
A Modular Integrated
Development Environment for

Coloured Petri Net Models

Sondre Lindaas Gjesdal

Master thesis in Software Engineering

Department of Computer science, Electrical
engineering and Mathematical sciences,

Western Norway University of Applied Sciences

June 2023

1



Abstract

Distributed software systems are becoming increasingly popular and used. Most
of modern distributed systems provide the application of concurrency, also in-
cluding resource sharing, communication and synchronization between different
modules. These distributed systems comes with the challenges concerning data
synchronization, scalability and performance, among others. By modelling these
systems helps with solving these challenges, and there exists multiple tools for
this. CPN Tools is one of these tools. CPN Tools is used for editing, simulating
and analyzing Coloured Petri nets models. A need has been identified to devel-
oped new software for develop new and up to date tools for editing, simulating
and analyzing Coloured Petri nets to further development and fit the increasing
need for distributed systems. Answering this need, a new simulating tool has
been proposed. This thesis proposes an editor focusing on the modelling and
visualization with the potentially integrate this simulator. This editor consists
of an application running on Electron and using GoJS for modelling. This has
resulted in a modelling tool for creating CPN models, with the possibility of
increased abstraction of the models of the modern distributed systems.

Acknowledgements

I would like to thank my supervisor Lars Michael Kristensen. It has been an
honour learning from you and I appreciate all the advice given throughout this
year. You have the ability to clearly deliver information. I have always felt
welcome at your office, and greatly appreciated our discussions.

I would also like to thank everyone around me for the help and motivation given.

2



Contents

1 Introduction 7
1.1 Context and Approach . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 SFI Smart Ocean . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 CPN Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Research Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Development Method . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.7 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.8 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Background 15
2.1 Two-phase commit protocol . . . . . . . . . . . . . . . . . . . . . 15
2.2 Coloured Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Places and transitions . . . . . . . . . . . . . . . . . . . . 17
2.2.2 Colour sets . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.3 Marking and multi-sets . . . . . . . . . . . . . . . . . . . 19
2.2.4 Tokens and current marking . . . . . . . . . . . . . . . . . 19
2.2.5 Arcs and arc weights . . . . . . . . . . . . . . . . . . . . . 20
2.2.6 Transition variables . . . . . . . . . . . . . . . . . . . . . 22
2.2.7 Guard expressions . . . . . . . . . . . . . . . . . . . . . . 23
2.2.8 Substitution transitions . . . . . . . . . . . . . . . . . . . 24

2.3 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.1 Required functionality . . . . . . . . . . . . . . . . . . . . 26
2.3.2 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Software Technology Platforms 33
3.1 Candidate software platforms . . . . . . . . . . . . . . . . . . . . 33
3.2 Eclipse EMF Core . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3 Eclipse Graphical Language Protocol . . . . . . . . . . . . . . . . 34

3.3.1 Testing the Eclipse GLSP . . . . . . . . . . . . . . . . . . 34
3.4 Elm Petri Net editor . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 GoJS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6 Electron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.7 Candidate software summary . . . . . . . . . . . . . . . . . . . . 37

4 Design and Implementation 39
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3



4.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.1 Electron . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.2 Object style . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.3 Places . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.4 Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2.5 Shared attributes in nodes . . . . . . . . . . . . . . . . . . 46
4.2.6 Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.7 Arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.8 Arc inscriptions . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.9 Context menu . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.10 Tree view . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.11 Substitution transitions . . . . . . . . . . . . . . . . . . . 62
4.2.12 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.13 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.14 Saving and loading . . . . . . . . . . . . . . . . . . . . . . 65
4.2.15 Downloading and uploading . . . . . . . . . . . . . . . . . 66
4.2.16 Palette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Code structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.1 Integration against the simulator . . . . . . . . . . . . . . 69
4.3.2 Canvases . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Code Base 73
5.1 File Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 Electron implementation . . . . . . . . . . . . . . . . . . . . . . . 74
5.3 Editor HTML page . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.4 The GoJS implementation . . . . . . . . . . . . . . . . . . . . . . 76
5.5 Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.6 File management . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.7 Context menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.8 Mockserver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Evaluation 79
6.1 Creating a CPN Model . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1.1 Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.2 Comparison to CPN Tools . . . . . . . . . . . . . . . . . . . . . . 84

