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Abstract 

Background:  Molecular interaction networks summarize complex biological pro-
cesses as graphs, whose structure is informative of biological function at multiple 
scales. Simultaneously, omics technologies measure the variation or activity of genes, 
proteins, or metabolites across individuals or experimental conditions. Integrating the 
complementary viewpoints of biological networks and omics data is an important task 
in bioinformatics, but existing methods treat networks as discrete structures, which 
are intrinsically difficult to integrate with continuous node features or activity meas-
ures. Graph neural networks map graph nodes into a low-dimensional vector space 
representation, and can be trained to preserve both the local graph structure and the 
similarity between node features.

Results:  We studied the representation of transcriptional, protein–protein and genetic 
interaction networks in E. coli and mouse using graph neural networks. We found that 
such representations explain a large proportion of variation in gene expression data, 
and that using gene expression data as node features improves the reconstruction of 
the graph from the embedding. We further proposed a new end-to-end Graph Feature 
Auto-Encoder framework for the prediction of node features utilizing the structure of 
the gene networks, which is trained on the feature prediction task, and showed that it 
performs better at predicting unobserved node features than regular MultiLayer Per-
ceptrons. When applied to the problem of imputing missing data in single-cell RNAseq 
data, the Graph Feature Auto-Encoder utilizing our new graph convolution layer called 
FeatGraphConv outperformed a state-of-the-art imputation method that does not use 
protein interaction information, showing the benefit of integrating biological networks 
and omics data with our proposed approach.

Conclusion:  Our proposed Graph Feature Auto-Encoder framework is a powerful 
approach for integrating and exploiting the close relation between molecular interac-
tion networks and functional genomics data.

Keywords:  Gene regulatory networks, Gene expression, Graph neural networks, Graph 
representation learning, Molecular networks, Omics, Feature prediction, Feature auto-
encoder
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Introduction
Biological networks of genetic, transcriptional, protein–protein, or metabolic interac-
tions summarize complex biological processes as graphs, whose structure or topology 
is informative of biological function at multiple scales. For instance, degree distribu-
tions reflect the relative importance of genes or proteins in a cell; 3–4 node network 
motifs have well-defined information-processing roles; and network clusters or com-
munities contain genes or proteins involved in similar biological processes [1–3]. 
Simultaneously, genomics, transcriptomics, proteomics, and metabolomics tech-
nologies measure the variation or activity of genes, proteins, or metabolites across 
individuals or experimental conditions [4, 5]. There is a rich history of integrating 
the complementary viewpoints of biological networks and omics data. For instance, 
“active subnetwork” identification methods treat omics data as features of network 
nodes in order to identify well-connected subnetworks that are perturbed under dif-
ferent conditions [6]. Network propagation or smoothing methods on the other hand 
use biological networks to extend partial information on some nodes (e.g., disease 
association labels, partially observed data) to other nodes (e.g., to discover new dis-
ease-associated genes or impute missing data) [7, 8]. However, existing methods treat 
biological networks as discrete structures, which are intrinsically difficult to integrate 
with continuous node features or activity measures.

Recently, with the advent of deep learning, the idea of representation learning on 
graphs has been introduced. In this concept, nodes, subgraphs, or the entire graph 
are mapped into points in a low-dimensional vector space [9]. These frameworks are 
known as graph neural networks (GNNs), and use deep auto-encoders to preserve the 
local structure of the graph around each node in the embedding, without having to 
specify in advance what “local” means. However, not much attention has been paid so 
far to the representation of the node features in these embeddings [10, 11].

In this paper, we propose a new framework using graph representation learning on 
biological networks which results in embeddings that are compatible with or inform-
ative for molecular profile data, concentrating for simplicity on gene expression data. 
The three main contributions of this study are: 

1.	 We introduce a method to systematically measure the relationship between the 
structure of a network and the node feature (gene expression) values. This is done 
using the Graph Auto-Encoder (GAE) approach of [12] and measuring (i) the per-
formance of reconstructing the network from the embedding, with and without 
expression data, and (ii) measuring the variance in expression values explained by 
the embedding matrix.

2.	 We propose the framework of Graph Feature Auto-Encoder (GFAE) for the predic-
tion of expression values utilizing gene network structures, and introduce a new 
convolution layer named FeatGraphConv using a message passing neural networks 
(MPNNs) framework, tailored to reconstructing the representation of the node fea-
tures rather than the graph structure.

