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Summary

Hydrological forecasting has been an ongoing area of research due to its impor-
tance to improve decision making on water resource management, flood man-
agement, and climate change mitigation. With the increasing availability of
hydrological data, Machine Learning (ML) techniques have started to play an
important role, enabling us to better understand and predict complex hydro-
logical events. However, some challenges remain. Hydrological processes have
spatial and temporal dependencies that are not always easy to capture with
traditional ML models, and a thorough understanding of these dependencies is
essential when developing accurate predictive models.

This thesis explores the use of ML techniques in hydrological forecasting and
consists of an introduction, two papers, and an application developed alongside
the case study. The motivation for this research is to enhance our understand-
ing of the spatial and temporal dependencies in hydrological processes and to
explore how ML techniques, particularly those incorporating attention mecha-
nisms, can aid in hydrological forecasting.

The first paper is a chronological literature review that explores the develop-
ment of data-driven forecasting in hydrology, and highlighting the potential ap-
plication of attention mechanisms in hydrological forecasting. These attention
mechanisms have proven to be successful in various domains, allowing models
to focus on the most relevant parts of the input for making predictions, which
is particularly useful when dealing with spatial and temporal data.

The second paper is a case study of a specific ML model incorporating these
attention mechanisms. The focus is to illustrate the influence of spatial and
temporal dependencies in a real-world hydrological forecasting scenario, thereby
showcasing the practical application of these techniques.

In parallel with the case study, an application has been developed, employing the
principles and techniques discovered throughout the course of this research. The
application aims to provide a practical demonstration of the concepts explored
in the thesis, contributing to the field of hydrological forecasting by introducing
a tool for hydropower suppliers.

vi



Part I

Background
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Chapter 1

Hydrological Forecasting

1.1 Importance of Hydrological Forecasting

Hydrological forecasting is an important tool in water resource management,
flood management, and climate change mitigation. It involves predicting future
water values such as streamflow and inflow, based on past and present historical
data. These forecasts play a significant role in different fields, and influence
decision making and strategic planning [14, 21].

An area where hydrological forecasting displays its importance is disaster man-
agement, particularly in relation to floods [13] and droughts [8]. By providing
precise and accurate hydrological forecasts, disaster preparedness and mitiga-
tion can be improved, resulting in reduced damages and potentially saving lives.
For example, flood forecasts can provide an early warning to areas which are
flood-prone, allowing them to evacuate and reduce the risk of casualties.

In resource management, hydrological forecasts are critical for optimizing the
allocation of water resources. These forecasts can help inform the decision mak-
ing related to the distribution of water between different uses, such as domestic
consumption, industry, and maintaining ecological flows [22].

In the hydropower sector, accurate hydrological forecasts help optimize power
generation [10]. By creating accurate inflow forecasts into reservoirs, hydropower
suppliers can optimize the generation schedule to match peak demand, which
would maximize efficiency and revenue.

However, it is important to note that hydrological forecasting is dependent on its
accuracy. Errors or inaccuracies in forecasts can have significant consequences.
As an example, an overestimation of precipitation can lead to unnecessary dis-
charge of water from a reservoir, wasting valuable water resources. Similarly,
underestimation of a flood event can delay necessary evacuations, putting many
lives at risk. Therefore, advancements in hydrological forecasting methodolo-
gies are important for improving accuracy and reducing uncertainty, leading to
better informed decision-making and resource allocation.
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1.2 Approaches to Hydrological Forecasting

Hydrological forecasting has had a rapid development over the years, due to
increased data availability and computational power [10]. This has lead to
various methodologies and approaches being developed for creating accurate
predictions. As seen in Figure 1.1, these approaches can be classified into two
broad categories: physically-based models and data-driven models.

Physically-based models are deterministic, leveraging mathematical equations
based on the laws of physics that describe the movement and storage of water in
a hydrological cycle. These models are highly dependent on the understanding
and representation of physical processes. On the other hand, data-driven meth-
ods take advantage of computational advancements and the increasing availabil-
ity of data to learn relationships directly from data.

Figure 1.1: The two broad approaches to hydrological forecasting: Physically-
based models and Data-driven models, the latter further classified into Statis-
tical and ML models.

1.3 Physically-Based Models

Physically-based models in hydrology attempt to simulate the intricate processes
of the water cycle [25]. These models rely on deterministic methods that use
physical principles and mathematical equations to understand the behavior of
the hydrological cycle. Therefore, a deep understanding of the physical processes
involved is crucial for their successful implementation and operation.

An example of physically-based models is the Hydrologiska Byr̊ans Vattenbal-
ansavdelnin (HBV) model, first introduced by the Swedish Meteorological and
Hydrological Institute [24]. The HBV model contains several components, each
representing a specific aspect of the hydrological cycle, including snow accumu-
lation and melt, soil moisture, and water runoff [25]. It applies a mix of empirical
and physically-based relationships to simulate the hydrological responses within
a catchment area. The model’s advantage lies in its simplicity, robustness, and
flexibility to handle varied geographical and climatic conditions, making it a
widely adopted tool in hydrological forecasting.
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However, it is essential to note that the performance and reliability of physically-
based models, including the HBV, often depend on the quality of the hydro-
meteorological data as well as the accurate representation of the complex physi-
cal processes within the model. Any inaccuracies in the input data or deficiencies
in the model representation could lead to significant errors in the forecast.

1.4 Conventional Data-Driven Models:
Statistical Methods

Statistical methods are data-driven and rely on identifying and exploiting sta-
tistical patterns in the data. They typically require assumptions about the
statistical properties of the data and the relationships between variables. De-
spite some limitations, particularly with non-linear, these conventional models
have been widely used in hydrological forecasting due to their simplicity, inter-
operability and ease of implementation. Some often used models in hydrological
forecasting are the Historical Average (HA), Multiple Linear Regression (MLR)
[7], Auto Regressive Moving Average (ARMA) [23], and Auto Regressive Inte-
grated Moving Average (ARIMA) [28] models.

Historical Average (HA)

The HA model is a simplistic but occasionally effective forecasting tool. It
works on the premise that the predicted future value is calculated by the his-
torical mean of the previous sequence of data. In the context of hydrological
forecasting, the HA model often functions as a benchmark against which the
performance of more intricate models is measured (see, e.g., [12]). Its benefits lie
in its straightforwardness, both in terms of understanding and implementation,
and that it does not make any assumptions about the statistical properties of the
data. Despite these advantages, HA does have significant limitations. Its sim-
plicity makes it unable to capture more complex data patterns such as trends,
seasonality, and non-linear relationships.

Multiple Linear Regression (MLR)

MLR is a statistical technique used to model the relationship between two or
more variables and a response variable by fitting a linear equation on the histori-
cal data. In the context of hydrological forecasting, the response variable can be
the hydrological variable we want to predict, such as inflow, while the explana-
tory variables can be other parameters that influence it, such as precipitation
and temperature.

The advantages of MLR include its simplicity, interoperability, and speed of
computation [7]. It also provides a measure of the strength of the relationship
between variables through the regression coefficients. However, MLR assumes a
linear relationship between variables, which is often not the case in hydrological
processes.

4



Auto Regressive Moving Average (ARMA)

The ARMA model is a combination of two stochastic processes: Autoregressive
(AR) and Moving Average (MA). ARMA models are often used with time series
data, which is the case for hydrological forecasting. The AR component models
the current value of the time series as a linear combination of past values, while
the MA component models the current value as a linear combination of past
error. The order of the AR and MA components, i.e. how many past values or
errors are considered, are selected based on the data.

ARMA models are capable of modeling many different time series patterns and
are simple to understand and implement. However, they are based on the as-
sumption that the time series data is stationary, i.e. that the statistical prop-
erties of the data do not change over time, which is often not the case for hy-
drological data [23]. The ARMA models also struggle with modeling long-term
trends and seasonal patterns.

Auto Regressive Integrated Moving Average (ARIMA)

The ARIMA model is an extension of the ARMA model, which includes an in-
tegrated component to account for non-stationary in the data. The I in ARIMA
refers to the number of times the data have been differenced to make the time
series stationary. ARIMA models are more flexible than ARMA models and
can handle a wider range of time series patterns, including non-stationary data.
They are also capable of modeling long-term trends. However, like ARMA mod-
els, they are based on the assumption that there is a linear relationship between
variables and struggle with non-linear data [28]. Additionally, they also require
a significant amount of data to accurately estimate the models parameters.

1.5 Data-Driven Forecasting Methods: Machine
Learning Models

Machine Learning (ML) has emerged as a powerful alternative to the traditional
forecasting methods, significantly advancing hydrological predictions [10]. Un-
like conventional approaches, ML models are characterized by their data focused
approaches [19], which do not require an established understanding of the re-
lationships between variables and outcomes. This creates a flexibility that en-
ables the ML models to uncover intricate patterns and non-linear relationships
from the data, which conventional methods struggle with. Some of the com-
monly used models employed in hydrological forecasting include Support Vector
Machines (SVMs) [20], Artificial Neural Networks (ANNs) [17], and Recurrent
Neural Networks (RNNs) [9], among others.

The strength of ML models lies in their ability to learn and adapt from data.
Moreover, they are highly versatile and scalable, meaning they can handle large
datasets and high-dimensional inputs. However, the main disadvantage of ML
models is their lack of interpretability, often referred to as the black box problem
[30].
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Chapter 2

Machine Learning for
Hydrological Forecasting

This chapter serves as a comprehensive introduction providing the necessary
background knowledge required to further investigate the application of ML in
the field of hydrological forecasting. Understanding the fundamental concepts
of ML and its application in hydrology is an important step in identifying the
benefits and challenges in creating different techniques for hydrological forecast-
ing.

2.1 Introduction to Machine Learning

ML is a sub-field of Artificial Intelligence, and is centered around the idea of
enabling computers to learn from data and to improve their performance with-
out being explicitly programmed [21]. Essentially, these algorithms can identify
patterns and learn from experience. The learning process is guided by a vari-
ety of concepts, such as the representation of data, the parameters used, the
evaluation of models, and the optimization of algorithms.

In ML, there are primarily three types of learning categories, each of which is
characterized by its learning process, as described in [11]:

• Supervised Learning: In this category, the algorithm is trained on la-
beled data, meaning all data in the training set are paired with an ex-
pected output. The algorithm learns a function that maps the input to
the output. The objective of supervised learning is to accurately predict
the output for unseen data. It is commonly used for tasks such as regres-
sion (predicting continuous outputs) and classification (predicting discrete
outputs).

• Unsupervised Learning: This category involves training algorithms on
data without predetermined labels. Because the data is unlabeled during
training, there is no correct answer, which can make it challenging to
evaluate the performance of the ML algorithm. The goal of unsupervised
learning is to identify patterns, correlations, or clusters in the input data.

6



• Reinforcement Learning: Reinforcement learning is a type of ML
where the algorithm learns to make decisions by interacting with an en-
vironment. The algorithm receives feedback in the form of rewards or
penalties and aims to maximize the total reward over time. Unlike super-
vised and unsupervised learning, reinforcement learning focuses more on
learning which actions to take in specific situations.

The choice of these learning categories depend on the specific problem to be
solved and the data at disposal, with each category having its unique capabilities
and relevance.

2.1.1 Machine Learning in Hydrology

ML has emerged as a valuable tool in hydrological forecasting and modeling,
offering a data-driven approach to predict complex hydrological processes. This
is achieved mainly through supervised learning methods, given the predictive
requirements of the tasks and the existence of historical data. The increasing
availability of data, alongside advances in computational power, have given the
adoption of ML techniques to uncover hidden relationships and patterns in
hydrological data, which may not be easily captured by traditional physically-
based or statistical methods.

Figure 2.1 presents a flowchart depicting the iterative process of ML in hy-
drology, beginning with data collection and pre-processing. The data used in
hydrological forecasting can include historical records of inflow, precipitation,
temperature, and other relevant variables. After processing, the data is divided
into training and testing sets. The training set is used to develop and train the
ML model, while the testing set is employed to evaluate its performance and
generalization capabilities.

Figure 2.1: A flowchart depicting the iterative process of ML, from data collec-
tion and processing to model development, training, and testing.

2.1.2 Popular Machine Learning Algorithms in Hydrology

In the field of hydrological forecasting, ML models such as Support Vector Ma-
chines (SVM), Artificial Neural Networks (ANN), Recurrent Neural Networks
(RNN), and Long Short-Term Memory (LSTM) have demonstrated promising
results. See Paper 1 in Chapter 6 for a more detailed introduction on how these
have been used in hydrological forecasting.
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Support Vector Machines (SVM)

The SVM is a widely used ML method for both classification and regression
problems. Although SVMs are primarily used for classification, where they
optimize the differences between groups, they can also be adapted for regression
by transforming the data. Essentially, this approach allows the SVM to predict
continuous rather than categorical variables, making it a versatile tool in the
field of ML [21].

Despite their versatility, SVMs are not without limitations. Their efficiency
tends to decline when confronted with large datasets, as the training time in-
creases exponentially with the size of the data, making them less suitable for
big data applications. Similarly, SVMs might encounter difficulties in addressing
complex nonlinear problems, where other methods such as deep learning might
outperform them. Additionally, SVMs are sensitive to missing data and require
a comprehensive pre-processing step to handle such scenarios, which may add to
the complexity of the model building process [15]. Careful consideration should
be given to these limitations when selecting SVMs as the forecasting tool for
hydrological predictions.

Artificial Neural Networks (ANN)

ANNs were designed to emulate the biological neural systems in the human
brain, aiming to make decisions in a human-like manner. As illustrated in Figure
2.2, an ANN comprises of interconnected computational nodes, also known as
neurons, categorized into three types of layers: input, hidden, and output layers.

Data propagates through these layers in a process called forward propagation,
where each neuron applies an activation function to the input it receives and
passes the result to the neurons in the next layer. This activation function
introduces non-linearity into the system, giving the ANN the capability to model
and solve complex, non-linear problems.

After the forward propagation, an error is calculated using a loss function that
measures the difference between the network’s prediction and the actual output.
This error is then propagated backward through the network, a process known
as back-propagation, adjusting the weights and biases of the neurons in a way
that minimizes the error.