6.2.1 Feature comparison . . . . . . . . . . . . . . . . . . . . . 84
6.2.2 Places, transitions and arcs . . . . . . . . . . . . . . . . . 85
6.2.3 Moving objects . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2.4 Binders . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2.5 Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.2.6 Functions and variables . . . . . . . . . . . . . . . . . . . 87
6.2.7 Inscriptions . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2.8 Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.2.9 Arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.2.10 Substitution transitions . . . . . . . . . . . . . . . . . . . 88
6.2.11 Runtime environment . . . . . . . . . . . . . . . . . . . . 89
6.2.12 Modularity . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2.13 Common editing operations . . . . . . . . . . . . . . . . . 92

6.3 Grading requirements . . . . . . . . . . . . . . . . . . . . . . . . 92

4



7 Conclusion and Future Work 95
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.3.1 Places and transitions . . . . . . . . . . . . . . . . . . . . 97
7.3.2 Arcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.3.3 Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
7.3.4 Substitution transitions . . . . . . . . . . . . . . . . . . . 98
7.3.5 Saving and loading . . . . . . . . . . . . . . . . . . . . . . 99

7.4 Usability Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 99

Acronyms 101

A Source code and Installation 103
A.1 Installation guide . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5



6



Chapter 1

Introduction

1.1 Context and Approach

Distributed systems has been quite popular for some time, and is getting more
and more used in the software world. Having a system that can control and or
model these are quite beneficial. One of the primary reasons is the increasing
demand for scalable, fault-tolerant, and highly available software applications.

Distributed systems allow for the efficient utilization of resources by spread-
ing the workload across multiple interconnected nodes, enabling better perfor-
mance and handling larger volumes of data. When developing and managing
distributed systems, there also comes various challenges and complexities. Some
of these challenges include; communication and coordination between different
components to achieve a common goal. Ensuring consistent reliable and effi-
cient communication be can become challenging. This also leads to complica-
tions with consistency of data synchronization, fault tolerance and resilience,
scalability and performance and lastly security and privacy.

Given these challenges, there is a need for tools that can effectively model and
control distributed systems. Modeling tools enable system designers and de-
velopers to visualize the interactions and behaviors of components within the
system, facilitating better understanding and analysis. These tools help identify
potential issues, optimize system performance, and validate correctness of the
distributed protocols implemented.

CPN Tools [17] is one such tool that can model distributed systems. It has
been used to model concurrent systems which is becoming more important now
than ever, due to larger, more complicated systems running multiple compo-
nents needing communication with each other as explained. CPN Tools delivers
visualization and analysis to its models for easier understanding.

SFI Smart Ocean[23] is a project that runs from 2020 until 2028 with the goal of
developing wireless communications systems to monitor the sea and its ecosys-
tem, and if needed, notify of industrial incidents or changes in living conditions
for ocean wildlife.

7



The goal of this master thesis is to develop a graphical editor for a CPN sim-
ulator as a part of the SFI Smart Ocean project. The graphical editor will be
a modernization of CPN Tools from 2000. The CPN simulator was made in
the spring semester of 2022, through ”A Compiler and Runtime Environment
for Execution of Coloured Petri Net Models”[12]. The goal of this thesis is to
develop a graphical editor to cooperate with the CPN simulator.

Petri nets are mathematical modeling languages widely used for describing and
analyzing the behavior of distributed systems. Originally introduced by Carl
Adam Petri, who began developing the concept at the age of 13 to explain chem-
ical processes[20], Petri nets have since found widespread application in various
domains. At their core, basic Petri nets are directed bipartite graphs consisting
of two fundamental elements: places adn transitions. Represented respectively
by circles and rectangles. The interaction between places and transitions is
visualized through directed arcs connecting them. Places can contain tokens,
which are denoted as dots within the respective places.

To extend the capabilities of basic Petri nets, the concept of Coloured Petri
Net (CPN)[16], was introduced. CPN allows for the distinction between tokens
and provides the ability to attach data to tokens. This extension enhances the
expressive power of Petri nets by incorporating data-driven aspects into the
modeling process. By associating data with tokens, CPN enables the represen-
tation of more complex system behaviors and enables the analysis of scenarios
where data values play a significant role.

This report presents a selection of newer frameworks for editing graphical mod-
els, with the ultimate goal of utilizing them to edit and run simulations for
Coloured Petri Net (CPN). The aim is to explore and evaluate these frame-
works to determine their suitability for supporting CPN editing and simulation
tasks. We will emphasise modernization and what modern distributed systems
require from a CPN editor. By the end of the project, it is expected that these
frameworks will provide effective tools for visual modeling and simulation of
CPNs.

