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—— Abstract

For nonempty o,p C N, a vertex set S in a graph G is a (o, p)-dominating set if for all v € S,
IN(v)NS| € 0, and for all v € V(G)\ S, |[N(v) NS| € p. The MIN/MAX (o, p)-DOMINATING SET
problems ask, given a graph G and an integer k, whether G contains a (o, p)-dominating set of size
at most k£ and at least k, respectively. This framework captures many well-studied graph problems
related to independence and domination. Bui-Xuan, Telle, and Vatshelle [TCS 2013] showed that
for finite or co-finite o and p, the MIN/MAX (o, p)-DOMINATING SET problems are solvable in XP
time parameterized by the mim-width of a given branch decomposition of the input graph. In this
work we consider the parameterized complexity of these problems and obtain the following: For
minimization problems, we complete several scattered W[1]-hardness results in the literature to a
full dichotomoy into polynomial-time solvable and W/[1]-hard cases, and for maximization problems
we obtain the same result under the additional restriction that o and p are finite sets. All W[1]-hard
cases hold assuming that a linear branch decomposition of bounded mim-width is given, and with
the solution size being an additional part of the parameter. Furthermore, for all W[1]-hard cases we
also rule out f(w)n°®/°8%) _time algorithms assuming the Exponential Time Hypothesis, where f
is any computable function, n is the number of vertices and w the mim-width of the given linear
branch decomposition of the input graph.
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1 Introduction

Maximum induced matching width [35], or mim-width for short, is a width measure of graphs
based on branch decompositions over the vertex set. On the one hand, mim-width has
high expressive power, while on the other hand, it allows for efficient algorithms for many
fundamental NP-hard problems when the input graph is given together with a decomposition
of small width. Mim-width strictly generalizes tree-width and clique-width, in the sense that
a bound on each of the latter measures implies a bound on the mim-width, while there are
n-vertex graphs that have clique-width Q(y/n) and mim-width 1 [3, 24]. Mim-width and
twin-width [9] are incomparable. Moreover, the mim-width remains bounded by a constant
on several deeply studied graph classes such as interval graphs, permutation graphs, and
some of their generalizations, see e.g. [3, 10, 27, 35], as well as several graph classes excluding
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Table 1 Some examples of MIN/MAX (o, p)-DOMINATING SET problems and their complexity
when parameterized by the mim-width of a given (linear) branch decomposition of the input graph

plus solution size. In all occurrences, the value of d is a fixed constant.

Standard name ‘ o P MIN Max
INDEPENDENT SET {0} N P WI(1]-h [19]
DOMINATING SET N N\ {0} W(1]-h [19] P
INDEPENDENT DOMINATING SET {0} N\ {0} WI(1]-h [19] WI(1]-h [19]
ToTAL DOMINATING SET N\ {0} N\ {0} W(1]-h [28] P
STRONG STABLE SET/2-PACKING {0} {0,1} P W(1]-h [This]
PERFECT CODE {0} {1} WI[1]-h [This] | W[1]-h [This]
TOTAL NEARLY PERFECT SET {0,1} {0,1} P W(1]-h [This]
WEAKLY PERFECT DOMINATING SET {0,1} {1} WI[1]-h [This] | W[1]-h [This]
TOTAL PERFECT DOMINATING SET {1} {1} W(1]-h [This] | W[1]-h [This]
INDUCED MATCHING {1} N P W(1]-h [28]
DOMINATING INDUCED MATCHING {1} N\ {0} W(1]-h [28] W(1]-h [28]
PERFECT DOMINATING SET N {1} WI(1]-h [This] ?
d-DOMINATING SET N {d,d+1,...} | WIJ1]-h [28] ?
INDUCED d-REGULAR SUBGRAPH {d} N P W(1]-h [28]
SUBGRAPH OF MIN DEGREE > d | {d,d+1,...} N P ?
INDUCED SUBG. OF MAX DEGREE <d | {0,1,...,d} N P W(1]-h [28]

small graphs as induced subgraphs [11]. This implies that algorithms for graphs of bounded
mim-width often unify and extend several algorithmic results on graph classes from the
literature.

In recent years, an increasing number of problems has been shown to admit such al-
gorithms [4, 5, 6, 13, 20, 25, 28, 29, 30]. However, all of these algorithms run in XP time
when parameterized by the mim-width of the given branch decomposition of the input
graph, and the parameterized complexity of these problem is much less understood. In this
work, we contribute to the systematic study of the parameterized complexity of problems
parameterized by the mim-width of a given (linear) branch decomposition of the input
graph, by showing dichotomies into polynomial-time solvable and W[1]-hard cases for locally
checkable minimization and maximization problems.

The locally checkable vertex subset problems, or (o, p)-domination problems [34], capture
many problems related to independence and domination in graphs in a unified framework.
Here, a problem is formulated by prescribing for its solutions, which are vertex sets, for each
vertex v in the graph, how many neighbors it has to have in the set, depending on whether v
is in the set or not. Concretely, for two nonempty sets o, p C N, a (o, p)-dominating set in a
graph G is a set of vertices S such that for each vertex in .S, the number of neighbors it has
in S is an element of o, and for each vertex outside of S, the number of neighbors it has in S
is an element of p. The MIN/MAX (o, p)-DOMINATING SET problems ask, given a graph G
and an integer k, whether G contains a (o, p)-dominating set of size at most k and at least k,
respectively. Observe for instance that the MIN (N, N\ {0})-DOMINATING SET problem is the
MINIMUM DOMINATING SET problem, and that the Max ({0}, N)-DOMINATING SET problem
is the MAXIMUM INDEPENDENT SET problem. Many more problems can be expressed in
this way, see Table 1 for examples. While such problems are often NP-complete, several
(o, p)-domination problems are trivial to solve — for instance all MIN (o, pg)-DOMINATING
SET problems, where 0 € py. This is simply because the empty set is a solution to any such
MIN (o, po)-DOMINATING SET problem.
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The (o, p)-domination problems play a central role in the algorithmic study of mim-
width. They are among the first problems that have been shown to be solvable in XP
time parameterized by the mim-width of a given branch decomposition of the input graph
by Bui-Xuan et al. [13] (whenever o and p are finite or co-finite), and contain the first
problems for which W[1]-hardness in this parameterization was shown. Fomin et al. [19]
proved that MAXIMUM INDEPENDENT SET and MINIMUM DOMINATING SET are W[1]-hard
parameterized by the mim-width of a given linear branch decomposition of the input graph.
The W([1]-hardness of several other (o, p)-domination problems was shown by Jaffke et al. [28].
However, these results are far from complete dichotomies. For minimization problems, we
achieve such a dichotomy in this work, and for maximization problems, whenever ¢ and p
are finite. In both cases, hardness already holds for the more restrictive parameterization by
linear mim-width.