Through this architecture and the ability to learn from the input-output map-
pings during a training process, ANNs are equipped to perform sophisticated
pattern recognition, approximation, and predictive tasks, which mirror the hu-
man decision-making process [16].
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Figure 2.2: Artificial Neural Network (ANN) diagram showcasing intercon-
nected nodes arranged in input (x), two hidden (h), and output (y) layers.

Recurrent Neural Networks (RNN)

RNNs are a unique subset of deep learning models, specifically designed for
processing sequential or time-series data. This distinct capability comes from
their inherent architecture which features memory, retaining information from
prior inputs to influence future predictions.

The RNN’s structure, as shown in Figure 2.3, consists of three key nodes: input
(x), hidden (h), and output (y). The defining feature of RNNs is the recurrent
connection in the hidden layer, where the output from a hidden node is fed back
into the same node as part of the input for the next time step. This looping
connection enables the model to propagate information through time, providing
essential context for predictions across sequential data points.

However, a noteworthy limitation of standard RNNs is their difficulty in captur-
ing long-term dependencies due to the phenomenon of vanishing and exploding
gradients during training [9]. This problem occurs when the gradients of the
loss function, used for updating the model’s weights, become excessively small
(vanish) or large (explode) as they are propagated backward through many time
steps.

To mitigate these issues, more sophisticated variations of RNNs have been intro-
duced, such as Long Short-Term Memory (LSTM) and Gated Recurrent Units
(GRU).
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Figure 2.3: A visualization of a Recurrent Neural Network (RNN). The RNN’s
structure is defined by three key nodes: input (x), hidden (h), and output (y).
Notably, the hidden layer has a recurrent connection that feeds its output back
as an additional input for the next time step.

Long Short-Term Memory (LSTM)

LSTM is a specialized variant of RNNs, engineered to circumvent the problem
of long-term dependency that conventional RNNs encounter. LSTM networks
achieve their ability to manage information outside the regular flow of the recur-
rent network through the incorporation of gating mechanisms within each LSTM
cell [9]. This mechanism enables LSTM to selectively retain or discard informa-
tion over extended periods, making it highly effective for tasks with temporal
dependencies such as time-series forecasting and natural language processing.

An LSTM cell comprises three key components:

• The input gate is responsible for determining the extent of the newly
computed state for the current input that should be allowed into the cell.

• The forget gate decides how much of the existing state should be preserved.

• The output gate determines the amount of the internal state that should
be revealed to the external network.

Figure 2.4 shows how these gates interact in an LSTM cell.

The operations of these gates are mathematically represented as follows [18]:

gt = σ(Ugxt +Wght−1 + bf ) (forget gate)

it = σ(Uixt +Wiht−1 + bi) (input gate)

c̃t = tanh(Ucxt +Wcht−1 + bc) (new candidate values)

ct = gt · ct−1 + it · c̃t (cell state update)

ot = σ(Uoxt +Woht−1 + bo) (output gate)

ht = ot · tanh(ct) (hidden state update)

These equations illustrate how an LSTM cell operates on the input xt and the
previous hidden state ht−1 to generate the current hidden state ht and cell

10



Figure 2.4: Diagram of an LSTM cell, highlighting its gating mechanisms: the
forget gate, input gate, and output gate. These gates control the flow and
modification of information within the cell, enabling LSTM’s long-term memory
capability.

state ct. Here, U and W denote weight matrices for the input and the state
respectively, while b represents the bias terms. The symbol σ represents the
sigmoid activation function, and tanh denotes the hyperbolic tangent activation
function. These combined operations enable the LSTM’s ability to learn long-
term dependencies.

2.2 Feature Extraction and Selection in Machine
Learning for Hydrology

Feature extraction is the process of transforming data into features that repre-
sent the underlying patterns, while feature selection involves selecting the most
relevant features for the forecasting task. These methods can be a crucial step
in the ML pipeline, as the performance of the ML models is highly dependant
on the quality and relevance of the input features.

In the context of hydrological forecasting, feature extraction involves deriving
new variables from the data that capture the most important aspects of the
data. For example, variables representing seasonal trends or flood events may
be derived from hydrological time series data. Feature selection, on the other
hand, involves selecting the hydrological or meteorological variables that are
most relevant for predicting an outcome, such as inflow.

Effective feature extraction can help capture the complex, non-linear relation-
ships that often exist in the hydrological data, while feature selection can help
reduce the dimensionality of the data. The methods help improve the models’
interpretability, reducing overfitting and improving computational efficiency.
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2.3 Hyperparameter Tuning in Machine
Learning

Hyperparameter tuning is a critical step in ML, responsible for optimizing the
configurations of a model’s learning process. The hyperparameter search help
identify the optimal parameters learned during training, such as learning rates,
regularization factors, the number of hidden layers in the neural network, or
other important parameters [27].

Traditional approaches to hyperparameter tuning often involve a tedious and
computationally expensive process of trial and error. However, there are several
systematic strategies developed to address this, including Grid Search, Random
Search, and Population Based Training (PBT), each of which has its unique
strengths and drawbacks.

Grid Search

Grid search is the most straightforward method. It systematically works through
multiple combinations of parameters, cross-validating as it goes, to determine
which parameters provide the best performance [11]. Essentially, it performs a
search through a manually specified subset of the hyperparameter space.

Random Search

In contrast to grid search, random search selects random combinations of pa-
rameters to train the model [11]. This strategy allows the model to explore a
broader range of parameters in the same amount of time. Unlike grid search,
which is restricted to a discrete set of possible parameter values, random search
can explore a continuous space of possibilities.

Population Based Training

More advanced methods such as Population Based Training (PBT) combine
the benefits of both grid search and random search. PBT starts with random
hyperparameters, but unlike traditional methods that treat each set of hyperpa-
rameters independently, PBT optimizes a population of models concurrently [6].
Periodically, underperforming models clone the hyperparameters of the better
performing models and mutate these parameters, exploring new hyperparame-
ter configurations. Over time, the population adapts to favor hyperparameters
that lead to higher performance.
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Chapter 3

Spatial-Temporal Modeling
in Hydrological Forecasting

Spatial-temporal modeling attempts to capture the spatial and temporal de-
pendencies that exist within hydrological processes, and has become a central
element in hydrological forecasting. This chapter explores the significance of
both spatial and temporal dependencies in hydrology, the various techniques
used to model these dependencies, and the growing role of attention mecha-
nisms to capture both the spatial and temporal dependencies.

3.1 Importance of Spatial and Temporal
Dependencies in Hydrology

Spatial and temporal dependencies are fundamental to the understanding and
prediction of hydrological forecasting. The term spatial refers to geographical
locations, while temporal refers to time. In hydrology, these dependencies show
that both the location and timing of hydrological events are dependent on each
other, and changes in one can directly influence the other.

Spatial dependencies in hydrology are connected to water related variables, such
as precipitation and water level changes, across different geographical locations.
Movement and distribution of water in a river-system are influenced by factors
such a topography and soil characteristics. These spatial factors can lead to
significant variability in hydrological processes across different regions within
the same catchment area.

Temporal dependencies capture the changes in hydrological processes over time,
reflecting the dynamics of the processes, such as the delay between rainfall and
the increase in river flow. These temporal dependant changes can significantly
impact the state of a hydrological system at any given moment and influence
its future values.

Together, spatial and temporal dependencies capture the complex interaction
of variables in hydrological processes. For instance, precipitation in a certain
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region will eventually influence the water level downstream. Similarly, histor-
ical weather patterns can provide important context for forecasting future hy-
drological conditions. Therefore, understanding and accurately modeling these
dependencies are important for making reliable hydrological forecasts.

3.2 Techniques for Spatial and Temporal
Modeling

Modeling the spatial and temporal dependencies within hydrological processes
is a complex task due to the intrinsic variability and inter-connectivity of water-
related variables. This is where ML proves to be beneficial, by providing pow-
erful tools and techniques to accurately model the dependencies [30]. The tech-
niques can be separated into three categories: spatial modeling, temporal mod-
eling, and spatial-temporal modeling.

3.2.1 Spatial Modeling

Spatial modeling techniques focus on capturing these dependencies between
different geographical locations. A popular technique for spatial modeling is
Convolutional Neural Networks (CNNs). CNNs were originally designed for
image processing, but the idea of using them to model spatial dependencies
derives from their ability to process and analyze data with a grid-like topology
[13]. They effectively learn features in the input data by convoluting small,
learnable filters across the spatial dimensions, making them adept at capturing
spatial correlations in hydrological data.

3.2.2 Temporal Modeling

To capture the dynamics of hydrological processes over time, temporal modeling
techniques are used. RNNs are commonly used due to their ability to deal with
sequential data by storing past information in hidden stats, which influence the
output at the current time step. This makes them suited for modeling time-
dependent changes in hydrological processes.

3.2.3 Spatial-Temporal Modeling

To capture both the spatial and temporal dependencies, hybrid models such
as Convolutional Long Short-Term Memory (ConvLSTM) networks have been
developed [26]. ConvLSTM integrates the spatial feature learning capabilities of
CNNs with the temporal modeling strengths of LSTM. This allows ConvLSTM
to capture the spatial-temporal dependencies in hydrological data effectively,
providing more accurate predictions than models that only consider spatial or
temporal dependencies separately.
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3.3 Attention Mechanisms in Spatial and
Temporal Modeling

In the field of ML, attention mechanisms are a novel approach that concentrate
computational resources on the most significant portions of input data. They
are designed to selectively focus on a subset of information, while simultaneously
processing a broader range of inputs. Attention mechanisms enable a model to
weigh the importance of various data points differently. This selective focus
is data-dependent, meaning the model assigns different levels of importance
to various inputs based on the specific information contained within the data
[13, 29].

Therefore, when modeling spatial and temporal dependencies, attention mecha-
nisms have emerged as a powerful tool in the field of ML, primarily due to their
ability to focus on relevant parts of the input data and to ignore irrelevant parts
[29]. This capability is particularly useful in modeling the spatial and temporal
dependencies in hydrological data, where certain locations or time steps may be
more important than others for predicting a specific output.

3.3.1 Spatial Attention

In the context of spatial modeling, attention mechanisms can help identify im-
portant regions in the input data that contribute more significantly to the out-
put. For instance, in a hydrological forecasting scenario, certain areas within
a catchment may be more influential on the water levels. A spatial attention
mechanism can learn to focus on these critical areas and assign them higher
weights in the model’s decision-making process.

3.3.2 Temporal Attention

Temporal attention mechanisms work similarly but in the temporal dimension.
They allow a model to focus on specific time steps that are more crucial for
prediction. This is especially relevant in hydrological forecasting, where recent
rainfall events or historical seasonal patterns may have a greater impact on
future water levels.

3.3.3 Spatial-Temporal Attention

Just as spatial and temporal modeling techniques can be combined to capture
both types of dependencies simultaneously, so too can spatial and temporal
attention mechanisms. Spatial-temporal attention mechanisms can focus on
the most relevant locations and time steps simultaneously, providing a better
understanding of the spatial-temporal dependencies in hydrological data.
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Chapter 4

Methodology

This chapter provides an overview of the methodology applied in this study,
building on the foundation laid in the Papers 1 (refer to Chapter 6) and 2 (refer
to Chapter 7). The methodologies used in these papers, ranging from data
collection and processing to hyperparameter tuning and model development,
were done and fine-tuned to fit the requirements of this research. Although
there will be some overlap with the methodologies presented in the papers, this
chapter aims to provide a more comprehensive overview. For a more detailed
description of the methodologies used in Paper 1 and Paper 2, please refer to
Chapter 6 and Chapter 7, respectively.

4.1 Literature Review Methodology

The first phase of the research involved a chronological literature review to pro-
vide a theoretical understanding of the development of hydrological forecasting
and to identify gaps in the existing research. This was achieved by system-
atically searching for and analyzing relevant academic papers and reports us-
ing databases, specifically Google Scholar and Engineering Village. The search
terms were selected based on their relevance to the topic, and included combi-
nations of the following: ”data-driven”, ”spatio-temporal”, ”spatial–temporal”,
”inflow”, ”steamflow”, ”forecast”, ”hydrology”, ”meteorology”, and ”atten-
tion”, among others. The selection of these particular search terms was driven
by the presumption that they would capture the most relevant published results
to this field.

4.2 Case Study Methodology

4.2.1 Data and Study Area

This research centers on a catchment area situated in the Stavanger region, on
the southwestern coast of Norway. The data for this study was provided by Lyse
Energy, a Norwegian hydroelectric power company based in the study area. As
shown in Figure 4.1, this region is characterized by diverse topography and a
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temperate oceanic climate. Its complex hydrological system, consisting of rivers,
streams, and reservoirs, is influenced by several meteorological factors.

Figure 4.1: Study area map showing the catchment area in the Stavanger region,
southwestern coast of Norway.

The dataset initially obtained for this research spans from January 2015 to
March 2022, and contains 63288 data points. This raw dataset includes a vari-
ety of hydrological and meteorological variables, with data collected at hourly
intervals. Alongside this, the dataset was included with simulated data from the
HBV hydrological model. However, due to inconsistencies in sensor operation
and the simulated data, not all variables cover the entire time range.

The focus of the case study, however, is a filtered subset of the original dataset.
This subset, marked by the red area in Figure 4.2, consists of 16500 data points,
ranging from November 2018, to September 2020. The filtered dataset was
selected based on its comprehensive coverage of spatial features essential for
capturing the intricate spatial correlations within the catchment area.

4.2.2 Data Cleaning

The data cleaning process involved several pre-processing steps, including ad-
dressing missing values, outliers, and inconsistencies present in the hydrological
and meteorological data. Data imputation techniques, such as linear interpola-
tion, were used to fill gaps in the time series data. This technique was validated
by comparing interpolated values with actual measurements whenever feasible.

Outliers in the data were identified by examining the overall descriptive statistics
(see Appendix B.1), which provided insights into the structure of the variables.
The identified outliers were replaced using linear interpolation to minimize their
potential impact on the model’s performance. Please refer to paper 2 (see
Chapter 7) for a more in-depth analysis.
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Figure 4.2: Visualization of missing values in the dataset, with the marked area
indicating the filtered dataset used in the case study.

