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Abstract

In my master thesis, I describe cryptographic processes. Moreover, I suggest to implement

the homomorphic encryption scheme for approximate arithmetic in Java. In addition, I

provide a graphical user interface (GUI). I develop a more user-friendly and low-threshold

alternative than what is commonly used today. I contribute to existing literature, as well

as practice, by implementing a library based on the cryptographic scheme, CKKS, in

Java. This scheme protects digital communication against the power of quantum com-

puters. The source code is available at https://github.com/KnutStorvestre/CKKS.

Keywords: Homomorphic Encryption, Approximate arithmetic, Implementation of

CKKS scheme, Java
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Motivation

My thesis addresses a question of topical interest: homomorphic encryption. I have

explored this forward-looking and important area of research and especially the CKKS

scheme. It was developed by the scientists Cheon, Kim, Kim and Song, thus the name

CKKS. CKKS proposes a cryptographic scheme that enables approximate computations

on encrypted data. My motivation has been to move beyond describing encryption. I

want to contribute by implementing the scheme, not in C++ as is common now, but in

an easily understandable language. Choosing to implement the scheme in a low threshold

language, Java, lowers the bar and enable more people to use CKKS and homomorphic

encryption.
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Chapter 1

Introduction

Fully Homomorphic Encryption (FHE) has become increasingly popular in the last years

due to the reliance on cloud computing. Cloud computing is when a professional provider

offers computer system resources, in particular data storage and computing power. Ex-

amples of providers include Amazon, Microsoft and Google. They have distributed data

centers allowing customers to share facilities, thus reducing their capital expenses. This

explains cloud computing’s popularity. The popularity of 3rd party solutions entails an

increasing concern about privacy. FHE is important because it allows you to use cloud

computing without compromising your privacy.

The area of research within cryptography is dynamic, and new developments come all the

time. One of the latest developments in FHE is a public key crypto system, the CKKS

scheme. This scheme is named after the scientists Cheon, Kim, Kim, and Song who

introduced the CKKS scheme in 2016 [5]. A scheme is defined as a large-scale systematic

plan, or arrangement, for attaining a particular object or putting a particular idea into

effect.

This thesis contributes to research by implementing the cryptographic scheme, CKKS,

in a novel language, Java. Originally CKKS was implemented in C++, in an open

source library called Homomorphic Encryption for Arithmetic of Approximate Numbers

(HEAAN) [2]. This library was released in 2016, and is still under improvement. A library

in computer science is a collection of code that can be added to another code to provide

new functionality. C++ has an advantage of speed. However, a disadvantage of C++ is

that it is considered as an advanced language for advanced users. In my master thesis,

I initially programmed the scheme in Python. Python is an easy-to-use programming
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language but, is significantly slower compared to C++. Later, when I discovered the

advantages of Java, this became a dominant alternative. Subsequently, the scheme was

re-programmed in Java. Java has several benefits. Firstly, it is easy to understand.

Secondly, it is extensively used on the backend. The backend is where the processes and

operations are taking place. This is “behind the scenes” where the cryptographic data

is processed. Lastly, Java is about three times faster than a commonly used language,

Python. In sum, applying Java simplifies the code and speed up the processing time.

However, despite benefits, the CKKS scheme has not yet been implemented in Java. In

this thesis I contribute to do so. In addition, I have developed a Graphical User Interphase

(GUI). This greatly improves the user-friendliness of the scheme and lowers the threshold

for the user. The low threshold opens this cryptographic scheme to users with limited

knowledge of Java.

To conclude, I contribute to research by applying a novel approach of how we can defend

ourselves in the coming era of quantum computers. In this master thesis I first describe

different types of encryption. Second, I discuss preliminaries. Third, I describe the

CKKS scheme. Lastly, I describe and discuss implementation and end with discussion

and conclusion.

2



Chapter 2

Types of encryption

First of all, I would like to introduce some central concepts in this thesis. Cryptography

comes from ancient Greek and means “secret text”. The field of cryptography is based on

some core criteria: data confidentiality, data integrity, authentication and non-reputation.

This entails that cryptographic algorithms should follow these principles or be set up an

in an environment where they are not vulnerable to exploitation.

• Confidentiality : Keeps the data secret from attackers

• Integrity : Detects unauthorized changes to ciphertext

• Authentication: Allows the receiver to know that the message comes from a trusted

user

• Non-reputation: Secures that the authorship of a message in non-disputable.

A common misconception is that we should only use cryptographic algorithms that are

completely impenetrable. Modern ciphers are designed to achieve sounding computa-

tional security, indicating that it is intractable to develop an attack against the ciphers

with complexity less than the brute-force attack, which exhausts all possible keys for the

target ciphers. Almost all cryptographic algorithms in use today are in theory vulnerable

to brute force attacks. Creating a cipher that is not vulnerable to brute force attacks

is generally considered to be an impossible task, except for the One Time Pad (OTP).

However, it has a significant shortcoming which I will discuss in Subsection 2.1.1. The

thinking behind many cryptographic algorithms is not that it should be impenetrable.

Even tough many of the ciphers that are commonly used today are vulnerable in theory,

they are generally secure in practice.
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2.1 Symmetric encryption(SE)

The pioneer case of cryptography is symmetric cryptography. Symmetric encryption is

when you use the same cryptographic key to encrypt and decrypt a message. Symmetric

encryption can be categorised into stream- and block-ciphers.

2.1.1 Stream Ciphers

Stream ciphers encrypt data in a continuous stream while the block ciphers encrypts

data block by block. Stream ciphers are generally faster than block ciphers in hardware

implementations, but also generally less complex and secure.

An early recorded example of symmetric encryption is the Caesar cipher [17]. This stream

cipher encrypts by moving each letter of the message a fixed number of positions forward

in the alphabet. The receiver must move each of the letters the same number of positions

back in the alphabet to decrypt. The number of positions that the user has to move each

letter back in the alphabet is known as the private key.

Example. If you want to encrypt the message “attack at morning” it will become “nggnpx

ng zbeavat” if you use the private key of 13.

Today’s stream ciphers typically use bits instead of letters. The stream ciphers operates

on two bit streams: One stream for the data we want to encrypt called the plaintext

stream and, a stream for the key we encrypt the data with called the key stream.

plaintext stream X = x1, x2, . . . , xn

key stream K = k1, k2, . . . , kn

Definition 2.1.1 (Stream cipher encryption and decryption) The plaintext, the

ciphertext and the key stream consists of individual bits, i.e., xi, yi, ki ∈ {0, 1} [24].

yi = encryptionki(xi) ≡ xi + ki (mod 2)

xi = encryptionki(yi) ≡ yi + ki (mod 2)
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We add the secret key bit to the encryption, and subtract the secret key bit from the

decryption. This is possible since we are using (mod 2) which means that adding

2ki (mod 2) ≡ 0 where subtraction and addition is identical.

We differentiate the different stream ciphers from the way they generate the key streams.

