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Abstract
It is known that correlation-immune (CI) Boolean functions used in the framework of side
channel attacks need to have lowHamming weights. The supports of CI functions are (equiv-
alently) simple orthogonal arrays, when their elements are written as rows of an array. The
minimum Hamming weight of a CI function is then the same as the minimum number of
rows in a simple orthogonal array. In this paper, we use Rao’s Bound to give a sufficient
condition on the number of rows, for a binary orthogonal array (OA) to be simple. We apply
this result for determining the minimum number of rows in all simple binary orthogonal
arrays of strengths 2 and 3; we show that this minimum is the same in such case as for all
OA, and we extend this observation to some OA of strengths 4 and 5. This allows us to reply
positively, in the case of strengths 2 and 3, to a question raised by the first author and X.
Chen on the monotonicity of the minimum Hamming weight of 2-CI Boolean functions, and
to partially reply positively to the same question in the case of strengths 4 and 5.
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1 Introduction

In cryptography, correlation immune (CI) functions are those Boolean functions over Fk
2

whose output distribution does not change when at most t input bits are fixed, where t ≤ k is
the correlation immunity order, whatever is the choice of these input bits and whatever are the
values to which they are fixed. As shown in [19], they are those k-variable Boolean functions
whose Fourier transform ̂f (a) = ∑

x∈Fk2 f (x)(−1)a·x (where “·" is the usual inner product
in Fk

2) vanishes for all nonzero inputs a ∈ F
k
2 of Hamming weight at most t . In other words,

the supports of these functions are unrestricted (i.e., linear or nonlinear) binary codes of dual
distance at least t +1. The correlation immunity of a function f allows the resistance against
the Siegenthaler correlation attack on the stream ciphers using f as a combining function
(see [4] for more details). CI functions can also be used for implementing the rotating S-box
masking counter-measure against side channel attacks (see [4] as well). We can reduce the
cost of this counter-measure by finding, for given k and t , the minimum Hamming weight
wk,t of t-th order CI-functions in k variables, that is the minimal size of their supports, and
then by using a CI function of suchweight in the implementation. The first author andGuilley
[5, 6] published a table containing the values of wk,t for small k, t . It is difficult to give these
values even for small parameters, this is demonstrated by the facts that the table is limited to
k ≤ 13 and even then, there are missing values in the table.

CI-functions are closely related to orthogonal arrays, introduced by C.R. Rao [16] in 1947.
Let N , t, k be positive integers, t ≤ k, and S a finite set of cardinality s. An N × k array A
with entries from S is said to be an orthogonal array with s symbols, strength t , and index
λ, if every N × t subarray of A contains each t-tuple based on S exactly λ times as a row.
We will denote such an array by OA(N , k, s, t). We have λ = N/st . An orthogonal array is
called simple if the rows are distinct. Supports of t-th order CI-functions give simple binary
orthogonal arrays with strength t , if their elements are written as rows, and vice versa.

In the theory of orthogonal arrays, for both simple and general orthogonal arrays, the
main question is to give—for given numbers k of columns and s of symbols, and for strength
t—the minimum value of N for which an orthogonal array OA(N , k, s, t) exists with N
rows. We will denote this value by F∗(k, s, t) for simple orthogonal arrays (we have then
wk,t = F∗(k, 2, t)) and by F(k, s, t) for general orthogonal arrays. This problem is very hard
even for the smallest parameters s = t = 2. In fact, a binary orthogonal array of strength 2
with k columns and k+1 rows is equivalent to aHadamardmatrix of order k+1. AHadamard
matrix of order n is an n × n matrix whose entries are either +1 or −1, and whose rows are
mutually orthogonal. The famous Hadamard conjecture proposes that a Hadamard matrix of
order n exists if and only if n is divisible by 4. Equivalently in our notation: F(k, 2, 2) = k+1
if and only if k is congruent to 3 modulo 4.