To address disparities in the quantity of data points and the number of features
present in each group, the dataset was categorized into four distinct groups
based on data availability. This resulted in the formation of datasets with fewer
data points but a greater number of variables. Despite having fewer time series
points, the filtered dataset with the most spatial features was selected for the
case study due to its comprehensive set of spatial variables. Descriptive statistics
of this cleaned dataset can be found in Appendix B.2.

Additionally, data normalization and transformation procedures were imple-
mented to ensure compatibility and to standardize the scale of all variables
before inputting them into the deep learning model. Min-max normalization
was used to transform all variables to a common scale, ranging from 0 to 1, thus
mitigating potential biases or inaccuracies that might arise from different scales
and units.

4.2.3 Model Development

The development of the model involved a number of key steps, which included
data pre-processing, feature selection, model architecture design, model train-
ing, and model evaluation.

Data Pre-Processing

Normalizing data is important for ML models, including LSTMs, because they
are sensitive to the scale of input data [8]. Following normalization, the time
series data were converted into a format suitable for training the LSTM model.
LSTM models and other neural networks require input data in a specific three-
dimensional format, consisting of the sample size, time steps, and number of
features. Hence, the data was reshaped accordingly, and a sliding window ap-
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proach was adopted to create sequences of data for training the model. This
method involves creating windows of consecutive data points to predict the next
point in the sequence, allowing the model to learn temporal dependencies in the
data.

Feature Selection

Feature selection was used to categorize the data based on domain knowledge
and data structure. The data were first separated based on their type and
origin: location-based, meteorological, hydrological, discharge, and simulated
hydrological data generated by the HBV model [24]. This separation was done
based on the understanding of how different types of variables can influence the
hydrological dynamics in the catchment area, and to make sure that the input
to the model contained spatial variables.

Model Architecture Design

The design of the model architecture for this study was an essential part, where
the LSTM acts as the core model, combined with spatial and temporal attention
mechanisms. The architecture design aimed to efficiently capture the spatial and
temporal dependencies in hydrological and meteorological time series data to
improve the accuracy of inflow forecasting.

The Spatial-Temporal Attention-Based LSTM model consists of several compo-
nents (see Paper 2 in Chapter 7 for more details):

• Batch Normalization: The model begins with a batch normalization
layer, which standardizes the input features to have a mean of zero and
a variance of one. This process accelerates the training process and helps
in regularizing the model, reducing the risk of overfitting.

• Spatial Attention Module: The next layer in the model is the spatial
attention module, which assigns different importance weights to each spa-
tial feature in the input data. By emphasizing relevant spatial features
and capturing the spatial dependencies within the catchment area, the
model enhances its capacity to understand spatial dynamics for accurate
inflow forecasting.

• Input Linear Layer: Following spatial attention, the data passes through
an input linear layer. This layer is a fully connected neural network that
adjusts the dimensionality of the input data to match the dimensionality
of the LSTM’s hidden states.

• LSTM Layer: The core of the architecture is the LSTM layer, designed
to capture the temporal dependencies in the sequence data. It is capable of
retaining and updating relevant information over extended periods, essen-
tial for understanding patterns and relationships in hydro-meteorological
time series data.

• Temporal Attention Module: After the LSTM layer is the temporal
attention module. It creates a context vector from the hidden states of the
LSTM layer, which highlights the most relevant temporal information for
inflow forecasting. By assigning different weights to each time step in the
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model, it makes the model selectively concentrate on the most significant
periods in the sequence.

• Output Linear Layer: Lastly, the output from the temporal attention
module is passed through an output linear layer, a fully connected layer
that transforms it to the final inflow prediction.

Model Training

The model training process focuses on optimizing the model’s weights, which
are the parameters that the model uses to make its predictions. The process is
iterative, usually conducted over multiple epochs, with the aim of minimizing
the loss.

First, the dataset is split into training, validation and test sets. The training set
is used to update the models parameters, while the validation set is used to check
the model’s performance and control overfitting. A 70-20-10 split was adopted
for this purpose, where 70% is used for training, 20% is used for validating, and
10% is used for testing.

The training process starts with initializing the model weights randomly. For
each epoch, the model used the training set to generate predictions and calculate
the loss, which is a measure of the discrepancy between the mode’s prediction
and the actual inflow values, where the loss function is the Mean Squared Error
(MSE).

Hyperparameter Tuning

To control the training process hyperparameters were used to impact the model
performance. Unlike model parameters that are learned during training, hyper-
parameters are preset. Therefore, selecting suitable hyperparameters is vital for
the success of the model.

The PBT approach was employed in combination with the Ray Tune library [5]
for hyperparameter tuning. PBT, as explained above, is a dynamic approach to
hyperparameter optimization, where a population of models is trained concur-
rently. During the training process, underperforming models are periodically
replaced with mutated versions of top-performing models, thereby combining
the benefits of both genetic algorithms and hand-tuning.

It is important to note that a hyperparameter search was conducted for each
variable set to account for their unique characteristics and impact on the in-
flow prediction. This ensured that the hyperparameters were optimally tuned
for each specific variable set, leading to more accurate and reliable forecasting
models.

The key hyperparameters tuned in the model search include:

• Sequence Length: This parameter defines the length of the past se-
quence data that the model takes as input to make the predictions. A
sequence length of 25 was explored.

• Batch Size: This parameter denotes the number of training examples
utilized in one iteration. A batch size of 256 was experimented with.
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• Hidden Size: The number of LSTM units in each LSTM layer is set by
the hidden size. Two different sizes were tried: 32 and 64.

• Number of Layers: This parameter indicates the depth of the LSTM
network. 1, 2, and 3 layer models were examined.

• Learning Rate: This is one of the most crucial hyperparameters, control-
ling how much to adjust the model in response to the estimated error each
time the model weights are updated. A log-uniform distribution between
1e− 5 and 1e− 1 was used for the learning rate.

• Weight Decay: This parameter is a regularization technique, and it adds
a small penalty, to the loss function to prevent overfitting. A log-uniform
distribution between 1e− 5 and 1e− 1 was also used for the weight decay.

The hyperparameter tuning process was conducted for a maximum of 100 epochs,
with a perturbation interval of 25 epochs. This means that every 25 epochs,
the PBT scheduler would examine all the models in the population, and replace
the bottom-performing models with the top-performing ones, while also apply-
ing some mutations to their hyperparameters. The specific code used for this
process is included in Appendix A.1.

Model Evaluation

The model evaluation stage primarily assesses the performance of the trained
model in terms of its predictive accuracy and generalizability. The model was
evaluated based on its performance on the test set, which is unseen data that
was not used during training or validation. This helps to ensure an unbiased
evaluation of the model’s forecasting performance and its ability to generalize
to new data. The specific code used for this evaluation process is detailed in
Appendix A.2.

The primary metrics used for model evaluation in this study are the Root Mean
Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percent-
age Error (MAPE), and Coefficient of Determination (R2). For a more in-depth
discussion about these evaluation metrics, please refer to Paper 2 in Chapter 7.

Beyond these metrics, another important aspect of model evaluation was the as-
sessment of computational efficiency. This was accomplished by monitoring the
space and time consumption of each model during the training and evaluation
phases. Computational efficiency is a critical factor in real-world applications,
especially in scenarios where rapid forecasting is required. Therefore, a model
that achieves a balance between predictive accuracy and computational effi-
ciency is considered ideal.
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Chapter 5

Overview of Part II

The main part of this thesis are two distinct papers that explore the domain of
hydrological forecasting by employing data-driven methods and spatial-temporal
attention-based LSTM. The purpose of this chapter is to place these papers
within the context of the current understanding. The section titles correspond
directly to the titles of the included papers.

5.1 Literature Review of Data-Driven Methods
Used for Forecasting Hydrological Events

5.1.1 Context

In recent years, the field of hydrological forecasting has seen remarkable growth,
triggered by the advancements in data-driven models and an increase in com-
putational resources. This literature review chronologically analyzes the devel-
opment of data-driven models, from traditional to ML and hybrid approaches.
Each of these categories carries its unique advantages and limitations, and these
are systematically explored in the context of hydrological forecasting. Further-
more, this review goes into the trends that enhance prediction accuracy, con-
sidering univariate, multivariate, and spatial data components. By highlighting
the challenges and advancements related to integrating temporal and spatial
data, extracting valuable features, and employing attention mechanisms, this
review sets the stage for future research directions.

5.1.2 Results

The literature review reveals that conventional data-driven models such as
ARMA, ARIMA, and MLR, while reliable, struggle with capturing nonlinear re-
lationships and forecasting non-stationary time series. This is where ML models
show superiority due to their flexible handling of such relationships. However,
even ML methods face challenges, particularly when integrating spatial data. It
is also found that hybrid models, which incorporate both temporal and spatial
data, can potentially enhance forecasting accuracy.
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The review also highlights the significance of incorporating additional data
sources to improve a model’s accuracy. Despite the substantial progress made
in hydrological forecasting, there are room for further research, particularly in
areas like spatio-temporal data integration, feature extraction, and attention
mechanism applications. These insights and identified trends aim to drive the
hydrological forecasting field towards developing models that are more accurate
and robust.

5.2 A Hydrological Case Study of Short-Term
Inflow Forecasting with Spatial-Temporal
Attention-Based LSTM

5.2.1 Context

The complexity of spatial and temporal interactions within catchment and me-
teorological data presents a significant challenge in hydrological forecasting. In
an effort to address this, a spatial-temporal attention-based LSTM model was
developed for hydrological inflow forecasting. The model, leveraging both spa-
tial and temporal information, aimed to capture dependencies within the data.
In this case study, the model’s performance was evaluated against various base-
line models encompassing traditional statistical techniques and deep learning
methods. Two distinct forecast horizons were considered: one-hour ahead and
recursive 12-hour ahead forecasts.

5.2.2 Results

The results revealed that the spatial-temporal attention-based LSTM model,
while slightly under-performing against LSTM with temporal attention in one-
hour ahead forecasting, outperformed all baseline models for the 12-hour ahead
forecasting task. This outcome emphasizes that there might be an importance
of spatial correlations for longer forecasting horizons.

Despite the increased complexity and longer training times of the proposed
model, its size was smaller than the LSTM and LSTM with temporal at-
tention models. This suggests that the additional complexity of integrating
spatial-temporal attention mechanisms does not substantially increase memory
consumption. The spatial-temporal attention-based LSTM model’s efficacy in
short-term inflow forecasting is promising, but it also opens up several avenues
for future research, including evaluating performance across different catchment
areas, extending the forecasting horizon, and exploring other attention mecha-
nisms.
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Literature Review of Data-Driven Methods Used for Forecasting
Hydrological Events

Magnus Børseth

Abstract— The field of hydrological forecasting has expe-
rienced rapid development in recent years, driven by ad-
vancements in data-driven models combined with increased
computable resources. This literature review presents a chrono-
logical analysis of popular conventional, machine learning, and
hybrid data-driven models, showcasing the current state of the
art. The paper explores the advantages and disadvantages of
each category, highlighting trends that contribute to improved
prediction accuracy, including the use of univariate, multivari-
ate, and spatial data components. By examining the challenges
and improvements associated with integrating temporal and
spatial data, effective feature extraction methods, and utilizing
attention mechanisms, this review provides insights for future
research directions. These directions seek to enhance the
accuracy of hydrological forecasting models, enabling better-
informed decision-making and improved management of water
resources.

I. INTRODUCTION
Forecasting hydrological events is a crucial research area

in the field of hydrology, and an important tool used in
decision making in areas such as flood management, climate
change mitigation, and hydropower [1], [2]. Accurate and
reliable inflow forecasting is essential, and improvements
to predictions will contribute to analysis, water resource
management and hazard assessment [3]. This has led to much
attention on the field of hydrological forecasting and research
to find effective strategies for improving the utilization of
water resources [4].

When developing hydrological forecasting models, it is
crucial to consider the forecasting time scale. Forecasts are
generally categorized based on their forecasting horizon into
long-term, mid-term, and short-term forecasts [2]. The fore-
casting horizons for these categories are typically 1-5 years,
1-52 weeks, and 1-7 days, respectively. Each category poses
its own challenges. Short-term forecasting is computationally
demanding, as the forecast is needed within a short period
to be useful [5]. On the other hand, long-term forecasting
is challenging due to the long-term dependencies involved
[6]. Therefore, when developing hydrological forecasting
methods, it is important to strike a balance between model
complexity and accuracy for the selected time horizon.

Another important consideration is the data utilized to
train the model. With the availability of a large amount of
data and increased computational capabilities [4], there are
new opportunities to improve and optimize current hydrolog-
ical forecasting methods. These methods involve univariate,
multivariate, and spatial components to better capture the
complex hydrological processes. However, selecting relevant
information from the available data is challenging, as the
main sources of inflow come from various sources, such

as precipitation, streams, and snow melt [6]. Hence, careful
selection and extraction of useful data is critical to ensure
accurate and reliable hydrological forecasting.

Hydrological forecasting methods can be broadly classi-
fied into two categories: physical-driven models and data-
driven models [11], [12]. Physical-driven models, such as
Hydrologiska Byråns Vattenbalansavdelning (HBV), have
traditionally been used in hydrological forecasting [13].
However, these models require a significant amount of hydro-
logical expertise, curated datasets, and high computational
power to generate accurate predictions [3]. In contrast, data-
driven models have gained more popularity due to their
flexibility and ability to work with less data [14]. However,
conventional data-driven models do have limitations in com-
plex calculations and processing time, and they often only
capture linear dependencies. To address these limitations,
machine learning (ML) models have become increasingly
popular in hydrological forecasting [3], [2]. ML models
can incorporate non-linear dependencies based solely on
historical data, allowing accurate predictions with minimal
inputs [15]. Hybridization, which combines different tech-
niques, has also shown significant promise in improving the
performance of ML models [16].