1.2 SFI Smart Ocean

The SFI Smart Ocean project is focused on developing wireless communication
systems to monitor the sea and its ecosystem. The project aims to address
various challenges, including the detection and notification of industrial errors
and changes in living conditions for ocean wildlife. Industrial errors such as
oil spills, chemical leaks, and untreated sewage discharge can have devastating
effects on the ocean ecosystem, posing risks to marine life and water contami-
nation. By leveraging advanced technology and data analysis, the project seeks
to enhance ocean monitoring and ecosystem management practices. The goal
is to create sustainable and responsible approaches to protect and preserve the
world’s oceans and the wildlife that rely on them.

SFI Smart Ocean will consist of three key components combining amphibious
hardware, wireless communication and cutting-edge software and middleware[4].
These key components are

8



• Autonomous battery-powered sensors capable of collecting, partially pro-
cessing, and transmitting data from sensors in the ocean

• A wireless network connecting and coordinating all these sensors to enable
flexibility and multi-direction communication

• A software platform for storing, processing, and analysing all the accumu-
lated data.

As new ocean- and marine data services are emerging, there are challenges
related to acquiring sufficient quality for use in smart systems. There is still a
huge gap in data coverage with substantial challenges related to interoperability,
data- and meta-data standards, and APIs[18].

When working with challenges related to interoperability and communications,
models of systems and their communication with the possibility of simulating
the interaction and communication is a great advantage. With SFI Smart Ocean
there has been presented an initial CPN model [15] of the smart ocean data and
application platform. This CPN model is focused on service interaction and
brings a high-level of abstraction in the modelling.

1.3 CPN Tools

CPN Tools is a comprehensive software tool designed for editing, simulating and
analysing CPNs. Coloured Petri nets are an extension to the Petri net mod-
eling language, which is a mathematical framework for describing distributed
systems. CPNs are particularly well-suited for modeling systems that involve
communication, synchronization and resource sharing.

The primary goal of CPNs was to create a modeling language that combines
theoretical rigor with practical versatility, capable of handling the size and com-
plexity of real-world industrial projects. To achieve this, CPNs integrate the
strengths of Petri nets and programming languages. Petri nets provide the prim-
itives necessary to describe the synchronization of concurrent processes, while
programming languages provide the tools for defining data types and manipu-
lating data values.

CPN Tools, with its powerful features for editing, simulating, and analyzing
CPNs, provides a valuable platform for researchers and practitioners working
with distributed systems, communication protocols, embedded systems, auto-
mated production systems, workflow analysis, and VLSI chips. The continuous
development and improvement of CPN Tools up until now has contributed to
advance the understanding and application of Coloured Petri Nets in a wide
range of domains.

The development of a modern solution for CPN Tools began with the master
thesis [12] as mentioned earlier. The focus of this project was to develop a
modernized solution of CPN Tools, with an emphasis on simulation capabilities
for .cpn files. The modern solution was predominantly implemented using the
F# programming language. The resulting solution operates in a terminal envi-
ronment and offers simulation functionality, as well as the generation of a state
space report for a given CPN model.

9



1.4 Problem Description

CPN Tools, the most popular existing tool for Coloured Petri Nets, is built
using Standard ML[28] and the Beta programming language [29]. However,
the development and updating of CPN Tools faces challenges due to the lack
of current support for Standard ML and the accumulation of technical debt
associated with the use of the BETA programming language for the graphical
user interface. Consequently, it becomes difficult to maintain and update CPN
Tools in its current state. Recognizing the need for a modernized version of
CPN Tools, there is a demand for a continuously maintained and updated CPN
editor.

As discussed in Section 1.1, the prevalence of concurrent systems with multiple
communication components has increased. For instance, the model presented
in [18] exemplifies the necessity for enhanced modularity in models of such
complex systems. Therefore, developing a modern CPN editor that addresses
these evolving requirements becomes crucial.

The CPN Simulator is already completed and functional, but lacks an accom-
panying editor to construct models and visualize their simulations in a more
user-friendly manner. The editor plays a vital role in facilitating the creation,
editing, and visualization of simulations. Its integration with the CPN simulator
allows for a comprehensive modeling and simulation environment.

In Chapter 6, an evaluation of the candidate framework solution chosen for the
development of the CPN editor will be presented. This evaluation will provide
insights into the suitability and effectiveness of the selected framework, shedding
light on its capabilities and potential to meet the requirements of a modern CPN
editor.

1.5 Research Method

This master’s thesis is centered around the outcome of the project, as its progress
will be closely related with the progress made on the developed system. The
results and achievements of this thesis will be based on extensive research con-
ducted on candidate technologies and the subsequent development of an appli-
cation we have developed with one of these frameworks.

