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We study a set of voting problems where given an election E = (C, �V ) (where C is the 
set of candidates and �V is a set of votes), and a non-empty subset of candidates J , the 
question under consideration is: Can we modify the election in a way so that none of the 
candidates in J wins the election? The modification operations allowed are that of either 
adding or deleting some candidates. Yang and Wang (2017) [44] introduced these problems 
as the Resolute Control problem, a generalization of the destructive control problem 
where J is a singleton. They studied parameterized complexity of Resolute Control for 
voting rules Borda (both addition and deletion), Maximin (addition), and Copeland (both 
addition and deletion). They primarily consider | J | as parameter. In this paper we study
Resolute Control parameterized by the other natural parameters viz., the number of 
candidates added or deleted. We show that the Resolute Control for Borda (both addition 
and deletion), Maximin (addition) and Copeland (deletion) are W[2]-hard. We complement 
this by showing that when the number of voters is odd, Copeland (deletion) is FPT
parameterized by the sum of the number of deleted candidates and the size of the feedback 
arc set of the majority graph of the election.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Voting is a prevalent mechanism for collective decision-making in modern society. Standard formats of an election, de-
noted by E = (C, �V ), consist of a set of candidates C , a set of voters V , and a multiset �V of voting profiles (that is, 
linear orderings of C), with one voting profile �v for each voter v ∈ V . Given the significance of the outcomes of elections, 
they are highly attractive for manipulators. Thus, it is imperative to find solutions that deal with manipulation effectively. 
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Table 1
Our five negative results.

parameter Borda Maximin Copelandα

Control by deleting candidates kDC W[2]-hard P [44] W[2]-hard
Control by adding candidates kAC W[2]-hard W[2]-hard W[2]-hard

To this end, we first need to understand the power and limitations of central forms of manipulation by analyzing the 
computational problems that underlie them [1,2,12,17,30,37,42,44]. Among the most common forms of manipulation are 
the addition and/or deletion of candidates, and the addition and/or deletion of voters, hence they deserve special atten-
tion. These forms of manipulation give rise to two well-studied families of computational problems, termed Constructive 
Control and Destructive Control.

For over three decades, since the seminal work of Bartholdi, Tovey and Trick [1,2], computational problems of Con-

structive Control have been extensively studied and are nowadays relatively well understood. Here, the objective of the 
manipulator is to ensure that the winner is some distinguished candidate j, or, more generally, a candidate from a set of dis-
tinguished candidates J . While initially, the computational problems (of adding/deleting candidates/voters) were defined for 
a single distinguished candidate j [1,2], the objective was soon generalized to settings that capture the case of a set of dis-
tinguished candidates J [35,36,38,39]. Having a shorter history, yet already introduced more than a decade ago by Conitzer, 
Sandholm and Lang [15] and Hemaspaandra, Hemaspaandra and Rothe [30], are the computational problems of Destruc-

tive Control. Naturally complementing Constructive Control, here the objective of the manipulator is to ensure that the 
winner is not some distinguished candidate j, or, more generally, not a candidate from a set of distinguished candidates J . 
Clearly, candidates can be hated just as much as they can be favored, hence Destructive Control is as commonplace as
Constructive Control. The study of control problems has been further strengthen by the Resolute Destructive Control

problem where the goal is to ensure no candidate from J can win under any tie breaking rule by adding candidates (AC) or 
deleting candidates (DC). We denote it RCX where X ∈ {AC, DC}. Indeed, it is easy to think of numerous real-life situations 
where RCX arises, be it the prevention of any person from a certain party J to be promoted to a position of power, or the 
avoidance of distant locations when selecting a conference venue. Furthermore, Destructive Control is an alternative to
Constructive Control (rather than making j win, make its threats lose) that tends to be computationally easier [3,23,43]
and hence tempting to undertake.

In sharp contrast to its constructive counterpart, up until less than two years ago [44], RCX was only studied when J
is a singleton. Arguably, when we deal with RCX—unless the entire set of candidates is very small—it is easier to come up 
with situations where multiple candidates, rather than a single candidate, should be eliminated (see the scenarios above). 
Yang and Wang [44] were the first to amend this discrepancy. Specifically, they addressed RCX under three of the most well 
known voting correspondences, called Borda, Maximin and Copeland,5 where J can be a set. They pointed out that in the 
non-unique winner model, Destructive Control (DCX-NON) is a special case of Resolute Control. It is known [27,34] that 
DCX-NON is polynomial time solvable for Borda, Maximin and Copeland. In contrast to this, Yang and Wang asserted that 
for both addition/deletion of candidates and addition/deletion of voters, all of these voting correspondences, apart from the 
case of Maximin with deletion of candidates, result in NP-hard problems. The core of their work, though, was the analysis 
of the parameterized complexity of these problems when parameterized by | J |. The computational question for RCX with 
respect to other parameters remains open.

In this paper, we substantially broaden the scope of our knowledge of RCX where J can be a set. In particular, we initiate 
the study of two new parameterizations: (i) the maximum number of candidates to delete kDC ; (i) the minimum number 
of candidates to add kAC . Both of these parameterizations are arguably the most sensible ones when the manipulation is to 
delete or add candidates, respectively. Indeed, manipulators are likely to have limited budget and power, and may further 
need to avoid exposure. Then, the manipulation can be conducted only if the number of candidates to be added or deleted 
is small.

We give several key results concerning both our parameterizations. Our main results state that Borda (for both kDC and 
kAC ), Maximin (for kAC only) and Copeland (for kDC and kAC), are all W[2]-hard for every possible tie-breaking scheme (see 
Table 1). Then, as a step-stone towards the design of parameterized algorithm despite these results, we complement our 
study by showing that Copeland (for candidate deletion) is FPT parameterized by the sum of kDC and a structural parameter. 
Next, we will formally define all the terminologies used in the paper. Following that we discuss our contribution and its 
significance in more details.

1.1. Preliminaries

For any string x ∈ �� , we define x to be the reverse of x. In particular, we will use this operation on ordered subsets 
(blocks) of candidates in voting profiles. For example, if a voting profile contains the block b = c1c2c3, then b = c3c2c1.
Conducting an election. Two evaluation procedures, called a voting correspondence and a tie-breaking scheme, govern the 
outcome of an election E = (C, �V ). A voting correspondence is a function that maps an election E to a subset of candidates 

5 Definitions of standard notions as voting correspondences are deferred to Section 1.1.
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in C , and a tie-breaking scheme maps a subset of candidates in C to a single candidate in that subset. The composition of a 
voting correspondence and a tie-breaking scheme defines a voting rule. Note that, by its definition, a voting rule maps an 
election E to a single candidate in C , called the winner. For two candidates c1, c2 ∈ C , N(c1, c2) is the number of voters 
which prefer c1 to c2 (that is, c1 appears before c2 in the linear order). If N(c1, c2) > N(c2, c1), we say c1 beats c2, or c2 is 
beaten by c1; otherwise, if N(c1, c2) = N(c2, c1), we say c1 ties c2. We consider three central voting correspondences:

• Borda. Every voter gives 0 points to his/her last-ranked candidate, 1 point to the second-last ranked candidate, and so 
on. The sum of the points awarded to a candidate c yields his/her Borda score, denoted by Borda(c).

• Maximin. For a candidate c, the Maximin score of c is Maximin(c) = minc′∈C\{c} N(c, c′).
• Copelandα . For a candidate c, let B(c) and T (c) be the sets of candidates who are beaten by c and who tie with c, 

respectively. The Copeland score of c is Copeland(c) = |B(c)| +α|T (c)|. Here, α is a rational number such that 0 ≤ α ≤ 1.

The winner(s) in each of these correspondences are the candidates with the highest score. Arguably, Borda is the most 
classic positional voting correspondence extant, while Maximin and Copeland are well-studied Condorcet-consistent voting 
correspondences.6

For an election E = (C, �V ) and subset C ⊂ C , (C, �C
V ) is the election restricted to C , i.e., an election with candidate set 

C and vote set {�C | �∈ �V }, where �C is the vote � restricted to C . For each X ∈ {AC, DC}, where DC and AC denote the 
operations of deleting and adding candidates, respectively, a resolute control problem is formally defined as follows.

RCX Parameter: kX

Input: An election E = (C, �V ), a subset of candidates A ⊆ C , a non-empty subset of candidates J ⊆ C \ A, non-
negative integers kAC ≤ |A|, kDC ≤ |C \ (A ∪ J )|, a voting correspondence ψ , and a tie-breaking scheme μ.
Question: Are there A ⊆ A, C ⊆ C \ (A ∪ J ), such that |A| ≤ kAC, |C | ≤ kDC and no candidate from J can win the 
election ((C \A) \ C) ∪ A, �((C\A)\C)∪A

V )?

Essentially, we ask whether there is a way to add at most kAC candidates from A and delete at most kDC candidates from 
C \ (A ∪ J ), so that no candidate in J can win. Throughout this paper, J = (C, �V , A ⊆ C, J ⊆ C \ A, kAC, kDC, ψ) denotes 
the instance of the resolute control problem under consideration. As our results hold irrespective of the tie-breaking scheme 
used (even if it is probabilistic), we neither define nor specify individual schemes.