Several studies have reviewed the use of data-driven
models in hydrological forecasting, with a focus on specific
events or techniques. For example, Bordin et al. [2] reviewed
the use of ML in hydropower scheduling with a focus on
short-term forecasting and cyber-physical systems. Mosavi
et al. [3] compared flood prediction models using both
short-term and long-term predictions with a focus on ML
techniques, including hybrid models. Alawsi et al. [17] evalu-
ated different pre-processing methods for drought forecasting
based on appropriate time scales and data types. Zhang
et al. [1] reviewed commonly used data-driven models for
univariate streamflow forecasting in terms of forecasting per-
formance and accuracy. However, there are currently limited
research shedding light on general data-driven applications
for all hydrological events with a focus on spatial data

This literature review explores different data-driven meth-
ods for hydrological forecasting, focusing on data usage and
time horizons. The selected methods are classified into three
categories based on their data-driven techniques. Section 2
introduces the state-of-the-art in hydrological event forecast-
ing, ranging from conventional data-driven methods to ML
methods and hybrid methods. Section 3 discusses potential
areas for further research based on the reviewed literature.
Finally, Section 4 presents the conclusions of the literature
review.
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TABLE I
AN OVERVIEW OF CONVENTIONAL DATA-DRIVEN MODELS FOR FORECASTING HYDROLOGICAL EVENTS. SHORT-TERM: 1-7 DAYS, MID-TERM: 1-52

WEEKS, LONG-TERM: 1-5 YEARS.

Method Forecasting objective Data Type Time Scale Article Year Ref
ARMA,
ARIMA Inflow Univariate Mid-term 2012 [7]

ARMA,
ARIMA Inflow Univariate Mid-term 2013 [8]

MLR Inflow Multivariate Short-term 2011 [9]
MLR Water demand Multivariate Short-term 2012 [10]

II. STATE-OF-THE-ART IN FORECASTING
HYDROLOGICAL EVENTS

This section provides an overview of the state-of-the-
art in hydrological forecasting by presenting data-driven
models in chronological order to demonstrate the evolution
of forecasting in the hydro sector.

A. Conventional Data-Driven Models

The Auto Regressive Moving Average (ARMA) model
is commonly used for hydrological event forecasting [18].
It combines autoregressive and moving average factors by
incorporating residuals from previous lags to make future
forecasts. However, to apply the model efficiently, the time
series must be stationary [8]. The Auto Regressive Integrated
Moving Average (ARIMA) model was introduced to address
this by adding an integrated factor to handle non-stationary
time series.

ARIMA has been widely used in hydrological forecasting,
as seen in studies such as [7] and [8]. In [7], monthly
discharge data from a 42-year period was used to compare
the accuracy of ARMA and ARIMA for mid-term inflow
forecasting. The study found that the accuracy of both
models improved as the number of parameters increased, and
that ARIMA was superior due to its ability to make the time
series data stationary. Similarly, [8] compared ARMA and
ARIMA against an autoregressive artificial neural network
using monthly discharge data from Taleh Zang hydrometric
station. The study concluded that both models’ accuracy
improved with an increase in the number of parameters.

Another conventional data-driven model is the Multi-
ple Linear Regression (MLR) model, which is a simpler
methodology for time series forecasting. It uses a statistical
technique that models the relationship between two or more
independent and dependent variables through the utilization
of a linear regression equation that is applied to the gathered
data [9].

The use of multivariate data has been explored in [9],
where historical rainfall and inflow data were used to predict
inflow using MLR. The study developed twenty models
based on different input structure combinations, and it was
concluded that the models with daily aggregated data per-
formed better. In [10], multivariate MLR was compared with
different ML methods for urban water demand forecasting
in Canada. The study indicated that the primary factors
influencing the water demand process during summer months
are the maximum air temperature, while precipitation plays

a lesser role in Montreal, Canada. However, it was also
shown that MLR struggled to capture relationships of a pre-
specified functional form and was not able to accurately
predict nonlinear water demands.

Overall, conventional data-driven models such as ARMA,
ARIMA, and MLR have been widely used in hydrological
forecasting, and their accuracy have been improved with an
increase in the number of parameters. However, these models
have their limitations, especially in capturing nonlinear rela-
tionships and predicting non-stationary time series. Table I
provides an overview of the studies discussed in this section.

B. Machine Learning Data-Driven Models

ML is a field of study focused on developing algorithms
that can learn from previous experience to perform new
tasks [3]. Unlike conventional models, ML algorithms are
data-driven and do not require a prior understanding of
the relationship between data and outcomes [19]. The ML
modeling process typically involves data collection from reli-
able sources, followed by preprocessing and partitioning the
data into training, validation, and testing sets. The model’s
architecture is then built and fine-tuned using the training and
validation data. Finally, the model’s accuracy is evaluated on
unseen testing data.

In hydrological forecasting, ML models such as Sup-
port Vector Machines (SVMs), Artificial Neural Networks
(ANNs), and Recurrent Neural Networks (RNNs) have
shown promising results, as discussed in [20] and summa-
rized in Table II.

1) Support Vector Machine (SVM): The support vector
machine (SVM) is a robust approach utilized for both
classification and regression tasks. SVM is commonly used
for classification problems, where it optimizes the range of
differences between groups, but it can also be adapted for
regression problems by transforming the data. SVM has some
limitations, including difficulty handling big data, complex
nonlinear problems, and sensitivity to missing data. Further
details on the SVM model can be found in the literature [30].

Studies have shown the potential of SVM for forecasting
tasks in the field of hydrology. For example, in [23], SVM
was used to predict short-term flood forecasts in the Kelantan
River, Malaysia, and achieved good performance. In [21],
a modified SVM model was developed to predict mid-
term inflow at the Shihmen Reservoir in Taiwan, using a
combination of inflow and climate data from prior periods.
The study demonstrated that SVM, combined with genetic
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TABLE II
AN OVERVIEW OF MACHINE LEARNING MODELS FOR FORECASTING HYDROLOGICAL EVENTS. SHORT-TERM: 1-7 DAYS, MID-TERM: 1-52 WEEKS,

LONG-TERM: 1-5 YEARS.

Method Forecasting objective Data Type Time Scale Article Year Ref
SVM Inflow Multivariate Mid-term 2010 [21]
SVM Inflow Univariate Mid-term 2014 [22]
SVM Flood Univariate Short-term 2021 [23]
ANN Inflow Multivariate Short-term 2022 [24]
ANN Inflow Multivariate Mid-term 2021 [25]
ANN Inflow Multivariate Mid-term 2016 [26]
RNN Inflow Univariate Short-term 2020 [27]

LSTM Flood Multivariate Short-term 2019 [28]
LSTM,CNN Inflow Multivariate Long-term 2021 [6]
SVM, RF,

MLP, DNN,
RNN, LSTM,

GRU

Inflow Multivariate Short-term 2022 [29]

SVM, ANN,
LSTM Inflow Univariate Short-term 2021 [20]

algorithms, outperformed other models in predicting mid-
term inflow, while also highlighting the importance of in-
corporating climate information into the prediction model.
Another modification to the SVM model was presented in
[22], which combined empirical mode decomposition with
SVM to predict monthly streamflow. The study showed that
this approach produced better performance than a neural net-
work model. By incorporating additional features of different
resolutions related to non-linear and non-stationary monthly
streamflow, the modified SVM model was able to improve
overall performance.

2) Artificial Neural Network (ANN): ANN was initially
designed to simulate the biological neural system in the
human brain to make decisions in a human-like manner.
ANN is also known as a feed forward neural network because
the inputs are processed in a forward direction through the
network. It is made up of many interconnected computing
nodes, which are separated into three types of layers: input,
hidden and output. The input layer receives the input data
and then sends it to the hidden layers. It is then processed
in the hidden layer, and there is flexibility in the number of
hidden layers that can be employed. Lastly the model gathers
the computations performed on the output layer, which gives
the result.

These computations are enabled by activation functions
associated with each neuron, which introduce non-linearity
into the system. This feature equips the ANN with the
ability to make human-like decisions. However, designing
the architecture can be challenging, as a small architecture
may be insufficient to capture the complexity of the data,
leading to underfitting, while a large one may overfit the
data, resulting in poor generalization to new or unseen data.
For further insight into ANN structures, see [31].

ANN has been used in various hydrological applications,
such as inflow forecasting in Bang Lang Dam [24]. In this
study, daily water inflow, rainfall, atmospheric pressure, hu-
midity, and temperature were collected to analyze the factors
affecting the inflow of water in the dam. The ANN deep
learning model was applied for water inflow forecasting, and

the results were found to be satisfactory. In [25], ANN was
developed to forecast weekly reservoir inflows, exploring the
impact of input and parameter uncertainty in the forecasted
inflow values. A simulation-optimization framework was
proposed, and it was found that the operational framework
outperformed the planning framework it was compared with.
In [26], the researchers employed a dynamic neural network
methodology to predict monthly reservoir inflow. The study
concluded that the approach was suitable for monthly in-
flow forecasting but suggested that the accuracy could be
improved by fitting the model for de-seasonalized data.

3) Recurrent Neural Network (RNN): The Recurrent Neu-
ral Network (RNN) is a commonly used model in deep learn-
ing for handling sequential data. RNNs modify the traditional
neural network to incorporate dependencies between data
points through memory, which stores information from the
previous input to make the next prediction. However, RNNs
struggle with vanishing and exploding gradients, making it
difficult to capture long-term dependencies in data. Other
recurrent models like Gated Recurrent Unit (GRU) and Long
Short Term Memory (LSTM) have been developed to address
these issues.

Studies have been conducted to compare RNNs against
traditional ANNs in reservoir inflow forecasting. The com-
parative analysis in [27] shows that RNNs outperform ANNs,
with the LSTM model having the best overall performance.
LSTM has also been used in flood forecasting, as seen
in [28], where it performed reliably in capturing long-
term dependencies. In [6], LSTM was used with historical
snow water equivalent and inflow as inputs for long-term
inflow forecasting, and the results were promising. Further
advancements have been made in integrating multiple ML
techniques for real-time inflow forecasting, such as in [29],
where ensemble means and switched prediction methods
were used to ensure stability. GRU was found to have the
best performance among the seven models tested. Finally, a
comparison of deep learning algorithms in [20] showed that
LSTM outperformed ANN and SVM in inflow forecasting.
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C. Hybrid Data-Driven Models

While many ML methods perform well with one task or
dataset, hybrid models offer new ways for simple algorithms
to work together to solve more complex problems. However,
the selection of techniques can be challenging, as different
models handle data differently. Data-driven modeling often
includes univariate and multivariate models that consider
only temporal information from the data. Nevertheless, recent
studies have shown that incorporating spatial information
can greatly improve prediction accuracy [32]. In Table III,
various hybrid methods are presented, ordered by data type,
for solving hydrological event forecasting problems.

Univariate models are useful for forecasting the future
values of a single scalar based on a sequence of historical
data. However, the use of hybrid models can significantly
improve the accuracy of hydrological forecasting by reducing
uncertainty. One example of a hybrid univariate model can
be seen in Fig. 1, which is based on the model used in [33].
In this model, the forecasting ANN receives a sub-series
obtained by applying wavelet transformation instead of the
observed streamflow as input. The signal is then decomposed
into different resolution levels to filter the information into
low-frequency content (approximations) and high-frequency
content (details), which are then utilized for forecasting.

Fig. 1. Hybrid univariate model for streamflow forecasting using wavelet
decomposition and ANN.

Other hybrid univariate methods used for improving hy-
drological forecasting can be seen in [34]. They utilize
decomposition-ensemble learning and incorporate it with
LSTM for forecasting, along with a logarithmic transfor-
mation as a pre-processing method to handle non-stationary
inflow data. The proposed method outperformed other com-
pared models for reservoir inflow forecasting. In [35], a
Multiscale Deep Feature Learning (MDFL) method with
hybrid models is proposed for daily reservoir inflow fore-
casting. Here, multiscale features are extracted using EEMD

and Fourier spectrum, and then sent to three Deep Belief
Networks (DBN), and the outputs are reconstructed using a
sum-up strategy to get the forecasting result. Another study
in [36] used univariate data for mid-term inflow forecasting
and compared an ANN genetic algorithm called ANN-GA
with a seasonal ARIMA model (SARIMA). It was found that
the SARIMA model was more precise in predicting peak
values and more suitable for drought years and low flow
prediction, while the ANN-GA model was more suitable for
wet years and flood forecasting.

Multivariate models aim to improve the forecasting ca-
pabilities by utilizing information from multiple variables
and selecting the relevant ones. One approach is shown
in Fig. 2, adapted from [37], where inflow, rainfall, and
ERA-Interim reanalysis data are used with Gradient Boosting
Regression Tree (GBRT). Here, the feature selection of the
reanalysis dataset is done using Maximal Information Coeffi-
cient (MIC), while Partial Autocorrelation Function (PACF)
and Cross-correlation Function (CCF) are used for selecting
inflow and rainfall. The study concluded that GBRT-MIC
can result in enhanced precision and dependability for inflow
forecasting, while the reanalysis data chosen by the MIC
significantly enhances the performance of the forecasts.

Fig. 2. Illustration of a hybrid multivariate model utilizing GBRT-MIC for
inflow forecasting.

Other multivariate hydrological forecasting methods have
also been developed, such as [38], which proposed a hybrid
model that integrates an enhanced version of Ensemble Em-
pirical Mode Decomposition with Additive Noise (ICEEM-
DAN), Sample Entropy (SE), Gini Index (GI), and sequence-
to-sequence (Seq2Seq) methodologies. The ICEEMDAN
technique is employed to decompose the streamflow time
series into distinct subcomponents to manage trends and
noise, while SE and GI are employed to reduce computa-
tional cost. Seq2Seq is a LSTM-based model that handles
temporal dependencies. The study showed that this hybrid
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approach is viable for streamflow forecasting.
Another approach is the deep generative neural network

proposed in [39], consisting of a stochastic RNN, a latent
variable inference network with normalizing flows, and an
attention-based learning network called F2F. The stochastic
RNN is utilized to capture temporal dependencies while
considering the uncertainty of the hidden state. In order
to achieve a higher level of precision and capture intricate
distributions, a residual flow network is applied to the output
of the stochastic RNN. Additionally, a self-attention network
is employed to identify and filter out less relevant historical
observations. The proposed F2F model achieved the best per-
formance among the probabilistic models, but with a higher
computational cost. In [40], a wavelet-ANN hybrid model
was proposed, in which the Tropical Rainfall Measuring
Mission (TRMM) data were integrated with inflow data,
employing wavelet transformations to enhance performance.
This decomposition technique was shown to be powerful in
improving the model’s performance.