For some lower bounds on the number N of rows, it is known that if an OA(N , k, s, t)
attains this special bound, then it is simple. For example, this is true for the Friedman-
Bierbrauer bound [1]

N ≥ sk
(

1 − (s − 1)k

s(t + 1)

)

.
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Indeed, it is seen from the proof that any multiplicity greater than 1 makes the inequality
strict. For binary orthogonal arrays of strength t ≥ (2k − 2)/3, the bound N ≥ 2k−1 implies
simplicity in the case of equality, see [13].

In [6], the first author and Guilley asked the the following question:

problem 1 (Carlet-Guilley) Is F∗(k, 2, t)amonotonenon-decreasing functionwhen k grows
and t remains fixed?

The same question for F(k, s, t) is trivial, since anOA(N , k, s, t) gives rise to anOA(N , k−
1, s, t) by deleting one of the columns. Moreover, if F(k, s, t) = F∗(k, s, t), then

F∗(k, s, t) ≤ F(k + 1, s, t) ≤ F∗(k + 1, s, t).

Hence, the solution of the following problem would imply an answer to the problem posed
by the first author and Guilley:

problem 2 Find all parameters k, s, t such that F(k, s, t) = F∗(k, s, t).

In this paper, we give a partial answer to Problem 2. Our main theoretical result is the
following:

Theorem 1 Let A be an OA(N , k, s, 2u). Define the integer

M(k, s, 2u) =
u

∑

j=0

(

k

j

)

(s − 1) j .

(i) If A has a row of multiplicity ρ, then N ≥ ρ M(k, s, 2u).
(ii) If N < 2M(k, s, 2u), then A is simple. If N < 3M(k, s, 2u), then each row of A has

multiplicity at most 2.
(iii) If k ≥ 5, s = 2, u = 2 and

N = 2M(k, 2, 4) = k2 + k + 2,

then either A is simple, or k = 5 and A is obtained by the juxtaposition of two identical
arrays OA(16, 5, 2, 4).

Part (ii) of Theorem1 implies a sufficient condition for the parameters k, s, t to fulfill Problem
2:

Corollary 2 If t is even and

F(k, s, t) < 2M(k, s, t)

then

F∗(k, s, t) = F(k, s, t).��
Notice that the integer M(k, s, t) is the lower bound for the number of rows in an orthogonal
array with k columns, s symbols and strength t , given in Rao’s famous theorem [11, Theorem
2.1]:

F(k, s, t) ≥ M(k, s, t) for all positive integers k, s, t . (1)

For part (iii) of Theorem 1, we observe that M(5, 2, 4) = 16, and up to equivalence, there is
a unique OA(16, 5, 2, 4). If we assume that such an array has an all-0 row, then all its rows
have an even number of 1s.

123
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Table 1 Number of rows in minimal simple orthogonal arrays with given number of columns and given
strength

k\t 1 2 3 4 5 6 7 8 9 10 11 12 13

1 2

2 2 4

3 2 4 8

4 2 8 8 16

5 2 8 16 16 32

6 2 8 16 32 32 64

7 2 8 16 64 64 64 128

8 2 12 16 64 128 128 128 256

9 2 12 24 128 128 256 256 256 512

10 2 12 24 128 256 512 512 512 512 1024

11 2 12 24 A A’ 512 1024 1024 1024 1024 2048

12 2 16 24 A A’ B 1024 2048 2048 2048 2048 4096

13 2 16 32 A A’ C B’ 4096 4096 4096 4096 4096 8192

We conclude this section with Table 1, which shows the values of F∗(k, 2, t) for 1 ≤
k, t ≤ 13; it is a reproduction of the tables in [5, 6, 18]. Using old and new computational
results, and Theorem 1, we were able to fill in new entries in Table 1, denoted by capital
letters. For previously known entries we colored the cells; the meaning of the colors are
explained below.

gray The light gray fields are trivial. The dark gray fields are consequences of the Fon-
Der-Flaass Theorem [8].

yellow The yellow fields are related to the constructions of Hadamardmatrices, to the famous
Hadamard Conjecture, and to a recent conjecture by the first author and Chen, see
Sect. 4 for details.

green The values equal to Delsarte’s LP Bound, and the construction is given by a linear
code of codimension 2, see [5, 6, 18].

red The first author and Guilley [6] contributed the values by using the Satisfiability
Modulo Theory (SMT) tool z3 [7]. The upper bound follows from a well-known
construction that is related to shortening of the non-linear binary Kerdock code of
length 16, see [12].