One-Time Pad(OTP)

OTP is the only stream cipher that satisfies the confidentiality criteria and keeps the

data secret from attackers. OTP is unconditionally secure. It can not be broken even

tough the attacker has unlimited computational resources and time. This stream cipher

achieves this by generating a key stream that is completely random and where each of

the key stream bits is only used once. One major drawback is that the key has to have

the same length as the message. If you want to encrypt a film of 2 gigabits you have to

use a cryptographic key of 2 gigabits. OTP is rarely used today because of its extensive

use of memory.

Linear Feedback Shift Registers(LFSR)

LFSRs uses a significantly less memory than OTP to encrypt messages. The LFSRs are

known to be simple in structure, but able to produce a complicated output. LFSRs have

a huge variety of different use cases from encryption in mobile telephone networks to sudo

random number generator.

Figure 2.1: Simple LFSR

The LFSR generates a key stream bit by pushing each bit one space to the right. The

rightmost bit will be removed and added to the key stream. The bit will also be XORed

with multiple other bits in the LFSR and then put in the first slot. 2.1 The rightmost

bit which is the bit at slot 16 will become the first bit of the key stream. This bit will

also be xor’ed with the bit at slot 14, 13 and 11 before being put in slot 1. If both the

sender and the receiver share the initial state of the LFSR the sender and the receiver is

able to generate the same key stream.

An example of an LFSR cipher used in practice is the A5/1 cipher. This cipher was a part

of the Global System for Mobile communications (GSM). This cellular telephone standard
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describes the protocols used in 2G and was developed by European Telecommunications

Standards Institute(ETSI). 2G was first commercially launched in December 1991 in

Finland [14].

2.1.2 Block Ciphers

Block ciphers encrypts multiple bits at once.

Figure 2.2: Block cipher example

There are many block cipher encryption algorithms. I will cover AES.

AES (Advanced Encryption Standard)

AES is a block cipher designed by the Belgian cryptographers Vincent Rijmen, and Joan

Daemen [7] in 1998.

The AES algorithm supports three different choices of key bits:

• AES-128

• AES-192

• AES-256

Each of the numbers represents the bit length of the encryption key. The U.S. government

uses AES-192 or AES-256 to store top secret information. AES-192 and AES-256 are

therefore widely assumed that to be secure. AES operates on blocks of plaintext data

that is 128 bits long. If the block is smaller than 128 bits the remaining bits will be filled
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with padding. AES is widely used in a variety of security protocols including Transport

Layer Security (TLS)/Secure Sockets Layer (SSL), Secure Shell (SSH) and many Wi-Fi

encryption standards networks.

Mode of operation

Mode of operation is an algorithm that describes how to repeatedly apply block cipher

algorithms such as AES to transform a message into ciphertext, while at the same time

use the same cryptographic key. Different modes of operation can be used to improve the

security of a cipher. It becomes more difficult for an attacker to guess the key used to

encrypt the message. Even tough we use AES, the encrypted data is not guaranteed to

be secure if we use an unsecure mode of operations. Some common modes of operation

include electronic codebook (ECB) mode and cipher block chaining (CBC).

Electronic codebook (ECB) mode

This is the simplest mode of operation. ECB is when you only use the same key and the

same block cipher encryption each time you encrypt a message.

Figure 2.3: Electronic Codebook mode

Even tough we use AES-256 as a block cipher encryption, the encrypted data can still

in some cases be recovered by an attacker. An example of this is encrypting a penguin

image using ECB. This example is illustrated in Figure 2.4.
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Figure 2.4: Encrypted penguin with Electronic Codebook mode

You can still recognise that the pattern is a penguin because the same plaintext is always

mapped to the same ciphertext. The attacker in this case does not have to do anything

since the human eye can recognise the information.

Cipher block chaining (CBC) mode

ECB tries to mitigate this problem by XORing the first plaintext block to be encrypted

with an Initialization Vector (IV). This vector has the same length as the plaintext

block. It contains randomly generated bits. All the next blocks will be XORed with the

ciphertext of the previous block. The CBC algorithm is visualized in Figure 2.5.

Figure 2.5: Cipher Block Chaining mode

As you can see in Figure 2.6 CBC does not have the pattern of a penguin.
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Figure 2.6: Encrypted penguin with Cipher Block Chaining mode

CBC can be vulnerable to the same pattern recognition if the attacker uses brute force

to test all different types of IV’s. The security of CBC is therefore reliant on the length

of IV. CBC is also more vulnerable to noise interference. If one bit is flipped before the

decryption all the other blocks that are chained after the block will be affected. There are

other more advanced modes of operations like Counter mode which is able to generate a

different output given the same plaintext without chaining. Even tough CBC has some

shortcomings, they are by far outweighed by its advantages. CBC is used today in the

Transport Layer Security (TLS) protocol which provides privacy while communicating

over the Internet.

Many of the different modes of operation are used in conjunction with each other to

complement each other’s weaknesses in many of the modern applications.

2.2 Asymmetric encryption

A big problem when it comes to symmetric encryption is the difficulties with exchanging

the private key in a secure way. Asymmetric encryption solves this problem by using two

keys, a public key used for encryption and a private key used for decryption. You can

therefore publish the public key. If anyone wants to send you a secret message, they can

safely do so by encrypting their message with the public key before sending it.
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There are many cases where asymmetric and symmetric encryption work hand in hand.

We can use asymmetric cryptography to transfer symmetric keys. Asymmetric encryption

was first developed in 1973 by the English mathematician Clifford Cocks at the Govern-

ment Communications Headquarters (GCHQ). The system was secret and classified until

1997.

2.2.1 RSA encryption

In the meantime, the computer scientists Rivest, Shamir, and Adleman developed the

”RSA algorithm” to perform public key cryptography. It was first described in 1977 and

later published in the paper ”A method for obtaining digital signatures and public-key

cryptosystems” in 1978 [26]. RSA is based on the hardness of factorizing big integers.

The RSA algorithm is described below.

RSA key generation:

1. Choose two prime numbers p and q

2. Calculate n = p · q and φ(n) = (p− 1)(q − 1)

3. Choose the discrete logarithm integer e that is 1 < e < z

4. Calculate d = e−1 (mod z)

5. You now have two keys.

• public key: (n, e)

• private key: (n, d)

RSA encryption:

c = me (mod n)

RSA decryption:

m = cd (mod n)

However, the integer factorization problem might be vulnerable to quantum computers.

It is therefore important to find new mathematical problems that can replace it. I will

return to this topic later.
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2.2.2 Diffie-Hellman key exchange

Asymmetric cryptography is also known as public-key cryptography. Most modern crypto

systems are based on public key cryptography. It was first presented by Hellman, Merkle,

and Diffie at Stanford University in 1976 [27] in a paper called ”New Directions in

cryptography” [9] where they presented the Diffie-Hellman key exchange.