3.	 We show that our new approach to gene expression prediction has practical applica-
tions in tasks such as imputation of missing values in single cell RNA-seq data and 
similar scenarios.
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Related work on GNN
Assume that an undirected, unweighted graph G = (V , E) with N = |V| number of nodes 
has an adjacency matrix A, where Aij = 1 if there is an edge between nodes i and j and 
zero otherwise, and degree matrix D, a diagonal matrix with the degrees (number of 
neighbours) of each node on the diagonal. Matrix X ∈ R

N×Q , called the feature matrix, 
denotes node features. One of the first attempts at learning neural networks over graph 
structures was the convolution operation on graphs. For an input graph signal x ∈ R

N , 
the spectral convolution is defined as

in which U is the matrix of eigenvectors of the symmetric Laplacian 
L = D− A = U�UT . UTx is called the Fourier transform of signal x and gθ is a matrix 
function of � , the diagonal matrix of eigenvalues of L.

Due to the high cost of calculating the eigenvalues in the case of large matrices, Ham-
mond et al. [13] proposed to use a Chebyshev series expansion truncated after the Kth 
term to approximate the graph convolution operation with a Kth-order polynomial:

in which Tk(.) and θ ′k are the kth-order Chebyshev polynomials and expansion coef-
ficients, respectively, �̃ = 2

�max
�− IN with �max the largest eigenvalue of � and IN an 

identity matrix with size N × N  , and finally L̃ = U�̃UT = 2
�max

L− IN.
In the graph convolutional network (GCN) [14], further approximations were done 

by setting K = 1 , �max ≈ 2 , and θ = θ ′0 = −θ ′1 . As a result, formula (2) was transformed 
into

Repeated application of gθ resulting in high powers of D− 1
2AD− 1

2 can cause numerical 
instabilities. Kipf and Welling [14] suggested to set the diagonal elements of A to 1 (add 
self-loops) and to recompute D according to the updated adjacency matrix. Therefore, 
they used the symmetrically normalized adjacency matrix Ã in their convolution layer, 
with

Thus, the forward operation in a GCN for X is computed as

with weight matrices Wi containing the trainable weights for each input feature, and σ a 
non-linear task specific function such as softmax for a node classification problem [10].

Additional studies on GNNs have shown that a GNN can be viewed as a message-
passing approach based on graph structure, where every node’s message for its neigh-
bours is the aggregation of the neighbourhood information, in which the aggregation 
is done through a trainable neural network [15]. This framework is also known as a 

(1)gθ ∗ x = UgθU
Tx,

(2)gθ ∗ x ≈ U

K
∑

k=0

θ ′kTk(�̃)UTx =

K
∑

k=0

θ ′kTk(�̃)x,

(3)gθ ∗ x ≈ (IN +D− 1
2AD− 1

2 )x.

(4)Ã = D−1/2AD−1/2.

(5)GCN(X, Ã) = σ(Ã ReLU(ÃXW0)W1)
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MPNN. The forward pass in such a network consists of a message passing phase and a 
readout phase. In the message passing phase, the hidden representation of each node 
is updated through an update function, which aggregates the previous node represen-
tation and the messages of its neighbours according to:

in which hki  is the hidden representation of node i in layer k, with h0i  being the node i’s 
input features and eij is the edge attribute between nodes i and j. Additionally, γ and M 
are both differentiable functions called the update and message functions, respectively 
and Pool is a permutation invariant pooling function. Furthermore, N(i) denotes the set 
of neighbouring nodes of node i.

In the readout phase, the feature vector of each node in the graph is computed using 
some learnable, differentiable readout function R according to

in which, Y is the predicted labels. Different settings of γ , M, Pool, and R can lead to dif-
ferent MPNN convolution layers specific to different tasks and scenarios.

Methods
In this section, we present two different GFAE frameworks of predicting expres-
sion values, leveraging the gene regulatory network structure, whose pipelines are 
depicted in Fig.  1. In this scenario, X ∈ R

N×Q is a matrix of expression values in Q 
different experiments for N number of genes (molecular profiles) and A denotes the 
adjacency matrix of the gene network.