A, A’ A = 128 and A′ = 256, see Proposition 12(A).
B, B’ B = 768 and B ′ = 1 536. The values equal to Delsarte’s LP Bound. The existence

and uniqueness of an OA(1536, 13, 2, 7) has been shown recently by Krotov [15].
See Proposition 12(B) for an independent construction.

C C = 1024, see Proposition 12(C) and [18].

2 Preliminary results

In this section, we collected some preliminary results and notation on the minimum number
of rows of an orthogonal array with k rows, s symbols and strength t . Recall the definition
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Simplicity conditions for binary… 155

F(k, s, t) = min{N | ∃OA(N , k, s, t)},
F∗(k, s, t) = min{N | ∃ simple OA(N , k, s, t)}.

Lemma 3

F(k, s, t) ≤ F∗(k, s, t), (2)

F(k, s, t) ≤ F(k + 1, s, t), (3)

2 F(k, 2, 2u) = F(k + 1, 2, 2u + 1), (4)

2 F∗(k, 2, 2u) = F∗(k + 1, 2, 2u + 1). (5)

Proof 2 and 3 are trivial. [11, Theorem 2.24] and [11, Corollary 2.25] imply 4. 5 holds by
[5, Proposition 2.6]. ��
Remark 4 Equation (5) implies that it suffices to deal with orthogonal arrays of even strength
t = 2u when studying the Carlet–Guilley problem and Problem 2. This also shows that in the
case of binary orthohonal arrays (s = 2), one can use Theorem 1 to investigate the simplicity
of arrays of odd strength.

Remark 5 For all integer m, duals of certain double-error-correcting BCH codes provide
arrays OA(22m+1, 2m + 1, 2, 5), and OA(22m, 2m, 2, 4) by 5. (See [11, p. 103].) If k is an
integer with 2m−1 < k ≤ 2m , then

F(k, 2, 4) ≤ F(2m, 2, 4) ≤ 22m < 4k2.

By Rao’s Bound, F(k, 2, 4) ≥ (k2 + k + 2)/2. This shows that asymptotically, F(k, 2, 4)
and F(k, 2, 5) are quadratic functions of k.

For tuples u, v ∈ {0, . . . , s − 1}k , wH (u) denotes the Hamming weight, and

uvT =
k

∑

i=1

uivi

denotes the usual inner product (sometimes also denoted by u · v or by 〈u, v〉). For a matrix
H with complex entries, H∗ is the conjugate transpose of H . In particular, for complex (row)
vectors u, v ∈ C

n ,

uv∗ =
n

∑

i=1

ui v̄i .

The 2-norm of u ∈ C
n is

‖u‖ = √
uu∗.

Fix a primitive s-th root of unity ζ . Let A denote an N × k array with entries from
{0, . . . , s − 1}. The i-th row of A is denoted by ai . For 1 ≤ i ≤ N and v ∈ {0, . . . , s − 1}k ,
we write:

αi,v = ζ aiv
T
. (6)

Clearly, for the zero vector v = 0, we have αi,0 = 1. For any v, v′, we have

αi,vαi,v′ = (ζ aiv
T
)(ζ ai (v

′)T ) = ζ ai (v+v′)T = αi,v+v′ ,
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and

ᾱi,v = ζ−aivT = ζ ai (−v)T = αi,−v.

Lemma 6 The following statements are equivalent:

(i) The array A is an OA(N , k, s, t).
(ii)

∑N
i=1 αi,v = 0 for any v ∈ {0, . . . , s − 1}k with 1 ≤ wH (v) ≤ t .

(iii)
∑N

i=1 αi,vᾱi,v′ = 0 for any v, v′ ∈ {0, . . . , s − 1}k with wH (v) + wH (v′) ≤ t .