This key-exchange scheme allows two parties, that have no prior knowledge of each other,

to establish a shared secret key over an insecure channel. This key exchange is based on

a hard mathematical problem called the ”discrete logarithm problem”. This problem is

also a part of the NP-Complete group. An example of this can be that two persons, Alice

and Bob, want to share a common secret.

1. Alice and Bob agree on two integer values a modulus value p and a generator g.

Note that g is a generator of Z∗p if for every a ∈ Z∗p we have gk ≡ a (mod p) for

some k.

2. Alice chooses a secret integer a and sends Bob A ≡ ga (mod p). The secret can

also be referred to as the discrete logarithm of A with respect to the base g.

3. Bob chooses a secret integer b and sends Bob B ≡ ga (mod p).

4. Alice computes the secret s ≡ Ab (mod p).

We know that Alice and Bob has the same secret because

Ab (mod p) ≡ gab (mod p) ≡ gba (mod p) ≡ Ba (mod p)

Figure 2.7: Overview of Diffie-Hellman key exchange [28]
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In Figure 2.7 provides an illustration of how the Diffie-Hellman key exchange works.

The common paint represents the variables g and p. The secret colors represents the

variables a for Alice and b for Bob. Even tough the color generated from the mixture of

the common and secret paint is public knowledge, it is hard for the attacker to separate

the secret colors from the common paint. The hardness of this is known as the ”Discrete-

Logarithm Problem”, which is a part of the NP-Complete group. The NP-Complete

group will be discussed in more detail in Section 3.2.

2.3 Homomorphic encryption(HE)

The notion of homomorphic encryption has a close connection with homomorphism in

algebra. In algebra, a mapping ϕ from one algebraic structure A to another one B is

called homomorphic if ϕ preserves the operation(s) from A to B. For example, if A
supports an operation ◦ and B supports �, then ϕ(x ◦ y) = ϕ(x)� ϕ(y). Homomorphic

encryption schemes have the addition feature of supporting homomorphic addition and/or

multiplication from the plaintext space to ciphertext space.

Homomorphic encryption allows a third party to perform computations on encrypted

data. The encrypted result of the data will be available to whoever has the decryption

key for the original data. However, the third party cannot decrypt it.

Analogously, if we consider traditional encryption as locking your jewellery in a box, then

homomorphic encryption can be considered as locking your jewellery in a glove box that

only you have the key for, where the glove box can be in a jewellery store where the

goldsmith can perform changes on the jewellery, but still he cannot steal it.

When the idea of homomorphic encryption was first presented by Rivest et al. in 1978

[25], they discovered that RSA had a multiplicative homomorphism. To explain this idea

we can imagine two values x and y. We encrypt the x and y with value e. Then, encrypt

each of the values by putting e as the exponent as you can recall from the Subsection

2.2.1.

encrypt(x) ≡ xe (mod n)

encrypt(y) ≡ ye (mod n)
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The multiplicative homomorphism is that you can multiply each of the encrypted values

and get their product when you decrypt them.

encrypt(x) · encrypt(y) (mod n) ≡ (xy)e (mod n) ≡ encrypt(xy)

Designing a crypto system that has both additive and multiplicative homomorphism is

much harder. Solving this problem was for long considered the holy grail of cryptogra-

phy. A breakthrough occurred 30 years after the idea first was presented Craig Gentry

published the first ever fully homomorphic encryption scheme in his PhD thesis in 2009

[10].

Craig Gentry and Shai Halevi later implemented the scheme and published their work

in a proceedings in 2011 [11]. He showed how the scheme’s security and performance

work in practice. They made a rough estimate, and found that the security parameter

λ, which is the same as the dimensions of the lattice, should be at least 213 to 215 to

be considered secure. A lattice is defined in Section 3.3. They ran the implementation

on a powerful IBM System x3500 server, featuring a 64-bit quad-core Intel Xeon E5450

processor, running at 3GHz, with 12MB L2 cache and 24GB of RAM. The implementation

used 2.2 hours to generate the cryptographic keys and 31 minutes to recrypt, which is

an operation to reduce the noise by treating decryption as an evaluation process. Gentry

admitted that the scheme was atrociously slow. This scheme would not be usable in a

long time, even with the help of Moore’s law. Since then, the speed of the schemes for

FHE has increased around 8 times each year, but performance is still a major obstacle.

2.4 Types of homomorphic encryption

There are multiple levels of homomorphic encryption. The levels are separated by the

types and amount of operations you can perform on the encrypted data.

2.4.1 Partially homomorphic encryption

This only works for one type of abstract algebraic operation: Either addition encrypt(a+

b) or multiplication encrypt(a · b) on encrypted data. RSA [26] is an example of a

somewhat homomorphic encryption.
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2.4.2 Leveled fully homomorphic encryption

This allows both types of algebraic operations: Addition and multiplication on encrypted

data, although it allows only for a limited number of operations. The advantage of using

leveled homomorphic encryption is that it is fast when you know how many operations

you are going to perform. By performing mathematical operations the noise increases.

The noise slowly corrupts the data making it less and less accurate, until the data is

unusable.

2.4.3 Fully homomorphic encryption (FHE)

FHE allows for an unlimited amount of arithmetic operations on encrypted data. It is

the most powerful form of homomorphic encryption. CKKS is not FHE, but approximate

FHE. This will be explained in chapter 4. A problem in these encryption processes is

noise. Noise can be removed with demanding and expensive methods like bootstrapping.

2.4.4 Areas of Applications

FHE is an increasingly good method for computation on sensitive genomic data. FHE

can be applied to the evaluation of various algorithms like machine learning on encrypted

financial, medical, or genomic data [15][20][16][21]
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Chapter 3

Preliminaries

A good crypto system should be easy to construct and implement, but hard to crack.

This can be compared to building a chest for keeping secrets. It is a delicate tradeoff

between how expensive the chest is to build and its security level against intruders. The

era of quantum computers has not yet arrived. However, quantum algorithms capable

of solving number-theoretic hard problems, such as integer factorization and discrete

logarithm, in polynomial complexity have already been developed. This entails that the

widely used RSA cryptosystem, ”DH key exchange” scheme is vulnerable when quantum

computers are brought from theory to reality. To prevent successful attacks, we must

therefore develop new and resilient mathematical problems.

3.1 Basic notation

We define b·e as rounding to the closest integer, if the value is exactly between two

integers we round upwards. We use Zq to define a set of all integers modulo q. We use

〈·, ·〉 to denote the dot product of two vectors. We use Ω(·) as a symbol for the average

case time complexity that the fastest known algorithm use to solve a problem. We use

O(·) as the worst case time complexity an algorithm uses give all possible inputs.
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3.2 Problems complexity

Figure 3.1: Classifications of problems

This image shows the different classifications of problems ranging from the least complex

problems at bottom to the most complex problems at the top. This image is based on

the popular assumption that P 6=NP.

P

P is a set of problems that are proven to be solvable in polynomial time.