Majority graph. The majority graph of an election E = (C, �V ) is the graph G = (V , E) with V = C , and where for every 
pair of candidates c, c′ ∈ C , there is a directed edge from c to c′ in G (denoted by c >m c′) if and only if a strict majority 
of voters prefer c to c′ . The majority graph is asymmetric and irreflexive, but it is not necessarily transitive. Moreover, if 
the number of voters is odd, G is complete—for all c, c′ 
= c, either c >m c′ or c′ >m c holds. In this case, G is also called 
a tournament on C [31]. For a subset of vertices V ′ ⊆ V , G[V ′] denotes the subgraph of G induced by V ′ . The feedback arc 
set number of G is the minimum number of arcs required to remove from G to make it acyclic. For background on graph 
theory we refer to [20] and for background on parameterized complexity we refer to [16].

1.2. Our contribution

Our starting point is the following simple observation7 where |I| is the size of an instance I .

Observation 1.1. For any tie-breaking scheme and X ∈ {AC, DC}, Borda, Copelandα and Maximin RCX admit algorithms with 
running time 

(|C|
kX

)|I|O(1) = |C|kX |I|O(1) and hence XP.

In light of this observation, the first question that comes to mind is whether our problems admit algorithms with running 
time f (kX )|I|O(1) rather than |I| f (kX ) as above, for some function f . In the language of Parameterized Complexity, this is 
equivalent to the following:

Question 1. Are the problems FPT with respect to kX ?

Our main contribution negatively resolves Question 1 for five open cases, thereby completely characterizing the parame-
terized complexity of Borda, Copelandα and Maximin RCX for both X ∈ {AC, DC} (see Table 1). Specifically, we exhibit the 
hardness of these problems (except Maximin RCDC) with respect to the complexity class W[2] [16,22]. This means that under 
the standard complexity-theoretic assumption of FPT 
= W[2], none of these is FPT.

6 A voting correspondence is Condorcet-consistent if it picks the Condorcet-winner—the candidate preferred to any other candidate by a majority of voters—
whenever it exists.

7 To see this, iterate over every possible selection of a subset of candidates to delete (or add) and test whether no candidate in J can win the resulting 
election.
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Theorem 1. For any tie-breaking scheme, Borda RCDC and RCAC, Copelandα RCDC and RCAC, and Maximin RCAC are W[2]-hard.

Each of these hardness results is exhibited by a reduction from Red-Blue Dominating Set but the ideas to construct the 
gadget are very different. This theorem does not end our venture into the discovery of the limits of parameterized algorithms 
for these problems. Indeed, a follow-up question arises:

Question 2. Do the problems admit algorithms with running time |C|o(kX )|I|O(1)?

That is, not expecting to attain running times of f (kX )|I|O(1) (for any function f ) does not preclude the possibility of at-
taining running times that are substantially faster than those in Observation 1.1 (e.g., |C|

√
kX |I|O(1)). We carefully design our 

reductions so that the parameter in the output will have linear dependence on the parameter in the input. Therefore, our 
reductions prove Theorem 1 and the following theorem simultaneously.

Theorem 2. For any tie-breaking scheme, Borda RCDC and RCAC, Copelandα RCDC and Maximin RCAC do not admit any algorithm 
with running time f (kX )|I|o(k) , for any function f , unless the Exponential Time Hypothesis (ETH) fails.

In plain words, under a complexity-theoretic assumption stronger than FPT 
= W[2], called the ETH [16,22], for
Borda RCDC and RCAC, Copelandα RCDC and RCAC, and Maximin RCAC, the naive algorithms in Observation 1.1 are essentially 
optimal. In the reduction the resulting parameter is linear in the input parameter. Hence, we have shown that in addition to
Borda RCDC (AC), Maximin RCAC, and Copelandα RCDC (AC) also do not admit any algorithm of the form f (k)no(k) unless 
ETH fails. Moreover, our design of the reductions also proves that there is no polynomial size kernel8 for these problems 
when parameterized by | J |. It is known that Red-Blue Dominating Set, parameterized by |B|, does not admit a polynomial 
kernel unless NP ⊆ coN P/poly [16]. Since in our reductions | J | = |B|, it implies that Borda RCDC and RCAC, Maximin RCAC, 
and Copelandα RCDC and RCAC, parameterized by | J | does not admit polynomial kernel unless NP ⊆ coN P/poly, although 
these problems are FPT parameterized by | J | [44]. Furthermore, all our reductions work for any tie-breaking rule.

Corollary 1.1. Borda RCDC (AC), Copelandα RCDC (AC), and Maximin RCAC does not admit polynomial size kernel with respect to 
the parameter | J | unless NP ⊆ coNP/poly.

Furthermore, we note that in our reductions a fixed candidate c� wins the “modified” election. Hence, reductions for
RCAC imply hardness for Constructive Control (CC) variants as well.9 This leads us to consider parameters that are the 
sum of kX and a structural parameter—such parameterizations may give rise to efficient parameterized algorithms.

Question 3. For which structural parameters t are the problems FPT with respect to kX + t (or t alone)?

We end our paper with a positive (or rather negative) note. Specifically, as a new structural parameter, we propose the 
feedback arc set number (fasn), denoted by kFAS, of the majority graph of the input election. We also note that the majority 
graph produced in our reduction for Copelandα RCDC is acyclic. That is, kFAS is 0. Hence, under complexity theoretic 
assumptions, Copelandα RCDC cannot admit a FPT algorithm parameterized by kFAS. We remark that kFAS is a well-studied 
parameter in Parameterized Complexity [16,22] that has already received attention in Computational Social Choice [28,29,
40]. The motivation behind our introduction of this parameter to our settings stems from the observation that the candidates 
in an election can usually be (roughly) ordered from strongest to weakest so that, more often than not, a candidate c stronger 
than a candidate c′ will satisfy c >m c′ . This observation directly implies that the feedback arc set number of the majority 
graph of an election may often be small and hence serve as a sensible parameter. For this parameter, we prove the next 
algorithmic result. In a voting system where the number of voters is large, it is unlikely that exactly equal number of votes 
would be received by a pair of candidates in a pairwise election between them. So, we assume the majority graph to be a 
tournament.

Theorem 3. Copelandα RCDC on majority graphs that are tournaments has a parameterized algorithm running in ckDC+kFAS |I|O(1)

time for some constant c < (2e)2 .

Directions for future research are discussed in Section 5.

Related Works. For an overview of related results we refer to two comprehensive surveys and few more related works [24,
26,27,41] that discuss several constructive and destructive control problems are NP-hard but admit FPT algorithms with 
various natural parameters such as number of candidates.

8 For definition of kernel and lower bounds for kernel we refer to [16].
9 However, we point out here that the reverse is not true. That is, a hardness for CCX may not show hardness for RCX for X ∈ {AC, DC}. For example in 

CCDC, the distinguished candidate can win due to deletion of a candidate from J which is forbidden in RCDC. Relations between known results of CCX 
and RCX are discussed in related works section.
77



S. Gupta, S. Roy, S. Saurabh et al. Theoretical Computer Science 915 (2022) 74–89
Reduction to Borda RCDC: Let I = (G = (V B ∪ V R , E), k) be an instance of Red-Blue Dominating Set. To simplify calculations ahead, we assume that 
every vertex v ∈ V B has the same degree, denoted by �. The problem remain W[2]-hard under this assumption. We create an instance of Borda RCDC
J = (C, �V , A = ∅, J , kAC = 0, kDC = k, Borda) as follows.

Candidates: To every vertex b ∈ V B , we introduce a candidate b ∈ B , and to every vertex r ∈ V R , we introduce a candidate r ∈ R . Thus, |B| = |V B |
and |R| = |V R |. Let B = {b1, . . . , b|B|}. Then, we introduce |B| “dummy” candidates D = {d1, . . . , d|B|}, where di is called the twin of bi . Lastly, we add 
a special candidate c� . Thus, the set of candidates C = {c�} ∪ B ∪ R ∪ D .
Voting Profile: We fix an ordering of B , R and D . In every vote, the candidates in B , R and D (or their reversals) will appear according to this order. 
For any vertex vx ∈ V B ∪ V R , we use N(vx) to represents the neighborhood of vx in G . We abuse notation to use N(x) (for a candidate x ∈ B ∪ R) to 
represent the set of candidates that correspond to the neighbors of vertex vx in G . Let α = |B| + 1, β = (|B| + 1)(2� + |R|) − 1 and γ = |B|3|R|3. We 
will have 2α many “X-type” voters for each vertex in V R , β many “Y -type” voters to increase the score of c� , and γ many “Z -type” other voters to 
ensure dummy candidates do not win. Specifically, �V is the multiset of votes in Table 2. The set D B\N(r) denotes the subset of dummy candidates 
containing the twins of the candidates in B \ N(r). Lastly, define J = B ∪ D . This completes the reduction.

Fig. 1. Reduction from Red-Blue Dominating Set to Borda RCDC.

Control problems are mainly concerned with voting correspondences instead of voting rules; in the former there can be 
tied winners and in the later the winner must be unique. A candidate can win an election uniquely or along with other(s) 
(known as the unique-winner model and the nonunique-winner model, resp.). As pointed out by Yang and Wang [44] even 
though the problems seem related, Constructive Control in the unique winner model (CCX-UNI), cannot be reduced to RCX
trivially by setting J = C \ {p}. When X = AC, someone in the set of unregistered candidates A instead of the distinguished 
candidate p can also prevent the candidates in J from winning and p does not get the highest score. When X = DC we 
are not allowed to delete candidates in J in RCX. Hence, results about Constrictive Control do not directly imply results 
about RCX. For the non-unique winner model, Destructive Control is a special case of Resolute Control [44].