Proof The equivalence of (i) and (ii) is precisely [11,Theorem3.30]. Settingv′ = 0,weobtain
(ii) from (iii). For any v, v′, we haveαi,vᾱi,v′ = αi,v−v′ . AswH (v−v′) ≤ wH (v)+wH (v′) ≤
t , (ii) implies (iii). ��
Remark 7 For binary arrays (s = 2), Lemma 6(ii) is the Xiao-Massey characterization of
k-variable t-CI Boolean functions, see [19] or [5, Theorem 2.2].

3 The proof of themain theorem

The proof of [11, Theorem 2.1] is based on the introduction of two matrices H and Q. We
shall see that the same matrices can be used for proving our result.

Proof of Theorem 1 Without loss of generality, we assume that the entries of A are from
{0, . . . , s−1}. For any 0 ≤ j ≤ u, we define the N × (k

j

)

(s−1) j matrix Hj in the following

way. The columns of Hj are indexed with the tuples v ∈ {0, . . . , s−1}k of Hamming weight
j . For 1 ≤ i ≤ N and tuple v with wH (v) = j , the entry (i, v) of Hj is αi,v .
The matrix:

H = [H0 H1 · · · Hu]
has N rows and

M =
u

∑

j=0

(

k

j

)

(s − 1) j = M(k, s, 2u)

columns. Any two columns of H are orthogonal complex vectors by Lemma 6(iii). Moreover,
if column h of H is indexed by the tuple v, then

h∗h =
N

∑

i=1

ᾱi,vαi,v = N .

This means that H∗H = N I , and the columns of 1√
N
H form an orthonormal set of vectors

in C
N . This set can be extended into an orthonormal basis of CN . In other words, one can

add columns to 1√
N
H such that one obtains an N × N unitary matrix Q. Each row of Q has

the form [u u′], where u is a vector of length M , with entries ζ ai v
T

√
N

. In particular,

‖u‖ = √

M/N , ‖u′‖ = √

1 − M/N . (7)

Let us assume that the rows i1, . . . , iρ of A are equal. Then, the rows i1, . . . , iρ of H are
equal, and, the rows i1, . . . , iρ of Q have the form

[u u(r)], r = 1, . . . , ρ.
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The rows of Q form an orthonormal basis, thus for all 1 ≤ r �= s ≤ ρ,

0 = uu∗ + u(r)u
∗
(s). (8)

Assume that N < ρM . Then 7 and 8 imply

u(r)u
∗
(s) < − 1

ρ
(r �= s). (9)

We have

0 ≤
∥

∥

∥

∥

∥

ρ
∑

r=1

u(r)

∥

∥

∥

∥

∥

2

=
ρ

∑

s,r=1

u(r)u
∗
(s)

= ρ

(

1 − M

N

)

+
∑

r �=s

u(r)u
∗
(s)

< 1 − ρM

N
,

using 9 in the last step. The assumption N < ρM makes the right hand side negative, a
contradiction. This proves (i). Part (ii) is a straightforward consequence of (i).

For the rest of the proof, A denotes a non-simple OA(k2 + k + 2, k, 2, 4) with k ≥ 5. By
reordering the rows of A, and adding a fixed row to all rows modulo 2, we may assume that
the first two rows of A are all 0s. We use the notation Hi , i = 0, 1, 2, H and Q from above.
Recall that H has N rows and N/2 columns. As ζ = −1, the entries of H are ±1. The key
observation is the following:

(*) In rows 3, . . . , N , the number of 1s is either �1 or �2, where

�1,2 = k + 1 ± √
k − 1

2
.

Let us prove this. As the first two rows of A are all-zeros, the first two rows of Q have the
form [u u′] and [u u′′], where

u =
[

1√
N

· · · 1√
N

]

.

Using the fact that N = 2M(k, 2, 4), we show u′′ = −u′ in the same way as above. Let
[v v′] be row i of Q with i ≥ 3. This is orthogonal to the first two rows, hence,

0 = uvT + u′(v′)T ,

0 = uvT + u′′(v′)T = uvT − u′(v′)T .