Structural embedding for indirect prediction of expression values

In this approach, we used the Non-probabilistic GAE model of [12] to represent the 
structure of a gene network as depicted in Fig. 1A. First the GCN operation, shown in 
formula (5), is modified by setting σ in formula (5) to the identity function:

in which W0 and W1 are trainable weights. Therefore, the embedding matrix of the graph 
adjacency Z is calculated by

Furthermore, the weight matrices W0 and W1 in formula (8) are trained by measuring 
how well the embedding reconstructs the graph adjacency matrix, where the recon-
structed adjacancy matrix Â is defined as

The cross-entropy error over all the edges in the matrix is used as a loss function,

(6)hki = γ k(hk−1
i , Poolj∈N (i)(M(hk−1

i , hk−1
j , eij))),

(7)Y = R({hi|i ∈ V}),

(8)GCN(X,A) = ÃReLU(ÃXW0)W1,

(9)Z = GCN (X,A).

(10)Â = Sigmoid(ZZT ).
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where An and Ân are the adjacency rows of the nth node in A and Ã , respectively. The 
training of the neural network is done by gradient descent and stochasticity added by 
dropout rate. We use the metrics of average precision and area under the ROC curve 
related to the reconstruction of A, and the Variance Explained of X by Z to quantify the 
relationship between the node features and the graph structure.

As shown in Fig. 1B, the expression values of the genes are obtained following

where X̃ denotes the predicted expression values. Moreover, f is a regression function for 
which we consider linear regression (LR) and random forest (RF) regression as examples.

Message passing neural network for end‑to‑end prediction of expressions

In the second method, we apply the message passing formula of (6) on the input 
expression values in which the messages (hidden representations) are propagated 
to each gene from neighbours in the gene network. As shown in Fig.  1C, in this 
approach, the model is trained in an end-to-end framework to predict the expression 

(11)L = −

N
∑

n=1

An ln Ân,

(12)X̃ = f (Z)

Fig. 1  A Depicts the GAE scheme of [12] tailored to the reconstruction of the adjacency matrix of the graph. 
In B we take the embedding matrix of a GAE and train an indirect regression task for the prediction of the 
expression values. C Illustrates our proposed GFAE approach for end-to-end learning of graph node features
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values directly from the input, without the need for training a separate regression 
model. To establish the performance of this framework, we used three popular mes-
sage passing schemes for finding the hidden representation of the genes, as well as 
introducing our own, for the task of predicting gene expression values. These three 
methods are inductive GCN, GraphSAGE [16], and the GNN operator from [17] 
(from here on referred to as GraphConv). According to [15], a single GCN layer can 
also be viewed as a message passing scheme between the nodes in the graph in the 
format of formula (6):

in which deg(i) is the number of neighbours of node i, W is a trainable weight matrix, 
and 

∑

 is the sum pooling operator. This scheme is equivalent to running a single GCN 
layer in formula (8). Another MPNN layer is GraphSAGE, whose formula is given by

in which Mean is the mean pooling operator, and W1 and W2 are trainable weight matri-
ces. GraphSAGE MPNN assumes that the representation of each node is the summation 
of the output from the previous layer and the average of the representation of the adja-
cent nodes. The final MPNN layer, named GraphConv, is calculated through

in which W1 and W2 are trainable weight matrices, and 
∑

 is the sum pooling operator. 
In this layer, the representation of each node is the sum product of the previous layer 
representation and the summation of the incoming messages from adjacent nodes.

In our proposed version of MPNN, FeatGraphConv, we first obtain a representation 
of every node’s features by running them through a linear layer in the message func-
tion M. This step helps the layer to find optimized message representations for the 
propagation phase. Then we aggregate the incoming neighbours’ messages by a mean 
pooling operator, based on the hypothesis that in a gene network, a gene’s expres-
sion value is intermediate between its neighbours expression values. For the update 
function γ , we concatenate the node’s embedding with its aggregated messages, and 
run them through a shared weight network, which determines how important each 
of these values are in predicting the features of the node. Hence, the formulae for our 
FeatGraphConv operator are as follows

in which (.||.) is the concatenation function and W1 and W2 represent trainable weight 
matrices. In all of the four mentioned layers, the readout function R is defined as a fully 
connected linear layer. Thus, X̃i the predicted expression values for node i are obtained 
through

(13)hki =
∑

j∈N (i)∪i

1
√

deg(i) ∗
√

deg(j)
.(Whk−1

j ),

(14)hki = W1(h
k−1
i )+W2Meanj∈N (i)∪i(h

k−1
j ),

(15)hki = W1h
k−1
i +

∑

j∈N (i)

W2.h
k−1
j ,

(16)
gki = W1 ∗ h

k−1
i

hki = W2(g
k
i ||Meanj∈N (i)∪i(g

k
j )),
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in which W and b represent trainable weights and bias matrices respectively. For finding 
the optimal weights in this framework, mean squared error (MSE) on predicted expres-
sion values is used as the loss function. This method is considered to be a semi-super-
vised training framework due to utilizing the complete structure of the graph in training 
the model.