» Theorem 1. Let o,p C N be nonempty. If 0 € p, then MIN (o, p)-DOMINATING SET is
polynomial-time solvable, otherwise it W[1]-hard parameterized by the mim-width of a given
linear branch decomposition of the input graph plus solution size.

» Theorem 2. Let o, p C N be nonempty and finite. If p = {0}, then MAX (o, p)-DOMINATING
SET ‘s polynomial-time solvable, otherwise it is W[1]-hard parameterized by the mim-width
of a given linear branch decomposition of the input graph plus solution size.

Note that since the solution size can be a part of the parameter in the previous theor-
ems, they extend several hardness results for MIN/MAX (o, p)-DOMINATING SET problems
parameterized by solution size due to Golovach et al. [23]. They obtained a dichotomy into
polynomial-time solvable and W([1]-complete for MIN (o, p)-DOMINATING SET when o and p
are finite.

Mim-width and the Exponential Time Hypothesis. All known XP-algorithms for problems

O(w) time, where n is the

parameterized by mim-width, except for the ones in [6], run in n
number of vertices of the input graph, and w the mim-width of the given branch decomposition.
A natural follow-up question to Theorems 1 and 2 is whether the dependence on w can be
improved, in particular if one of these problems admits an n°(*) time algorithm. Several of the
reductions given in [19, 28] start from the MULTICOLORED CLIQUE problem parameterized
by the number of color classes k, and the mim-width of the instance constructed in the
reduction is quadratic in k. This is due to the fact that the gadgeteering depends on the
number of edges in the (complete) quotient graph associated with the color partition of the
input graph. Therefore these reductions only rule out f(w)n°V*®) time algorithms under
the Exponential Time Hypothesis (ETH). We can observe that the same reduction works if
we start from the PARTITIONED SUBGRAPH ISOMORPHISM problem parameterized by the
number of edges h in the pattern graph, and the mim-width of the reduced instance remains
O(h);* this gives a strengthened lower bound of f(w)n®(*/1°2%) time by a theorem due to
Marx [31]. All reductions presented in this work start from the PARTITIONED SUBGRAPH
IsoMORPHISM problem and give the improved lower bounds under the ETH. It remains an
open problem to close the gap between the f(w)n°(®/1°8%) time lower bounds and the n®(®)
time algorithms.

! For a worked out example, see [2].
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» Corollary 3. Let 0,p C N be nonempty. If 0 ¢ p, then MIN (o, p)-DOMINATING SET
does not admit f(w)n°W/1°8W) time algorithms, for any computable function f, on n-vertex
graphs given with a linear branch decomposition of mim-width w, unless the ETH is false. If
o and p are finite and p # {0}, then the same holds for MAX (o, p)-DOMINATING SET.

Related work. Bui-Xuan et al. [13] showed that the MIN/MAX (o, p)-DOMINATING SET
problems are XP-time solvable parameterized by the mim-width of a given branch decomposi-
tion of the input graph, whenever o and p are either finite or co-finite. The first W[1]-hardness
proofs for several MIN/MAX (o, p)-DOMINATING SET problems were given in [19, 28]. How-
ever, several other problems have been shown to be even harder on graphs of bounded
mim-width, which often follows from the NP-completeness of problems on graph classes
that have constant mim-width [3]. For instance, the following problems are para-NP-hard
parameterized by the mim-width of a given linear branch decomposition of the input graph:
CLIQUE and CO-DOMINATING SET [22, 35], GRAPH COLORING [21], MaxiMmuM CuUT [1],
and HAMILTONIAN PATH [29]. The NP-completeness of MIN/MAX (o, p)-DOMINATING SET
problems has been systematically studied by Telle [33], and Golovach et al. [23] considered
their complexity parameterized by solution size.

Methods. As mentioned above, all reductions we give start from the PARTITIONED SUB-
GRAPH IsOMORPHISM (PSI) problem. Here, we are given two graphs G and K, and a
partition of V(G) where each part is associated with a vertex from K, and the question is
whether G contains K as a subgraph witnessed by an isomorphism that respects the partition
of V(G). This problems is known to be W[1]-hard parameterized by h = |E(K)| and not
to have f(h)n°"/1°8")_time algorithms, where n = |V (G)|, unless the Exponential Time
Hypothesis fails [18, 31, 32].

We give a high level outline of how we reduce the PSI problem to any (o, p)-DOMINATING
SET problem. As the overall strategy is the same for all choices of o and p, and whether
we are concerned with minimization or maximization, we do not specify which case we
are in for now. Let (G, K) be an instance of PSI and for ease of reference, suppose that
V(K)=1{1,...,k}, and let V; be the part of the partition of V(G) corresponding to vertex
i. The graph H of the (o, p)-DOMINATING SET instance contains, for each V;, a set S;
of selection vertices that encodes which vertex of V; is chosen in a potential solution to
(G,K). For each edge ij € F(K), we add a subgraph to H that preserves information
about adjacencies between the vertices in V; and V}, but induces cuts that have no induced
matchings of size larger than two. This construction is adapted from the work of Fomin et
al. [19]. It ensures that once a (o, p)-dominating set D contains precisely one vertex from
each S'i, then the remainder of the vertices in D witness the existence of a K-subgraph in G.