NP

NP stands for non-deterministic polynomial time. Solutions in NP can be verified in poly-

nomial time. However, we do not necessary know if we can find a solution in polynomial

time.

NP-Complete

If a problem in NP is not solvable in polynomial time, then it is probably part of NP-

Complete. All these problems can be reduced to each other in polynomial time. This

means that if you are able to solve one of them in polynomial time, you can solve all of

them in polynomial time.
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NP-Hard

The class of problems π such that all problems in NP can be reduced to π. While π may

not necessarily be in NP itself, it is the class of NP-hard problems.

Both of the following conditions have to be true for a problem to be NP-Complete.

1. NP-Hard π: all of NP can be reduced to π.

2. π ∈NP: Solutions to π can be verified in polynomial time.

In my thesis, when I am discussing NP-Hard, I will exclude NP-Complete problems for

simplicity.

Cryptosystems

If you base your cryptosystem on a very complex problem, it becomes resilient against

attacks. By properly using problems that are NP-Hard we could design a resilient crypto

system. When it comes to cryptography, it is important that the problem we use is

Ω(NP-Hard).

3.3 Lattice Theory

A lattice is a simply a vector space over R. Each of the points in the lattice is a linear

combination over R of the basis vectors.

Definition 3.3.1 (Lattice) Given n linear independent vectors B = (b1, b2, ...., bn) ∈
Rn. The lattice generated by the vectors is defined as

L(B) = L(~b1, ~b2, ...., ~bn) = {Σxibi|xi ∈ Z}.

Here we refer to B as the basis of the lattice. We can take the scaled sum of the vectors

and create other vectors that are also in the lattice.
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3.4 Shortest Vector Problem(SVP)

Lattice contains many problems that are NP-hard. The Shortest Vector Problem (SVP)

which is defined in 3.4.1 is proven to be NP-hard by Daniele Micciancio [22]. Here we

use the Euclidean norm which is defined in 3.4.2.

Definition 3.4.1 (Shortest Vector Problem) Given a basis B = {~b1, ~b2, ...., ~bn} ∈
Zm×n , the shortest vector problem is to find a vector ~v satisfying

‖~v‖ = min
~u∈L(B)\0

‖~u‖ = λ1(L(B)).

Definition 3.4.2 (Euclidean Norm) On the n-dimensional Euclidean space Rn, in in-

tuitive notion of the length of the vector x = (x1, x2, . . . , xn) is captured by the formula.

‖x‖2 :=
√
x2

1 + · · ·+ x2
n.

Example. The Shortest Vector Problem might be represented as this. For simplicity, we

will be basing our lattices over integers.

~b1
~b2

~v

Figure 3.2: Example 1 of SVP
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In Figure 3.2 we illustrate a lattice L ⊂ R2 with the basis of B = {[−27, 13], [−41, 17]}.
In this case, the shortest vector ~v is [1,5] because:

3 · [−27, 13]− 2 · [−41, 17] = [1, 5]

This might look like an easy problem to solve, given that you only have two dimensions.

However, the problem’s difficulty rapidly increases as the number of dimensions increases.

The fastest discovered algorithm for solving this problem is the Lenstra–Lenstra–Lovász

lattice basis reduction algorithm [18] which has a time complexity of the non-deterministic

polynomial Ω(2n) where n represents the dimensions of the lattice. SVP has also been

proven by to be Ω(NP-Hard) by Miklós Ajtai in his proceedings in 1998 [3]. As n grows,

this becomes too time-consuming for existing computers to solve, and there has not yet

been discovered any post-quantum algorithms that can solve this.

The SVP problem is hard to solve given a bad basis, and is easy if you have a good basis.

A good basis is when the vectors are reasonably orthogonal to one another. SVP on a

good basis is just the shortest basis vector. This is illustrated in Figure 3.3 where ~b1 is

the shortest vector.

~b1

~b2

Figure 3.3: Example 2 of SVP
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3.5 Closest Vector Problem(CVP)

CVP is closely related to SVP. Given a lattice L and a target point x, CVP asks us to

find the closest lattice point to the target [23]. A mathematical definition has been given

in Definition 3.5.1. Goldreich et al. showed that any hardness of SVP implies the same

hardness for CVP [12]. Solving CVP has a Ω(NP-hard) time complexity if you have a

bad basis. On the other hand if you have a good basis CVP can be solved in polynomial

time using Babais algorithm [4].

Definition 3.5.1 (Search Closest Vector Problem) For any approximation param-

eter γ = γ(n) ≥ 1, the search problem CV Pγ is defined as follows.

The input is a basis for a lattice B ⊂ Rn and vector t ∈ Rn, the target. The goal is to

output a vector y ∈ L satisfying

‖t− y‖ ≤ γ · dist(t,L)

In general, if the basis vectors are close to orthogonal on each other, CVP can easily be

solved using Babai’s Closest Vertex Algorithm 1. László Babai was able to show that you

could solve CVP with polynomial time complexity.

Theorem 1 (Babai’s Closest Vertex Algorithm) Let L ⊂ Rn be a lattice with ba-

sis v1, v2, . . . , vn and let w ∈ Rnbe an arbitrary vector. If the vectors in the basis are

sufficiently orthogonal to one another, then the following algorithm solves CVP [13].

Write w = t1v1 + t2v2 + · · ·+ tnvn with t1, . . . , tn ∈ R.

Set ai = btie = 1, 2, . . . , n.

Return the vector v = a1v1 + a2v2 + · · · anvn.
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3.5.1 Solving CVP with a good basis

Suppose we want to solve CVP with a good basis as illustrated in Figure 3.4.

~b1

~b2
~y

Figure 3.4: Example of CVP with good basis

Problem: To solve this CVP we must find the closest vector to the target point [31,-2].

This point is marked as a blue triangle.

Solution: Since the basis vectors are reasonably orthogonal we can solve CVP by using

Babai’s algorithm 1, and we write the equation:

[31,−2] = a1 · [1, 5] + a2 · [14,−4]

This corresponds to the following systems:

1a1 + 14a2 = 31

5a1 − 4a2 = −2
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The systems have the following solutions

a1 =
48

37
≈ 1

a2 =
157

74
≈ 2

The solution is therefore

1 · [1, 5] + 2 · [14,−4] = [29,−3]

[29,-3] is the closest lattice point and is marked as a green dot in Figure 3.4.

3.5.2 Solving CVP with bad basis

When we are to solve CVP for the same target point [31,-2] and we are given the bad

basis form Figure 3.2. We write the equation:

[31,−2] = a1 · [−27, 13] + a2 · [−41, 17]

This corresponds to the following systems:

−27a1 − 41a2 = 31

13a1 − 17a2 = −2

The systems have the following solutions:

a1 =
445

74
≈ 6

a2 = −349

74
≈ −5

Using Babais algorithm to solve CVP with a bad basis gives us

6 · [−27, 13]− 5 · [−41, 17] = [43,−7]
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This is not the closest lattice point. We can see that the lattice point with the good basis

marked with a green dot in Figure 3.4 is significantly closer than the point we got from

the bad basis (marked as a red dot) in Figure 3.5.