Prediction of expressions from expressions

For comparison of the results obtained through “Structural embedding for indirect 
prediction of expression values” and “Message passing neural network for end-to-end 
prediction of expressions” sections, we also consider prediction of X̃ directly from X 
through simple machine learning algorithms. These algorithms include:

•	 Multi layer perceptron (MLP) A simple form of a neural network which maps the 
input features into output features through multiple layers of neurons (computing 
units).

•	 Linear regression A linear model for mapping the input to the output.
•	 Random forest A set of decision tree models that determine the output value through 

the aggregation of the output of decision trees that each are trained on a subset of X
•	 Markov affinity-based graph imputation of cells (MAGIC) Uses signal-processing 

principles similar to those used to clarify blurry and grainy images to recover missing 
values from already existing ones in a matrix [18]

Experimental setup
In this section, we describe three experiments that are done to measure the relation-
ship between gene network structure and expression values as well as thoroughly 
evaluate the performance of the proposed GFAE. The hyper-parameters of all the 
experiments were determined after some initial experiments on a separate validation 
set and were kept the same for all the models, to measure the predictive performance 
of different approaches under the same set of initial circumstances. These hyper-
parameters are listed in Table 1. In order to make a sound and thorough performance 
evaluation, two masking methods are used to divide the data for training and evalua-
tion, the details of which are explained below.

(17)X̃i = W ∗ hi + b,

Table 1  Hyper-parameters of the graph neural network

Hyper-parameter Node embedding MPNN

Epochs 500 20,000

Initial learning rate 0.001 0.001

First hidden layer size 64 64

Second hidden layer size 32 32
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Masking mechanism for the separation of train and test expression values

For evaluation purposes, we separate the expression values of X and X̃ into two sets 
of training and testing. For this goal, two different masking techniques are used, the 
schemes of which are illustrated in Fig. 2. First, The input expression values X and the 
expression values that are to be predicted X̃ are split into train and test through

where ◦ is the Hadamard product and Mtrain,Mtest , M̃train, M̃test ∈ {0, 1}N×Q are binary 
matrices which have the value 1 in train and test indices, respectively. The goal is to train 
the models to predict the values of X̃train using the values in Xtrain as input and evalu-
ate the models when predicting X̃test with Xtest as input features. In the first masking 
method as depicted in Fig. 2A, the masking is done in such a way that both experiments 
(columns) and genes (rows) in expression profile matrix are split into separate train and 
test sets. Furthermore, in this approach, a model is trained to predict each column of 
the X̃ independently (experiments based) to make the evaluation possible for regression 
functions, since they are only capable of predicting one value for each gene.

In the second masking mechanism (Fig. 2B), also refered to as the imputation mask-
ing, following the imputation mechanism in auto-encoders, we set X̃ = X to measure 
the reconstruction ability of each model in an auto-encoder framework resulting in only 
two splits of Xtrain and Xtest . Thus, Mtrain is set to 1 for some elements of X at random 
and Mtest is calculated as

where ¬ indicates the logical not operator. Additionally, K-fold cross-validation is used 
in both masking techniques to ensure the soundness of all obtained results with K set to 
10 or 3 depending on the time complexity of the specific experiment.

Experiment on gene network structure embedding

In this experiment, we obtain the embedding matrix of the graph structure Z and 
measure the performance of the graph auto-encoder in calculating Ã (see “Struc-
tural embedding for indirect prediction of expression values” section). We used the 
PytorchGeometry implementation of the graph auto-encoder provided by [19]. For our 
approach, the normal auto-encoder provided in the package was used, and the varia-
tional auto-encoder was omitted.

Five different sets of input graphs and features to the model were tested: 

1.	 Random graph In this approach Z is calculated by 

 in which, IN and Arand represent an identity matrix of size N × N  and the adjacency 
matrix of a random graph, respectively. For generating random graphs, we used the 
random graph generator of the Python3 package NetworkX, using the Erdős–Rényi 
model [20] (Additional file 1).