This implies uvT = 0. This means that among the entries of v, 1√
N
and − 1√

N
occur equally

often. In terms of H , this means that in this row, 1 occurs N/4 times.
Let � denote the number of 1s in row i of A. H0 has one column, which consists of all 1s. In
row i of H1, the number of 1s is k − �. In row i of H2, the number of 1s is

(

�

2

)

+
(

k − �

2

)

.
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158 C. Carlet et al.

Hence, for the number of 1s in row i of H , we have

1 + k − � +
(

�

2

)

+
(

k − �

2

)

= k2 + k + 2

4
.

Hence, we have �2 − (k + 1)� + (k2 + k + 2)/4 = 0, which implies (*).
Immediate consequences are that κ = √

k − 1 is an integer, N = k2+k+2 can be written
as N = κ4 + 3κ2 + 4, and �1,2 = (κ2 ± κ + 2)/2.

Let us construct the array A′ by selecting all rows of A that start with three zeros. We get

A′ =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 0 0 · · · 0
0 0 0 0 · · · 0
0 0 0
0 0 0 B
0 0 0

⎤

⎥

⎥

⎥

⎥

⎦

where B is a subarray with N/8 − 2 rows and k − 3 columns. Since A has strength 4, then
according to Lemma 6, columns 4 to k of A′ have a number of 1s equal to their number of 0s,
that equals then N/16. Let a denote the number of rows of weight �1 in B. The total number
of 1s in B is

a�1 + (N/8 − 2 − a)�2 = N/16 · (k − 3). (10)

We reorder to get:

a(�1 − �2) = N (k − 3)/16 − (N − 16)�2/8. (11)

Now, �1 − �2 = κ = √
k − 1. Also, the right hand side can be expanded into a polynomial

of κ . This yields:

16 a κ = (κ4 + 3κ2 + 4)(κ2 − 2) − (κ4 + 3κ2 − 12)(κ2 − κ + 2)

= κ5 − 4κ4 + 3κ3 + 4κ2 − 12κ + 16.

We obtain that 16 ≡ 0 (mod κ), that is κ divides 16, and since by assumption, we have
k ≥ 5, that is, κ ≥ 2, then we have κ ∈ {2, 4, 8, 16}. If κ ∈ {4, 8, 16}, then −12κ + 16 ≡ 0
(mod 64), that is, 3κ ≡ 4 (mod 16). This implies κ ≡ 12 (mod 16) (since the inverse of 3
modulo 16 equals 11), a contradiction.
Let us then consider the case κ = 2. Then k = 5, N = 32, �1 = 4 and �2 = 2. Since A has
30 non-zero rows, and

(5
2

) + (5
4

) = 15, each nonzero row has multiplicity 2. In other words,
A is twice an OA(16, 5, 2, 4). This finishes the proof of (iii). ��

4 Simple arrays of strength 2 and 4

In the special case of orthogonal arrays of strength 2, we solve Problem 2, and this allows us
to give an affirmative answer to Problem 1.

Proposition 8 For k ≥ 2, we have F∗(k, 2, 2) = F(k, 2, 2). In particular, the sequence
F∗(k, 2, 2) is non-decreasing.

Proof For any positive integer h, a classical Hadamard matrix H2h is the matrix of the
Hadamard Fourier transform, equal to the Kronecker product H2 ⊗ · · · ⊗ H2 of the matrix:

H2 =
[

1 1
1 −1

]
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Simplicity conditions for binary… 159

with itself. This implies

F(2h − 1, 2, 2) = 2h . (12)

Given a positive integer k, let h be the positive integer such that 2h−1 ≤ k ≤ 2h − 1, then 3
and 12 imply:

F(k, 2, 2) ≤ F(2h − 1, 2, 2) = 2h ≤ 2k.