Building on the multivariate forecasting approaches, [41]
used Principal Component Analysis (PCA) and Long Short-
Term Memory (LSTM) to increase the accuracy of inflow
predictions in hydropower generation. The PCA was used to
reduce data dimensionality, thereby speeding up the training
process. This method improved prediction accuracy when
hydro-meteorological data were included in the model.

The Causal Empirical Decomposition (CED) method used
by [42] significantly enhanced the accuracy of inflow fore-
casts. CED combines physics-based causal inference with
signal processing-based decomposition to select the most
relevant features for forecasting. CED’s integration with
various forecasting methods indicated its potential as an
adaptable, effective preprocessing step.

Following a similar approach, [43] proposed the Causal
Variational Mode Decomposition (CVD), another feature
selection framework built on multiresolution analysis and
causal inference. Applied as a preprocessing step to any
machine learning-based forecasting method, CVD was able
to reduce computation time while boosting the forecasting
accuracy. The technique showed promise when validated
on a river system downstream of a Norwegian hydropower
reservoir, particularly when combined with LSTM, indicating
its potential for application to other cascaded water systems.

The application of classical data mining techniques for
univariate and multivariate data has been widely studied.
However, when it comes to spatio-temporal data, these meth-
ods usually perform poorly due to the high complexity and
correlations among the data variables [32]. To address this
issue, researchers have developed novel approaches that can
handle spatio-temporal data more effectively. Fig. 3, adapted
from [44], shows how a Dynamic Spatio-temporal Attention
method (DSTA) can be used to improve streamflow forecast-
ing. This method uses four features of meteorological data
from different stations and hydrological streamflow data from
one station, and consists of three modules: a spatial attention
module, a temporal attention module, and a trend module.
The spatial attention module captures spatial correlation in

Fig. 3. Spatio-temporal model incorporating DSTA for improved stream-
flow forecasting.

the meteorological data, while the temporal attention module
selects the corresponding time step for streamflow prediction,
and the trend module takes into account the influence of
future factors in order to enhance the conventional LSTM
model.

Similarly, in [45], the authors proposed a spatio-temporal
attention LSTM model (STA-LSTM) for flood forecasting
using multiple rainfall and streamflow stations. The attention-
based models were found to be more accurate than the
original LSTM model and outperformed novel models such
as convolutional neural networks and Graph Convolutional
Network (GCN) models, which also have some benefits when
working with spatial-temporal data. In another study, [46],
the authors combined GCN and LSTM with attention to
create the hybrid ST-GCN model. The GCN module captures
the spatial correlation of each hydrological feature, while
the LSTM module captures the temporal information. The
utilization of the attention method enhances the choice of the
ST-GCN network when incorporating historical information.
These methods have shown promising results for spatio-
temporal data analysis, demonstrating their potential for
practical applications.

III. FURTHER WORK

The advancements in hydrological forecasting using hy-
brid models have demonstrated promising results. However,
there are still areas in which further work can be conducted
to improve the forecasting capabilities, particularly in the
context of deep learning architectures for spatio-temporal
forecasting, feature extraction methods for studying spatial
and temporal dependencies within hydro-power data, and
combining spatio-temporal meteorological and hydrological
data to enhance inflow forecasting.
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TABLE III
AN OVERVIEW OF HYBRID MODELS FOR FORECASTING HYDROLOGICAL EVENTS. SHORT-TERM: 1-7 DAYS, MID-TERM: 1-52 WEEKS, LONG-TERM:

1-5 YEARS.

Method Forecasting objective Data Type Time Scale Article Year Ref
DEL-LSTM Inflow Univariate Short-term 2019 [34]

MDFL Inflow Univariate Short-term 2016 [35]
ANN-GA,
SARIMA Inflow Univariate Mid-term 2017 [36]

GBRT-MIC Inflow Multivariate Short-term 2020 [37]
ICEEMDAN-

SE-GI-Seq2Seq Streamflow Multivariate Short-term 2021 [38]

F2F Inflow Multivariate Short-term 2022 [39]
WA-ANN Inflow Multivariate Short-term 2019 [40]

PCA-LSTM Inflow Multivariate Short-term 2021 [41]
CED-LSTM Inflow Multivariate Short-term 2022 [42]
CVD-LSTM Inflow Multivariate Short-term 2023 [43]

DSTA Streamflow Spatio-temporal Short-term 2019 [44]
STA-LSTM Flood forecasting Spatio-temporal Short-term 2020 [45]

ST-GCN Flood forecasting Spatio-temporal Short-term 2021 [46]

Despite the significant improvements in hydrological fore-
casting achieved through the use of additional data, there
is a scarcity of studies focused on using spatio-temporal
data and extracting relevant information from it. With the
increased availability of data from sensors in catchment areas
[2], exploring methods for extracting spatial and temporal in-
formation becomes crucial for advancing hydrological event
forecasting.

One area of further work involves investigating deep learn-
ing architectures specifically designed for spatio-temporal
forecasting. Developing deep learning architectures that can
effectively process spatio-temporal data could yield better
forecasting performance in hydrological applications.

Another aspect worth investigating involves identifying
feature extraction methods that are better suited for analyzing
spatial and temporal relationships in various hydro-power
datasets. Attention mechanisms have been applied in various
domains, including image classification [47] and natural
language processing tasks [48], as well as in some hydro-
logical forecasting literature, as reviewed above. However,
there is still potential for further exploration and adaptation
of attention mechanisms to better address the challenges
specific to hydro-power data. By learning the inner depen-
dencies and highlighting the most important information,
attention mechanisms can enhance the sensitivity to features
containing relevant information for hydrological forecasting.
Further research could investigate new variants of attention
mechanisms or their integration with other methods to im-
prove the forecasting performance in this context.

Lastly, further research can focus on combining spatio-
temporal meteorological and hydrological data to improve in-
flow forecasting. By effectively leveraging both types of data,
researchers can develop more accurate and robust models for
predicting hydrological events. This approach can also aid
in better understanding the underlying relationships between
meteorological and hydrological variables, leading to more
informed decision-making in water resource management.

IV. CONCLUSION

This paper provides an overview of the hydrological fore-
casting field, which has been undergoing rapid development.
A chronological analysis of various data-driven models has
been presented, showcasing the current state-of-the art. These
models were categorized into three groups: conventional,
machine learning (ML), and hybrid data-driven models.
The advantages and disadvantages of each category were
discussed in detail, and summarized in table I, II, and III.

Several trends have been identified in literature that con-
tribute to improved prediction accuracy. First, conventional
data-driven models such as ARMA, ARIMA, and MLR have
limitations, especially in capturing nonlinear relationships
and predicting non-stationary time series, whereas ML mod-
els can handle these relationships more flexibly. Second,
while ML methods can effectively manage temporal data,
they still face challenges when dealing with spatial data.
Lastly, the use of hybrid methods has been shown to enhance
forecasting accuracy by incorporating both temporal and
spatial data.

Moreover, incorporating additional data sources can sig-
nificantly improve a model’s accuracy. Despite the advances
in hydrological forecasting, there is still room for further
research, particularly in the areas of spatio-temporal data
integration, feature extraction, and the application of atten-
tion mechanisms. By continuing to explore and refine these
methods, the hydrological forecasting field can progress
toward more accurate and robust models.
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A Hydrological Case Study of Short-Term Inflow Forecasting with
Spatial-Temporal Attention-Based LSTM

Magnus Børseth

Abstract— In hydrological forecasting, understanding the
complex spatial and temporal interactions within catchment
and meteorological data is crucial. This paper presents a spatial-
temporal attention-based LSTM model for hydrological inflow
forecasting. Taking advantage of both spatial and temporal
information, the model captures complex dependencies within
catchment and meteorological data. The performance of the
proposed model is compared against several baseline models,
including traditional statistical techniques and state-of-the-art
machine learning methods, for one-hour ahead and recursive
12-hour ahead forecasts. The results demonstrate that while
the proposed model slightly under-performs against LSTM
with temporal attention in the one-hour ahead forecasting,
it outperforms all the baseline models in the 12-hour ahead
forecasting task. This emphasizes the significance of spatial cor-
relations in longer forecasting horizons. This study contributes
to the advancement of hydrological forecasting models by
demonstrating the effectiveness of integrating spatial-temporal
attention mechanisms with the LSTM networks.

I. INTRODUCTION

Hydrological forecasting is a critical component of water
resource management, providing essential information for
flood control [1], drought management [2], and hydropower
generation [3]. Accurate inflow forecasting is an important
part of reservoir operations, as it enables optimization of
water storage and release decisions in response to changing
weather patterns and water demands [4]. In practice, making
accurate predictions is difficult, because it requires a thor-
ough understanding of the complex interaction between me-
teorological and hydrological factors, as well as the impact of
human-controlled variables such as discharge from upstream
reservoirs, which may experience time delays.

In recent years, data-driven models have emerged as a
promising approach for inflow forecasting, taking advantage
of machine learning and statistical techniques to extract
patterns and relationships from historical data [4], [5].
Models such as Long Short-Term Memory (LSTM) have
shown great potential for modeling temporal dependencies
in hydrological time series, with applications ranging from
rainfall-runoff modeling to flood forecasting [6], [7].

Through the examination of existing literature [8], it
was found that several data-driven methods have been used
for forecasting hydrological events. However, while LSTM
models have shown great promise for temporal modeling,
they struggle with spatial correlations and fail to capture
the complex interactions between different locations within a
catchment area [9]. To address this challenge, recent studies
have proposed attention-based models that incorporate both
spatial and temporal information to capture the complex
spatial correlations [10], [11]. These models have shown

promising results in improving inflow forecasting accuracy,
showing the importance of using spatial and temporal infor-
mation in hydrological modeling.

This paper presents a case study of inflow forecasting
using a spatial-temporal attention-based LSTM model, using
data from sensors in a catchment and meteorological area
to improve inflow forecasting accuracy. The performance of
the proposed model is evaluated by comparing it against
traditional data-driven approaches and a generic LSTM-
based model. The study contributes to the growing liter-
ature on the application of attention-based LSTM models
for hydrological forecasting and highlights the importance
of incorporating both spatial and temporal information in
hydrological forecasting.

The rest of the paper is organized as follows. Section II
provides an overview of the study area and the data used for
the research. Section III discusses the data cleaning process
to prepare the data for modeling. Section IV presents the
proposed spatial-temporal attention-based LSTM model and
its methodology. In Section V, , the experimental results are
reported on and analyzed to assess the model’s performance.
Section VI draws conclusions from the findings. Lastly,
Section VII suggests future research directions and potential
improvements to the model.

II. STUDY AREA AND DATA

The study area chosen for this research is located on the
southwestern coast of Norway, in the Stavanger region. The
catchment (Figure 1) encompasses a diverse topography and
a temperate oceanic climate characterized by mild summers
and winters, along with substantial rainfall throughout the
year. The hydrological system within the catchment area
comprises a network of rivers, streams, and reservoirs, which
are influenced by various meteorological factors, such as
precipitation, temperature, and evaporation.

The initial dataset used in this study consists of mea-
surements collected at hourly intervals over various time
periods from January 2015 to March 2022. However, due
to sensor operation inconsistencies, not all variables cover
the entire time range. This dataset contained a diverse set of
hydrological and meteorological variables. After a process
of data filtering, a more focused subset of data was selected,
ranging from November 4, 2018, to September 22, 2020,
with a count of 16500 data points.

Hydrological data includes discharge measurements and
logger values obtained from multiple sensor locations. Mete-
orological data, encompassing air temperature, precipitation,
humidity, and wind speed measurements, were collected
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Fig. 1. Map of the study area in the Stavanger region of southwestern
Norway.

from two weather stations (Figure 1) within the catchment
area. Additionally, the dataset includes simulated hydro-
logical data generated by the HBV (Hydrologiska Byråns
Vattenbalansavdelning) model [12], a physical-based model
that simulates various hydrological processes.

TABLE I
OVERVIEW OF THE FILTERED DATASET FROM NOVEMBER 4, 2018, TO

SEPTEMBER 22, 2020

Variables Count Descriptions

Discharge 5 Flow rate data of water at specific
locations and system values

HBV Sim. Data 9 Simulated hydrological data by
HBV model, including precipita-
tion, snow melt, and temperature

Logger Values 15 Data from sensors at multiple loca-
tions, e.g., water level, and temper-
ature

Meteorological Data 7 Meteorological conditions data,
e.g., air temperature, precipitation,
humidity, and wind speed from
various locations

By focusing on this filtered dataset (as summarized in
Table I), we aim to gain a more accurate representation of
the spatial-temporal interactions within the catchment area
for our deep learning model.

III. DATA CLEANING

Before implementing the spatial-temporal attention-based
LSTM model (explained in Section IV-D), the hydrological
and meteorological dataset were cleaned through several
pre-processing steps. These steps addressed missing values,
outliers, and inconsistencies to ensure the suitability of the
data for model training and evaluation.

To handle missing values, data imputation techniques were
utlized, such as linear interpolation. This allowed to fill gaps
in the time series data without causing significant distortions.

The effectiveness of this approach was verified by comparing
interpolated values with actual measurements whenever pos-
sible. The outliers within the dataset were identified through
a detailed examination of the overall descriptive statistics.
Similar to missing data, linear interpolation was used to re-
place these outliers, reducing their potential negative impact
on the performance of the model.

Finally, data normalization and transformation procedures
were conducted. This ensured that all variables were com-
patible and on a similar scale, which is a prerequisite for
the input to the deep learning model. Specifically, min-max
normalization was applied to transform all variables to a
common scale, ranging from 0 to 1. This crucial step prevents
potential biases or inaccuracies when working with data of
different scales and units.

IV. METHODOLOGY

The methodology employed in this research centers on
the development and implementation of a spatial-temporal
attention-based LSTM model for inflow forecasting. The
model incorporates both temporal and spatial attention mech-
anisms to capture complex interactions among different loca-
tions within the catchment area and temporal dependencies
within time series data. The subsections below provide a
detailed overview of the LSTM model and our proposed
spatial and temporal attention mechanisms.

A. Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) is a type of Recur-
rent Neural Network (RNN) that is specifically designed to
capture long-term dependencies in sequence data [3]. Unlike
traditional RNNs, which suffer from vanishing and explod-
ing gradient problems when dealing with long sequences,
LSTMs incorporate gating mechanisms that enable the net-
work to retain and update relevant information over long
periods. These mechanisms include input, forget, and output
gates, which together allow the LSTM to learn complex
patterns and relationships in time series data [3].

B. Temporal attention

The Temporal Attention mechanism employed in this
study is a variant of self-attention, which enables the model
to selectively focus on relevant time steps within a sequence
when making predictions by assigning different levels of
importance, or attention weights, to each time step. These
attention weights are computed from the hidden states of
the LSTM itself, which captures the temporal dependencies
of the sequence. The mechanism computes a context vector
as a weighted sum of the LSTM hidden states, where the
weights represent the attention scores. This allows the model
to emphasize significant time steps, enhancing its ability to
predict inflow based on historical data.

C. Spatial Attention

Similarly, the Spatial Attention mechanism implemented
in this study is another form of self-attention. It assigns
importance weights to each spatial feature in the input data,
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thereby allowing the model to capture complex spatial inter-
actions among different locations within the catchment area.
These attention scores are computed from the input features
themselves, representing their relative importance for the
current prediction task. The mechanism then multiplies the
input features by their respective attention scores, enabling
the model to emphasize relevant spatial features and thus
enhance its forecasting performance.

D. Proposed Model: Spatial-Temporal Attention-Based
LSTM

In this study, a Spatial-Temporal Attention-Based LSTM
model is proposed, which combines the strengths of both
spatial and temporal attention mechanisms within an LSTM
architecture to effectively capture the spatial and temporal
dependencies in hydrological and meteorological time series
data. The proposed model comprises several components, in-
cluding a batch normalization layer, spatial attention module,
input linear layer, LSTM layer, temporal attention module,
and output linear layer. The architecture of the proposed
model is illustrated in Figure 2.

The input data is first pre-processed by applying batch
normalization to improve the model’s convergence rate and
performance. This technique ensures that the features have a
consistent scale and distribution, which can facilitate learning
and reduce training time.

The spatial attention layer is then applied to the input data,
allowing the model to selectively focus on different locations
within the catchment area by assigning importance weights
to each feature. By emphasizing the most relevant spatial
features, the model is better equipped to capture the complex
interactions between various locations and their respective
hydrological properties.

The input data, after applying the spatial attention, is
passed through a linear transformation layer. This layer
adjusts the dimensions of the input data to match the LSTM’s
hidden state dimension. The transformed data is then fed into
the LSTM layer, which models the temporal dependencies in
the data by retaining and updating relevant information over
long periods.

The temporal attention layer computes a context vector
from the hidden states of the LSTM layer, capturing the
most relevant temporal information for inflow forecasting.
By assigning importance weights to different time steps in
the sequence, the model can selectively focus on the most
critical periods that contribute to accurate predictions. This
context vector is used to update the LSTM hidden states and
is then passed through the output layer, which generates the
final inflow prediction.

V. EXPERIMENT RESULTS AND ANALYSIS

This section presents the results of the experiments to
evaluate the performance of the proposed spatial-temporal
attention-based LSTM model in comparison with the base-
line models. To showcase the model’s ability to handle
different forecasting horizons, two sets of experiments were
performed. First, the model’s performance is looked at

in one-hour ahead inflow forecasting, which represents a
simpler forecasting task. Next, the model is evaluated in a
more challenging scenario by performing recursive multi-
step forecasting with a horizon of 12 hours. A longer
forecasting horizon allows to investigate the model’s ability
to capture and leverage spatial and temporal dependencies
more effectively, as differences in performance between the
models might become more visible at this scale.

A. Baseline models

To evaluate the performance of the proposed spatial-
temporal attention-based LSTM model, it is compared
against several baseline models. These models represent a
range of approaches to inflow forecasting, from traditional
statistical techniques to state-of-the-art machine learning
methods. By comparing the model’s performance with these
baselines, the aim is to demonstrate the benefits of incorpo-
rating both spatial and temporal information in hydrological
forecasting. The baseline models include:

• HA: Historical Average (HA) is a straightforward base-
line model that uses historical data to calculate the av-
erage inflow for each time step. This calculated average
value is then used as the forecasted value for future time
steps.

• ARIMA: Autoregressive Integrated Moving Average
(ARIMA) is a widely-used statistical model for time
series forecasting [13]. ARIMA captures the temporal
dependencies in the data by modeling the linear rela-
tionships between past and future observations.

• FCN: Fully Connected Networks (FCN) is a type of
deep learning model that utilize multiple fully connected
layers to learn and model the relationships between
input features [11]. While FCN models can capture
some temporal dependencies through their architecture,
they are not specifically designed for time series data
and may not account for spatial information, which
may limit their performance in hydrological forecasting
tasks.

• LSTM: The standard LSTM model, as previously in-
troduced, is recognized for its capability to handle
time series data, and is widely adopted in hydrological
forecasting [6]. It provides a crucial comparison for
our proposed model. However, it is worth noting that
this version does not incorporate any attention mech-
anisms, meaning it may not fully capture the intricate
spatial correlations that the proposed spatial-temporal
attention-based LSTM model is designed to handle.

• Temporal Attention LSTM: This model represents an
intermediate step between the generic LSTM model and
the proposed spatial-temporal attention-based LSTM
model. It incorporates a temporal attention mechanism
within the LSTM architecture, allowing the model to
selectively focus on different parts of the sequence
[10]. However, it does not include the spatial attention
component, and thus, does not account for the complex
interactions between different spatial locations within
the catchment and meteorological area.
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Fig. 2. Architecture of the proposed Spatial-Temporal Attention-Based LSTM model, illustrating the combination of spatial and temporal attention
mechanisms within the LSTM framework for effective inflow forecasting.

B. Evaluation Metrics

In this paper, four common evaluation metrics are used
to assess the performance of our proposed spatial-temporal
attention-based LSTM model in inflow forecasting. These
metrics were chosen for their ability to provide a comprehen-
sive overview of the model’s prediction accuracy, precision,
and consistency.

• Mean Absolute Error (MAE): MAE calculates the
average absolute difference between predicted and ac-
tual values. This metric provides an indication of the
magnitude of errors made by the model irrespective
of their direction. In the context of inflow forecasting,
a lower MAE indicates more precise predictions. It is
defined as:

MAE =
1

n

n∑

i=1

|yi − ŷi|

where yi is the actual value, ŷi is the predicted value,
and n is the number of data points.

• Root Mean Squared Error (RMSE): RMSE measures
the square root of the average of squared differences
between predicted and actual values. The squaring of
differences in RMSE gives higher weight to large errors,
making it particularly useful in identifying when the
model’s predictions significantly deviate from the actual
values. It is defined as:

RMSE =

√√√√ 1

n

n∑

i=1

(yi − ŷi)2

• Mean Absolute Percentage Error (MAPE): MAPE
determines the average absolute percentage difference
between predicted and actual values. This metric is
especially useful for understanding the error rate in
percentage terms, which can offer a more intuitive sense
of the model’s accuracy, especially when comparing
across different datasets or models. It is defined as:

MAPE =
1

n

n∑

i=1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣× 100

• Coefficient of Determination (R2): R2 evaluates the
proportion of variance in the dependent variable that
can be explained by the independent variables. A high

R2 indicates that the model can explain a large portion
of the variability in the inflow data, signifying a strong
predictive performance. However, it is also essential to
be cautious with R2 as it can be artificially high if
the model is overfitted. In some cases, R2 can even
be negative if the chosen model performs worse than a
simple horizontal line [14]. It is defined as:

R2 = 1−
∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − ȳi)2

where ȳi is the mean of the actual values.
Employing these evaluation metrics provide a compre-

hensive understanding of the model’s ability to effectively
forecast inflows [11], considering both spatial and temporal
dependencies in the hydrological and meteorological data.
These metrics makes it possible to assess the model’s per-
formance in different ways, ensuring a thorough evaluation
of its inflow forecasting capabilities.

C. Training Configuration

To ensure a fair comparison between the proposed spatial-
temporal attention-based LSTM model and the baseline mod-
els, the neural network models were implemented using the
same experimental setup. The models were trained and tested
on various combinations of hydrological, meteorological, and
HBV simulated data, which were pre-processed and split into
training, validation, and testing sets using a 70:20:10 ratio.
The testing set consisted of 3,295 data points, representing
a time span of approximately four and a half months during
the year 2020. The models were trained using the Adam
optimizer [15].

A Population-Based Training (PBT) method was used
for hyperparameter tuning, which dynamically adjust and
optimize hyperparameters during the training process [16].
By combining the advantages of random search and hand-
tuning, PBT periodically adjusts hyperparameters of the
well-performing models, promoting the exploration of di-
verse hyperparameter configurations and effectively accel-
erating the tuning process.

The hyperparameters were tuned using the Ray Tune
library [17] to find the optimal combination for each model
and each data combination. Training the models on differ-
ent combinations of hydrological, meteorological, and HBV
simulated data allowed for the exploration of the impact
of different types of input data on the performance of the
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models. This approach also ensured that the hyperparameters
of each model were tuned to optimize their performance for
each specific data combination. The optimal hyperparameters
for each model and data combination were then used for
evaluation on the testing set.

The models were trained for a maximum of 100 epochs,
with PBT making potential alterations to hyperparameters
every 25 epochs. The number of epochs was chosen to
allow sufficient time for the models to learn while mitigating
the risk of overfitting. In this implementation, various hy-
perparameters including learning rate, weight decay, hidden
size, and number of layers were tuned to optimize model
performance.

Upon training 25 individual models for each combination
of model type and variable set, the average performance of
each set of models was computed according to the evaluation
metrics. The model type that exhibited the best average
performance was deemed the representative for each specific
combination of model type and variable set. This can be
seen in Table II and III, which is taking into account the
unique characteristics of each input data combination and
the variability introduced by different hyperparameters.

D. Hour Ahead Forecast
This subsection presents the hour-ahead inflow forecast-

ing results for the proposed spatial-temporal attention-based
LSTM model and the baseline models. Each model’s per-
formance is evaluated using the four evaluation metrics
described earlier, and the results are summarized in Table
II.

TABLE II
AVERAGE PERFORMANCE OF EACH MODEL TYPE ON THEIR BEST

VARIABLE SET FOR A HOUR-AHEAD FORECAST

Model Variable Set MAE RMSE MAPE R2

ARIMA univariate 5.156 6.244 114.836 -0.043

HA univariate 1.891 3.413 175.267 0.688

FCN meteorological + hydrological + hbv 2.260 4.028 29.106 0.716

LSTM meteorological + hydrological + hbv 3.015 4.322 49.290 0.650

LSTMTemporalAttention meteorological + hydrological 1.557 2.441 23.632 0.885

LSTMSpatioTemporalAttention meteorological + hydrological 1.994 2.960 28.880 0.782

From the results in Table II, the LSTM with Temporal
Attention model (LSTMTemporalAttention), using both me-
teorological and hydrological variables, is the top performer.
This model outperforms all others, achieving the lowest
MAE, RMSE, and MAPE, and the highest R2 value.

The above suggests that the temporal attention mechanism
plays a significant role in enhancing model performance for
short-term forecasts like the one-hour ahead prediction. The
spatial-temporal attention-based LSTM model also shows
strong performance, emphasizing the benefits of incorporat-
ing both spatial and temporal information in inflow forecast-
ing. However, it should be noted that the short forecasting
horizon might reduce the relative importance of spatial
correlations, as reflected by the performance of the LSTM
model with only temporal attention.

The traditional ARIMA model, using a univariate input,
shows the weakest performance, which could be due to

the simplicity of the model. The Historical Average (HA)
model, despite using a simple approach, achieves reasonable
performance. The Fully Connected Network (FCN) model,
leveraging meteorological, hydrological, and HBV variable
sets, also provides a decent performance, but it still falls
behind the LSTM-based models.

E. 12-Hour Ahead Forecast

This subsection presents the 12-hour-ahead recursive in-
flow forecasting results for the proposed LSTM model with
spatial-temporal attention, along with other baseline mod-
els. The models developed for the hour-ahead forecast are
utilized, and a recursive multi-step forecasting approach is
employed to predict the inflow 12 hours into the future. The
recursive multi-step forecasting approach is a method where
the one-hour ahead forecast model is used to make multiple
predictions into the future. For each forecast, the input
sequence is updated with the model’s latest prediction, while
other features remain unchanged. This process continues
recursively until the forecast horizon (12 hours, in this case)
is reached.

This forecasting task presents additional challenges due to
the extended forecasting horizon and the cumulative nature
of prediction errors in the recursive approach, making the
task more complex as the forecast horizon extends.

TABLE III
AVERAGE PERFORMANCE OF EACH MODEL TYPE ON THEIR BEST

VARIABLE SET FOR A RECURSIVE 12-HOUR AHEAD FORECAST

Model Variable Set MAE RMSE MAPE R2

ARIMA univariate 5.471 6.820 176.511 -0.244

HA univariate 4.540 7.162 258.459 -0.372

FCN meteorological + hydrological 4.717 8.340 59.235 -0.133

LSTM meteorological + hydrological 4.127 6.709 52.717 0.247

LSTMTemporalAttention meteorological 3.402 6.187 40.662 0.321

LSTMSpatioTemporalAttention meteorological 3.333 5.913 39.501 0.370

The results in Table III, shows that the proposed LSTM
with Spatial Temporal Attention model surpasses all other
models in the 12-hour-ahead forecasting task, recording the
lowest MAE, RMSE, and MAPE, and the highest R2 score.
This shows the models ability to effectively handle the
increasing complexity of predictive challenges presented by
longer forecasting horizons.

Interestingly, the optimal variable sets for each model in
the 12-hour ahead forecast are not identical to those in the
hour-ahead forecast. For both the LSTM with Temporal At-
tention and the proposed model, the meteorological variable
set performs best, without the need for hydrological data.
This can indicate that in the 12-hour recursive forecasting
scenario, the meteorological information becomes more dom-
inant for predicting inflow rates.