(18)
Xtrain = Mtrain ◦ X, X̃train = M̃train ◦ X̃,

Xtest = Mtest ◦ X, X̃test = M̃test ◦ X̃,

(19)Mtest = ¬Mtrain,

(20)Z = GCN(IN ,Arand),
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Fig. 2  The two different approaches of masking of expression values. In A, each dimension of Xtest is 
predicted using a separate model trained on Xtrain . In B, a single model is used to predict all the values of the 
feature matrix
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2.	 Expression + random graph In this approach, the identity matrix is replaced with the 
actual expression values of genes as input features: 

3.	 Real graph Following the approach used by [12], the embedding matrix Z in this case 
is calculated by 

 where A is the adjacency matrix of the input graph.
4.	 Expression + real graph The embedding Z in this case is calculated through formula 

(9), 

5.	 Expression The network in this model, is inferred from the (absolute) correlation 
between the expression values of different genes. In this approach, the correlation 
directly outputs the probability of the edge between two nodes.

By choosing the identity matrix as input features in input setting 1 and 3, each of the 
nodes has a distinct set of features, which do not give any indication about the func-
tionality of the node. This way the model will only pay attention to the graph structure 
when producing the embedding matrix. The edge set of the graph ( E ) is split into train 
and test sets and performance metrics of average precision (AP), area under ROC curve 
(AUC) on the test edge set, as well as the variance of X explained by Z are calculated for 
evaluation. The benefit of this experiment is that it allows to measure the relationship 
between the expression values and the structure of different gene networks through dif-
ferent metrics obtained from five different input settings as mentioned above.

Experiment on the prediction of expression values using the proposed GFAE

In this experiment, the first masking mechanism (Fig. 2A and “Masking mechanism for 
the separation of train and test expression values” section) is used to evaluate different 
models for predicting expression values utilizing the structure of the network. Three 
sets of models are compared: indirect (Fig. 1B and “Structural embedding for indirect 
prediction of expression values” section), end-to-end framework (Fig. 1C and “Message 
passing neural network for end-to-end prediction of expressions” section), and baseline 
regression models (“Prediction of expressions from expressions” section). Moreover, 
two settings of inputs, (X,A) and (IN ,A) , are used in the indirect and end-to-end mod-
els to compare their performance with and without input expression values. The pur-
pose of this experiment is that it allows for a simple performance comparison between 
graph-based prediction methods in a sample regression task. Furthermore, prediction of 
expression values solely based on graph structure is possible in this setting. The average 
MSE for the prediction of each column of X̃test is reported as the performance metric.

Experiment on the imputation performance of the proposed GFAE

For this experiment, the second masking approach (“Masking mechanism for the sep-
aration of train and test expression values” section) or imputation masking is applied 

(21)Z = GCN(X,Arand).

(22)Z = GCN(IN ,A),

Z = GCN(X,A).



Page 11 of 17Hasibi and Michoel ﻿BMC Bioinformatics          (2021) 22:525 	

on the input X in end-to-end models (Fig. 1C and “Message passing neural network 
for end-to-end prediction of expressions” section). The goal of this experiment is to 
evaluate the proposed GFAE in imputation tasks such as the imputation of missing 
values in Single Cell RNA-seq datasets, as well as to compare the reconstruction abil-
ity of the proposed framework against traditional auto-encoders. The MSE of Xtest is 
the metric used in this experiment to compare different auto-encoders.

Datasets

We evaluated the performance of our method on data for the organisms Escherichia 
Coli (E. coli) and Mus Musculus.

•	 Network datasets For E. coli, we used transcriptional, protein–protein, and genetic 
interaction networks. The transcription network was obtained from RegulonDB [21]. 
All the positive and negative regulatory effects from the TF-gene interactions data-
set file were included regardless of their degree of evidence (strong or weak) to con-
struct the adjacency matrix. A PPI and genetic interaction network were obtained 
from BioGRID [22, 23]. We extracted the interactions from the file “BIOGRID-
ORGANISM-Escherichia_coli_K12_W3110-3.5.180”, and considered the “physical” 
and “genetic” values of ’Experimental System Type’ column for constructing the PPI 
and genetic networks, respectively. For Mus Musculus, we used a protein–protein 
interaction network extracted in the same way from the file “BIOGRID-ORGAN-
ISM-Mus_musculus-3.5.182”.