Liu and Zhu [33] showed that Constructive Control for Maximin is W[2]-hard. This implies that Destructive Control

with a fixed tie breaking rule (say “Fixed Order”) is W[2]-hard whereas Theorem 1 implies that Destructive Control is W[2]-
hard with any tie breaking rule. Liu et al. [32] showed W-hardness results for Constructive and Destructive control problems 
for Plurality voting rule. A highlight of related results can be found in the survey [4]. Problems on Constructive Control have 
been reduced to graph theoretic problems e.g., Betzler and Uhlmann [5] studied Constructive Control by adding/deleting 
candidates for Copelandα and show that the problem is W[2]-complete with respect to number of candidates added (resp. 
deleted) in the unique winner model when the majority graph is a tournament. Our results for Copelandα RCX hold even 
when the majority graph is acyclic. Betzler et al. [6] studied control in Lull voting when the parameters are treewidth and 
feedback vertex set number.

In the last several years, it has become increasingly common to use parameterized algorithms to resolve problems in 
Social Choice Theory [21]; having proven to be particularly fruitful in Voting Theory (see, e.g., [8–11,13,14,18,19]). For more 
information on the current state-of-the-art in this regard, we refer to excellent surveys such as [7,21,25].

2. Borda: deletion of candidates

In this section, we prove that Borda RCDC and RCAC are W[2]-hard. Towards this, we give a parameterized reduction 
from Red-Blue Dominating Set. The Red-Blue Dominating Set problem is defined as follows.

Red-Blue Dominating Set Parameter: k
Input: A bipartite graph G = (V B ∪ V R , E), and an integer k.
Question: Does there exist S ⊆ V R such that |S| ≤ k and for every v ∈ V B , S contains at least one neighbor of v?

It is known that Red-Blue Dominating Set is W[2]-hard with respect to k [16]. The reduction from Red-Blue Dominating Set
to Borda RCDC is described in Fig. 1. A very similar reduction from Red-Blue Dominating Set to Borda RCAC can be shown.

Two crucial design choices in our reduction are to introduce dummy candidates, and to have both Xr,i and X ′
r,i . The first 

choice ensures that the size of the two blocks flanking r in every voting profile of an X-voter is exactly |B|. The second 
choice ensures that irrespective of the position of a candidate b ∈ B in the ordering of B , every vertex vr ∈ N(b) contributes 
to its score the same number of points, 3(|B| + 1), and every vertex vr /∈ N(b) contributes to its score the same number of 
points, (B + 1). Due to these design choices, a trivial calculation results in Lemma 2.1. In particular, for b ∈ B , we have

Borda(b) = (3(B + 1) · |N(b)| + (B + 1) · |B \ N(b)|) · α + (3|B| + 2|R| − 1) · β + (3|B| + 2|R|) · γ ,

which evaluates to the number in Table 3.

Lemma 2.1. Let I be an instance of Red-Blue Dominating Set. Then, Table 3 specifies the Borda score of each candidate in J . In 
particular, the scores of the candidates in B are highest.

Proof. The order of the candidates in the blocks R \ {r}, N(r), B \ N(r), D B\N(r) and D N(r) in X ′ is the reverse of that in X . 
Similar property holds for blocks B , R and D in Y ′ (Z ′) and Y (Z ). This is a very commonly used trick when constructing 
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Table 2
Voting Profile used in the reduction of Borda RCDC. For each vertex vr ∈ V R and 
i ∈ [α], we have two votes Xr,i and X ′

r,i . Additionally, we have β Y -voters, and γ
Z -voters.

Xr,i R \ {r} N(r) D B\N(r) r B \ N(r) D N(r) c�

X ′
r,i R \ {r} D B\N(r) N(r) r D N(r) B \ N(r) c�

Yi c� B R D

Y ′
i c� B D R

Zi c� B R D

Z ′
i B c� D R

Table 3
Borda scores of the candidates in the instance J . The third column refers to the set S in Lemma 2.2 with Bo = Borda.

C Borda scores in J Scores After Deleting S

b (3α|N(b)| + α|B \ N(b)|)α + (3|B| + 2|R| − 1)β + (3|B| + 2|R|)γ ≤ Bo(b) − (2α + 2k(β + γ ))

c� 2(2|B| + |R|)β + (3|B| + 2|R|)γ = Bo(c�) − 2k(β + γ )

r (2α + (|R| − 1 + 4|B| + 2)(|R| − 1))α + (|R| − 1 + |B|)(β + γ ) ≤ Bo(r) − k((|R| − 1)α + (β + γ ))

d (twin of b) ((B + 1)|N(b)| + 3(|B| + 1)|B \ N(b)|)α + (|R| + |B| − 1)(β + γ ) ≤ Bo(d) − (2α + k(β + γ ))

votes. For example, consider a candidate r ∈ R in the votes Yi and Y ′
i , where i ∈ [β]. Suppose candidate r is at the first 

position in the block R in Yi . Hence, candidate r is at the last position in the block R in Y ′
i . Reversal of the block R ensures 

that candidate r receives |R| − 1 + |D| points form the votes Yi and Y ′
i irrespective of the position of r in the block. In the 

following calculation of scores we use this phenomenon without stating it again.
Consider a candidate b ∈ B . For each vertex vr ∈ N(b) and for each i ∈ [α], form the votes Xr,i and X ′

r,i , candidate b
receives 3(|B| +1) points because b is in the N(r) block in the votes Xr,i and X ′

r,i , |D B\N(r)| = |B \ N(r)|, and |D N(r)| = |N(r)|. 
If candidate b /∈ N(r), then b is in the B \ N(r) block in the votes Xr,i and X ′

r,i . Since |D N(r)| = |N(r)|, b receives (|B| + 1)

points from Xr,i and X ′
r,i , for each i ∈ [α]. Hence, candidate b receives (3|B| + 1) · |N(b)| + (B| + 1) · |B \ N(b)|) · α points 

from X-type votes. Clearly, candidate b receives 2|R| + 2|D| + |B| − 1 points from the votes Yi and Y ′
i , for each i ∈ [β]

and 2|R| + 2|D| + (|B| − 1) + 1 points from the votes Zi , and Z ′
i , for each i ∈ [γ ]. Since |D| = |B|, the score b receives is 

(3(B + 1) · |N(b)| + (B + 1) · |B \ N(b)|) · α + (3|B| + 2|R| − 1) · β + (3|B| + 2|R|) · γ .
Next, consider the candidate c� . Clearly, c� receives 0 points from X-type votes. For each i ∈ [β], from each vote Yi (Y ′

i ), 
c� receives |B| + |R| + |D| points. Moreover, c� receives |B| + 2|R| + 2|D| points from votes Zi and Z ′

i , for each i ∈ [γ ]. Since 
|D| = |B|, the score of c� is 2(2|B| + |R|) · β + (3|B| + 2|R|) · γ .

Next, consider a candidate r ∈ R . For each i ∈ [α], from Xr,i and X ′
r,i (votes corresponding to the vertex vr ∈ V R ), r

receives (|B| + 1) points. For each vertex vr̄ ∈ V R \ {vr}, candidate r is in the R \ {r̄} block in the votes Xr̄,i and X ′̄
r,i , for each 

i ∈ [α]. Hence, r receives 2|B| + 2|D| + 2 + |R| − 1 points from Xr̄,i and X ′̄
r,i , for i ∈ [α], ̄r ∈ R \ {r}. Since |D| = |B|, in total 

candidate r receives (2(|B| +1) +(4|B| +2 +|R| −1) ·(|R| −1)) ·α points from X-type votes. From each of Y and Z -type votes 
r receives |D| +|R| −1 points. Hence, the score of r is (2(|B| +1) + (4|B| +2 +|R| −1) · (|R| −1)) ·α+ (|B| +|R| −1) · (β +γ ).

Finally, consider a candidate d ∈ D . Let candidate b be the twin of the dummy candidate d. For each vertex vr ∈ N(b), 
since candidate d is in the D N(r) block in the votes Xr,i and X ′

r,i , d receives (|B| + 1) points form Xr,i and X ′
r,i , for each 

i ∈ [α]. Suppose candidate b ∈ B \ N(r), i.e., it’s twin candidate d is in the D B\N(r) block in the votes Xr,i and X ′
r,i . Then, d

receives 3(|B| + 1) points from Xr,i and X ′
r,i , for each i ∈ [α]. Hence, in total, d receives ((B + 1) · |N(b)| + 3(|B| + 1) · |B \

N(b)|) · α points from X-type votes. From each of Y and Z -type votes candidate d receives |R| + |D| − 1 points. Therefore, 
since |D| = |B|, the score of d is ((B + 1) · |N(b)| + 3(|B| + 1) · |B \ N(b)|) · α + (|R| + |B| − 1) · (β + γ ). �

For the reverse direction of the proof, we will critically rely on Lemma 2.1 as well as the following observation.

Observation 2.1. Let E = (C, �V ), C′ ⊆ C , and E ′ = (C \ C′, �C\C′
V ). For any c ∈ C \ C′ , BordaE (c) > BordaE ′ (c) if and only if 

there is a voter v ∈ V that prefers c to a candidate in C′ .

Lemma 2.2. If I is a Yes-instance of Red-Blue Dominating Set, then J is a Yes -instance of Borda RCDC.