The research on candidate technologies is based on Brown & Wellnaus ”A
Framework for Evaluating Software Technology”[3]. This framework serves as
a guiding principle for assessing the potential of different software technologies
in creating a functional, scalable, and interoperable editor for modern CPN
modeling. Furthermore, the chosen framework should possess quality attributes
and, to some extent, vendor support. These criteria serve as the focal points for
selecting a framework that will be compared to the existing graphical solution
provided by CPN Tools.

As depicted in Figure 1.1, the evaluation process began with a descriptive mod-
eling phase where we examined the problem domain and analyzed CPN Tools
to identify the necessary features and potential improvements required for a
modern CPN modeling tool. Further detail regarding the features of CPN and
CPN Tools will be elaborated on in Chapter 2.2.

10



Subsequently, we moved into the experiment design phase, as it is illustrated in
1.1, where we conducted evaluation on four candidate frameworks. The findings
and information related to these frameworkds are presented in Chapter 3.

Figure 1.1: Brown and Wellnaus Technology evaluation framework

In this master’s thesis, the research methodology entails a functional prototype
using a suitable software technology. Following Brown and Wellnau’s approach,
we identified a fitting framework and evaluated the implementation and editing
challenges associated with existing CPN models within the prototype. More-
over, the user experience of the prototype will be compared against the estab-
lished solution provided by CPN Tools. Additionally, we conducted a compar-
ative analysis with similar software tools, further benchmarking the prototype
against CPN Tools.

By employing this research methodology, we aim to contribute to the advance-
ment of CPN modeling tools by delivering a comprehensive evaluation of can-
didate frameworks and developing a functional prototype that improves upon
the existing solution. The comparative analysis will shed light on the strengths
and weaknesses of different software technologies and provide valuable insights
for the development of future CPN modeling tools.

1.6 Development Method

The adoption of an agile engineering approach has proven to be highly beneficial
throughout the project, particularly during the initial phases. By employing
sprints and setting specific objectives for each sprint, we have been able to follow
a Scrum methodology for sprint management. The duration of each sprint has
varied based on the anticipated time required to achieve the defined objectives,
ranging from one to four weeks. Additionally, prior to the commencement of
each sprint, we have conducted supervisor meeting to discuss and determine the
necessary actions and strategies.

11



The agile workflow was particularly advantageous when it came to selecting
a suitable a framework using Brown and Wellnau’s approach. This approach
emphasizes the evaluation of various quality attributes of software technolo-
gies, including performance, scalability, maintainability, and interoperability.
By adopting an agile workflow we were able to closely monitor the project’s
progress and ensure that the chosen framework aligned with our specific re-
quirements and objectives.

Throughout the project, we extensively investigated several potential technolo-
gies, including Eclipse EMF Core, Eclipse Graphical Language Protocol, Elm,
and GoJS. However, after careful consideration and evaluation, we ultimately ar-
rived with a technology stack that includes Electron, GitHub, GoJS, JavaScript,
HTML, and CSS. Specifically, we leveraged Electron, a framework for building
desktop applications using JavaScript, HTML, and CSS, to develop the pro-
totype of our CPN editor. The codebase was securely stored on GitHub, and
we utilized their issue board functionality to effectively track and manage tasks
and goals. Furthermore, GoJS, a powerful modeling framework, played a cru-
cial role in creating the palette and modeling components of our editor. By
utilizing JavaScript, HTML, and CSS we were able to develop and customize
the application, harnessing the capabilities of Chromium to deliver the desired
functionality and user experience.

1.7 Research Questions

Having an already modern and existing compiler and runtime environment for
coloured Petri net model guides our focus to the graphical part of the tool.
Our research aims to address the following key questions that will drive the
development of a modern take on the graphical editor.

What specific functionalities are essential for a CPN editor to effectively sup-
port modeling and simulation activities? In order to provide a comprehensive
tool for CPN modeling, it is crucial to identify the core functionalities required
to facilitate the creation, editing, and simulation of CPN models. By explor-
ing the needs when using CPN Tools and considering the CPN tools, we aim
to determine the essential features that enhance the modeling and simulation
experience.

What are the strengths and limitations of various candidate software technolo-
gies in meeting the identified requirements? We will evaluate and compare
different software technologies, such as GoJS, Eclipse GLSP and other potential
frameworks, to assess their suitability for building a modern CPN editor. By
examining their capabilities, integration potential, and ease of use, we can iden-
tify the most appropriate technology to support the graphical modeling aspects
of CPN.

To what extent does our developed prototype demonstrate the necessary func-
tionality and usability required for an effective CPN editor, as identified earlier?
Through the development of a prototype CPN editor, we will strive to create
a tool that meets the identified requirements. By implementing the essential
functionalities and evaluating the usability of the editor, we aim to validate its
effectiveness in supporting CPN modeling and simulation tasks.