•	 Expression level dataset For E. coli, we used the Many Microbes Microarray Data-
base (M3DB) [24, 25]. All the experiments from the file “avg_E_coli_v4_Build_6_exp-
s466probes4297” were used to construct the feature matrix. For Mus Musculus, the 
single cell RNA-Seq data from [26] were obtained from the Gene Expression Omni-
bus.

For each of the networks, the common genes between the network and the expres-
sion data were extracted, and an adjacency matrix and a matrix of features were 
constructed from the network and expression level datasets, respectively. A detailed 
description of each of the networks is available in Table 2.

Computational resources and source code

All the experiments were done on a Tesla V100 with Python 3. The source code of the 
experiments is availabe at https://​github.​com/​Ramin​Hasibi/​Graph​Featu​reAut​oenco​
der.

Table 2  Summary description of benchmark datasets

TF_net PPI Genetic

Input Expressions Nodes Edges Nodes Edges Nodes Edges

E. coli 466 1559 3184 1929 11,592 3688 147,475

Mus Musculus 1468 – – 9951 75,587 – –

https://github.com/RaminHasibi/GraphFeatureAutoencoder
https://github.com/RaminHasibi/GraphFeatureAutoencoder
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Results
Graph structural embeddings reconstruct gene networks and explain variation in gene 

expression

We obtained low-dimensional embeddings of transcriptional regulatory (TF_net), pro-
tein–protein interaction (PPI) and genetic interaction networks in E. coli and a PPI net-
work in mouse (MPPI), with and without using expression data as node features, and 
trained the GAE to optimize the reconstruction of the original graph from the node 
embedding (see “Methods” section for details). Figure 3 shows the results for the graph 
reconstruction task for various embeddings. As seen in Fig. 3A, B, embeddings learned 
from the structure of the real graph alone (“Graph”) performed considerably better than 
embeddings learned from random graphs (“Random Graph”), as expected, in terms of 
both AUC and AP. The same was true for a standard Pearson correlation coexpression 
network inferred from the expression data alone (“Expression”), showing that graph 
embeddings and gene expression data independently predict graph structure.

When gene expression data were used as node feature inputs to the GAE (see “Struc-
tural embedding for indirect prediction of expression values” and “Experiment on 
gene network structure embedding” sections), graph reconstruction performance fur-
ther increased (“Expression + Graph” row), but this was not the case when expression 

Fig. 3  A, B Show AUC and AP of test set edge prediction on different gene networks given different input 
settings. C Shows the variance explained of the expression data matrix X by the embedding matrix Z (for 
exact values see the Additional file 1)
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data was combined with random graphs (“Expression + Random Graph” row). In other 
words, graph embeddings where the distance between nodes respects both their graph 
topological distance and their expression similarity result in better graph reconstruc-
tion than embeddings that are based on topological information alone. This shows that 
expression profiles are informative of graph structure in a way that is consistent with, but 
different from, the traditional view where networks are inferred directly from expression 
data using expression similarity measures.

Next we computed the variance of the expression data explained by the different 
embeddings (see Fig. 3C and details in the Additional file 1). Despite being trained on 
the graph reconstruction task, graph embeddings learned with and without expression 
data as node features explained a high percentage of variation in the expression data, but 
not when random graphs were used.

In summary, graph representation learning results in low-dimensional node embed-
dings that faithfully reconstruct the original graph as well as explain a high percentage of 
variation in the expression data, suggesting that graph representation learning may aid 
the prediction of unobserved expression data.

Indirect and end‑to‑end GFAE predict unobserved expression values

As mentioned in “Experiment on the prediction of expression values using the proposed 
GFAE” section, we considered three categories of prediction methods: (i) standard base-
line methods that don’t use graph information (LR, RF, MLP, see “Prediction of expres-
sions from expressions” section), (ii) standard regression methods trained on graph 
embeddings instead of directly on the training data (LR-embedding and RF-embedding, 
see “Structural embedding for indirect prediction of expression values” section), and (iii) 
graph MPNN methods for end-to-end learning of features (GCN, GraphSage, Graph-
Conv, and FeatGraphConv, see “Message passing neural network for end-to-end predic-
tion of expressions” section and Fig. 1. Table 3 shows the performance (average mean 
squared error) of all methods on the E. coli data. For this experiment the mouse single-
cell RNA-seq data was omitted due to sparsity of the expression values. The “Features” 
and “Graph” columns indicate the input settings of (X,A) and (IN ,A) , respectively.