In comparison to the one-hour ahead forecast, the pro-
posed model now outperforms the LSTM with Temporal
Attention model. This indicates the increasing importance
of spatial information as the forecasting horizon extends,
highlighting the advantage of incorporating spatial depen-
dencies, which the proposed model successfully implements.
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Fig. 3. Four heatmap visualizations of spatial and temporal attention weights for both one-hour-ahead (first and second from left) and recursive 12-hour-
ahead (third and fourth) forecasts. Dark purple colors indicate low importance, while yellow colors denote high importance. This visual representation aids
in understanding the model’s focus while processing spatial-temporal data and how it varies between different forecast periods.

The performances of ARIMA and HA models deteriorate,
possibly due to their inability to handle the complex temporal
dependencies in the data over a more extended horizon.
The FCN model, despite using both meteorological and
hydrological variables, also falls short, possibly due to its
limitations in modeling temporal dependencies as effectively
as LSTM-based models.

F. Time-Space Consumption

In addition to forecasting accuracy, another important
consideration is the computational efficiency of the model.
This includes not just the time it takes for the model to be
trained, but also the time it takes to make predictions (testing
time), and the memory usage of the model (model size).
These factors have been analyzed for the proposed spatial-
temporal attention-based LSTM model and then compared
to the baseline models. The results are summarized in Table
IV.

TABLE IV
TIME AND SPACE CONSUMPTION OF THE MODELS

Model Size (KB) Training Time (s) Testing Time (s)

HA 14.023 - 0.008

ARIMA 0.046 1.060 0.021

FCN 61.420 34.669 0.080

LSTM 525.320 54.300 0.210

LSTMTemporalAttention 734.693 64.570 0.251

LSTMSpatioTemporalAttention 424.229 106.095 0.229

Table IV demonstrates that the proposed spatial-temporal
attention-based LSTM model has the longest training time
among all models, excluding HA, which does not require
training. This extended training time can be attributed to

the additional complexity introduced by incorporating both
spatial and temporal attention mechanisms. Despite this, the
testing time of the proposed model is comparable to other
LSTM-based models, indicating that the increased complex-
ity does not significantly impact the prediction speed.

In terms of space consumption, although the proposed
model requires more space than ARIMA and HA models,
it consumes less space than LSTM and LSTM with Tem-
poral Attention models. This smaller model size, despite
its increased complexity, might be due to the more effi-
cient representation learned by the spatial-temporal attention
mechanism or due to the hyperparameter search process,
which might affect the model size.

G. Interpretation of the Spatial-Temporal LSTM Model

Interpreting the decision-making process of this spatial-
temporal attention-based LSTM model can provide valuable
insights into the underlying hydrological processes. The
focus is on the interpretation on the model’s spatial and
temporal attention mechanisms, which allow it to focus
on different features and time steps during the forecasting
process. By visualizing the spatial and temporal attention
weights, one can understand which locations and time steps
the model deems most important for making its predictions.

Figure 3 presents a series of four heatmaps, displayed in
a horizontal sequence. They represent the spatial and tem-
poral attention weights for the one-hour-ahead forecast and
the recursive 12-hour-ahead forecast. The attention weights
are color-coded, with darker purple colors signifying lower
importance, and yellow colors indicating higher importance
assigned by the model.

The first heatmap from the left shows the spatial attention
for the one-hour-ahead forecast, followed by the temporal
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attention for the same. The third heatmap illustrates the
spatial attention for the recursive 12-hour-ahead forecast, and
finally, the last heatmap represents the temporal attention for
the same forecast.

By comparing the heatmaps of the one-hour-ahead and
12-hour-ahead forecasts, a noticeable change in the atten-
tion weights can be observed. While the spatial attention
heatmaps show relatively minor changes between the two
forecast timeframes, the temporal attention heatmaps exhibit
a more substantial shift. In the 12-hour-ahead temporal at-
tention heatmap, more weights appear to have been assigned
lower importance, as indicated by the darker purple colors.

VI. CONCLUSION

In this study, a spatial-temporal attention-based LSTM
model for inflow forecasting in the Stavanger region of south-
western Norway has been developed and evaluated. This
region, with its diverse topography and temperate oceanic
climate, presented a complex environment for hydrological
forecasting. The proposed spatial-temporal attention-based
LSTM model incorporates spatial and temporal attention
mechanisms, enabling it to capture complex spatial and
temporal dependencies within the hydrological and mete-
orological data. The proposed model’s performance was
compared against several baseline models, including HA,
ARIMA, FCN, a generic LSTM, and an LSTM with only
temporal attention. The evaluation of the models was carried
out using two forecasting tasks: one-hour ahead forecasting
and recursive multi-step forecasting with a horizon of 12
hours.

The experimental results demonstrated the effectiveness of
the proposed spatial-temporal attention-based LSTM model.
In the one-hour ahead forecasting task, the temporal at-
tention LSTM model performed better than the spatial-
temporal attention-based LSTM model, suggesting that tem-
poral dependencies might be more important for short-term
inflow forecasts. However, the spatial-temporal attention-
based LSTM model still outperformed most of the baseline
models, indicating that the inclusion of both spatial and
temporal information can contribute to improved accuracy
in short-term inflow forecasts. In the more challenging 12-
hour ahead forecasting task, the spatial-temporal attention-
based LSTM model surpassed all baseline models, indicating
that the model’s ability to capture spatial dependencies might
become increasingly important as the forecasting horizon
extends.

VII. FUTURE RESEARCH DIRECTIONS

While the proposed spatial-temporal attention-based
LSTM model has demonstrated promising results in short-
term inflow forecasting, several directions for future research
can be identified to further enhance the model’s performance
and applicability.

• Evaluating performance across different catchment
areas: The study was conducted on a single catchment
area, which limits the generalizability of the results.
Future research could explore the model’s performance

across different catchment areas with varying hydrologi-
cal and meteorological characteristics. This would help
understand the model’s robustness and adaptability to
different environments.

• Extending the forecasting horizon: The proposed
model’s performance was tested with one-hour ahead
and 12-hour ahead forecasts. It would be interesting to
investigate how the model performs with even longer
forecasting horizons, such as one-day or one-week
ahead forecasts. This could provide further insights into
the model’s ability to capture long-term spatial-temporal
dependencies.

• Exploring other attention mechanisms: While this
model employs a specific type of self-attention mecha-
nism for modeling spatial and temporal dependencies,
there are other types of attention mechanisms that
could potentially improve the model’s performance.
For instance, multi-head attention, a key component of
Transformer models, could be explored in future studies
to allow the model to focus on different aspects of the
input simultaneously.

Pursuing the above research directions can further advance
the field of inflow forecasting and improve water resource
management and the response to hydrological events.
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Chapter 8

Application: An Interactive
Tool for Hydrological
Forecasting

This thesis primarily focuses on the theoretical and practical applications of ML
for hydrological forecasting, as detailed in the previous chapters. In addition
to this theoretical exploration, a conceptual tool was developed to provide a
hands-on, practical application of these theories.

This chapter provides an overview of this tool, an interactive application de-
signed for individuals working at hydrological power plants, allowing them to
experiment with hydrological forecasting using various ML models. The appli-
cation serves as a bridge between theoretical ML methods and their practical
application in hydrological forecasting, giving the end users the possibility to
apply these techniques without the need to interact directly with the underlying
code.

It should be noted that this application serves as a conceptual sketch, rather
than a finalized product. As of now, no user-testing has been conducted.

8.1 Development Process

The development of the application involved a strategic approach towards code
structuring to allow for code sharing between the application and experimen-
tal development in notebooks. This has been achieved through the following
components:

• Notebooks: Interactive notebooks were used for the early stages of model
development and experimental analysis. They are organized in a sequence
from data cleaning, to model training and evaluation. The code in these
notebooks enables easy transfer and integration into the application com-
ponent.

44



• App: The app represents the frontend of the application, offering a user-
friendly interface for interacting with the ML models and the data. Code
from the notebooks were integrated into this part to provide the function-
ality of the application.

• Data: The data directory is categorized into raw data, clean data, and
transformation data, each self-explanatory of the data they contain. The
structured segregation of data aids in maintaining the data pipeline and
ensuring data integrity.

• Source Python Code: The primary Python project contains the shared
code. It contains Python scripts that define core functionalities including
data preprocessing, model definition, training procedures, and evaluation
metrics. These scripts serve as the backbone of both the notebooks and
the application, ensuring code consistency and minimizing redundancy.

Details related to obtaining the source code is available in Appendix A

8.2 Implementation and Technical Details

The implementation of the project was done using version control to manage the
development process. Git is used to ensuring that the most recent and stable
version of the code is available.

The development was also supported by various open-source Python libraries
and frameworks, which greatly simplified the process and enhanced the appli-
cation’s functionality. Below is a brief overview of the main frameworks and
libraries used in this project:

• Streamlit: Streamlit [4] was used for creating the web-based user inter-
face of the application. It allows for the rapid prototyping of the appli-
cation and interactive visualization of the model results, allowing for an
intuitive and user-friendly application.

• Poetry: Poetry [1] was utilized for package management and environ-
ment setup. It managed dependencies effectively, ensuring interoperabil-
ity of different libraries used in the project. Furthermore, it allowed for
replication of the development environment across different setups.

• PyTorch: PyTorch [2] was chosen as the ML library for this project. It
provides a wide range of functionalities for building and training neural
networks.

• Ray Tune: Ray Tune [3] was used for hyperparameter tuning of the
ML models. It supports a variety of search algorithms and scheduling
mechanisms, making it an excellent tool for optimizing model performance
and achieving the best results.

In addition to these primary tools, several other libraries were also utlized
for data manipulation and analysis (numpy, pandas), data visualization (mat-
plotlib, plotly), and ML (scikit-learn). The full list of dependencies is provided
in the pyproject.toml file, included in the project repository. For the source code
URL, please refer to Appendix A.
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8.3 Overview of the Application

The conceptual application is an interface to demonstrate the use of ML in
hydrological forecasting. While not the primary focus of this thesis, it serves as
a practical demonstration of the theories and models explored in the previous
chapters.

The application is divided into three main sections:

• The App Page (C.1): This page serves as the landing point for users.
It provides essential information about the application and includes the
functionality for data upload.

• The Training Page (C.2): Here, users can select their desired ML mod-
els and configure parameters for hyperparameter training. This compo-
nent allows users to experiment with different forecasting models without
directly interacting with complex code.

• The Visualization Page (C.3): This section presents the data and
results of the forecasting models in an intuitive and interactive format.
The interactivity of this page allows users to actively engage with the
model’s evaluation metric.

Each of these sections are designed with simplicity and ease-of-use in mind. Pro-
viding a straightforward method of exploring hydrological forecasting without
the necessary understanding of coding. For a visual representation of the appli-
cation, please refer to Appendix C, which includes a comprehensive screenshot
series of the application’s interface and functionalities.

8.4 Application Design and Workflow

The application is designed to offer a straightforward and efficient workflow.
The process begins with data upload, moves through the model training stage,
and concludes with the interactive visualization of results. Each step in this
sequence is intuitive, ensuring users can easily navigate through the application.
The workflow is outlined below and visually represented in Figure 8.1.

8.4.1 Data Upload and Pre-Processing

The first step within the application takes place on the app page, where users are
tasked with uploading their datasets. The application is currently configured to
accept data exclusively in CSV format.

It is crucial to note that the application assumes that the uploaded data has
already been cleaned and prepared. This is to ensure the accuracy and relia-
bility of the ML models. If the data is not properly prepared, the application
will automatically eliminate rows containing missing values. This can lead to
unintended gaps in the sequential data, potentially distorting the final analysis
or predictions. As such, users are advised to pre-process their data, handling
missing values, and conduct any necessary transformation before uploading.

46



Figure 8.1: Flowchart illustrating the workflow of the interactive hydrological
forecasting application, showcasing the process of data upload, model training,
and result visualization.

8.4.2 Model Selection and Training

The training page of the application is where the users first select the datetime
variable and the target variable. When these parameters have been set, the
option for hyperparameter search parameters becomes available. Here the user
can select models to use: FCN (Fully Connected Network), LSTM, LSTM with
temporal attention, or LSTM with spatio-temporal attention. The user is also
given the option for what variables sets it should include in the search, so if the
user wants to compare the selected model on univariate data and meteorological
data, they can do so. The training process is only shown as a loading circle to
show progress. When training is completed, the trained models are displayed
along with its results.

8.4.3 Data and Result Visualization

The visualization page is created to represent both the data and the model
outputs in a user-friendly and interactive manner. It features dynamic plotly-
generated graphs that allow users to zoom, pan, and hover over specific data
points for more detailed information.

A comparison graph illustrating predicted versus actual values of the best per-
forming model is shown, offering a clear visual overview of the model’s forecast-
ing capabilities.

Furthermore, an interactive table is provided, detailing the key performance
metrics of all trained models. This table can be sorted by column values, offering
a fast and convenient way to compare and evaluate model performance based
on various metrics.
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8.5 Further Work: Future Potential and
Limitations

This conceptual application serves as a tool for understanding the potential
of ML in hydrological forecasting. By allowing users, specifically hydrological
power plant staff, to upload their own data, select models, and visualize re-
sults, the application offers a hands-on experience with the forecasting building
process and the potential benefits of ML.

Despite being a conceptual tool, the application can present valuable utility
in the field of hydrological forecasting. While it is not designed to replace
comprehensive professional forecasting software, it can serve as an additional
resource for end-users.

Moving forward, a possible further development could be automating this pro-
cess. Currently, the application is mostly manual, requiring users to upload
data, select models, select parameters, and initiate the training process. Future
improvements of the application could incorporate more automation, such as
automated data cleaning and preprocessing, model selection, hyperparameter
tuning, and result interpretation. This would streamline the user experience,
making the tool more convenient for a broader range of users.

It is also important to note that further work should involve a thorough user-
testing process. Feedback from end-users, especially those operating in real-
world hydrological power plants, would be invaluable in refining the tool’s fea-
tures and ensuring it meets their specific needs.