To ensure that each solution to the (o, p)-DOMINATING SET instance picks precisely
one vertex from each S;, we add gadgets to H that depend on the choice of o and p and
whether we are concerned with a minimization or a maximization problem. These gadgets are
constructed carefully enough so that the linear mim-width of H does not increase prohibitively.
In the end, we have a partition of H such that each subgraph induced by a part has linear
mim-width that only depends on the some fixed constants contained in ¢ and p, and such
that the cuts between the parts do not contain large induced matchings either. By adapting
a lemma of Brettell et al. [12] to linear mim-width, and with a slightly more careful analysis,
we conclude that we can construct in polynomial time a linear branch decomposition of H
that has mim-width O(h).
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The high degree of generality in our reductions is achieved by the following: the construc-
tion combined with the budget are tight enough so that, roughly speaking, in minimization
problems, each vertex can only be minimially dominated and in maximization problems, each
vertex has to be mazimally dominated. This means that in either case, o and p only contain
one relevant value for feasible solutions: for minimization that is ¢ = mino and ¢ = min p,
and for maximization ¢ becomes max o and ¢ becomes max p. The linear mim-width of H
depends on ¢ and g, and in the case of minimization problems, these are always constants.
In the case of maximization, however, ¢ and o are only constant when ¢ and p are finite.

Throughout the paper, proofs of statements marked with “&” and full proofs of sketches
are deferred to the full version.

2 Preliminaries

For basic background in graph theory, we refer to [15], and for basics in parameterized
complexity, we refer the reader to [14, 16]. We use the following notation: N = {0,1,2,3,...},
[n] ={1,2,...,n}, [n]o = {0,1,2,...,n}. For a graph G, we denote by V(G) its vertex set and
by E(G) its edge set. For A, B C V(G) with AN B = 0, we let G[A, B] be the biparite graph
with vertex set AU B and edge set {ab | ab € E(G),a € A,b € B}. A matching in a graph
G is a set M C E(G) of pairwise disjoint edges. We say that M is induced if there are no
additional edges between the endpoints of the edges in M; that is, if u is an endpoint of some
edge in M and v is some endpoint of some edge in M, then either uv € M or wv ¢ E(QG).
For a graph G, we denote by cc(G) the set of its connected components. For additional
clarification of basic graph theoretic concepts and notation we refer to the full version.

Mim-Width. For a graph G and A, B C V(G) with AN B = () we define cutmimg (A, B)
to be the largest size of any induced matching in G[A, B]. For a set A C V(G), we let
mimg(A) = cutmimg (A4, V(G) \ A).

A branch decomposition of a graph G is a pair (T, L), where T is a tree where all of whose
vertices have degree at most 3, and £ a bijection mapping the vertices of the graph V(G) to the
leaves of the tree T'. For a subtree T’ of T', we denote by Vi the vertices of G that are mapped
to leaves of 7". The mim-width of (T, L) is mimwg(T, £) = maX.c p(G), 17 ccc(T—e) Mima (V).
The mim-width of G, denoted by mimw(G), is the minimum mim-width over all its branch
decompositions.

A branch decomposition (T, L) is called linear if T is a caterpillar graph, i.e., a tree
containing an induced path P such that each vertex in V(T') \ V(P) has precisely one
neighbor on P. The linear mim-width of a graph G, denoted by linmimw(G), is the minimum
mim-width over all its linear branch decompositions. Linear branch decompositions can
be equated with linear orderings of the vertex set of a graph. For a linear order A of the
vertices of G, we will therefore write mimwg(A) for the mim-width of the linear branch
decomposition corresponding to A. In all definitions given in these last paragraphs, we may
drop G as a subscript if it is clear from the context.

Exponential-Time Hypothesis. The Exponential-Time Hypothesis (ETH) is a conjecture
about the complexity of the 3-SAT problem, which given a boolean formula in conjunctive
normal form and clauses of size at most three, asks whether it has a satisfying assignment.

» Conjecture 4 (ETH [26], informal). The 3-SAT problem cannot be solved in 2°™) time,
where n is the number of variables of the input formula.
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2.1 Generalized dominating set problems

Let o,p C N, and let G be a graph. A vertex set S C V(G) is a (o, p)-dominating set, if
for all v € V(GQ): If v € S, then |[N(v) N S| € o, and if v ¢ S ,then |[N(v) N S| € p. The
computational problems associated with (o, p)-dominating sets we consider in this work
are:

MIN/MAX (o, p)-DOMINATING SET
Input: Graph G, integer k
Question: Does G contain a (o, p)-dominating set of size at most/at least k?

Many maximization and minimization problems formulated in this manner are compu-
tationally hard, in the sense that they are NP-hard and W[1]-hard with solution size as a
parameter. We now discuss the exceptions that are relevant for this work, i.e. some cases
when the MIN/MAX (o, p)-DOMINATING SET problems are polynomial-time solvable.

Trivial minimization problems. Whenever 0 € p, the empty set is a solution of the MIN
(0, p)-DOMINATING SET problem. This case is then trivial as any algorithm can always return
the empty set as a valid optimal solution. These are the only trivial cases for minimization.

Trivial maximization problems. We focus here on trivial cases where ¢ and p are finite,
since these are the cases for which we show hardness in this work. Note however that there
are more trivial cases when ¢ and p need not be finite, for instance when o = N: in this case,
the entire vertex set of the input graph is a valid optimal solution.