The newly proposed graph convolution layer of FeatGraphConv is able to predict the 
unobserved expression values better than the other graph convolutions, due to the fact 

Table 3  The average MSE of predicting test expression values X̃test using different models

(Bold indicates lowest error mean per category of experiments for each group of methods (end-to-end, indirect, or baseline)

Method TF_Net PPI Genetics

Features Graph Features Graph Features Graph

GCN 7.791 ± 3.550 15.127 ± 2.280 6.208 ± 0.607 11.106 ± 0.52198 5.988 ± 0.696 4.560 ± 0.351

GraphSAGE 0.332 ± 0.160 8.078 ± 2.592 0.265 ± 0.135 2.844 ± 0.349 0.233 ± 0.127 4.466 ± 1.605

GraphConv 0.318 ± 0.154 13.812 ± 4.534 0.308 ± 0.139 3.094 ± 0.431 0.234 ± 0.116 5.226 ± 1.054

FeatGraphConv 0.285 ± 0.135 7.525 ± 2.941 0.244 ± 0.130 5.207 ± 1.476 0.201 ± 0.112 3.414 ± 0.691

LR-embedding 1.583 ± 0.200 2.279 ± 0.403 1.091 ± 0.166 1.453 ± 0.264 1.863 ± 0.332 1.653 ± 0.271

RF-embedding 1.945 ± 0.318 2.150 ± 0.363 1.472 ± 0.267 1.452 ± 0.267 1.883 ± 0.343 1.897 ± 0.351

MLP 0.424 ± 0.170 – 0.354 ± 0.153 – 0.332 ± 0.134 –

LR 0.215 ± 0.126 – 0.147 ± 0.105 – 0.108 ± 0.084 –

RF 0.507 ± 0.143 – 0.194  ± 0.103 – 1.882 ± 0.343 –
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that this layer is tailored to the prediction of features rather than the reconstruction 
of the graph. As expected, all end-to-end methods perform considerably better when 
training data is included as node features. The end-to-end methods, with the excep-
tion of GCN, also perform better than the indirect methods where regression models 
are trained on graph embeddings. We also observe that the lowest MSE overall is in 
fact obtained by baseline LR on the training data alone. However, experiments on Feat-
GraphConv with 20,000 iterations (as opposed to the default of 500 used for all end-to-
end methods in Table 3) showed that this model can decrease the MSE to 0.204 ± 0.12 , 
0.133± 0.089 , and 0.107± 0.083 for each of the TF_net, PPI, and Genetic networks, 
respectively, which is better than LR. However, due to the high number of experiments 
and the need to train a different model for each of the experiments of X̃test , it is not com-
putationally efficient to train the more complex GNN models with a higher number of 
iterations by default for this prediction task.

On the other hand, when the graph structure alone is used (“Graph”), the indirect 
embedding-based methods achieve lower error. This could be due to the fact that these 
models better capture the structure of the graph, since their loss function is defined on 
the reconstruction of the adjacency matrix. Hence when the graph structure is the only 
information provided to the model, they are able to better capture this information and 
therefore obtain an embedding that better predicts expression data (on the basis of the 
results in “Graph structural embeddings reconstruct gene networks and explain varia-
tion in gene expression” section), compared to end-to-end models which try to predict 
the expression directly and are operating blindly when expression values are provided as 
input.

Graph feature auto‑encoding improves the imputation of randomly missing values 

in single‑cell RNA‑seq data

Based on the results in the previous section, we next considered the more challeng-
ing prediction task where unobserved node features are randomly distributed over the 
nodes and differ between experiments, that is, the task of imputing randomly miss-
ing data (Fig. 2B). Since there are no fixed sets of training and test nodes, neither the 
baseline regression methods of LR and RF, nor the indirect frameworks are applicable 
in this case (“Structural embedding for indirect prediction of expression values” sec-
tion). In contrast, the end-to-end GFAE methods allow to train a single model for the 
prediction of all the Xtest values, which may be placed in any possible order inside the 
feature matrix. We used these models for the prediction of expression values in E. coli 
and of non-zero values in the single-cell RNAseq data in mouse, and benchmarked them 
against two methods that don’t use graph information, namely a normal MLP used in an 
auto-encoder scheme, and MAGIC, a method designed specifically to impute missing 
data in single-cell RNA-seq data [18] (see “Prediction of expressions from expressions” 
section).