~b1
~b2

~y

Figure 3.5: Example of CVP with good basis

3.5.3 Crypto system based on CVP

As shown in the previous subsection solving the same CVP problem with a bad basis is

hard while solving it with a good basis is easy. We can use this idea to create a crypto

system where we use the bad basis as a public key and the good basis as a private key.

Example of a CVP crypto system

Alice wants to send Bob a message consisting of n secret numbers.

1. Bob creates a lattice L ⊂ Rn with a good basis.

2. Bob then reduces the good basis to a bad basis.

3. Bob sends the bad basis to Alice with each of the vectors enumerated ~b1,~b2, . . . ,~bn.

4. Alice encrypts her numbers by multiplying them with the bad basis which generates

a pont x in the lattice.
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5. Alice then adds a small error to x lets call this new point z.

6. Alice then sends z to Bob

7. Bob can use his good basis to quickly solve the CVP problem by finding z closest

lattice point x.

8. Bob can then multiply x with the inverse of the bad basis and get Alice’s secret

numbers.

The reason Alice sends z instead of x is because the attacker can easily find Alice’s secret

numbers as shown in step 8.

Lattice-based cryptosystems today essentially use the above idea, but they are more

elaborate.

3.6 Learning With Errors (LWE)

The LWE problem was first introduced by Oden Regev in 2005 [1]. LWE is based on

solving a linear system of equations with errors. There are two types of LWE problems:

Search-version LWE and decisional-version LWE.

3.6.1 Search LWE

Search LWE asks us to recover a secret vector s ∈ Znq , when we are given m samples of

(ai, 〈ai, s〉+ ei),

where ai ∈ Znq is sampled from a uniform distribution and ei is sampled from a discrete

Gaussian distribution χ.
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Example 1 (Search LWE) This problem asks us to recover the secret s ∈ Z5
21 with the

following system of equations. Each of the equations has an error between e± 1.

6s1 + 3s2 + 13s3 + 7s4 + 6s5 ≈ 3 (mod 21)

7s1 + 13s3 + 7s4 + 6s5 ≈ 17 (mod 21)

2s1 + 15s2 + 13s3 + 2s4 + 15s5 ≈ 9 (mod 21)

20s1 + 5s2 + 12s4 + 5s5 ≈ 20 (mod 21)

8s1 + 9s2 + 17s3 + 14s4 + 18s5 ≈ 15 (mod 21)

...

2s1 + 9s2 + 10s3 + 15s4 + 11s5 ≈ 12 (mod 21)

In this problem s = (19, 9, 2, 5, 16). If it was not for the error this problem could easily

be solved in polynomial time using Gaussian elimination. But in LWE the Gaussian

elimination will amplify the error to such an extent that we would be unable to recover

the information in s. This makes the problem significantly harder.

3.6.2 Decisional LWE

The Decisional LWE problem gives an input of samples (a, v) where a ∈ Znq is chosen

from a uniform probability distribution. The difference between search and decisional

LWE is that we must determine with some non-negligible error probability weather v is

chosen uniformly from Znq or if v is chosen to be (ai, 〈ai, s〉+ei) where s ∈ Znq is uniformly

chosen and ei ∈ Znq is chosen from χn.

3.7 Ring Learning With Errors (RLWE)

The RLWE problem was first introduced by Vadim Lyubashevsky, Chris Peikert, and

Oded Regev in 2013 [19]. RLWE is a variant of LWE, but instead of using vectors Znq
it works with polynomials over rings Zq[X]/(Xn + 1). RLWE can be defined similarly

to LWE (ai, 〈ai, s〉+ ei), but the variables are polynomials drawn from Zq[X]/(Xn + 1).

Each of the variables uses the same probability distributions as in LWE.

RLWE has multiple advantages over LWE when it comes to homomorphic encryption.

One is that multiplication between polynomials can be done a lot quicker by using the
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Fast Fourier Transform(FFT) algorithm. FFT has a time complexity of O(n log(n)).

This is significantly faster than matrix multiplication which has a time complexity of

O(n2).

3.7.1 RLWE crypto system

By applying RLWE we can develop a crypto system: Let the public key be pk = (a,−as+

e) ∈ (Zq[X]/(Xn + 1))2, the secret key be s ∈ Zq[X]/(Xn + 1) and the plaintext be

m ∈ Zq[X]/(Xn + 1).

Encryption:

ciphertext = (0,m) + pk = (a,m− as+ e) = (c0, c1)

Decryption:

m’ = c0 + c1 · s = m− a · s+ e+ a · s = m+ e ≈ m
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Chapter 4

CKKS Scheme

In this chapter I describe the different stages of the CKKS scheme. CKKS allows you to

perform approximate fully homomorphic operations on complex floating point numbers

at a high speed. CKKS was introduced as an approximate encryption scheme in 2016

by Cheon et al. [5]. “Approximate“ means that you will not get the exact message you

originally encrypted, but a number close to it, depending on the encryption parameters.

The CKKS scheme only encrypts numbers. Numbers can represent everything from

letters and symbols to entire computer programs. The authors of CKKS argue that all

real world data will have some error. Trying to get the exact number you encrypted is

irrelevant. CKKS is a public key crypto system. This implies that you have a public key

for encryption and a private key for decryption. The secret key should be kept private.

In this section I give a brief introduction on the mathematical background of CKKS. This

includes the message, the encoding and the encryption part.

Figure 4.1: Overview of CKKS stages[8]
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4.1 Message

The CKKS scheme supports approximate arithmetics over complex numbers. The input

message of the crypto system must be vectors from the space of Cn
2 , where n is some

power-of-two integer. This vector is defined as ~z = (z1, z2, ...., zn
2
) ∈ Cn

2 .

4.2 Encoding

Encoding is the process of changing the data, or the message, into a new format called

plaintext. This entails that it can be interpreted and encrypted by the CKKS scheme.

In this Subsection I follow the encoding technique for packing messages from [5].

In CKKS we are mapping the message ~z ∈ Cn
2 into a cyclotomic polynomial ring with

integer coefficients m(X) = Z[X]/(Xn+1), where n is the degree modulus of the polyno-

mial. For simplicity and security n will be a power of 2. The encoding algorithm receives

two parameters: the message and the scaling factor ∆ > 1. Having a large ∆ gives us

more accuracy but reduces the number of homomorphic operations we can perform.

The values generated from the operations:

C
n
2

π−1

−−→ H ∆·H−−→ V
b·eσ(Z[X]/(Xn+1))−−−−−−−−−−→ σ(Z[X]/(Xn + 1))

σ−1

−−→ Z[X]/(Xn + 1)

The operations performed on vector ~z:

~z → π−1(~z)→ ∆ · π−1(~z)→ b∆ · π−1(~z)eσ(Z[X]/(Xn+1) → Z[X]/(Xn + 1)

The easiest way to understand CKKS encoding, is by explaining each of the steps indi-

vidually.