If p = {0}, then any solution has to consist of connected components of the input graph.
Suppose S is a (o, {0})-dominating set of a graph G and let Cy,Cs € cc(G). Then, whether
or not C7 C S is independent of whether or not Co C S. Furthermore, for any connected
component C' € cc(G), we can verify in polynomial time whether or not C' can be contained in
a (o0, {0})-dominating set: we only have to check for all v € C that deg(v) € o. Therefore we
can use a greedy algorithm to solve the problem, by first identifying all connected components
of the input graph followed by greedily including each connected component C' in the solution
if it passes the aforementioned check.

» Observation 5. Let o,p C N. If0 € p, then MIN (o, p)-DOMINATING SET is polynomial-
time solvable, and if p = {0}, then MAX (o, p)-DOMINATING SET is polynomial-time solvable.

2.2 Problem Definitions

We collect here the definitions of the problems that are relevant to this work. The following
parameterized variant of the MIN/MAX (o, p)-DOMINATING SET problems is the main object
of study.

MIN/MAX (o, p)-DOMINATING SET[LMIM + SOL]

Input: Graph G, integer k, linear order A of V(G).
Parameter: mimw(A) + k.
Question: Does G contain a (o, p)-dominating set of size at most/at least k?

The starting point of our reductions will be the PARTITIONED SUBGRAPH [SOMORPHISM
problem, which is known to be W[1]-hard and not to have f(h)n°"/1°¢")_time algorithms,
unless the ETH is false [31].
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Figure 1 2-Blowups of the vertices x1, x2, and x3. In vertex x1, a clique blowup was performed

and in z2 and z3 and independent blowup.

PARTITIONED SUBGRAPH ISOMORPHISM

Input: (G, K, ¢), where G and K are graphs, and ¢: V(G) — V(K).
Parameter: h =|E(K)|.
Question: Is there an injective function f : V(K) — V(G) such that ab € E(K) =

f(a)f(b) € E(G) for all a,b € V(K), and ¢(f(a)) = a for all a € V(K)?

We introduce some notation that will be useful when talking about instances of PARTITIONED
SUBGRAPH ISOMORPHISM. We say a function f : V(K) — V(G) preserves neighbors if
ab € E(K) = f(a)f(b) € E(G) for all a,b € V(K), and f preserves colors (relative to
¢ :V(G) = V(K)) if ¢(f(a)) = a for all a € V(K). As these above mentioned hardness
result from [31] also holds when the pattern graph K is connected, we we will commonly
make this assumption throughout the paper.

3 Graph operations and bounds on the linear mim-width

The following lemma can be seen as an analogue of a lemma due to Brettel et al. [12] for
linear mim-width.

» Lemma 6 (&, Cf. Lemma 7 in [12]). Let G be a graph, let X = (Xy,...,X,) be a partition
of V(G) such that cutmimg(X;, X;) < ¢ for all distinct i, j € [p|, and let G/X be the quotient
graph of X. Then,

linmimw(G) < |E(G/X)| - ¢ + max;e[y linmimw(G[X;]).

Moreover, if for all i € [p], A; is a linear order of X;, then one can in polynomial time
construct a linear order A of G with

mimw(A) < |E(G/X)| - ¢+ max;cp, mimw(A;).
The following operation is illustrated in Figure 1.

» Definition 7 (Blowup). Let G be a graph, v € V(G), and k € N. A clique/independent
k-blowup of v is the operation of adding k twins of v which form a clique/independent set.
We call an operation simply a blowup if it is either a clique k-blowup or an independent
k-blowup for some k € N.

We show that performing blowups cannot increase the mim-width by more than 1. Note
in the following lemma that we consider a series of blowups performed at once instead of a
single blowup.
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Figure 2 A depth-5 grid of cliques implant at {z1,...,z5}. Shaded regions indicate cliques.

» Lemma 8 (&). Let G be a graph, and let A be a linear ordering of G. Let G’ be obtained
from G by a series of blowups. Then, there is a linear order N of V(G') computable in
polynomial time from A such that mimw(A’) < mimw(A) + 1.

We define another operation that will find a similar use in the later sections.

» Definition 9 (Depth-¢ grid of cliques implant). Let G be a graph, let X = {x1,..., 21} C
V(G) be a clique in G, and let £ € N. For all i € [k], let z; = 2V. The operation of

= adding, for alli € [(], vertices %, ..., x,

w for each i € [€], making {x%,..., 2t} = X' a clique (called the i-th column), and

m  for each j € k], making {x?, e ,xﬁ} =Y a clique (called the j-th row),

s called a depth-£ grid of cliques implant (at X in G).

.

For an illustration of the previous operation see Figure 2.

» Lemma 10 (&). Let G be a graph, let A be a linear ordering of G. Let G' be obtained from
G by a depth-€ grid of cliques implant. There exists a linear ordering A’ of G' computable in
polynomial time from A, such that mimw(A’) < mimw(A) + £.

4 Hardness of (o, p)-Dominating Set problems

In this section we discuss the main results of this work, which are the hardness results for
non-trivial MIN/MAX (o, p)-DOMINATING SET problems. Note that the cases that are not
covered by the following theorem (0 € p for minimization and p = {0} for maximization)
have been observed to be trivial in Observation 5.

» Theorem 11. Let o,p C N be nonempty where 0 & p. Then, the MIN (o, p)-DOMINATING
SET[LMIiM + SoL] problem is W[1]-hard. Moreover, unless the ETH is false, it cannot be
solved in f(w)no(“’/ logw) time, where f is any computable function, on n-vertex graphs given
with a linear ordering of mim-width w.

Furthermore, if o and p are nonempty, finite, and p #* {0}, then the MAX
(0, p)-DOMINATING SET[LMIM + SoL] problem is WI1]-hard, and cannot be solved in
f(w)ynew/108w) time where f, n, and w are as above, unless the ETH is false.
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Figure 3 Example of H for p = 3, and k = 3, and K is the complete graph with three vertices.