12



• RQ1 What specific functionalities are essential for a CPN editor to effec-
tively support modeling and simulation activites?

• RQ2 What are the strengths and limitations of various candidate software
technologies in meeting the requirements identified in RQ1?

• RQ3 To what extent does our developed prototype demonstrate the nec-
essary functionality and usability required for an effective CPN editor, as
identified in RQ1?

By addressing these questions, we seek to contribute to the advancement of
graphical modeling tools in the context of CPN, ultimately providing a more
intuitive and efficient solution for CPN practitioners

1.8 Outline

The section provides an overview of the contents of the next chapters. We refer
to the CPN editor environment developed in this thesis as both the application
and the editor.

Chapter 2 provides background information about the two-phase commit pro-
tocol, Coloured Petri Nets and its functionalities. We enumerate functionality
required for a modern coloured Petri net editor. Understanding the basics of
features in coloured Petri nets and the CPN Tools software is important when
deciding which features to implement and prioritize when developing a new
framework. We use the two-phase commit protocol as example for the different
features in CPNs and CPN Tools.

We discuss the candidate software technology platforms in Chapter 3. We have
done some experimenting with these software technologies to asses which is
the most appropriate to develop the new CPN editor. These technologies are
Eclipse EMF Core, Eclipse Graphical Language Protocol, Elm lang, GoJS and
ElectronJS. It was critical that the framework we chose was modern and with
continuous support for lasting as a foundation for our application. Lastly we
provide a summary of how appropriate the technology is for the development.

Chapter 4 introduces the design and implementation of the CPN editor envi-
ronment we have developed. This includes explanation of the implementation
of the different components and features of the new application. The features
we included are based on the requirements we set out in Chapter 2. Some of
the solutions are based on challenges encountered and shows the most suitable
solution we found at the time.

Chapter 5 is an explanation of the code structure we ended up with when devel-
oping the application. Here we explain the relationship between the components
to provide an overview of how the application is structured.

In Chapter 6, we evaluate the new CPN editor environment. We deliver a
step-by-step explanation of how to create a CPN model of two-phase commit
protocol in the application we have developed. We compare the features of our
application to the corresponding features in CPN Tools.

Chapter 7 serves as the conclusion of our implementation, where we discuss the

13



overall outcomes of our project. We also discuss related work, and future work
on our application that can be improved upon from its current state.

In this thesis we discuss coloured Petri nets, mostly through CPN Tools. It
is not assumed the reader has any prior knowledge of either of these as we
provide detailed explanation of these. We do this to give an understanding
of how important the modernization of editing CPNs is. We will also discuss
JavaScript and some HTML, but we assume the reader has basic knowledge
about these topics.

14



Chapter 2

Background

This chapter provides an in-depth background on CPN Tools, a widely used
software tool for modeling and simulating Coloured Petri Net (CPN). We will
explore the features offered by CPN Tools and identify the key aspects that are
essential for a new CPN editor. By understanding the strengths and limitations
of CPN Tools and considering the evolving needs of CPN practitioners, we can
lay the foundation for designing and developing a modern CPN editor that
caters to their requirements.

To gain insights into the necessary functionality for an effective CPN editor, we
will use the two-phase commit protocol as an illustrative model throughout this
chapter. The two-phase commit protocol is a widely studied and commonly used
protocol for distributed transactions. By examining how CPN Tools handles the
modeling and simulation of this protocol, we can identify the specific features
and functionality that are essential for an effective CPN editor.

2.1 Two-phase commit protocol

To illustrate the concepts and capabilities of Coloured Petri Net (CPN) and
their application in CPN Tools, we will examine a two-phase commit protocol
as an example model. The two-phase commit protocol is well known protocol
used in distributed systems to ensure the consistency of transactions across
multiple participants.

Figure 2.1 presents a graphical representation of the two-phase commit protocol
model in CPN Tools. This model showcases various features and elements of
CPNs, providing insights into how CPN Tools can be used to describe and
analyze distributed systems.

The two-phase commit protocol model demonstrates the utilization of places and
transitions, which are fundamental components of Petri nets. Places depicted
as circles and transitions represented as rectangles. Due to this being a CPN,
tokens are denoted by markings, to indicate the state of the system at a given
moment.

By examining the two-phase commit protocol model in CPN Tools, we can delve

15



into the specific functionalities and capabilities of the tool. This includes the
ability to define and specify communication and synchronization mechanisms,
simulate transactions, and verify the correctness of the protocols execution by
using the functionality of CPN Tools.

We will now explain the behaviour of the two-phase commit protocol.