As M(k, 2, 2) = k + 1, we can apply Corollary 2 to obtain F(k, 2, 2) = F∗(k, 2, 2). ��
The solution of Problem 2 has an implication to a recent conjecture by the first author and

Chen. In [5, Conjecture 2.8], the authors asked if

F∗(k, 2, 3) = 8

⌈

k

4

⌉

. (CC)

Wang proved in [18, Theorem 3.7] that CC and the Hadamard conjecture are equivalent.
However, Wang’s proof is incomplete, since no explanation is given for w4λ+ε,3 ≤ w4λ+4,3,
where 1 ≤ ε ≤ 3 (and wn,t = F∗(n, 2, t)). In fact, this follows from Proposition 8. In order
to be self-contained, we present a complete proof of the two conjectures.

Proposition 9 The Hadamard conjecture is equivalent with Conjecture CC.

Proof Recall that [11, Theorem 7.5] states that orthogonal arraysOA(4λ, 4λ−1, 2, 2) and/or
OA(8λ, 4λ, 2, 3) exist (and then F(4λ−1, 2, 2) ≤ 4λ) if and only if there exists a Hadamard
matrix of order 4λ. According to Rao’s Bound, we have F(4λ−1, 2, 2) ≥ 4λ. The Hadamard
conjecture is then equivalent with:

F(4λ − 1, 2, 2) = 4λ (Ha)

for all positive integer λ. By 5 and Proposition 8, CC is equivalent with

F(k − 1, 2, 2) = 4

⌈

k

4

⌉

. (CC’)

If k = 4λ, then Ha and CC’ are clearly equivalent. It remains to show that Ha implies CC’
for any integer k = 4λ + ε with 1 ≤ ε ≤ 3. Rao’s Bound gives

4λ < k ≤ F(k − 1, 2, 2),

which implies

4λ + 4 ≤ F(k − 1, 2, 2) ≤ F(4λ + 3, 2, 2), (13)

since 4 divides F(k − 1, 2, 2), and F(k, s, t) is non-decreasing in k. By Ha and 13,

F(k − 1, 2, 2) = 4λ + 4 = 4

⌈

k

4

⌉

,

and the Carlet–Chen conjecture follows. ��
We finish this section by a partial answer to Problem 2 for orthogonal arrays of strength

4.

Proposition 10 Let k,m be integers, m ≥ 4 even, with

2m−1/2 ≤ k ≤ 2m − 1.

Then F∗(k, 2, 4) = F(k, 2, 4).
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160 C. Carlet et al.

Proof For any even integer m ≥ 4, Kerdock [12] constructed a binary, non-linear code of
length 2m , cardinality 4m , minimum distance 2m−1−2(m−2)/2 and dual distance 6. This code
can be interpreted as a simple OA(4m, 2m, 2, 5), since we know that an unrestricted code has
dual distance d⊥ if and only if its indicator is a correlation immune function of order d⊥ − 1
(and not of order d⊥), that is, if and only if the array obtained by writing all codewords as
rows is a simple OA of strength d⊥ − 1. In the usual way, we take the rows that start with a
0, and delete the starting 0 to obtain a simple OA(22m−1, 2m − 1, 2, 4). This shows

F(2m − 1, 2, 4) ≤ F∗(2m − 1, 2, 4) ≤ 22m−1 form ≥ 4even.

Assume 2m−1/2 ≤ k ≤ 2m − 1. Then

F(k, 2, 4) ≤ F(2m − 1, 2, 4)

≤ 22m−1

< 22m−1 + 2m−1/2 + 2

≤ k2 + k + 2 = 2M(k, 2, 4).

Corollary 2 implies F∗(k, 2, 4) = F(k, 2, 4). ��

We can interpret the above result in such a way that the set of integers k confirming the
Carlet-Guilley problem has a positive density. For any integer t , we define the set G(t) of
integers k such that F∗(k, 2, t) = F(k, 2, t). Let 4 ≤ μ be an even integer. For 4 ≤ m ≤ μ

even, the set G(4)<2μ contains disjoint intervals of length

2m − 1 − 2m−1/2 = 2m
(

1 − 1√
2

)

− 1.