Proof sketch. Suppose that I = (G = (V B ∪ V R , E), k) is a Yes -instance of Red-Blue Dominating Set. Thus, there exists a 
subset S ⊆ V R of cardinality at most k that dominates all the vertices in V B . Without loss of generality, |S| = k. Let Ŝ

denote the set of candidates corresponding to S , i.e., Ŝ = {r ∈ R|vr ∈ S}. Let the election E ′ = (C \ Ŝ, �C\̂S
V ). To conclude the 

proof, it remains to show that no candidate in B ∪ D can win E ′ . For the Borda score of any candidate x ∈ R ∪ D ∪ {c�}, 
we refer the reader to Table 3. Thus, we immediately have that Borda(c�) > Borda(d). Towards this, consider a candidate 
b ∈ B . We recompute the Borda score of b in the election E ′ as follows. Since S dominates V B , from definition of ̂S , we have 
N(b) ∩ Ŝ 
= ∅. In particular, there exists ̂r ∈ Ŝ ∩ N(b). The deletion of ̂r from the votes of ∪α

i=1{ X̂r,i, X ′̂
r,i} decreases Borda(b) by 

2α. Further, the deletion of ̂S from the votes of ∪β {Yi, Y ′} decreases Borda(b) by 2kβ , and from the votes of ∪γ {Zi, Z ′} by 
i=1 i i=1 i
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The Reduction: Let I = (G = (V B , V R ), k) be an instance of Red-Blue Dominating Set. We will construct an instance J of Maximin RCAC as follows. 
The instance J consists of |V R | + |V B | + 1 candidates and 6|V R | + 2 votes.

Candidates: The set of candidates C = {c�} ∪ B ∪ R where R and B denote the set of candidates representing the vertices in V R and V B , respectively. 
Let vx ∈ V R ∪ V B . The candidate representing the vertex vx is denoted by x, and for a candidate c ∈ R , we will abuse notation to define N(c) = {b ∈
B | vb ∈ N(vr)}, and we will refer to the candidates in N(c) as the neighbors of candidate c.

Voting profile: We have two types of votes. First, for every vertex vr ∈ V R , we have six votes Xr,i and X ′
r,i , for i ∈ [3]. Second, we have two more 

votes Y1 and Y2. Thus, the voting profile �V = ∪r∈R,i∈[3]{Xr,i, X ′
r,i} ∪ {Y1, Y2}, is the multiset of votes in Table 4.

The instance J = (C , �V , A = R , J = B , kAC = k, kDC = 0, Maximin).

Fig. 2. Reduction from Red-Blue Dominating Set to Maximin RCAC.

Table 4
Voting profile used in the reduction of Maximin RCAC. For every r ∈ R , we have Xr,i and X ′

r,i , where i ∈ [3]. 
Also, we have two other votes Y1, Y2.

Xr,i c� B \ N(r) r N(r) R \ {r}
X ′

r,i R \ {r} r N(r) B \ N(r) c�

Y1 B R c�

Y2 B R c�

2kγ . Thus, BordaE ′ (b) ≤ BordaE (b) − (2α+2k(β +γ )). In particular, BordaE ′ (c�) −BordaE ′ (b) ≥ |B|β +2α+β − (β +1)α ≥ 1. 
Hence, no candidate in B ∪ D can win E ′ . �
Lemma 2.3. If J is a Yes-instance of RCDC Borda, then I is a Yes-instance of Red-Blue Dominating Set.

Proof. Let J be a Yes-instance of Borda RCDC. Thus, there exists a subset of candidates S ⊆ C \ (B ∪ D) such that |S| ≤ kDC
and the deletion of S ensures that some candidate in C \ (B ∪ D ∪ S) gets the highest Borda score. As we observed in 
Lemma 2.1 the scores of the candidates in B are highest. Hence S is not an empty set. Without loss of generality, let 
|S| = kDC, i.e., |S| = k. Let E ′ denote the election (C \ S, �C\S

V ).
We begin by showing that c� does not belong to S . Suppose that c� ∈ S . Let R S = R ∩ S . Therefore, since S ⊆ C \ (B ∪ D), 

we have |R S | = k − 1. Deletion of c� reduces every candidate’s score by 1 from the votes Xr,i, X ′
r,i , for each vertex vr ∈ V R

and each i ∈ [α]; and further brings down the score of every candidate b ∈ B by 1 from the vote Z ′
i , where i ∈ [γ ]. This 

implies that if c� ∈ S , then BordaE ′(b) = BordaE (b) − (2α · |R| + γ ) − (α · |N(b) ∩ R S | + 2(k − 1) · (β + γ )). The first negative 
term is due to deletion of c� . The second negative term is due to deletion of R S . The score BordaE ′(b) is minimum when 
N(b) ∩ R S is maximum, i.e., R S ⊆ N(b). Suppose that candidate b̂ ∈ B such that R S ⊆ N (̂b). We show that even b̂ receives 
higher score than the score of the candidates in C \ S . This would contradict that S is a solution to the instance J of
Borda RCDC. Now consider any candidate ̂r ∈ R \ R S . The score of ̂r in the election E ′ is computed as follows: the candidate 
r̂ loses 2α points from the votes ∪α

i=1{ X̂r,i, X ′̂
r,i}, at least kα points from the votes ∪α

i=1{Xr,i, X ′
r,i} where r ∈ R \ (R S ∪ {̂r}). 

Additionally, it loses (k −1) points from Y and Z votes. Thus, BordaE ′ (̂r) ≤ BordaE (̂r) −(2α+k ·α ·(|R| −1) +(k −1) ·(β +γ )). 
Since γ = |B|3|R|3, it is easy to check that BordaE ′ (̂b) > BordaE ′ (̂r), a contradiction. Therefore, c� is not in S .

Next, we prove that the set S corresponds to a solution for the instance I of Red-Blue Dominating Set. For the sake 
of contradiction, suppose that there exists a candidate b̂ ∈ B such that S ∩ N (̂b) = ∅. Let {r1, . . . , r|N (̂b)|} ⊆ V R denote the 
neighbors of the vertex vb̂ ∈ V B . Then, S ∩ {r1, . . . r|N (̂b)|} = ∅. Then, it follows that in the votes of ∪α

i=1{Xr j ,i, X
′
r j ,i

} for every 
r j ∈ S , all the kDC deleted candidates appeared in the first block R \ r j before deletion. Hence, using Observation 2.1, the 
contribution from the X type votes to ̂b’s score is the same as before deletion. So BordaE ′ (̂b) = Borda(̂b) − 2k(β + γ ). Using 
the values in Table 2, it is easy to check that BordaE ′(b) > BordaE ′(x), for any x ∈ R ∪ D ∪ {c�}, a contradiction. Therefore, S
corresponds to a solution for the instance I of Red-Blue Dominating Set. �

Since Red-Blue Dominating Set is W[2]-hard, we have proved Borda RCDC is W[2]-hard.

3. Cordorcet consistent rules

In this section we will show Maximin RCAC, Copelandα RCDC and RCAC are W[2]-hard parameterized by kAC, kDC, and 
kAC, respectively. That is, we prove part of Theorem 1.

3.1. Maximin: addition of candidates

We show that Maximin RCAC is W[2]-hard when parameterized by kDC, using a parameterized reduction from the Red-
Blue Dominating Set problem given in Fig. 2.

Intuitively, for each vertex vr ∈ V R , each i ∈ [3], the vote Xr,i ensures that the set of candidates N(r) (corresponding 
to vr ’s neighbors N(vr)) is separated from the candidates B \ N(r) (corresponding to vr ’s non-neighbors V B \ N(vr)). This 
ensures that if the candidate r ∈ R is added to the election, then the scores of every candidate in N(r) decrease but not for 
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Fig. 3. The figure depicts the computations in Lemma 3.1 (only black arcs) & Lemma 3.2 (black and orange arcs after addition of candidates). The vertices 
represent the candidates: {b, b′} ⊆ B , {r, r′} ⊆ R such that b ∈ N(r) and b /∈ N(r′). For two distinct candidates c, c′ ∈ C, the value N(c, c′) is shown on the 
arc cc′ . Note that the Maximin score of a candidate is the minimum number written on its outgoing arcs, e.g., Maximin(c�) = 3|R|. (For interpretation of the 
colors in the figure(s), the reader is referred to the web version of this article.)

those candidates in B \ N(r). The purpose of the votes Y1 and Y2 is to reduce the score of the candidate c� such that every 
candidate b ∈ B has the highest Maximin score before addition of candidate(s) from R . Next, we compute the score of each 
candidate in the election E = (C \ R, �C\R

V ).

Lemma 3.1. Consider the election E = (C \ R, �C\R
V ). Then, for each b ∈ B, N(b, c�) = 3|R| +2, N(c�, b) = 3|R|, and for each {b, b′} ⊆

B, N(b, b′) = 3|R| + 1 in the election E . Moreover, Maximin(c�) = 3|R| and for each b ∈ B, Maximin(b) = 3|R| + 1.

Proof. For every candidate b ∈ B , candidate c� is preferred over b in the vote Xr,i , for every vertex vr ∈ V R , i ∈ [3]. In all 
other votes b is preferred to c� . Therefore, N(c�, b) = 3|R|, and Maximin(c�) = min{N(c�, b)|b ∈ B} = 3|R|. Similarly, for every 
b ∈ B , N(b, c�) = 3|R| + 2. Let {b, b′} ⊆ B . For every vertex vr ∈ V R , i ∈ [3], if b is preferred to b′ in the vote Xr,i , then b′
is preferred to b in the vote X ′

r,i . Same holds for the votes Y1 and Y2. Therefore, by symmetry, N(b, b′) = N(b′, b) which is 
equal to 3|R| + 1. See Fig. 3. Hence, Maximin(b) = min{N(b, c�), {N(b, b′)|b′ ∈ B \ {b}} = min{3|R| + 2, 3|R| + 1} = 3|R| + 1. �

Lemma 3.1 implies that a non-empty subset of R must be added to ensure c� wins. The following observation will be 
useful for computing scores in a modified election.

