe on publicly available Affymetrix6.0 array data
for two replicas of CEU trio (‘Tesla’ and ‘Scale’) and one replica of
YRI (‘yri’) and manually curated the calls using visual panels, inde-
pendently for each sample. In addition to PennCNV, we run
SeeCiTe on (a) CNV calls made with QuantiSNP; (b) published
Birdsuit calls, which has shown that the method is independent of
the caller. In the size range of 20 kb, there was one call exclusive to
QuantiSNP and one to Birdsuit set for CEU individual, while for
YRI there were two calls exclusive to QuantiSNP. We focused on
PennCNV callset for detailed assessments below as it produced the
largest number of exclusive calls in both individuals.

Of note, the two CEU replicas varied in signal quality with Tesla
having larger global LRR_SD of 0.28 as compared to 0.24 of Scale.
This provided an opportunity to investigate to what extent errors,
due to noise, can be made in the curation process using visualization
panels. We did this by assessing the concordance between the cur-
ation results obtained for the two samples (CEU data) and the con-
cordance with the sequencing-based benchmark set (CEU and YRI
data).

Between-replicates comparison. At a size cutoff of 20 kb, we
detected 29 and 24 deletion calls in Scale and Tesla samples respect-
ively. Among these, 18 calls were shared between the samples (14
pairs with exact breakpoints match and 4 pairs with varying break-
points). The 18 pairs of calls shared between the samples had higher
concordance with the benchmark set segments compared to single-
ton calls, e.g. only 41% (7/17) singleton calls overlapped a bench-
mark segment (in the Ref_union only), as opposed to 72% (26/36)

of shared calls (12 of which overlapped segments in the
Ref_intersection set). Upon visual inspection, 8.3% (3/36) of shared
and 35.3% (6/17) of singleton calls were flagged as noise, with more
noise in Tesla compared to Scale (Fig. 4).

The majority (16/18) shared call pairs were concordant in inde-
pendent manual inspections, except for two, for which the difference
stemmed from local lower quality of the signal in the father that pre-
vented PennCNV-trio and following visual assessment to resolve the
inheritance unambiguously.

Comparison to the benchmark set. SeeCiTe quality classes were
roughly in agreement with benchmark concordance for both CEU
replicas and one YRI, with UNLIKELY calls having the least of
overlaps and PROBABLE calls with the highest fraction of
Concordant calls. Notably, Scale, a less noisy sample, had a higher
fraction of Concordant calls (16 versus 14) and lower fraction of
calls with no overlap (9 versus 11) (Fig. 4).

To conclude, we observed a high degree of concordance of
SeeCiTe likelihood assignments with the benchmark deletions set.
The errors that were made with both PennCNV-trio method and vis-
ual assignment based on the signal panels, stemmed from the intrin-
sic noise-to-signal ratio and could be mitigated, to a large extent, by
controlling flanking LRR_SD as well as filtering by known common
CNV polymorphic loci.

4 Discussion

In this study, we presented and evaluated a method that exploits
Mendelian inheritance patterns to curate and aid interpretations of
CNV calls in offspring-parents trios and in single samples. For each
of the CNV calls, SeeCiTe performs analyses to assess how well the
call is supported by the underlying data resulting in labeling each

Table 3. Ratio of bona fide (true) calls for each SeeCiTe quality category in MoBa2 benchmark

CNV category UNLIKELY fraction (true/total) BORDERLINE fraction (true/total) PROBABLE fraction (true/total)

All inspected 4% (3/70) 83% (138/167) 98% (285/290)

De novo only 5% (3/54) 33% (3/9) 94% (85/90)

Note: Counts and percentages of manually classified bona fide calls in each inspected SeeCiTe category—all inspected calls, only de novo calls.