Summing this up, we obtain

|G(4)<2μ | ≥
∑

m

≥ 4evenμ2m
(

1 − 1√
2

)

− 1

=
μ/2−2
∑

�=0

22�+4
(

1 − 1√
2

)

− 1

= μ

2
− 1 + 24

(

1 − 1√
2

)

4μ/2−1 − 1

3
.

Hence,

lim
μ→∞

|G(4)<2μ |
2μ

≥ 4 − 2
√
2

3
≈ 0.39.

Remark 11 It is not known (but not excluded either) if the Kerdock code is optimal as an
unrestricted code of dual distance 6, that is, if F∗(2m, 2, 5) = 4m and F∗(2m − 1, 2, 4) =
22m−1, for m ≥ 4 even. It is more or less conjectured, but not yet proved explicitly, that the
Preparata code of length 2m , with m ≥ 4 even, is optimal as a code with size 22

m−2m and
dual distance 2m−1 − 2m/2−1, that is, F∗(2m, 2, 2m−1 − 2m/2−1 − 1) = 22

m−2m .
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5 Applications and further constructions

Proposition 12 The missing entries of Table 1 are the following:

F∗(k, 2, 4) = 128 for 11 ≤ k ≤ 15,

F∗(k, 2, 5) = 256 for 11 ≤ k ≤ 16,
(A)

F∗(12, 2, 6) = 768,

F∗(13, 2, 7) = 1 536,
(B)

F∗(13, 2, 6) = 1 024. (C)

For all these parameters k, t , we have F∗(k, 2, t) = F(k, 2, t).

Proof (A) For u = 4 and k ≤ 15, shortening the Kerdock code gives

F(k, 2, 4) ≤ 128, and F(k + 1, 2, 5) ≤ 256.

If 11 ≤ k ≤ 15, then Corollary 2 implies

F∗(k, 2, 4) = F(k, 2, 4). (14)

Assume F(10, 2, 4) < 128 and let A denote anOA(n, 10, 2, 4)with n < 128. Then n ≤ 112
and A is simple by Theorem 1. Hence, F∗(10, 2, 4) ≤ 112, which contradicts to the entry

F∗(10, 2, 4) = 128. (15)

of Table 1. Hence, 14 holds for k = 10, as well. As F(k, s, t) is non-decreasing in k, we
obtain (A).

(B) For k = 12, t = 6, Delsarte’s LP Bound has value 768. We modified the ILP method
of Bulutoglu and Margot [3] to construct an array B = OA(768, 12, 2, 6) that has an auto-
morphism

(1, 2, 3, 4, 5)(6, 7, 8, 9, 10)

of order 5. This gives rise to an array B ′ = OA(1 536, 13, 2, 7) with weight polynomial

(x + 1)5 · (x8 − 5x7 + 28x6 − 35x5 + 70x4 − 35x3 + 28x2 − 5x + 1).

As shown in [15], B ′ is unique and it can be constructed from an equitable partition of the
13-cube.

(C) For k = 13, t = 6, Delsarte’s LP Bound has value 1 024. The generator matrix

G =
⎡

⎣

1 1 1 1 1 1 1 1 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0
1 1 0 0 1 1 0 0 1 1 0 0 1

⎤

⎦

defines a binary linear [13, 3, 7]-codeC . The dual ofC is a linearOA(1 024, 13, 2, 6). Notice
that this construction is given in a more general context in [18]. ��
Remark 13 (1) F(10, 2, 4) ≥ 128 can be deduced from [3, Table 1], from [17, Table III],

from [18, Appendix A], or from [2, Theorems 18 and 20].
(2) The values in (A) are given in [14], with a more computer-based proof.
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(3) The true value of F(11, 2, 4) has been asked in the Fifth International Students’Olympiad
in Cryptography NSUCRYPTO’2018 [10, Problem “Orthogonal arrays”].

(4) The true value of F∗(12, 2, 6) has been asked in the Fourth International Students’
Olympiad in Cryptography NSUCRYPTO’2017 [9, Problem “Masking”].

(5) It is quite surprising that 15 has no computer-free proof.
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