Observation 3.1. Let E = (C, �V ), C′ ⊆ C , and E ′ = (C \ C′, �C\C′
V ). Then, NE (c, c′) = NE ′(c, c′) for every pair of candidates 

c, c′ ∈ C \ C′ .

Let J = (C , �V , A = R , J = B , kAC = k, kDC = 0, Maximin) is a Yes-instance of Maximin RCAC. The next lemma completes 
the proof that Maximin RCAC is W[2]-hard.

Lemma 3.2. I = (G, k) is a Yes-instance of Red-Blue Dominating Set if and only if J is a Yes-instance of Maximin RCAC.

Proof. The idea of the proof is as follows. Using Observation 3.1, from Fig. 3 it can be seen that after addition of candidates 
the score of b ∈ B is 3|R| − 1 and that of c� is 3|R|. Hence, no candidate in B wins. In the reverse direction, observe that 
if r ∈ N(b) is not present in Fig. 3, then Maximin(b) (minimum weight on the out-arcs) is 3|R| + 1 which is the maximum 
among all candidates. Thus, if b is not dominated b wins the election. Next we argue both the directions in detail.

Let S ⊆ V R be a solution of Red-Blue Dominating Set for instance I .
Let S ′ = {r ∈ R |vr ∈ S}. Then, S ′ ⊆ R and |S ′| = |S| ≤ k. We will prove that S ′ is a solution of Maximin RCAC to J . That 

is, no candidate from the set B wins the election E ′ = (C′, �C′
V ), where C′ = C ∪ S ′ .

Consider the value of NE ′ (b, r) for any candidate b ∈ B and candidate r ∈ R . Henceforth, we will only consider election 
E ′ , and will drop the subscript E ′ from N(·, ·). Consider a candidate b ∈ B . Since S dominates all vertices in V B , candidate 
b has a neighbor in S ′ . Let candidate r denote a neighbor of b in S ′ , i.e., b ∈ N(r). Therefore, candidate r is preferred over 
candidate b in the vote Xr,i (corresponding to the vertex vr ∈ V R ), for each i ∈ [3]. For every candidate r̄ ∈ S ′ \ {r}, candidate 
b is preferred over candidate r in the vote Xr̄,i , for each i ∈ [3]. Moreover, candidate b is preferred over candidate r in the 
vote Y1 and Y2. Hence, N(b, r) = 3(|R| − 1) + 2 = 3|R| − 1. Similarly, for every candidate r ∈ S ′ such that candidate b ∈
B \ N(r), N(b, r) = 3|R| + 2. Therefore, minr∈S ′ N(b, r) = 3|R| − 1. Hence, using Observation 3.1 and Lemma 3.1, Maximin(b) =
min{N(b, c�), minb′∈B\{b} N(b, b′), minr∈S ′ N(b, r)} = min{3|R| + 2, 3|R| + 1, 3|R| − 1} = 3|R| − 1 (see Fig. 3).

Now consider Maximin(c�) in election E ′ . For every candidate r ∈ S ′ , c� is preferred over r in the vote Xr′,i , for every 
vr′ ∈ V R , i ∈ [3]. Therefore, for every r ∈ S ′ , N(c�, r) = 3|R|. Using Observation 3.1, for every b ∈ B , we have NE ′(c�, b) =
NE (c�, b). Hence, using Lemma 3.1,

Maximin(c�) = min{min
b∈B

N(c�,b),min
r∈S ′ N(c�, r)}

= min{3|R|,3|R|} = 3|R|
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The Reduction: Let I = (G = (V R , V B ), k) denote an instance of Red-Blue Dominating Set. We assume that every vertex v ∈ V B has same degree, 
denoted by �. We construct an instance J = (C, �V , A = ∅, J , kAC = 0, kDC = k, Copelandα), where 0 ≤ α < 1/2, of Copelandα RCDC as follows.

Candidates: We have four types of candidates: One candidate for each vertex in V B , denoted as the set B , one candidate for each vertex in V R , 
denoted as the set R . Let vx ∈ V R ∪ V B . The candidate representing the vertex vx is denoted by x. Furthermore, we have a “special” candidate c� , and 
a set of 

⌈
α

1−α |B|
⌉

+ � dummy candidates, denoted by D . We assume that α
1−α |B| is not an integer. Thus, the set of candidates C = {c�} ∪ B ∪ R ∪ D .

Note that the candidates in R and B are in one to one correspondence with the vertices of V R and V B respectively. We abuse notation to use N(x)
(for a candidate x ∈ B ∪ R) to represent the set of candidates that correspond to the neighbors of vertex vx in G , and call the candidates in N(x) as 
neighbors of x. We fix an ordering of the candidates in B , R and D such that in every vote, candidates in B , R and D appear according to this order. 
We will use B , R and D to denote the reverse of the order in B , R and D respectively.

Voting Profile: The votes can be categorized into three types: (i) for every vertex vr ∈ V R , we have two X-votes denoted by Xr and X ′
r , (ii) 

two Y -votes denoted by Y1 and Y2, and (iii) 2(� − 1) Z -votes, denoted by Z = {Zi,1, Zi,2 | i ∈ [� − 1]}. The voting profile �V = ∪r∈R {Xr , X ′
r} ∪

{Y1, Y2} ∪i∈[�−1] {Zi,1, Zi,2}, is the multiset of votes in Table 5. Finally, the control set J = B . This completes the description of the instance J .

Fig. 4. Reduction from Red-Blue Dominating Set to Copelandα RCDC.

Table 5
Voting Profile for Copelandα RCDC. For each r ∈ R , we have votes Xr , X ′

r and for each i ∈ [� − 1], we have Zi,1, Zi,2.

Xr N(r) r c� B \ N(r) D R \ {r}
X ′

r R \ {r} N(r) r D B \ N(r) c�

Y1 c� D B R

Y2 c� D B R

Zi,1 c� D B R

Zi,2 R D B c�

Since, for every b ∈ B , Maximin(b) < Maximin(c�), no candidate from B wins the election E ′ . Hence, S ′ is a solution of
Maximin RCAC to J .

For the other direction, let S ⊆ R be a set of candidates added to the election E = (C, �C
V ). Consequently, no candidate 

from B wins the election E ′ = (C′, �C′
V ), where C′ = {c�} ∪ B ∪ S . We show that S corresponds to a solution of Red-Blue 

Dominating Set to I .
Suppose S does not correspond to a solution. Then, there is a candidate b� ∈ B such that N(b�) ∩ S = ∅. Therefore, for 

every candidate r ∈ S , candidate b� /∈ N(r). Hence, b� is preferred to candidate r in the vote Xr′,i , for every vertex vr′ ∈
V R , i ∈ [3]. Also, b� is preferred to candidate r in Y1 and Y2. So, NE ′(b�, r) = 3|R| + 2, for every r ∈ S . Using Observation 3.1, 
for every b ∈ B \ {b�}, NE ′(b�, b) = NE (b�, b) and NE ′ (b�, c�) = NE (b�, c�). Hence, using Lemma 3.1,

Maximin(b�) =min{N(b�, c�), min
b∈B\{b�}

N(b�,b),min
r∈S

N(b�, r)}
=min{3|R| + 2,3|R| + 1,3|R| + 2}.

Therefore, Maximin(b�) = 3|R| + 1.
For a candidate r ∈ S , we compute the value of Maximin(r). For every vertex vr′ ∈ V R , i ∈ [3], candidate r is preferred 

to c� in the vote X ′
r′,i . Additionally, r is preferred to c� in the votes Y1 and Y2. Therefore, for every r ∈ S , N(r, c�) =

3|R| + 2. Next, consider a candidate b ∈ B and a candidate r ∈ S , and the votes that prefer r over b. For every vertex 
vr′ ∈ V R \ {vr}, i ∈ [3], in the vote X ′

r′,i , candidate r is preferred over candidate b. Additionally, if b ∈ N(r), then r is preferred 
to b in the vote Xr,i (corresponding to the vertex vr ∈ V R ), for each i ∈ [3]. Therefore, if b ∈ B ∩ N(r), N(r, b) = 3|R| + 3; 
if b ∈ B \ N(r), N(r, b) = 3|R|. Note that for each r ∈ S , candidate b� /∈ N(r). Hence, Maximin(r) = min{3|R| + 3, 3|R|} = 3|R|. 
Similarly, we get Maximin(c�) = 3|R|. Consequently, Maximin(b�) is strictly more than Maximin(c) for each candidate c ∈
S ∪ {c�}. Therefore, a candidate in B wins E ′ , a contradiction. �

Thus, we have proved that Maximin RCAC is W[2]-hard.

3.2. Copelandα : deletion of candidates

In this section we show that Copelandα RCDC is W[2]-hard parameterized by kDC. We give a polynomial time reduction 
from the Red-Blue Dominating Set problem to Copelandα RCDC, described in Fig. 4.