28



4.2.1 Embedding

The inverse embedding operation defined as σ−1 is the last step of the encoding process.

We will start with this step because it will give us a better understanding of the steps

leading up to it and the properties to embedding. The embedding works as a map between

polynomials and vectors, which is an isometric ring homomorphism.

In this example we will use inverse embedding to map vector ~z ∈ Cn to a polynomial

m(X) ∈ C[X]/(Xn + 1) and use embedding to map vice versa.

The embedding-1 is the map from:

Cn σ−1

−−→ C[X]/(Xn + 1)

The embedding is the map from:

C[X]/(Xn + 1)
σ−→ Cn

Embedding is defined as an isomorphism. This means that it is a bijective homomorphism

meaning that every vector maps to a unique polynomial and every polynomial maps to

a unique vector.

Embedding

The embedding is easier to understand than the embedding-1. I will therefore start

with the embedding.

The embedding is performed by evaluating the encoded polynomial on specific values.

These values are the roots of unity for cyclotomic polynomial Φ2n(X) = Xn + 1. We

define these roots as (ζ, ζ3, . . . , ζ2n−1) where ζ = e
2iπ
2n .

The embedding process can be described like this.

σ(m) = (m(ζ),m(ζ3), . . . ,m(ζ2n−1)) ∈ Cn = [z1, z2, . . . , zn] = ~z

Inverse embedding

Finding the polynomial that when evaluated on the roots of unity maps to the embedded
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vector ~z is harder. The polynomial must satisfy m(X) = Σn−1
i=0 αiX

i ∈ C[X]/(Xn + 1),

given the vector ~z, where α is the coefficients of the polynomial that we need to find.

To find the polynomial coefficients α to solve the following system.

Σn−1
j=0αj(ζ

2i−1)j = zi, i = 1, . . . , n

This can be solved by using the values as a system of linear equations. Aα = ~z where A

is the Vandermonde matrix of ζ2i−1
i=1,...,n.

A =



(ζ)0 (ζ)1 (ζ)2 . . . (ζ)n

(ζ3)0 (ζ3)1 (ζ3)2 . . . (ζ3)n

(ζ5)0 (ζ5)1 (ζ5)2 . . . (ζ5)n

...
...

...
. . .

...

(ζ2n−1)0 (ζ2n−1)1 (ζ2n−1)2 . . . (ζ2n−1)n


We get the polynomial by solving the following equation

α = A−1~z

Example

1) Inverse embedding

Suppose you want to map the vector ~z = [4.44+2i, 4, 2+ i, 2i] to a cyclotomic polynomial

C[X]/(X4 + 1).

We can describe this as

~z ∈ C4 σ−1

−−→ C[X]/(X4 + 1)

We start by calculating the Vandermonde matrix A where ζ = e
2iπ
8 ≈ 0.7071 + 0.7071i

(ζ)0 (ζ)1 (ζ)2 (ζ)3

(ζ3)0 (ζ3)1 (ζ3)2 (ζ3)3

(ζ5)0 (ζ5)1 (ζ5)2 (ζ5)3

(ζ7)0 (ζ7)1 (ζ7)2 (ζ7)3

 =


1 (0.7071 + 0.7071i) i (−0.7071 + 0.7071i)

1 (−0.7071 + 0.7071i) −i (0.7071 + 0.7071i)

1 (−0.7071− 0.7071i) i (0.7071− 0.7071i)

1 (0.7071− 0.7071i) −i (−0.7071− 0.7071i)


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We now have the following system Aα = ~z.
1 (0.7071 + 0.7071i) i (−0.7071 + 0.7071i)

1 (−0.7071 + 0.7071i) −i (0.7071 + 0.7071i)

1 (−0.7071− 0.7071i) i (0.7071− 0.7071i)

1 (0.7071− 0.7071i) −i (−0.7071− 0.7071i)

 ·

α1

α2

α3

α4

 =


(4.44 + 2i)

4

2 + i

2i



By solving α = A−1~z we get.

α1 = 2.61 + 1.25i

α2 = −0.4525− 0.6081i

α3 = 0.25− 0.6081i

α4 = 0.0990− 1.6688i

This gives us the polynomial

m(X) = (2.61 + 1.25i) + (−0.4525− 0.6081i)x+ (0.25− 0.6081i)x2 + (0.0990− 1.6688i)x3

2) Additive homomorphism

To show the embeddings additive homomorphism we create a new polynomial m′(X).

m′(X) = m(X)+m(X) = (5.22+2.5i)+(−0.9051−1.2162i)x+(0.5−1.22i)x2+(0.1980−3.3375i)x3

3) Embedding

We now map the polynomial back to a vector ~z′.

C[X]/(X4 + 1)
σ−→ ~z′ ∈ C4

This is done by solving Aα = ~z′ where α is m′(X) coefficients .
1 (0.7071 + 0.7071i) i (−0.7071 + 0.7071i)

1 (−0.7071 + 0.7071i) −i (0.7071 + 0.7071i)

1 (−0.7071− 0.7071i) i (0.7071− 0.7071i)

1 (0.7071− 0.7071i) −i (−0.7071− 0.7071i)

·


(5.22 + 2.5i)

(−0.9051− 1.2162i)

(0.5− 1.22i)

(0.1980− 3.3375i)

 =


(8.88 + 4i)

8

4 + 2i

4i


Here we can see that ~z′ = ~z + ~z. This shows the additive homomorphism from step 2.
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4.2.2 Inverse Natural Projection

In 4.2.1 we mapped a vector ~z ∈ Cn to C[X]/(Xn + 1). CKKS maps ~z ∈ Cn
2 to the

cyclotomic polynomial Z[X]/(Xn+1). We therefore have to modify the values of ~z ∈ Cn
2

to be embedded in Z[X]/(Xn + 1). One of these steps is expanding ~z ∈ Cn
2 by using

inverse natural projection π−1.

C
n
2

π−1

−−→ H

such that

[z1, . . . , zn
2
]
π−1

−−→ [z1, . . . , zn
2
, z n

2
+1, . . . , zn]

where zn−i is the conjugate of zi

4.2.3 Scaling

This step is simple. We multiply with the scaling factor ∆. The size of the scaling factor

determines the accuracy of the encoding.

H ∆·H−−→ V

4.2.4 Projection to the lattice

We will now project the vector ~z ∈ V on to the lattice of σ(Z[X]/(Xn+ 1)). We compute

the coordinates of z with repect to the orthogonal lattice basis. The orthogonal lattice

basis is the good basis as discussed in Section 3.5.

V
b·eσ(Z[X]/(Xn+1))−−−−−−−−−−→ σ(Z[X]/(Xn + 1))

~z ∈ V = [z1, z2, . . . , zn]→ a = (a1, a2, . . . , an) =

(
(~z, V1)

(V1, V1)
,

(~z, V2)

(V2, V2)
, . . . ,

(~z, Vn)

(Vn, Vn)

)
Vi represents the i-th column of the Vandermonde matrix A defined in Subsection 4.2.1.