Colored regions indicate cliques.

The proof is by a reduction from the W[1]-hard problem PARTITIONED SUBGRAPH
IsoMORPHISM, where first a core graph H is constructed. Afterwards the graph is modified
to obtain either Hy, Hy, Hy, or H3 depending on ¢ and p in such a manner that all of the
above mentioned cases are captured. These modifications use, among other things, the two
operations described in Section 3.

4.1 The core graph H

Let (K, G, ¢) be an instance of the PARTITIONED SUBGRAPH ISOMORPHISM problem. Recall
that for the sake of our reduction, we can assume that K is connected. Throughout, we
assume that V(K) = {1,...,k}, and that (Vi,...V}) is the partition of V(G) according to
¢, that is, for all i € [k], V; = {v € V(Q) | ¢(v) = i}.

We describe how to construct from it the above mentioned core graph H. We can assume
that |V;| = p, for all ¢ € [k], where p = max{|V;| | ¢ € [k]}. If this is not the case then we can
simply add isolated vertices to the sets whose cardinality is less than p. Isolated vertices
clearly do not affect the PARTITIONED SUBGRAPH ISOMORPHISM instance, as K has no
isolated vertices as we assumed it was connected. For all i € [k], we let V; = {v],...,v}}. The
core graph H is constructed as follows:

1. For all i, € [k] such that ij € E(K), and for all a € [p], we add the vertex 2% to V(H).

We let X% = {24 | a € [p]}.

2. For all 4, j € [k] such that ij € E(K) and for all a,b € [p] such that viv] € E(G), we add
the vertex r = 77° to V(H). We connect 7% to all the vertices in {z% | o’ # a,a’ € [p]},
and all the vertices in {z]/ | b # b,b € [p]}. We let RY = {r%} | vivi € E(G)} = R7".

3. For all i € [k] and for all a € [p] we add the vertex s’ to V(). Furthermore for all j € [k]
such that ij € E(K), and all a € [p] we connect s to 4. We let S? = {s! | a € [p]}.

4. For all i € [k], we make S a clique. For all ij € E(K), we make RY a clique. We let
X = Uijenx) X" and make X a clique.

See Figure 3 for an illustration. Notice that RY = R/* but X% # XJ¢ for all ij € E(K).
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The notation Z, J, Z<, and zg. As S* and RY have many similar properties in our
reduction, we use the following slight abuse of notation. We let Z = [k] U {ij | ij € E(K)},
and for a € Z, we let Z% be S* if a = i for some i € [k], and we let Z% be R¥ if a = ij for
some ij € E(K). We let J = [p] U [p] x [p]. For a pair a € Z, € J, the vertex z§ is s, if
a € [k] and B € [p] and r* if @ € E(K) and $ € [p] x [p]. Note that for the case o € [k] and
B € [p] x [p] (or a € E(K) and 3 € [p]), the vertex z§ is not defined.

As outlined above, it is essential that the core graph has bounded linear mim-width. We
sketch how to obtain a linear order whose mim-width is linear in the number of edges in K.

o> Claim 12. There is a linear order A of V(#) computable in polynomial time such that
mimw(A) < 4|E(K)| + 4.

Proof (sketch). Consider the following partition of V(H): Let I' = {T',, | « € T}, where
for all i € [k], T; = S*U UijeE(K) X and
for all ij € E(K), I';; = RY.

We give the vertices in I'; the ordering

Aprsi<afl <aP < <alf<sh<all < <alf <<l <all <<l
and we give the vertices in I';; any linear ordering A;;. As I';; = R is a clique, any linear
ordering of I';; has mim-width 1. Furthermore, one can show that the mim-width of A;, for
each i € [k], is at most 3. Considering the subgraph H’ of H obtained by removing all edges
between X% and X% for distinct ij,7j’ € E(K), we can prove that cutmimyy o, [or] < 2
for any distinct o, &’ € Z. The number of edges in H'/T" is equal to 2|E(K)|, so by Lemma 6
we can obtain a linear order of the vertices of H' whose mim-width is at most 4|E(K)| + 3.
(Take any linear order of V(H') that respects each A,, o € Z.) To get the bound for H,
note that turning a set of vertices into a clique can increase the mim-width of any cut by at
most 1. <

4.2 Minimization problems

We now turn to the case when we want to show hardness for a MIN (o, p)-DOMINATING
SET problem, and describe how the core graph H will be enhanced/transformed to give the
graph of the resulting instance. This construction crucially depends on the minimum values
of o and p. Therefore, we let ¢ = min(o) and ¢ = min(p). Note that ¢ + ¢ = O(1). In each
of the cases, we show how the graph of the resulting instance is constructed, and give the
budget. We state three claims, one regarding the linear mim-width of the constructed graph,
and two claims that assert the correctness of the reduction. We exemplify these proofs in
Section 4.2.2, where all arguments for the case treated there are given. The remaining proofs
are deferred to the full version.

421 Wheng=¢+1landg>1
We transform H into the graph solution size pair (Hy, ko), where
ko= (2 +2)(k + |E(K)|) + (¢ +1)

and Hj is constructed as follows. Recall that Z* is either S* when o =i € [k], or R¥ when
a=ij € E(K).
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Figure 4 Example of how S! U X'2 is transformed for minimization problems when p = 3, ¢ = 3,
o = 4. Circles indicate vertices, and grey colored regions indicate cliques.

1. For all o € Z, we create two cliques A* and B® which both have size ¢, where A% is
adjacent to all of Z%.

2. We add two adjacent vertices a® and b®. The vertex a® is adjacent to all vertices in A%,
and b is adjacent to all vertices in B“.

3. We add a clique X of size ¢ + 1 which is partitioned in two parts: X; and X5, where
|X2] = 1. Every vertex in X} is adjacent to all the vertices in X, and every vertex in X»
is only adjacent to the vertices in X.