Consider the election E = (C, �V ) constructed in the reduction, i.e., the election where all candidates, registered and 
unregistered, are present. Intuitively, the X-votes separate the neighbors and non-neighbors of each vertex vr ∈ V R . In 
particular, candidate r is placed between the sets N(r) and B \ N(r) in both Xr and X ′

r votes. Moreover, the candidates in 
R \ {r} appear once at the front (in X ′

r ) and once at the end (in Xr ). Hence, cumulatively, every candidate b ∈ B beats each 
one of its neighbors in R , but ties with each of it’s non-neighbors in R in the election E . The Y1 and Y2 votes help c� to 
beat the candidates in D . The Z -votes ensure that for every candidate b ∈ B and candidate d ∈ D , b and d are tied in a 
pairwise election. The purpose of the “dummy” candidates is to increase the score of c� so that the difference between the 
scores of c� and every b ∈ B is less than two; and the number of dummy candidates |D| is set based on this criterion. Next 
we formally prove the correctness of the reduction. For an election E and any candidate c ∈ C , we will use Copelandα

E (c) to 
denote the Copelandα score of c in E . The votes computed in Fig. 5 gives the next lemma.
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Table 6
The table shows votes received by candidates in the rows in all possible pairwise 
elections given by the preference profile in Table 5. That is, the cell marked by (b, c�)

denotes that b receives 2� + |R| − 1 votes in the pairwise election against c� . Here, 
candidates {b, b′} ⊆ B , {r, r′} ⊆ R , and {d, d′} ⊆ D such that b 
= b′ , r 
= r′ , and d 
= d′ .

b′ c� r′ d′

b |R| + � 2� + |R| − 1
if b ∈ N(r′),
|R| + � + 2

|R| + �

else |R| + �

c� |R| + 1 - |R| + � |R| + � + 2

r
if b′ ∈ N(r),
|R| + � − 2

|R| + � |R| + � |R| + �

else |R| + �

d |R| + � |R| + � − 2 |R| + � |R| + �

Fig. 5. Majority graph drawn from the values in Table 6 where {b,b′} ∈ B , r ∈ N(b) \ N(b′), r′ ∈ N(b′) \ N(b), and d ∈ D .

Lemma 3.3. Consider the election E = (C, �V ). Then,

• for every candidate b ∈ B, Copelandα
E (b) = 1 + � + α(|B| − 1 + |D| + |R| − �);

• Copelandα
E (c�) = |D| + α|R|;

• for every r ∈ R, Copelandα
E (r) = α(|B| − |N(r)| + |R| + |D|);

• for every d ∈ D, Copelandα
E (d) = α(|B| + |R| + |D| − 1).

Proof. Let E = (C, �V ). We calculate the Copelandα score for every c ∈ C . Towards this, we compute the number of can-
didates that are beaten by c and are tied with c in a pairwise election. Recall that for any two distinct candidates c and 
c′(
= c), NE (c, c′) denotes the number of votes that prefer c to c′ in �V . Note that there are 2(|R| + �) votes in E . So, for 
any pair of candidates c, c′ ∈ C , if NE (c, c′) > |R| + �, then c beats c′ , and if NE (c, c′) = |R| + �, then c and c′ are tied. We 
present the outcome of the pairwise elections, that is, the values of NE (·, ·), for every pair of candidates in Table 6.

Next, we show how to compute an entry of Table 6. For r ∈ R and b ∈ N(r), we will compute NE (b, r) (1st row, 3rd 
column of Table 6) as follows. Candidate b is preferred to r in the votes Xr and X ′

r (corresponding to the vertex vr ∈ V R ). So 
b gets 2 votes against r from them. For each vertex v ′

r ∈ V R \ {vr}, b is preferred to r in Xr′ . Hence, b gets a total of |R| − 1
votes from ∪v ′

r∈V R\{vr } Xr′ . Additionally, each vote in Y ∪ Z -votes, prefers b to r. Hence, in total b gets 2 +|R| −1 +2 +� −1 =
|R| + � + 2 votes. Similarly, we can compute the other entries of the Table 6; we will skip the details of the calculation.

The values in Table 6 immediately give the majority graph shown in Fig. 5. For each b ∈ B , since NE (b, c�) > NE (c�, b), 
b beats c� . Moreover, b beats every candidate r ∈ N(b). Recall that the degree of a vertex in V B is �, i.e., |N(b)| = �. 
Therefore, b beats 1 + � candidates. For any candidate c ∈ C \ (N(b) ∪ {c�}), we have NE (b, c) = NE (c, b). Hence, b ties with 
every candidate in C \ (N(b) ∪ {c�}). Therefore, we get that Copelandα

E (b) = 1 + � + α(|B| − 1 + |D| + |R| − �). Similar 
arguments can derive the scores of other candidates. �

Note that deleting candidates do not change the ordering of the remaining candidates in any of the votes. Thus, the 
outcome of the pairwise election between any two candidates (which are not deleted) is unaltered after deletion. This 
allows us to use Observation 3.1 in order to compute the scores in a modified election. The following property about a 
solution of Copelandα RCDC for the instance J is crucial in the proof of correctness of the reduction.

Lemma 3.4. Let C′ ⊆ C , and |C′| ≤ kDC . Then, C′ is a solution of Copelandα RCDC for J if and only if for each b ∈ B, N(b) ∩ C′ 
= ∅.

Proof. Let E ′ = (C \ C′, �C\C′
V ), that is the election after deletion of C′ . Let |C′| = k′ ≤ kDC. For the reverse direction, let 

b ∈ B . Since N(b) ∩ C′ 
= ∅, let r ∈ C′ ∩ N(b). We use Observation 3.1 to find the scores in E ′ . Recall that b beats c� and 
every candidate r in N(b) (see Fig. 5). That is, b beats r. Hence, the score of b reduces by 1 due to deletion of r. Also, 
deletion of every non-neighbor of b decreases score of b by α. It may be the case that each candidate in CS \ {r} is a non-
neighbor of b. So, we have Copelandα ′(b) ≤ Copelandα (b) − 1 − α(k′ − 1). Similarly, Copelandα ′ (c�) = Copelandα (c�) − αk′ . 
E E E E

83



S. Gupta, S. Roy, S. Saurabh et al. Theoretical Computer Science 915 (2022) 74–89
Table 7
Voting Profile for Copelandα RCAC. For each r ∈ V R , we have votes Xr , X ′

r .

Xr c� B \ N(r) r N(r) R \ {r} D B d1 d2

X ′
r R \ {r} d2 r N(r) B \ N(r) d1 c� D B

Y1 D B d2 B c� R d1

Y2 d1 c� D B d2 B R

Since |D| = � + � α
1−α |B|�, it is easy to verify that Copelandα

E ′(c�) > Copelandα
E ′ (b). Hence, no candidate from B wins the 

election E ′ . Since |C′| ≤ kDC = k, C′ is a solution of Copelandα RCDC for J .
For the forward direction, suppose towards contradiction, there exists a b� ∈ B such that N(b�) ∩C′ = ∅. We show b� has 

the highest score contradicting the fact that C′ is a solution for Copelandα RCDC. Recall that b� beats c� and N(b�). We 
consider two cases based on whether c� ∈ C′ .

Case A: c� ∈ C′ . Using Observation 3.1 (Fig. 5) score b� in E ′ decreases by 1. That is, since N(b�) ∩ C′ = ∅, we have 
that Copelandα

E ′ (b�) = � + α(|B| − 1 + |D| + |R| − � − k′ − 1). Using Observation 3.1, for each r ∈ R \ C′ , Copelandα
E ′(r) =

α(|B| −|N(r)| +|R| +|D| −k′), and for each d ∈ D \C′ , Copelandα
E ′ (d) = α(|B| +|R| +|D| −1 −k′). Therefore, Copelandα

E ′(b�) −
Copelandα

E ′(r) is (1 − α)� + α|N(r)|. Since α < 1, b� has higher score than r. Similarly, we can show b� gets higher score 
than any d ∈ D \ C′ . Hence, b� has the highest score, contradicting C′ is a solution of Copelandα RCDC for J .

Case B: c� /∈ C′ . Since b� beats c� and N(b�) and ties with every other candidate, no candidate that is beaten by b� is 
deleted. That is, using Observation 3.1, Copelandα

E ′ (b�) = 1 + � + α(|B| − 1 + |D| + |R| − � − k′). Notice that the score of 
each x ∈ (R ∪ D) \ C′ is same as in the previous case. Hence, b� gets higher score than any x in (R ∪ D) \ C′ . We show 
that the score of b� is higher than that of c� . Let |C′ ∩ D| be denoted by kd (possibly, 0). Then, using Observation 3.1, 
Copelandα

E (c�) = |D| − kd + α(|R| − k′ + kd). Then,

Copelandα
E ′(b�) − Copelandα

E ′(c�) = 1 − α + (1 − α)� + (1 − α)kd + α|B| − (1 − α)|D|
≥ (1 − α)(kd + 1) > 0.

The first inequality follows from the fact that |D| = � + � α
1−α |B|�. The second inequality follows because α < 1. Hence, b�

has higher score than c� . Hence, b� has highest score, contradicting C′ is a solution of Copelandα RCDC for J . �
The above lemma implies if C = ∅, that is, if no candidate is deleted then there exists a b ∈ B who wins (see Fig. 5). 

Therefore, we proved that J , created in the reduction, is not a trivial Yes instance. The following equivalence can be proved 
using Lemma 3.4 which completes the proof that Copelandα RCDC is W[2]-hard.

Lemma 3.5. If I is a Yes-instance of Red-Blue Dominating Set, then J is a Yes-instance of Copelandα RCDC.

Proof. Since I is a Yes-instance of Red-Blue Dominating Set, there exists a subset S ⊆ V R of size at most k that dominates 
all the vertices in V B . Let |S| = k. We delete the set of candidates CS corresponding to S . That is, for every vertex vr ∈ S , we 
delete the candidate r. Since S is a dominating set in G , for every candidate b ∈ B , the set CS has a non-empty intersection 
with its neighborhood. Hence, using Lemma 3.4, CS is a solution for J , proving that J is a Yes-instance. �

For the converse, we prove the following.

Lemma 3.6. If J is a Yes-instance of Copelandα RCDC, then I is a Yes-instance of Red-Blue Dominating Set.