We then round each of the coordinate values to its closest integer and multiply it with

the Vandermonde matrix.

a→ bae · V
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4.2.5 Decoding

The decoding is just the inverse of the encoding.

~z = π ◦ σ(∆−1 ·m)

4.2.6 Encoding and decoding example

~z = [2.25+3.4i, 5+9.1i], ∆ = 64

Encoding

1) Inverse Natural Projection

[2.25 + 3.4i, 5 + 9.1i]
π−1

−−→ [2.25 + 3.4i, 5 + 9.1i, 5− 9.1i, 2.25− 3.4i]

2) Scaling

[2.25+3.4i, 5+9.1i, 5−9.1i, 2.25−3.4i]
H·∆−−→ [144+217.6i, 320+582.4i, 320−582.4i, 144−217.6i]

3) Projection

~z = [144 + 217.6i, 320 + 582.4i, 320− 582.4i, 144− 217.6i]

V =


1 (0.7071 + 0.7071i) i (−0.7071 + 0.7071i)

1 (−0.7071 + 0.7071i) −i (0.7071 + 0.7071i)

1 (−0.7071− 0.7071i) i (0.7071− 0.7071i)

1 (0.7071− 0.7071i) −i (−0.7071− 0.7071i)



[
(~z, V1)

(V1, V1)
,

(~z, V2)

(V2, V2)
,

(~z, V3)

(V3, V3)
,

(~z, V4)

(V4, V4)

]
= [232, 220.61731573,−182.4, 345.06810922]

≈ [232, 221,−182, 345]

[232, 221,−182, 345]·V = [144.319+218.222i, 319.681+582.222i, 319.681−582.222i, 144.319−218.222i]
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4) Inverse Embedding

We now have Aα = ~z
1 (0.7071 + 0.7071i) i (−0.7071 + 0.7071i)

1 (−0.7071 + 0.7071i) −i (0.7071 + 0.7071i)

1 (−0.7071− 0.7071i) i (0.7071− 0.7071i)

1 (0.7071− 0.7071i) −i (−0.7071− 0.7071i)

 ·

α1

α2

α3

α4

 =


(144.319 + 218.222i)

319.681 + 582.222i

319.681− 582.222i

144.319− 218.222i



By solving α = A−1~z we get.

α1 = 232

α2 = 221

α3 = −182

α4 = 345

We have now completed the encoding, and we now have the polynomial:

m(x) = 232 + 221x1 − 182.0x2 + 345.0x3

.

Decoding

1) Inverse Scaling

(232 + 221x1 − 182.0x2 + 345.0x3) ·∆−1 = 3.625 + 3.453125x− 2.84375x2 + 5.390625x3

2) Embedding

p(x) = 3.625 + 3.453125x− 2.84375x2 + 5.390625x3

[p(ζ1), p(ζ3), p(ζ5), p(ζ7)] = [2.255 + 3.410i, 4.995 + 9.097i, 4.995− 9.097i, 2.255− 3.410i]

3) Natural Projection

[2.255+3.410i, 4.995+9.097i, 4.995−9.097i, 2.255−3.410i]
π−→ [2.255+3.410i, 4.995+9.097i]
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4.3 Leveled Homomorphic Encryption

This chapter covers encryption and the homomorphic operations that can be performed

on encrypted data, also referred to as ciphertext.

4.3.1 Key Generation

We will also introduce a new sampling distribution HWT (h) which contains a set of

vectors in {−1, 0, 1}n with a Hamming weight of h. This means that each of the vectors

has exactly h non-zero values. For simplicity, I will write R instead of Z[X]/(Xn+1) and

RQ instead of ZQ[X]/(Xn + 1). The notation a← RQ means that a is a sample from a

uniform probability distribution of the set RQ. χ is a discrete Gaussian distribution.

Choose values for n, q,Q,∆, h, where q,Q,∆ and n have to be powers-of-two. To avoid

errors under the rescaling procedure ∆ < q < Q.

Secret key

The secret key is generated as a sample from s← HWT (h).

sk = (1, s) ∈ R2
Q

Public key

The CKKS encryption uses variables from the RLWE problem as we discussed in 3.7 as

the public key pk. The variables are generated as a← RQ and e← χ.

pk = (a,−as+ e) ∈ R2
Q

We use −a in the second polynomial because it makes the decryption slightly easier 4.3.3.

Switching key

We generate the switching key by inputting two values sk and s′ ∈ RQ. We sample

a← RQ and e← χ.

swk = (a,−as+ e+Q · s′) ∈ R2
Q2

Relinearization key

The relinearization key is generated with the help of the switching key generation method.

The variable s is the same as in sk.

rlk = SwitchingKeyGenerator(sk, s2) ∈ R2
Q2
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4.3.2 Encryption

We will encrypt the message m ∈ R by using pk into a ciphertext ct. For encryption, we

will introduce a new probability distribution ZO(p). For real 0 ≤ p ≤ 1, the distribu-

tion ZO(p) draws vectors form {−1, 0, 1}n, where each value in the drawn vector has a

probability of 1− p for being a zero and p/2 for each of −1 and +1.

Encryption

Let v ← ZO(0, 5) be an ephemeral value, e0, e1 ← χ and the public key pk = (a, b).

ct = v · pk + (m+ e0, e1) = (v · a+ e0 +m, v · b+ e1) ∈ R2
q

4.3.3 Decryption

We decrypt ct = (c0, c1) by using the secret key sk = 〈1, s〉.

m′ = c0 + c1 · s = m− a · s+ e+ a · s (mod q) = m+ e ≈ m

4.3.4 Evaluation

The part where we preform homomorphic operations on encrypted data. We can not

perform operations ciphertext that has different modulo q. The ciphertexts we will do

operations on are ct = (a, b) and ct′ = (a′, b′).

Addition(ct, ct’):

When perform addition, the ciphertexts must have the same scaling factor.

ctadd = (a+ a′ (mod q), b+ b′ (mod q))

Multiplication(ct, ct’, rlk):

We will use ∆ and ∆′ as the scaling factor for ct and ct′.

c0 = a · a′ (mod q)

c1 = a · b′ + b · a′ (mod q)

c2 = b · b′ (mod q)
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We will use rlk = (r0, r1) to reduce the number of polynomials to two.

c′0 = ct+ bQ−1 · c2 · r0e (mod q)

c′1 = ct′ + bQ−1 · c2 · r1e (mod q)

The resulting ciphertext ctmult = (c′0, c
′
1) will have the scaling factor ∆mult = ∆ ·∆′.
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Chapter 5

Specifications for implementation

I have implemented the CKKS scheme with a Graphical User Interface(GUI) and a code-

based interface. The GUI is made to give the user an easy and intuitive introduction to

the CKKS scheme with no programming or mathematical experience. One example is

that it renders error messages to help the user write valid input. The code-based interface

gives the user more flexibility and room to experiment. The downside is that it does not

have the same restrictions as the GUI, which makes it easier to do mistakes and generate

invalid output or crash the program. I have implemented the scheme using the Java

version 15.