For an illustration see Figure 4.

> Claim 13 (&). There is a linear order Ag of V(Hp) computable in polynomial time such
that mimw(Ag) = O(|E(K)|).

> Claim 14 (&). If (K, G, ¢) is a YEs-instance of the PARTITIONED SUBGRAPH ISOMORPHISM
problem, then there exists a ({s}, {o})-dominating set of size ko in Hy.

> Claim 15 (&). If there exists a (o, p)-dominating set of size at most ko in Hp, then
(K, G, ¢) is a YEs-instance of the PARTITIONED SUBGRAPH ISOMORPHISM problem.

422 Whenp>c¢+1landg>1

Let o' = o — <. In this case, we create the graph solution size pair (Hy, k1), where
ki = (o's + o) (k + |E(K)|) + (¢ + 1),

and H; is obtained from H as follows. Recall the operation of a blowup, Definition 7, and
see Figure 5 for an illustration of the following.

1. For each a € T and 3 € J such that z§ € V(#), we perform an independent (o' — 1)-
blowup of zg. We call the twins of ZG 2oy s 25,0, and we let 25 = 23,

2. For each o € 7 and / € [¢'], we add a clique Af of size ¢, where every vertex in A is
adjacent to every vertex in Zg, = {z§, | B € J s.t. z§ € V(H)}. We let A% = {J,(,1 A7

3. We add a clique X of size ¢ + 1 to Hq; this clique is partitioned into two parts X7 and
X, where |Xa| = 1. Every vertex in &) is adjacent to all vertices in X, and the vertex in
X, is only adjacent to X.

We use the following notation. We call the set containing zg with its o — 1 twins
75, = {25, | L € [¢']}, and we let Z, = Urepo) Z5%- Note that the vertices in Z§, are not
adjacent to any other vertex in Zg,, however they are all adjacent to Z§,, for all B #B.

> Claim 16. There is a linear order Ay of V(H;) computable in polynomial time such that
mimw (A7) = O(|E(K)|).
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[
i
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i
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[

Figure 5 Example of the modification of S* U X2 for p = 3, ¢ = 2, o = 5. Circles indicate
vertices, and grey colored regions indicate cliques. The blue regions indicate independent sets.

Proof. Let A be a linear order of H of mim-width O(]E(K)|) obtained from Claim 12 in
polynomial time. H; is constructed from H by blowing up all vertices z§ € V(H), where
a€Zand f € J,and adding |E(K)|+k+ 1= O(|E(K)|) vertex sets of constant size. We
can place the latter vertices anywhere in the ordering A without increasing the mim-width by
more than O(|E(K)|), call the resulting ordering A’. From A’ we can obtain a linear order
of H; in polynomial time whose mim-width is at most one larger using Lemma 8. <

We now show the correctness of the reduction in the following two claims.

> Claim 17. If (K, G, ¢) is a YES-instance of the PARTITIONED SUBGRAPH ISOMORPHISM
problem, then there exists a ({s}, {o})-dominating set of size ky in Hj.

Proof. Let f: V(K) — V(G) be the injective function preserving neighbors and colors. Let
f(i) = vl for all i € [k] and for some c1,...,cx € [p]. Note that ij € E(K) implies that
viivgj € E(G) further implying that rfjcj € V(H) CV(H;). We argue that

D=XU Uiew St U UMGE(K) R, .U Uael e

is a ({s}, {o})-dominating set of size k; in H;. First, we observe that
Dl =s+1+k-o' +|E(K)|- ¢ + (k+|E(K))s¢" = k1.

The sets X, Unez 255 Unez 4% Uijenro X form a partition of V (Hy). First consider
any vertex x in X C D, and recall that X is a clique of size ¢ + 1. If  is the unique vertex in
Xa, then N(z) = X} C D, so x has ¢ neighbors in D. If z € Xy, then N(z) = X UX \ {z},
and since X N D = ), we have that = has ¢ neighbors in D as well.

Next, consider a vertex z in | J, .7 Z¢,. There are two cases. In the first case, a =i € [k],
and z = s}, for some j € [p] and (£ € [¢']. If j = ¢;, then 2z = s/ , € D, and N(s.,) N D = A},
and therefore |N(z) N D| = ¢. (Note that s’ , is not adjacent to any vertex in S%, C D.)
If j # ¢;, then N(2) N D = A, US!, so [N(z) N D| = ¢+ ¢ = o. The second case, when
a =1ij € E(K), can be argued in the same way.

Now let a be a vertex in A* C D, for some « € Z, and assume that o = i € [k]. Then we
have that a € A’ for some ¢ € [¢'], and the intersection of N(a) with D consists of A’ \ {a},
and the vertex s’ ,. We conclude that |N(a) N D| = g; the case when o = ij € E(K) is the
same.
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Finally, consider some vertex in X%, where ij € E(K), in particular such a vertex is z%
for some a € [p]. Since DN X = (), we have that %/ ¢ D. Furthermore, N(z%) contains
X, € D. Now, suppose that a = ¢;. Then, S’ is also in N(2¥) N D. The only other
neighbors of vertices in X% that are not in X U Si, U X are in RY,. However, the only

Gk

vertices in D N RY, are in R¢).,«, and by construction, ) is not adjacent to any of them.

Therefore, %7 has < + o' = ¢ neighbors in D. If a # ¢;, the argument is similar, but with the
roles of S} and R¢l.,« exchanged. <

> Claim 18. If there exists a (o, p)-dominating set of size at most k; in Hy, then (K, G, ¢)
is a YES-instance of the PARTITIONED SUBGRAPH ISOMORPHISM problem.