Proof. Let J be a Yes-instance of Copelandα RCDC. Thus, there exists a subset of candidates CS ⊆ C \ B such that |CS | ≤ kDC

and a candidate in C \ (B ∪ CS ) has highest score in E ′ , where E ′ = (C \ B \ CS , �
C\CS
V ). To complete the proof, next, we 

show that the set S = {vr ∈ V R | r ∈ CS } is a dominating set for V B in G . Since CS is a solution of Copelandα RCDC for J , 
from Lemma 3.4, N(b) ∩CS 
= ∅ for every b ∈ B . Recall that N(b) is the set of candidates that correspond to the neighbors of 
vertex vb in V B . Hence, S dominates V B . Since |S| ≤ kDC , we have that |S| ≤ k i.e., it is a solution for Red-Blue Dominating 
Set for (G, k). �
3.3. Copelandα : addition of candidates

In this section we show that Copelandα RCAC is W[2]-hard parameterized by KAC. Towards this, we give a polynomial 
time reduction from the Red-Blue Dominating Set problem as described in Fig. 6.

Consider the election E = (C, �V ) constructed in Fig. 6, i.e., the election where all the candidates are present. Intuitively 
speaking, the X-votes separate the neighbors and non-neighbors of each vertex vr ∈ V R . In particular, candidate r is placed 
before it’s neighbors N(r) in both Xr and X ′

r votes. Moreover, the candidates in R \ {r} appear once at the front (in X ′
r ) and 

once at the end (in Xr ). Hence, cumulatively, every candidate b ∈ B is beaten by each one of it’s neighbors in R , but ties 
with each of it’s non-neighbors in R in the election E . The correctness proof is similar to the proof in the previous section.
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The Reduction: Let I = (G = (V R , V B ), k) denote an instance of Red-Blue Dominating Set. We construct an instance J = (C, �V , A = ∅, J , kAC =
k, kDC = 0, Copelandα), where 0 ≤ α ≤ 1, of Copelandα RCDC as follows.

Candidates: We have five types of candidates. To every vertex vb ∈ V B , we associate a candidate b ∈ B , and to every vertex vr ∈ V R , a candidate 
r ∈ R . Thus, |B| = |V B | and |R| = |V R |. We introduce a spacial candidate c� , a set of |B| dummy candidates, denoted by D B , and two more dummy 
candidates d1 and d2. Thus, the set of candidates C = {c�} ∪ B ∪ R ∪ {d1, d2} ∪ D B .
Note that the candidates in R and B are in one-to-one correspondence with the vertices of V R and V B , respectively. We abuse notation to use N(x)
(for a candidate x ∈ B ∪ R) to represent the set of candidates that correspond to the neighbors of the vertex vx in G . Moreover, we will refer to the 
candidates in N(x) as neighbors of the candidate x. We fix an ordering of the candidates in B and R such that in every vote, candidates in B and R
appear according to this order. We will use B and R to denote the reverse of the order in B and the order in R , respectively.

Voting Profile: We have two X-votes for each vertex vr ∈ V R , denoted by Xr and X ′
r ; two votes Y1 and Y2. Thus, the voting profile �V =

∪r∈R {Xr , X ′
r} ∪ {Y1, Y2}, is the multiset of votes in Table 7. Finally, A = R and the control set J = B . This completes the description of the in-

stance J .

Fig. 6. Reduction from Red-Blue Dominating Set to Copelandα RCAC.

Lemma 3.7. Consider the election E = (C \ R, �C\R
V ). Then,

• for every candidate b ∈ B, Copelandα
E (b) = α(|B| − 1) + α + 1 + |B|;

• Copelandα
E (c�) = α|B| + 2α + |B|;

• for every d ∈ D B , Copelandα
E (d) = α|B| + α + 1;

• Copelandα
E (d1) = α|B| + α;

• Copelandα
E (d2) = α + |B|.

Proof. First, we calculate the Copelandα score for every candidate b ∈ B in election E . Towards this, we compute the number 
of candidates that are beaten by b and are tied with b in a pairwise election. Recall that for a pair of distinct candidates 
c and c′(
= c), NE (c, c′) denotes the number of votes that prefer c to c′ in �V . Note that in the election E , there are total 
2|R| + 2 votes in E . So, for any pair of candidates c, c′ ∈ C , if NE (c, c′) > |R| + 1, then c beats c′; and if NE (c, c′) = |R| + 1, 
then c and c′ are tied.

Let {b, b′} ⊆ B . For a vertex vr ∈ V R , consider the corresponding votes Xr and X ′
r . Observer that the ordering of the 

candidates in B in Xr is reverse of the ordering of those candidates in X ′
r . Hence if b is preferred to b′ in Xr (Y1), then the 

opposite is true in X ′
r . Furthermore, the same is true for b and b′ in Y1 and Y2 as well. Thus, NE (b, b′) = NE (b′, b) = |R| + 1

implying that b and b′ are tied. Similar argument implies c� is tied with every candidate b ∈ B . Note that in all of the X-
votes b is preferred to any candidate in D B ∪ {d1}. Hence, b beats each candidate in D B ∪ {d1}. We note that d2 is preferred 
to each candidate b ∈ B , the X ′

r votes (for any voter vr ∈ V R ) as well as both the Y -votes. Hence, d2 beats b. Hence, we get 
Copelandα

E (b) = α(|B| − 1) + α + 1 + |B|. Similar arguments can derive the scores of other candidates. �
Observe that the outcome of the pairwise election between any two candidates in B is unaltered after addition of any 

subset of candidates in R . This allows us to use Observation 3.1 in order to compute the scores in a modified election. The 
following property about a solution of Copelandα RCAC for the instance J is crucial in the proof of correctness of the 
reduction.

Lemma 3.8. Let R ′ ⊆ R, and |R ′| ≤ kAC. The set R ′ is a solution of Copelandα RCDC for the instance J if and only if for each b ∈ B, 
N(b) ∩ R ′ 
= ∅.

Proof. Let E ′ = ((C \ R) ∪ R ′, �(C\R)∪R ′
V ), denoting the election after addition of candidates in R ′ . Let |R ′| = k′ ≤ kAC. For the 

reverse direction, let b̂ ∈ B . Since N (̂b) ∩ R ′ 
= ∅, let ̂r ∈ N(b) ∩ R ′ . Since b̂ ∈ N (̂r), the candidate ̂r is preferred to b̂ in X̂r
as well as in X ′

r , where vr ∈ V R . Moreover, b̂ is preferred to ̂r in both Y1 and Y2. Consequently, NE ′ (̂r, ̂b) = |R| + 1, i.e., ̂r
and b̂ are tied. For each candidate r ∈ R \ N (̂b), b̂ is preferred to r in Xr , where vr is a vertex in V R , but in both Y1 and 
Y2, candidate ̂b is preferred to r. Therefore, ̂b beats every candidate r that is not it’s neighbor. Thus, Observation 3.1 yields 
that Copelandα

E ′ (̂b) = α(|B| − 1) + α + 1 + |B| + α|N (̂b) ∩ R ′| + |R ′ \ N (̂b)|. Note that |R ′ \ N (̂b)| = |R ′| − |R ′ ∩ N (̂b)|. Hence, 
Copelandα

E ′ (̂b) = α(|B| − 1) + α + 1 + |B| − (1 − α)|N (̂b) ∩ R ′| + |R ′|. Since |N (̂b) ∩ R ′| ≥ 1, Copelandα
E ′ (̂b) ≤ α(|B| − 1) + α +

1 + |B| + α + |R ′| − 1 = α|B| + α + |B| + |R ′|. It is easy to check that Copelandα
E ′(c�) = α|B| + 2α + |B| + |R ′|. Hence, no 

candidate from B gets the highest score in the election E ′ . Since |R ′| ≤ kDC = k, R ′ is a solution of Copelandα RCDC for J .
For the forward direction, suppose towards contradiction, there exists a b� ∈ B such that N(b�) ∩ R ′ = ∅. Therefore, 

Copelandα
E ′(b�) = α(|B| − 1) + α + 1 + |B| + |R ′|. Since α < 1/2, Copelandα

E ′(b�) > Copelandα
E ′(c�).

Observe that for each candidate r ∈ R ′ , similar arguments as in Lemma 3.7 yield that r ties with every other r′ ∈ R ′ \ {r}
and beat all the dummy candidates in D B ∪{d1}. Without loss of generality we may assume that |R| ≥ 3, since otherwise the 
instance can be solved in polynomial time. The candidate d2 is preferred to r in X ′

r , Y1 and Y2. Since |R| ≥ 3, d2 is beaten by 
r. Therefore, Copelandα

E ′(r) = α(|R ′| − 1) + α|N(r)| + |B| + 2 which is at most α(|R ′| − 1) + α|B| + |B| + 2 because N(r) ⊆ B . 
Since α < 1, Copelandα ′ (b�) > Copelandα ′(r), for every r ∈ R ′ . Note that in the election E ′ , the dummy candidates are beaten 
E E
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by every r ∈ R ′ . Hence, they have the same score in the elections E ′ and E . Hence, b� has highest score, contradiction to R ′
being a solution of Copelandα RCAC for the instance J . �

As in the previous section, the above lemma shows the following equivalence and this completes the proof.

Lemma 3.9. I is a Yes-instance of Red-Blue Dominating Set if and only if J is a Yes-instance of Copelandα RCDC.

4. Algorithm for copeland RCDC

In this section we present an algorithm that solves Copelandα RCDC for the special case where there are no ties between 
pairs of candidates, and thereby prove Theorem 3. Note that this case subsumes the one where the number of voters is odd. 
We recast our problem in graph theoretic terms and is formally presented below. The problem is reduced to deciding the 
existence of a vertex with the maximum out-degree in an appropriately defined subtournament, [5]. But prior to that we 
will introduce some definitions.