The two-phase commit protocol is a type of atomic commitment protocol. It
is a distributed algorithm that coordinates all the processes in a transaction
program, and decides between committing or rolling back a transaction [21].
The basic algorithm of the two-phase commit protocol consists of two phases:
the commit request and the commit phase.

The first phase is the commit request phase. This starts by the coordinator
sending a query to all participating workers and waits until it receives a reply
from all of participating workers. Participants will then execute their transac-
tion up until the point where they will commit. Workers will then send a reply
if they will commit or not, a Yes to commit or No to abort the commit. If there
is a single abort, the protocol will not allow committing.

In the commit phase there is a possibility for a success, (which is a commit), or
a failure, (which is aborting). In case of success, the coordinator receives Yes
messages from all participating workers. The Coordinator replies with a com-
mit message to all workers, where they will complete this operation. Workers
will then send back an acknowledgement to the coordinator. The coordinator
completes transaction when all acknowledgements has been received.

In case of failure, the coordinator will send an abort message to all workers.
Workers will then go back to their initial state and send an acknowledge message
to coordinator. The coordinator undoes the transaction when all acknowledge-
ments has been received.

CanCommit

In
Worker

In

Votes

Out
WorkerxVote

Out

Acknowledge

Worker

Decision

WorkerxDecision

Waiting
Votes

Waiting
Acknowledgements

Workers

Coordinator
Idle

1

Receive
Acknowledgements

@+4

workers

list_to_ms workers

Waiting
Decision

Worker

Worker
Idle

Worker.all ()

Worker

Receive
Decision

@+3

Receive
CanCommit

@+5

if vote = Yes
then 1`w 
else empty

w

w

if vote = No
then 1`w
else empty

w
(w,decision)

w

w

(w,vote)

Collected Votes

[]

WorkerxVotes

Collect
OneVote

@+2

AllVotes
Collected

[All votes]

@+5

votes

[]

AddVote ((w,vote),votes)

votes

YesWorkers votes
InformYesWorkers votes

(w,vote)

SendCanCommit

@+2

Worker.all ()

Figure 2.1: Two-Phase Commit Protocol in CPN Tools

16



In the following Section, we introduce several features introduced in Figure 2.1
to demonstrate the capabilities of CPN Tools. These features are essential for
effectively model and analyzing distributed systems using coloured Petri nets.
By exploring these features, we aim to highlight the power and versatility of
CPN Tools as a graphical modeling tool, and find the functionality needed for
developing a modernization for the modeling capabilities.

2.2 Coloured Petri Nets

In this chapter we look into the diverse set of features in Coloured Petri Nets
and CPN Tools. The features in CPN Tools play a crucial role in enhancing the
modeling experience and enabling users to effectively analyze and validate their
models. Each feature contributes to different aspects of the modeling process,
from creation and editing of models to the simulation and analysis, though in
this chapter we will mainly focus on creation and editing.

2.2.1 Places and transitions

In CPNs, places and transitions are fundamental components for modeling sys-
tems. Places are represented by ellipses, while transitions are represented by
rectangles. They serve different purposes in capturing the behaviour of the
system.

Places in CPN Tools are used to represent the state of the system. They can
hold tokens, which will be explained in Section 2.2.4. Places are essential for
modeling the state variables and tracking the progress of the system.

Transitions, on the other hand, model the actions or events that can occur in
the system. They are responsible for the state changes and the flow of tokens
between places. Transitions can be enabled or disabled based on the availability
of tokens in their input places. Input places are places connected to the transi-
tion through arcs. An enabled transition means that it has the necessary tokens
in its input places to fire or execute.

When an enabled transition fires, it removes one or more tokens from each of
its input places, this is also called consuming tokens. It will then adds tokens to
each output place, also called producing tokens. This represents the execution
of an action or an event in the system. The firing of a transition can trigger
state changes and cause the system to move from one state to another.

In CPN Tools, transitions can also have conflicts and priorities. Conflicts occur
when multiple transitions are enabled simultaneously, and only one can be fired
at a time. Priorities can be assigned to transitions to determine which transition
should be given preference in case of conflicts. Transitions with higher priority
levels are selected for firing over transitions with lower priority levels.

By using places and transitions in CPN Tools, one can effectively model the state
and actions of a system. The interaction between places and transitions, along
with conflicts and priorities, allows for the representation of complex behaviours
and decision-making processes within the system.

In figure 2.2 we can see part of the coordinator. Coordinator Idle is the

17



starting place of the protocol. Waiting votes is the coordinator state waiting
for worker response. In Figure 2.2b the first transition comes in, this will start
sending messages asking workers if they can commit. CanCommit Message is
a state where coordinator has constructed the message to workers, asking for
their own state of readiness to commit.