Proof. Let D C V(H;) be the (o, p)-dominating set of size at most &k in H;. We show that
for all a € 7 there is some 8 € J such that Zg, C D. From these pairs (a, B8), we will then
derive a solution to (K, G, ¢). Recall that [Zg,| = ¢’ for all such «, 3, so as a first step we
show that

foralla € Z,|1Z8, ND| = ¢'. (1)

Let oo € Z. We first show that |(Z2, U A%) N D| = ¢'(s + 1), and narrow down to prove (1)
afterwards. Towards this, we argue that |(Z2, U A%) N D| > ¢/(¢+ 1). Observe that

for all £ € [o'], A} C D or [N[A?] N D| > p. (2)

Indeed, for all v € Af, either v € D, or |[N(v) N D| > p. This in turn means that either
A% C D or that there is some ¢ € [¢'], such that |[N[A] N D| > o. Let a be the number of
¢ € [¢'] such that Ay ¢ D. Since |AY| = ¢ and for distinct £,¢" € [o'], N[AF] N N[AS] = 0,
this implies together with (2) that

[(Z2, UA*)ND| > (o' — a)s +ap = o' (s + a). (3)

Now, if a > 1, then we can conclude immediately that [(Z% U A%) N D| > ¢'(s + 1), so
suppose a = 0. Then, by (2), Ay C D for all £ € [¢']. However, |AJ| = ¢, so there has to
be at least one more vertex in N(AY) N D. Since N(AY) C Z2,, and for distinct £,¢" € [o']
N(AY) N N(AP) =0, it follows that D has to contain at least another o' vertices from Z2,;
therefore, also when a = 0, we have that [(Z2, UA*)ND| > o' (¢ +1).

We show that by the choice of k1, the inequality we just argued is an equality. To do so,
consider X. Since there is a vertex in X whose degree is ¢, and since ¢ < g, we conclude that
X C D. We have argued that

DI Ze+1+Z]- ¢ - (c+1) =c+ 1+ (k+ [EE))(s + o) =k,
and since |D| < ky by assumption, we have that |D| = k; and
for all « € Z,|(Z2, UA*) N D| = o'(s + 1). (4)

Note that since the vertices considered so far already use up all the budget, we also have
XND=0.

As a last step, we argue that A C D, which together with (4) implies (1). (Recall that
|A%| = ¢’s.) In other words, we want to show that a = 0. If @ > 1, then by (3) we get

a contradiction with (4). So suppose that @« = 1, and let ¢ € [¢] be such that A} Z D.

For each ¢’ € [¢'] \ {{}, A} C D; and since |A9| = ¢, there is at least one more vertex in
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N(A%) N D. Similar to above, this allows us to conclude that |D’| > (¢’ —1)(s + 1), where
D" = DN Upepon ey NIAZ]- By (2), we have that [N[A7] N D| > o, and by construction
N[A2] N D’ = (. Together with (4) this means that

O(c+1)=[(Z2uA)ND| > (0 -1+ +o=0(c+1)+0 -1,

which only holds if ¢’ < 1. However, 9 > ¢+ 1, s0 ¢’ = 9 — ¢ > 1, a contradiction. We have
argued that a = 0, and therefore A* C D, proving (1) due to (4).

Now that we know that |Z2, N D| = ¢/, it remains to show that there is some 8 € J such
that Z§, C D. Suppose not, then there exists some v € J such that 1 < |Z$, N D| < o'. Let
z5 ¢ D where £ € [0']. The neighborhood of 2, is contained in A, Z2,, and X. So, 25, has
¢ neighbors in D N A, no neighbors in D N X (recall that X N D = ), and at most ¢’ — 1
neighbors in D N Z,. The latter is due to the fact that ZJ, contains at least one vertex
from D, and the fact that Z5, is an independent set. So [N(2$,) ND|<c+o —1=p-1,a
contradiction with D being a (o, p)-dominating set.

Then for all i € [k] there exists a ¢; € [p] such that S’ , C D, and for all ij € E(K) there
exists d;, d; € [p] such that RZ dy+ C D. Suppose that ¢; # d; then notice the vertex xff is
only being dominated by the ¢ < g vertices in X N D, but ¢ € p. Therefore ¢; = d;, and by
a similar argument ¢; = d;. We can conclude that the edges {v. v’ | i, € [k]} exist in G.
Then the function f: V(K) — V(G) where f(i) = v, is a function preserving neighbors
and colors. <

423 When g<cg+1

Let ¢’ = ¢ — o+ 1. In this case, we construct the graph solution size pair: (Ha, ka), where
ke =(c+1)-(|E(K)|+k)+¢+1.

The graph Hs is obtained from H by the modifications given below. Recall the operation of
a depth-¢ grid of cliques implant, see Definition 9; and for convenience, for all « € Z and
B € J such that 2§ € V(H), let 2§ = z§.

1. For each o € Z, we perform a depth-¢’ grid of cliques implant at Z%. We call the ¢-th
column Zy), for all £ € [¢']o, and the S-th row Z§,, for all § such that 2§ € Z. Let
Z2. = Usefeo it

2. For each a € Z: If p > 1, then we add a clique A® of size g — 1, where the vertices in A“
are adjacent to all vertices in Z2,. If o = 1 then A® = {).

3. We add a clique X of size ¢ + 1 to Hy. This clique is partitioned into two parts X} and
X, where X has size o — 1 and all its vertices are adjacent to all vertices in X. The
vertices in X, are only adjacent to all all vertices in X and X, has size ¢/ + 1.2

> Claim 19 (&%). There is a linear order As of V(Hs) computable in polynomial time such
that mimw(As) = O(|E(K)|).

> Claim 20 (&). If (K, G, ¢) is a YEs-instance of the PARTITIONED SUBGRAPH ISOMORPHISM
problem, then there exists a ({<}, {o})-dominating set of size ko in Ha.

> Claim 21 (&). If there exists a (o, p)-dominating set of size at most ke in Hs, then
(K, G, ¢) is a YEs-instance of the PARTITIONED SUBGRAPH ISOMORPHISM problem.