Fig. 4. Comparison of SeeCiTe-assisted HapMap sample classification to published

benchmarks. Counts of CNV calls in each replicate binned by concordance with the

reference (color coding: none for no overlap with any of the reference; low over-

lap—<50% reciprocal overlap with a benchmark set deletion; Concordant �50%

reciprocal overlap with a reference deletion), expert curation labels (top panels);

SeeCiTe classification (left panels), unclearStatus means CNV in an offspring but in-

heritance is not clear due to noisy signal in parents, common means a variant is sug-

gested to be present in all three individuals
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call as either UNLIKELY, BORDERLINE or PROBABLE. This
provides an intuitive classifier that guides attention to a much
smaller subset of calls that ought to be examined more in detail. To
aid the examination we devised a visual panel of local LRR and BAF
intensities for a trio together with key quality summaries. We show
that together with the CNV-quality labeling these panels serve as a
good proxy for the ground truth. We further demonstrate on a pub-
lic dataset of two HapMap trios that SeeCiTe quality categories are
in good concordance with the published sequencing-based CNV
sets.

We are not aware of another method that provides such in-depth
examination, summaries and convenient visual panels as SeeCiTe.
SeeCiTe method is developed to be independent of the caller used.
We chose to adapt our format to the PennCNV output style.
PennCNV is one of the most commonly used tools and has a simple,
yet efficient way of representing CNV data that is easy to adhere to
from most callers and arrays. Furthermore, it allows the user to util-
ize several other quality control tools in the PenCNV suit. We have
tested SeeCiTe on output from two other commonly used CNV-
calling tools; QuanstiSNP and Birdsuit and both have shown similar
performance to that of the PennCNV inputs. The additional benefit
of using the PennCNV format is that it lends itself to the processing
of WGS data with the recently released PennCNV-Seq method (de
Araújo Lima and Wang, 2017), thus allowing to extend the applica-
tion of SeeCiTe to the sequencing data as well.

The over-merging is a potential issue with the CNV segments
merging procedure, solely based on distances between the calls.
Depending on the priorities of each analysis, the parameters of
merging can be adjusted, but generally, the over-merging issue is
mitigated by SeeCiTe, since LRR distribution assessment in the
method will inevitably highlight calls that have too many probes
with normal state intensities. Notably, using visual inspection, we
found complex CNV events that are inherited as a haplotype block
of two dups/dels and a normal state between, which we find reason-
able to count as a single event, but we are not aware of any caller
that is able to make this judgment.

We find that putative de novo calls have higher false positive
rates compared to putative inherited calls. This may not be surpris-
ing, as inherited calls are supported by two events, unlike de novo
calls. In SeeCiTe, this asymmetry is addressed by implementing a
hard cutoff on the value of LRR_SD in the flanking regions of puta-
tive de novo calls, thus tagging calls with too high noise as
UNLIKELY, recommending them to be inspected. In general, due to
the low proportion of de novo calls, it is feasible to inspect all poten-
tial de novo candidates and this is what we recommend.

The LRR_SD in flanks is useful as a proxy score for SeeCiTE, as
illustrated by the ROC analysis. However, additional measures, that
also verify the intensity level and direction of the shift of LRR inten-
sities in the CNV locus, increase the specificity (data not shown).

We used visual panels for benchmarking due to the lack of the
ground truth in the cohorts in this study. Even though we comple-
mented evaluation with a public golden standard set in HapMap
controls, we note that the cell-line derived HapMap data do not
compare fairly to MoBa studies based on whole blood samples due
to intrinsic biases and differences of the two types of samples
(Joesch-Cohen and Glusman, 2017).

For further work, the parameters identified in the current study
can be in principle used in an unsupervised machine learning work-
flow to provide even better automated discrimination of CNV calls
likelihood. Such workflow would incorporate simultaneous calibra-
tion of all parameters involved which would facilitate more in-depth
understanding of the contribution of each variable and their inter-
dependence. Moreover, improvements may also be obtained by
incorporating family/trio information already in the CNV calling
step.

To summarize, in this article, we presented the SeeCiTe method
that helps to refine and assess the CNV calls in offspring for large-
scale trio studies. The tool simultaneously provides quality categor-
ization and visual panels for each CNV call. Our analyses demon-
strated that the method has good performance on several types of
arrays and good concordance with benchmark data including calls

based on sequencing. As such, SeeCiTe allows to streamline quality
control and manual steps often performed when utilizing array data
to call CNVs in large-scale trio cohorts.
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