Coordinator
Idle

Waiting
Votes

(a) Places

Coordinator
Idle

Waiting
Votes

Send
CanCommit

CanCommit
Message

1`()

(b) Transition with three places

Figure 2.2: Examples of places and transition.

2.2.2 Colour sets

The colour sets in CPN Tools are used to define the data types that can be
assigned to tokens in places. CPN ML, the programming lanugage used in CPN
Tools based on Standard ML, provides several base colour sets that represent
common data types. These base colour sets include:

• UNIT: Represents a unit type with a single value.

• INT: Represents integer values.

• STRING: Represents string of characters.

• BOOL: Represents boolean values(true or false).

• REAL: Represents real numbers(floating-point values).

These base colour sets allow for the definition of tokens with different data types
and values in CPN models.

Additionally, colour sets can be more structured by combining existing colour
sets or defining new ones. In the CPN ML code provided in Listing 2.1, lines 2-8
demonstrate the use of a structured colour set. The WorkerxVotes colour set
is defined by combining the Worker from line 2 with the Vote colour set from
line 4. This allows for tokens in places of the WorkerxVotes colour set to hold
data consisting of both a worker identifier and a vote value.

By defining and using structured colour sets, CPN Tools provides flexibility
in modeling complex data types and relationships within a CPN, such as the
two-phase commit protocol as these colour sets are based on.

18



1 // Types
2 c o l s e t Worker = index wrk with 1 . .W;
3 c o l s e t Workers = l i s t Worker ;
4 c o l s e t Vote = with Yes | No ;
5 c o l s e t WorkerxVote = product Worker ∗ Vote ;
6 c o l s e t WorkerxVotes = l i s t WorkerxVote ;
7 c o l s e t Dec i s i on = with abort | commit ;
8 c o l s e t WorkerxDecision = product Worker ∗ Dec i s i on ;
9

10 // Var i ab l e s
11 var w: Worker ;
12 var workers : Workers ;
13 var vote : Vote ;
14 var votes : WorkerxVotes ;
15 var d e c i s i o n : Dec i s i on ;
16

17 // Values
18 va l W = 2 ;

Listing 2.1: CPN ML definitions for two-phase commit protocol

2.2.3 Marking and multi-sets

In CPN and CPN Tools, a multi set is used to represent the contents of a place.
A multi-set is a collection of tokens that allows for multiple tokens with the
same value. It is defined as a function from a domain(in this case, the colour set
of a place) into the set of natural numbers[16]. Each token in the multi-set is
associated with a specific value from the colour set, and the number associated
with each value indicates the multiplicity or count of that token in the multi-set.

Operations on multi-sets include addition(++), subtraction(--), and comparison
(<<=). The addition operation combines two multi-sets, merging the tokens from
both sets. The subtraction operation removes tokens from a multi-set based on
another multi-set. The comparison operation checks if one multi-set is a subset
of or equal to another multi-set.

In the context of the two-phase commit protocol example shown from in Figure
2.1, the Idle place holds a multi-set of tokens. In this case, the tokens in the
multi-set are instances of wrk(1) and wrk(2), with counts of 1 for each token.
The addition(++) notation represents the union operation, indicating that the
multi-set contains both tokens.

This use of multi-sets allows CPN Tools to model and represent the presence of
multiple tokens with the same value within a single place, capturing the notion
of multiplicity or repetition in the system being modeled.

2.2.4 Tokens and current marking

In CPN and CPN Tools, tokens are the individual elements that are held by
places. A place can hold multiple tokens, each representing a specific value from
the colour set of the place. The marking, on the other hand, is a distribution of
tokens across the places in the CPN model, representing the state of the system.

In Figure 2.3, the places CoordinatorIdle and WorkerIdle are shown with 1
token each. The green circle on the place indicates the number of tokens present,

19



while the marking is represented as 1‘(), where the 1 is the count of the specific
value (). In this case, both CoordinatorIdle and WorkerIdle have one token
each, and the value of each token is ().

Figure 2.3: First phase of 2PC simplified and without transitions

The initial marking represents the initial state of the system. It is defined by
specifying the tokens that are initially present on the places. In the CPN model,
the initial marking is indicated by the token initially placed on the ”starting”
places, typically specified using an expression in the top right corner of the
place.

As the CPN model is simulated or executed, the marking representing the cur-
rent state of the system changes. Initially, the current marking is the same as
the initial marking. However, as the simulation progresses and transitions are
fired, tokens may be removed from some places and added to others. causing
the current marking to change accordingly.