2 The set X is not needed for correctness when ¢ = 0, but for simplicity we include it anyway.
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Figure 6 Example of the modifications to S* U X*? for p=3, ¢ = 6, o = 4.

424 Whenpgp>1land¢=0

In this case, we construct the graph solution size pair (Hs, k3), where k3 = o(k + |E(K)]),
and Hj is constructed from H follows.

1. For each a € Z, B € J such that 2§ € V(H), we perform an independent (o — 1)-
blowup of zg‘.?’ We call the twins of z3: ZZ9s s 2G> and we let zj = 25 We let
Zg. =251 Lelol}, Zo ={25, 1 B€ T st. 25 € V(H)}, and Z, = Z° U Uee[g] z2,.

2. For all a € Z, we add a clique A% of size g, and we connect all of its vertices to to all the
vertices in Z2,.

> Claim 22 (&%). There is a linear order A3 of V(H3) computable in polynomial time such
that mimw(A3) = O(|E(K)|).

> Claim 23 (). If (K, G, ¢) is a YEs-instance of the PARTITIONED SUBGRAPH ISOMORPHISM
problem, then there exists a ({<}, {o})-dominating set of size k3 in Hs.

> Claim 24 (&). If there exists a (o, p)-dominating set of size at most k3 in Hj, then
(K, G, ¢) is a YEs-instance of the PARTITIONED SUBGRAPH ISOMORPHISM problem.

4.3 Maximization problems

For maximization problems, we can reuse the constructions as in the previous section; however
we let ¢ = max(o) and ¢ = max(p) (instead of taking the minima of o and p). This is why
we require ¢ and p to be finite.

When ¢ < g, we construct (Hy, k1) as in Section 4.2.2. Therefore the mim-width bound
follows by the same arguments, and one direction of the correctness proof is already shown
in Claim 17. A bit of attention is necessary in case ¢’ = 0, but the arguments still work
after some minor tweaks. In case ¢ > o, we construct (Ha, k2) as in Section 4.2.3. Again, the
mim-width bound and one direction of the correctness proof (Claim 20) are already taken
care of. The remaining proofs and other details are given in the full version.

3 If o = 1 then this step is skipped.
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5 Conclusion

In this work, we proved that each MIN (o, p)-DOMINATING SET problem is either polynomial-
time solvable or W[1]-hard parameterized by the mim-width of a given linear branch de-
composition of the input graph plus solution size, and that the same holds for MAX (o, p)-
DOMINATING SET problems whenever ¢ and p are finite. An immediate open question is
whether we can complete the dichotomy for maximization problems to the cases when o
and/or p are infinite.

» Open Problem 1. Is it true that for all o,p C N, including infinite sets, MAX (o, p)-
DOMINATING SET is either polynomial-time solvable or W[1]-hard when parameterized by the
mim-width of a given linear branch decomposition of the input graph?

For all the W[1]-hard cases, our reductions also ruled out f(w)n°(*/1°8®)_time algorithms
under the ETH, for any computable f, where n is the number of vertices of the input graph
and w the mim-width of the given linear branch decomposition. Since the algorithms for
finite and co-finite MIN/MAX (o, p)-DOMINATING SET problems run in n°(*) time [13], it is
a natural question to close this gap.

» Open Problem 2. Are there finite or co-finite sets o,p C N such that an algorithm
for the MIN/MAX (o, p)-DOMINATING SET problem that is W[1]-hard parameterized by the
mim-width w of a given (linear) branch decomposition of the input n-vertex graph, running
in n°") time, would refute the ETH?

In this work, we only considered minimization and maximization variants of (o, p)-
DOMINATING SET problems. A third variant, say the EXACT (o, p)-DOMINATING SET
problem, asks for a (o, p)-dominating set of size exactly k. While all hardness proofs given in
this work also work for EXACT (o, p)-DOMINATING SET problems, these problems are not
trivial to solve when 0 € p, as the empty set is not a solution in this case (unless, of course,
k = 0). We therefore ask the following question, and remark that the analogous question
parameterized by solution size was asked by Golovach et al. [23].

» Open Problem 3. Are there some (finite or co-finite) o,p C N with 0 € p such that
ExAcT (o, p)-DOMINATING SET parameterized by the mim-width of a given (linear) branch
decomposition is W[1]-hard?

In a recent work [17], Eiben et al. introduced a framework of width measures based on
branch decompositions over the vertex set. There, given a family F of biparite graphs, the
value of a cut is determined as the largest graph in F that appears as a semi-induced subgraph
across the cut. Mim-width is an instantiation of this framework where F is the family of
matchings. Our hardness proofs greatly rely on the fact that mim-width is not closed under
taking the complement of the graph. It would be interesting to see what happens to the
complexity of the problems in this work when one considers the width measure obtained
by letting F be the union of the family of matchings and anti-matchings as the parameter,
which results in a parameter related to mim-width that is closed under the complement.

Lastly, we want to point out that we cannot expect to prove W[1]-completeness for the
W(1]-hard cases of MIN/MAX (o, p)-DOMINATING SET parameterized by linear mim-width
considered in this work. In a recent work, Bodlaender et al. [7] showed that the MINIMUM
DOMINATING SET and MAXIMUM INDEPENDENT SET problems parameterized by the mim-
width of a given linear branch decomposition of the input graph are XNLP-complete [8].
This in turn implies that these problems are W[t]-hard for all ¢, which makes containment in
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WI[1] unlikely. Furthermore, we believe that the ideas used in our work and those from [7]
can be combined to show that all W[1]-hard cases from our work are indeed XNLP-hard.
Membership in XNLP can be derived for all finite or co-finite o and p, in a similar way as it
is done for MAXIMUM INDEPENDENT SET and MINIMUM DOMINATING SET in [7].
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