5.1 Architecture

This library is divided into 7 parts: Parameters, KeyGenerator, Encoder, Encryptor,

Evaluator, Decryptor and GUI I will discuss each of them in the following Subsections.

The user sets the parameters: Polynomial degree n, small modulus q, Big modulo Q,

scaling factor ∆, prime number bit size θ and Miller-Rabin iterations β.

5.1.1 Parameters

The purpose of parameters is to store the values necessary for encoding, encryption and

key generation. This is an efficient way to sore information from operation to operation.
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Parameters creates and instance of the ChineseRemainderTheorem class (CRT). CRT

generates 2+log2(n)+ 4·log2(Q)
θ

primes, where each of the primes p satisfies p ≡ 1 (mod 2n).

Each of the primes is generated with the Miller-Rabin primality test, which starts by

testing if 10θ−1 + 1 is prime and for each iteration adds an extra 2n to the initial value

until all the necessary primes has been created. I add 2n such that 1 ≡ p (mod 2n).

CRT then creates an instance of the Number Theoretical Transform(NTT) for each of the

primes. Each of the NTTs then finds the primitive element (ψ) to its prime (ι) which is

Defined in 5.1.1. NTT then finds the root of unity κ = ψι−1

2n
(mod ι) and the inverse root

of unity ρ = κι−2 (mod ι). NTT then calculates the roots of unity [κ0, κ1, κ2, . . . , κn−1]

then the roots of unity inverse [ρ0, ρ1, ρ2, . . . , ρn−1].

Definition 5.1.1 (Primitive element(ψ))

Z∗q = {a ∈ N : 1 ≤ a < n, gcd(a, n) = 1}

A primitive root (mod q) is an element g ∈ Z∗q whose powers generate all of Z∗n. That

is, every element b ∈ Zn can be written as gx (mod q) for some integer x.

Figure 5.1: Parameters UML
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5.1.2 Key generator

The secret key will be created with the Hamming weight of n
4
, which means that the

security of the ciphertext depends on the size of the encrypted vector. When generating

the error (e) for the public key ((a,−as+ e) and the switching key (a,−as+ e+Q · s′) I

used the ZO(0, 5) as the Gaussian distribution, which was introduced in 4.3.2.

5.1.3 Encoder

Before we can start encoding the program must first construct the class, which creates

and instance of the Fast Fourier Transform (FFT). FFT precomputes the roots of unity

and the roots of unity inverse to the cyclotomic Φ2n(X) as discussed in 4.2.1. The encoder

implemented will be more advanced than the one discussed in 4.2. My encoder is based

on the latest developments in the HEAAN library [6].

Figure 5.2: Encoder UML

5.1.4 Encryption and Decryption

The values e0 and e1 in ct = v · pk + (m+ e0, e1) will be generated from the distribution

ZO(0, 5). The rest has been implement as described in 4.3.2 and 4.3.3.
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5.1.5 Evaluator

Described in 4.3.4.

Figure 5.3: Evaluator UML

5.1.6 Graphical User Interface(GUI)

The purpose of the GUI is to offer a basic introduction to the user. The user will be

guided through the different steps of the CKKS scheme. This implies that no program-

ming knowledge is needed. The GUI is divided into four frames, that the user fills out

sequentially.

In the first frame, the user must fill in the length and size of the vectors. The first frame

is illustrated in 5.4.
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Figure 5.4: Frame one

The next step is to fill in the vector values, which later are available for cryptographic

operations. This frame is illustrated in Figure 5.5.

Figure 5.5: Frame two

In the third step, the user will set the parameters which are discussed in 5.1. The program

gives the user some suggestions, and the user can make his choices.

Figure 5.6: Frame three

In the final step, the user can perform encoding, encryption and homomorphic operations

like multiplication, addition and subtraction on the vectors from the second step. This

frame is illustrated in figure 5.7.

When a user is to encrypt vectors, the user must first press the ”Generate keys” button.

All the vectors and cryptographic keys values will be printed to the terminal when the

user presses one of the ”Show buttons”.
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Figure 5.7: Operation frame

To perform evaluation operations, the user must press the ”Add” button to the right of

one of the vectors, and then select one of the algebraic operations, add another vector and

finally press ”Evaluate”. When the user presses ”Evaluate”, the result will be printed to

the terminal and the resulting vector will be added under ”Results”.

A problem I faced while creating the GUI, was showing the vectors and keys to the

user. It would have been too messy and cluttered to have them in the GUI. Adding

scrolling would not help with the user-friendliness. As a solution to this challenge, I

chose to combine the GUI with the terminal. This implies that I print these values to

the terminal.

Another problem is that when you encode or decode a vector, a small error will be added.

If the user pressed a wrong button, the user must go back and set the vector again. To

prevent this, the program remembers when a vector has been unencoded and previously

encoded. Then it will pick the previously saved state.
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Chapter 6

Discussion and conclusion

In this master thesis I implemented a Java library based on the CKKS scheme. This

library supports approximate arithmetic on encrypted data consisting of real numbers.

This master thesis is relevant because cloud computing is becoming increasingly popular

due to low price and convenience. However, cloud computing is problematic because it

can allow 3rd parties to access the stored information. Homomorphic encryption is a

good preventive measure. Moreover, we must develop more resilient cryptosystems based

on complex mathematical problems to defend ourselves in the coming era of quantum

computers.

The field of homomorphic encryption is developing in a fast pace and this does not seem to

slow down anytime soon. A cutting edge development is the CKKS encryption scheme,

which was first published in 2016 [5]. It has been under continuous development ever

since, and this is where this master thesis contributes.

Moreover, in this master thesis I describe various types of encryption and what criteria a

good cryptosystem should follow. A fundamental issue is the tradeoff between efficiency

and security. I have described the mathematical concept of homomorphism and intro-

duced Ω(NP-Hard) problems based on lattices and showed how these could be applied to

cryptography.

Further, I have explained the CKKS scheme and its methods for encoding, encryption and

evaluation. However, in addition to the descriptions, the main contribution of this master

thesis is my implementation of the CKKS scheme in Java. Java is a popular language,

less complex than C++ and faster than Python. To my knowledge, an implementation
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in Java has never been done before. In addition, I created a graphical user interphase

(GUI) to give the user a basic overview of the CKKS scheme. Moreover, it provides

a user-friendliness to encompass users with limited programming experience. A future

research avenue is to find a way to set up the library for server-client mode.

To conclude, Fully Homomorphic Encryption (FHE) is cutting edge. It gives us a future

ability to process sensitive data safely in a convenient and cost-effective way, also with

third parties as cloud computing providers.
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