As shown in Table  4, our FeatGraphConv convolution layer is able to predict miss-
ing features more accurately than all other methods. It is interesting to note that graph 
convolution layers, with the exception of GCN, outperform MAGIC on the single-cell 
RNAseq imputation task, although the MLP, which does not use graph information, also 
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performs well in this case. The under-performance of GCN in these experiments can be 
explained by the fact that a GCN is primarily concerned with the structure representa-
tion of each node through multiplication of the degrees of neighbouring nodes (formula 
(13)). This captures the graph structure well, but has a negative effect on the prediction 
of node features. This is evident from the fact that other convolution layers that did not 
take node degrees into consideration performed better in the tasks given.

Discussion
In this paper we studied whether GNN, which learn embeddings of nodes of a graph in 
a low-dimensional space, can be used to integrate discrete structures such as biologi-
cal interaction networks with information on the activity of genes or proteins in certain 
experimental conditions. Traditionally, this is achieved by for instance network propaga-
tion methods, but these methods do not extract quantitative information from a graph 
that could be used for downstream modelling or prediction tasks. GNN on the other 
hand can include node features (gene or protein expression levels) in the learning pro-
cess, and thus in theory can learn a representation that better respects the information 
contained in both data types. Thus far the integration of node features in graph repre-
sentation learning has mainly been pursued for the task of link prediction. Here instead 
we focused on the task of predicting unobserved or missing node feature values.

We showed that representations learned from a graph and a set of expression profiles 
simultaneously result in better reconstruction of the original graph and higher expres-
sion variance explained than using either data type alone, even when the representations 
are trained on the graph reconstruction task. We further proposed a new end-to-end 
GFAE which is trained on the feature reconstruction task, and showed that it performs 
better at predicting unobserved node features than auto-encoders that are trained on the 
graph reconstruction task before learning to predict node features.

Predicting or imputing unobserved node features is a common task in bioinformat-
ics. In this paper we demonstrated the value of our proposed GFAE on the problem of 
imputing missing data in single-cell RNAseq data, where it performs better than a state-
of-the-art method that does not include protein interaction data. Other potential appli-
cation areas are the prediction of new disease-associated genes from a seed list of known 
disease genes on the basis of network proximity [7], or the prediction of non-measured 

Table 4  The average MSE of predicting randomly distributed test values using different auto-
encoder models

(Bold indicates lowest error mean per network)

Model E. coli Mus Musclus

TF_Net PPI Genetics PPI

GCN 0.043 ± 0.00175 0.065 ± 0.004 0.114 ± 0.004 0.011 ± 0.001

GraphSAGE 0.027 ± 0.0007 0.023 ± 0.0004 0.026 ± 0.0003 0.004 ± 0.0006

GraphConv 0.041 ± 0.003 0.068 ± 0.05 0.182 ± 0.046 2.06 ± 2.73

FeatGraphConv (our) 0.025 ± 0.0008 0.023 ± 0.0006 0.025 ± 0.0004 0.003 ± 0.0002
MLP Auto-encoder 0.031 ± 0.0007 0.028 ± 0.0003 0.027 ± 0.0004 0.004 ± 0.0005

MAGIC 3.505 ± 0.006 3.661 ± 0.017 3.215 ± 0.003 0.050 ± 0.0002
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transcripts or proteins from new low-cost, high-throughput transcriptomics and prot-
eomics technologies that only measure a select panel of genes or proteins [27, 28] which 
we intend to look into in our future works.

A potential drawback of our method is that it assumes that the interaction graph is 
known and of high-quality. Future work could investigate whether it is feasible to learn 
graph representations that can do link prediction and node feature prediction simulta-
neously, or whether network inference followed by graph representation learning for one 
type of omics data (e.g. bulk RNAseq data) can aid the prediction of another type of 
omics data (e.g. single-cell RNAseq).

In summary, our GFAE framework is a stepping stone in a new direction of applying 
graph representation learning to the problem of integrating and exploiting the close rela-
tion between molecular interaction networks and functional genomics data, not only for 
network link prediction, but also for the prediction of unobserved functional data.
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