For a tournament T = (V , A) let Â ⊆ A denote a smallest feedback arc set in T . We can find Â in time 3O(k) using a 
simple 3-way branching algorithm that exploits the property that a tournament has a (directed) cycle if and only if it has a 
(directed) triangle. We define the affected set (of vertices) in T , denoted by V Â , to be the subset of vertices incident on the 
edges in Â. Clearly, |V Â | ≤ 2kFAS. From now on, we will assume that we have the affected set V Â at our disposal. We solve 
the following problem.

CT RCDC Parameter: kDC + kFAS
Input: A tournament T = (V , A), a subset J ⊆ V , and positive integers kDC and kFAS.
Question: Does there exist a subset S ⊆ V \ J , |S| ≤ kDC such that there is a vertex v ∈ V \ (S ∪ J ) with the maximum 
out-degree in the (induced) tournament T [V \ S] ?

An algorithm for CT RCDC will invoke as a subroutine an algorithm for a related problem, Disjoint Copeland Tourna-

ment (DCT), described below.

Lemma 4.1. Let (T = (V , A), J , kDC, kFAS) be an instance of CT RCDC. Then, the following is true: (T , J , kDC, kFAS) is a Yes-instance 
if and only if there exist subset F ⊆ V Â \ J , subset R ⊆ V \ (V Â ∪ J ) where |F | + |R| = kDC , and vertex ̂v ∈ V \ ( J ∪ F ∪ R) such that 
v̂ has maximum out-degree in the tournament T [V \ (F ∪ R)].

DCT Parameter: kDC + kFAS
Input: A tournament T = (V , A), a subset J ⊆ V , a subset F ⊆ V Â \ J of the affected set, a special vertex v̂ ∈ V \ J , 
and positive integers kDC and kFAS.
Question: Does there exist a subset R ⊆ V \ (V Â ∪ J ∪ {̂v}) such that |R| ≤ kDC − |F | and v̂ has the maximum 
out-degree in the (induced) tournament T [V \ (F ∪ R)]

For the ease of exposition of the algorithm for DCT and its subsequent analysis, we will begin by introducing some 
terminology.

Coloring and ordering the vertices: Consider an instance (T , J , F , ̂v, kDC, kFAS) of DCT. We will refer to the vertices in 
V \ (V Â ∪ J ) as the red vertices and those in J ∪ (V Â \ F ) as the blue vertices. Thus, the blue and red vertices define 
a partition of the vertex set V \ F . Intuitively speaking, the solution set S for the instance (T , J , F , ̂v, kDC, kFAS) of DCT
contains a subset of the red vertices but none of the blue vertices. In other words, the red vertices can be deleted from the 
tournament T−F = T [V \ F ] but not the blue vertices.

A topological ordering of a directed graph is a linear ordering of its vertices such that for every directed edge uv from 
vertex u to vertex v , u appears to the left of v in the ordering. Let Â−F ⊆ Â denote the subset of arcs in Â that exist in 
the tournament T−F . We have a topological order of the vertices in T−F obtained from the directed acyclic graph created 
by reversing the arcs of Â−F . Thus, we have a linear ordering, σ of the vertices in T−F , such that for any arc i j ∈ A \ Â−F , 
i is to the left of j, denoted by i <σ j. For an arc ji ∈ Â−F if i <σ j, then ji is called a back arc.

4.1. Algorithm for DCT

Let I = (T , J , F , ̂v, kDC, kFAS) be an instance of DCT. The algorithm for DCT is quite simple: We define k1 = kDC − |F |
and k = |V Â | − |F |. Consider the first k1 + k + 1 red vertices in σ , denoted by R. For every subset of the red vertices in 
R of size k1, denoted by R , algorithm for DCT checks whether v̂ has the maximum out-degree in T [V \ (F ∪ R)]. If yes, 
then the algorithm returns Yes. Else, if none of subsets of R yields a yes-answer, then the algorithm outputs No. The time 
complexity is calculated in a straightforward manner: Since 

(k1+k+1
k1

) ≤ 2k1+k+1 ≤ 2kDC+kFAS+1, the aforementioned algorithm 
runs in time 2(kDC+kFAS)poly(n). The proof of correctness is presented in Lemmata 4.2 and 4.3.
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Fig. 7. Depicts proof of Lemma 4.2 when v̂ is blue. Two topological ordering and relative position of vr , ̂v and xr is shown, based on whether vr appears 
before v̂ or after v̂ .

Lemma 4.2. Suppose that I = (T , J , F , ̂v, kDC, kFAS) is a Yes-instance of DCT. Then, in the graph T [V \ F ], there are at most 
k1 + k + 1 red vertices that are to the left of ̂v, where k1 = kDC − |F | and k = |V Â | − |F |. Moreover, there exists a minimal subset of 
red vertices, denoted by S, that lies among the first k1 + k + 1 red vertices such that |R| ≤ k1 and ̂v has the maximum out-degree in 
T [V \ (F ∪ S)].

Proof. Let S ⊆ V \ ( J ∪ V Â) denote a subset of red vertices such that |S| ≤ kDC − |F |, and v̂ has the maximum degree in 
T [V \ (F ∪ J )]. Suppose that in the graph T [V \ F ] there are at least k1 + k + 2 red vertices to the left of v̂ . Thus, it 
follows that in the graph T [V \ (F ∪ S)], there exists at least k + 2 red vertices to the left of v̂ . Among the red vertices in 
V \ (F ∪ S), we use vr to denote the left most red vertex in the ordering σ . Thereby implying that there are at least k + 1
red vertices between vr and ̂v in T [V \ (F ∪ S)]. From now onwards, any reference to “left” or “right” should be understood 
to be in reference to the ordering σ .

For any vertex x, we will use RedL(x) and RedR(x) (BlueL(x) and BlueR(x)) to denote the set of red (blue) vertices to the 
left and right of x, respectively. Thus, in the graph T [V \ (F ∪ S)], δ+(̂v) ≤ RedR (̂v) + BlueR (̂v) + k because v̂ may have at 
most k out-neighbors to its left. However, we note that in the graph T [V \ (F ∪ S)], δ+(vr) ≥ RedR (̂v) + k + 1 + BlueR (̂v), 
a contradiction to the property that v̂ has the maximum degree in T [V \ (F ∪ S)].

It is not hard to see that if v̂ is a red vertex then it must be the k1 + 1st vertex in σ , and the set S contains only those 
red vertices that appear to the left of v̂ . Thus, the second property only remains to be proved for the case that v̂ is a blue 
vertex.

For the sake of contradiction, let S denote a solution for the instance I such that there is a red vertex xr ∈ S which is 
not among the first k1 + k + 1 red vertices in σ (refer to Fig. 7). Note that without loss of generality we may assume that S
is minimal.

We begin by observing that a vertex in V \ (F ∪ S) that is to the right of xr has the exact same out-degree in both 
T [V \ (F ∪ S)] and T [V \ (F ∪ S \ {xr})]. Hence, the out-degree of such a vertex cannot exceed the out-degree of v̂ in 
T [V \ (F ∪ S \ {xr})]. Thus, we only need to argue about the vertices that are to the left of xr . Let v denote an arbitrary 
vertex in V \ (F ∪ S) to the left of xr that is distinct from v̂ . We refer to Fig. 7 for illustration. The fact that the out-
degree of v̂ is at least the out-degree of v in the graph T [V \ (F ∪ S)] implies that the same relation holds in the graph 
T [V \(F ∪ S \{xr})] because xr is an out-neighbor of both. This completes our argument that ̂v has the maximum out-degree 
in the T [V \ (F ∪ S \ {xr})] thereby contradicting the minimality of S . �

Conversely, the following holds for the instance I = (T , J , F , ̂v, kDC, kFAS) of DCT.

Lemma 4.3. Suppose that S is a subset of red vertices and that v̂ has the maximum out-degree in T [V \ (F ∪ S)]. Then, I is a
Yes-instance of DCT.

Thus, we may conclude that there exists an algorithm for CT RCDC that invokes the algorithm for DCT 2|V Â | · |V | times, 
thereby requiring time 2O(kDC+kFAS)poly(n). This completes the proof of Theorem 3.

5. Conclusion

in this paper, we substantially broadened the scope of research of Resolute Destructive Control where J is a set. In 
particular, we studied two parameters, namely, the number of candidates to delete, and to add. We also introduced a struc-
tural parameter that depends on the majority graph of the election. We derived lower bounds and hardness results for three 
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central voting correspondences under every possible tie-breaking scheme. Additionally, we designed one parameterized al-
gorithm. Our work gives rise to multiple research avenues.

First, we can ask what is the parameterized complexity of Resolute Control, where J is a set, with respect to 
other voting correspondences such as Bucklin and Approval. Moreover, unlocking the potential in studying voting prob-
lems in terms of graphs and thereby parameterizing their structural properties appears tantalizing. Are Borda RCDC (AC), 
Copelandα RCAC, and Maximin RCAC FPT with respect to kX + kFAS (or kFAS alone) on tournaments? What can be said 
in the case where the majority graph is not a tournament? Moreover, what structural parameters apart from kFAS are of 
interest for these problems?

Lastly, we note that we believe that W[2]-hardness results are not a dead-end, in fact we want to know, do these prob-
lems admit parameterized approximation algorithms with good approximation ratios?; what are the best exact exponential-
time algorithms possible?
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