Finally, as this application remains a conceptual tool, the code underlying its
features and functionalities is not fully optimized. Future work may involve re-
fining and optimizing the code for greater efficiency and improved performance.
This includes leveraging more advanced ML algorithms and techniques for su-
perior forecasting accuracy.
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Appendix A

Source code

The following listings show code used in model training and evaluation. The
full source code is available at: https://github.com/BorMagnus/hydro-ml.

A.1 Model Training

Listing 1: Setting up the environment and importing the necessary modules.

1 import os

2 import sys

3

4 import pandas as pd

5

6 from ray import tune

7 from ray.tune.schedulers import PopulationBasedTraining

8

9 module_path = os.path.abspath(os.path.join(os.getcwd(), ".."))

10 if module_path not in sys.path:

11 os.environ["PYTHONPATH"] = module_path

12 sys.path.append(module_path)

13

14 from src.train import train_model

15 from src.experiment import get_variables_combinations

Listing 2: Definition of the main function including configuration for the model,
hyperparameters, and PBT scheduler.

17 def main(

18 i,

19 model,

20 exp_name,

21 file_name,

22 n_samples,

23 max_num_epochs,

24 min_num_epochs,
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25 local_dir="../ray_results",

26 ):

27 target_variable = "Flow_Kalltveit"

28 datetime_variable = "Datetime"

29

30 variables = [get_variables_combinations(file_name, datetime_variable)[i]]

31

32 config = {

33 "data_file": file_name,

34 "datetime": datetime_variable,

35 "data": {

36 "target_variable": target_variable,

37 "sequence_length": tune.choice([25]),

38 "batch_size": tune.choice([256]),

39 "variables": tune.grid_search(variables),

40 "split_size": {

41 "train_size": 0.7, "val_size": 0.2, "test_size": 0.1

42 },

43 },

44 "model": tune.grid_search(model),

45 "model_arch": {

46 "input_size": tune.sample_from(

47 lambda spec: len(spec.config.data["variables"]) + 1

48 ),

49 "hidden_size": tune.choice([32, 64]),

50 "num_layers": tune.choice([1, 2, 3]),

51 "output_size": 1,

52 },

53 "training": {

54 "learning_rate": tune.loguniform(1e-5, 1e-1),

55 "weight_decay": tune.loguniform(1e-5, 1e-1),

56 },

57 "num_epochs": max_num_epochs,

58 }

59

60 reporter = tune.JupyterNotebookReporter(

61 metric_columns=[

62 "train_loss", "val_loss", "test_loss", "training_iteration"

63 ]

64 )

65

66 scheduler_population = PopulationBasedTraining(

67 time_attr="training_iteration",

68 perturbation_interval=min_num_epochs,

69 hyperparam_mutations={

70 "weight_decay": tune.uniform(0.0, 0.3),

71 "learning_rate": tune.loguniform(1e-5, 1e-1),

72 "model_arch.hidden_size": tune.choice([32, 64]),

73 "model_arch.num_layers": tune.choice([1, 2, 3]),

74 },

75 )

76
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77 stop = {

78 "training_iteration": max_num_epochs,

79 }

80

81 if not os.path.exists(local_dir):

82 os.makedirs(local_dir)

83

84 results = tune.run(

85 train_model,

86 resources_per_trial={"cpu": 12, "gpu": 1},

87 config=config,

88 num_samples=n_samples,

89 scheduler=scheduler_population,

90 progress_reporter=reporter,

91 name=exp_name,

92 local_dir=local_dir,

93 metric="val_loss",

94 mode="min",

95 stop=stop,

96 keep_checkpoints_num=1,

97 checkpoint_score_attr="val_loss",

98 )

99

100 return results

Listing 3: Execution of the main function for different models and dataset
configurations.

101

102 data_dir = "./data"

103 clean_data_dir = os.path.abspath(os.path.join(data_dir, "clean_data"))

104

105 results = []

106

107 model_dict = {

108 "test-lstm": "LSTM",

109 "test-temp": "LSTMTemporalAttention",

110 "test-spa_temp": "LSTMSpatioTemporalAttention",

111 "test-fcn": "FCN",

112 }

113 for i in range(4):

114 for exp_name, model in model_dict.items():

115 filename = "cleaned_data_4.csv"

116 file_path = os.path.join(clean_data_dir, filename)

117

118 num = filename.split("_")[2].split(".")[0]

119 experiment = f"data_{num}-{exp_name}"

120

121 analysis = main(

122 i,

123 [model],

124 exp_name=experiment,
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125 file_name=filename,

126 n_samples=25,

127 max_num_epochs=100,

128 min_num_epochs=25,

129 )

130

131 results.append(analysis)

Listing 4: Compilation of the results and printing of the combined dataframe.

133 dfs = []

134 for analysis in results:

135 df = analysis.dataframe()[

136 [

137 "train_loss",

138 "val_loss",

139 "train_loss",

140 "config/model",

141 "time_total_s",

142 "config/data/variables",

143 ]

144 ]

145 dfs.append(df)

146

147 combined_df = pd.concat(dfs, ignore_index=True)

148 print(combined_df)

A.2 Model Evaluation

Listing 5: Python code for importing required libraries and modules for model
evaluation

1 import json

2 from pathlib import Path

3 from operator import itemgetter

4 import pandas as pd

5 import numpy as np

6 from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score

7

8 import sys

9 import os

10

11 import plotly.graph_objs as go

12 import plotly.subplots as sp

13 from plotly.offline import init_notebook_mode, plot, iplot

14 import plotly.express as px

15 from plotly.subplots import make_subplots

16

17 module_path = os.path.abspath(os.path.join("../"))

18 if module_path not in sys.path:
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19 sys.path.append(module_path)

20

21 from src.data import *

22 from src.train import create_model

23 from src.evaluate import *

Listing 6: This section includes code that plots the actual vs predicted values,
calculates the model’s metrics, averages them based on variable set, and prints
the results.

26 plot_pred_actual(model_dirs, experiment)

27

28 model_dfs, parameters = calculate_model_metrics(model_dirs, experiment, best)

29

30 df_concat_avg_w_var = average_with_var(model_dfs, experiment)

31 print(df_concat_avg_w_var)

Listing 7: This code examines the best model’s attention mechanism, applying
the model to data to generate and plot attention weights.

34 for model_dir in model_dirs:

35 if experiment not in str(model_dir):

36 continue

37 rows = []

38 best_checkpoints = find_best_checkpoints(model_dir, num_best=1)

39 for i, (checkpoint, val_loss, params) in enumerate(best_checkpoints):

40 if params["model"] == "LSTM" or params["model"] == "FCN":

41 continue

42 elif params["model"] == "LSTMTemporalAttention":

43 continue

44

45 model = create_model(params)

46 model = load_model_from_checkpoint(model, checkpoint)

47 data_loader, _ = get_dataloader(params)

48 test_dataloader = data_loader["test"]

49

50 inputs, targets = next(iter(test_dataloader))

51

52 output, spatial_attention_weights, temporal_attention_weights = model(

53 inputs, True

54 )

Listing 8: Running multi-step ahead predictions on the models, calculates the
model’s metrics, averages them based on variable set, and prints the results.

61 steps_ahead = 12

62 model_dfs = evaluate_multi_step_models(

63 model_dirs, experiment, steps_ahead, best)

64 df_concat_avg_w_var = average_with_var(model_dfs, experiment)

65 print(df_concat_avg_w_var)
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Appendix B

Data description
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Variable Count Mean Std Min Max
Wind Speed Nilsebu 62955 -11.36 373.07 -7999.00 22.10
Air Temp Nilsebu 63102 3.64 6.92 -20.70 27.20
Wind Direction Nilsebu 63079 213.03 113.67 -99.90 360.00
Relative Humidity Nilsebu 63079 64.44 43.18 -99.90 99.70
W Level Lyngsaana 50380 0.74 0.18 0.33 1.49
W Temp Hiafossen 50192 6.24 5.35 -0.20 19.90
W Level Hiafossen 50192 1.08 0.16 0.85 2.02
Air Temp Fister 63288 8.81 5.91 -11.80 32.40
Precipitation Fister 63288 0.22 0.75 0.00 21.60
Flow Lyngsvatn Overflow 63286 0.04 0.74 0.00 22.40
Flow Tapping 63286 0.94 1.44 0.00 49.05
W Level Kalltveit 63274 -26.23 517.62 -9999.00 2.28
Flow Kalltveit 63288 6.51 7.57 0.00 110.26
W Temp Kalltveit Kum 63269 -25.73 563.04 -9999.00 15.84
Precipitation Nilsebu 63288 0.33 1.24 0.00 30.00
W Temp Hiavatn 45837 6.71 5.50 0.00 20.00
W Level Hiavatn 45836 1.94 0.22 1.70 3.85
W Temp Musdalsvatn 45978 5.82 5.44 0.00 19.20
W Level Musdalsvatn 45978 1.51 0.29 0.77 3.28
W Temp Musdalsvatn DS 45955 5.85 5.20 -0.10 18.60
W Level Musdalsvatn DS 45955 1.23 0.15 1.02 2.66
W Temp Viglesdalsvatn 45858 6.73 5.43 0.00 20.00
W Level Viglesdalsvatn 45858 1.79 0.19 1.52 3.22
Flow HBV 63288 5.35 6.81 0.01 89.83
Precipitation HBV 63288 0.28 0.82 0.00 26.32
Temp HBV 63288 4.07 6.92 -20.20 27.72
Snow Melt HBV 29595 0.09 0.16 0.00 1.38
Snow Water Equivalent HBV 29595 187.21 248.75 0.00 1006.83
Evaporation HBV 29595 0.04 0.05 0.00 0.32
Soil Water Storage HBV 29595 71.16 18.56 7.26 84.94
Groundwater Storage HBV 29595 15.95 11.31 0.62 102.19
Flow Without Kalltveit 63288 5.59 7.76 0.00 110.26
Mean Flow HBV 31241 5.18 6.60 0.01 137.05
Flow Lyngsaana 63288 2.26 3.34 0.00 55.23
W Temp Lyngsaana 63283 6.40 5.34 -0.77 19.40
W Temp Kalltveit River 50316 7.31 5.48 0.00 22.85

Table B.1: This table gives a full statistical description of all the variables in
the raw dataset. For each variable, it provides the number of non-null values,
the mean, the standard deviation, the minimum, and the maximum.
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Variable Count Mean Std Min Max
Wind Speed Nilsebu 16500 6.31 2.19 0.10 19.00
Air Temp Nilsebu 16500 4.02 6.52 -19.00 26.20
Wind Direction Nilsebu 16500 214.87 112.07 0.00 360.00
Relative Humidity Nilsebu 16500 42.86 44.83 0.00 99.70
W Level Lyngsaana 16500 0.74 0.17 0.37 1.32
W Temp Hiafossen 16500 6.29 5.33 -0.20 19.80
W Level Hiafossen 16500 1.06 0.15 0.89 1.99
Air Temp Fister 16500 9.26 5.65 -3.70 32.40
Precipitation Fister 16500 0.23 0.85 0.00 21.60
Flow Lyngsvatn Overflow 16500 0.00 0.00 0.00 0.00
Flow Tapping 16500 0.74 1.76 0.00 24.95
W Level Kalltveit 16500 0.62 0.15 0.46 2.09
Flow Kalltveit 16500 6.16 6.43 1.12 90.86
W Temp Kalltveit Kum 16500 6.07 1.65 2.76 10.80
Precipitation Nilsebu 16500 0.30 1.03 0.00 30.00
W Temp Hiavatn 16500 6.40 5.42 0.00 19.90
W Level Hiavatn 16500 1.92 0.20 1.71 3.68
W Temp Musdalsvatn 16500 5.46 5.39 0.10 18.20
W Level Musdalsvatn 16500 1.45 0.29 0.77 3.28
W Temp Musdalsvatn DS 16500 5.49 5.10 -0.10 17.40
W Level Musdalsvatn DS 16500 1.20 0.14 1.02 2.66
W Temp Viglesdalsvatn 16500 6.41 5.35 0.30 20.00
W Level Viglesdalsvatn 16500 1.76 0.18 1.55 3.11
Flow HBV 16500 5.62 6.36 0.06 89.83
Precipitation HBV 16500 0.29 0.86 0.00 21.00
Temp HBV 16500 4.36 6.54 -18.50 26.72
Snow Melt HBV 16500 0.11 0.18 0.00 1.38
Snow Water Equivalent HBV 16500 222.59 292.03 0.00 1006.83
Evaporation HBV 16500 0.04 0.06 0.00 0.32
Soil Water Storage HBV 16500 72.43 15.15 12.42 84.94
Groundwater Storage HBV 16500 17.56 11.32 2.17 102.19
Flow Without Kalltveit 16500 5.43 6.54 0.00 90.86
Mean Flow HBV 16500 4.89 5.51 0.03 66.02
Flow Lyngsaana 16500 2.15 2.92 0.00 34.29
W Temp Lyngsaana 16500 6.77 5.45 -0.10 19.40
W Temp Kalltveit River 16500 7.21 5.34 0.00 22.58

Table B.2: This table gives a full statistical description of all the variables in
the processed dataset. For each variable, it provides the number of non-null
values, the mean, the standard deviation, the minimum, and the maximum.
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Appendix C

Application

Figure C.1: The home page of the application, illustrating the user interface
and file upload functionality in the left sidebar.
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Figure C.2: The training page of the application, presenting the options for
selecting the date variable, target variable, and ML models for training.

Figure C.3: The visualization page, offering interactive plots for viewing and
analyzing the data and the results from the ML models.
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Figure C.4: Illustration of the variable set selection process within the applica-
tion. If no specific set is selected, the application defaults to using all available
variables.

Figure C.5: Selection of hyperparameters for ML model training. In case of no
specific selection, a random search is conducted for hyperparameters.

60



Figure C.6: Finalization of parameter selection, including naming the experi-
ment, determining the sample size for training, and setting the range of epochs
for model training. The image also illustrates the appearance of the application
during the training process.

Figure C.7: The application’s display after the completion of model training,
featuring the results for each model in an interactive dataframe sortable by
columns.
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Figure C.8: The visualization page with displayed training results for a selected
experiment, offering insights into the model’s performance.

Figure C.9: Plot showcasing the performance of the best-performing model
from the experiment, providing a interactive visual representation of the model’s
predictions.
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