The markings and tokens provide a visualization and tracking the state of the
system throughout the simulation or execution process. They help capture the
dynamic behavior of the system and allow for analysis and understanding of its
state transitioning.

2.2.5 Arcs and arc weights

Arcs in CPN Tools are essential components used to connect places and tran-
sitions within coloured Petri nets models. They represent the flow of tokens
between these elements and play a crucial role in defining behaviour and dy-
namics of the modeled systems. Arcs can contain arc inscriptions or expressions
which is CPN ML code snippets that may be used to alter the path of a token in
a system. These inscriptions provide flexibility and allow for dynamic behavior
within the model. Additionally, the presence and properties of arcs determine
the enabling and occurrence of transitions in a model.

Normal arcs are the most basic and commonly used type of arcs in CPN Tools.
They facilitate the transfer of tokens between places and transitions. Normal

20



arcs can carry a single token or a weight, indicating the number of tokens be-
ing transferred. These arcs define the flow of control in the CPN model and
are essential for modeling the sequence of activities. The type of an arc ex-
pression must match the colour set of the place connected to the arc, ensuring
compatibility and consistency in the model.

Arc weights are used to specify the number of tokens required for enabling a
transition, as well as the number of tokens consumed and produced during its
occurrence. By assigning appropriate weights to arcs, the modeler can con-
trol the conditions for transition firing and accurately represent the resource
requirements of the system.

Alternative arcs

CPN Tools offers several types of arcs, each serving a specific purpose and
providing unique functionalities. These are the most common arcs used as
extension to the default arc.

Inhibitor arcs introduce a form of control to the token flow in CPN Tools.
They are used to specify conditions under which a transition is inhibited or
prevented from firing, even if all other input places have the required number of
tokens, Inhibitor arcs are represented with a small circle on the arc, and their
purpose is to restrict the firing of transitions based on specific conditions.

Reset arcs allow the removal of tokens from places without consuming them.
This means that when a token traverses a reset arc, it triggers the removal of
tokens from the connected places without affecting the token count or state of
the transition. They are used to reset or clear the tokens in a place when a spe-
cific condition is met. Reset arcs are particularly useful when modeling systems
that require the resetting of certain variables or states during the execution of
transitions. Reset arcs are represented by a double arrowhead.

Figure 2.4 represents a simplification of the first phase in the two-phase commit
protocol. The coordinator is depicted as a single token to represent its state,
enabling the SendCanCommit transition. On the other hand, the Worker Idle

place also has a token, but this token cannot be consumed by any transition
because the transitions require tokens from all input places to become enabled.
Consequently, the ReceiveCanCommit transition remains disabled as it relies on
both Worker Idle and CanCommit Message tokens.

During the execution of the first stage, a token from Coordinator Idle place
triggers the enabling of the SendCanCommit transition. When this transition
fires, it outputs a token to both the WaitingVotes and CanCommitWorker

places. As a result, The SendCanCommit transition becomes disabled, and the
ReceiveCanCommit transition becomes enabled. Moving on to the second stage,
the WaitingVote place will continue waiting, since there are no enabled tran-
sitions to execute. Meanwhile, the ReceiveCanCommit transition transfers its
input tokens to the WaitingDecision place and becomes disabled.

The simplified representation illustrates the flow of tokens and the enabling/dis-
abling of transitions in the first phase of the two-phase commit protocol. It cap-
tures the progression of the system state as tokens are moved between places

21



Coordinator
Idle

Waiting
Votes

Send
CanCommit

CanCommit
Message

1

Worker
Idle

Waiting
Decision

Receive
CanCommit

1

Figure 2.4: Arcs connecting places and transitions

and transitions are enabled or disabled based on the availability of tokens in the
input places.

2.2.6 Transition variables

In Figure 2.5, the arcs leading into the Receive CanCommit transition contain
arc expressions that involve free variables. Free variables are output arc variables
that have not been bound by an input arc or in a guard. In this case, the free
transition variables are w and vote going from Receive CanCommit transition
to the Votes place.

For transitions to be enabled or occur, variables must be bound to values. This
is similar to parameters known from programming. The association of values to
variables is called a transition binding. The binding corresponds to the possible
enabling and occurrence modes of the transition. Not all possible bindings will
in general be enabled. The scope of a variable is the surrounding arc expressions
of the transition.

In the first stage of the worker section depicted in Figure 2.5, the workers are
idling and waiting for the coordinator to send request regarding their commit
status. When the CanCommit and Worker Idle places each have two tokens
1‘wrk(1)++1‘wrk(2), indicating the presence of one worker 1 and one worker
2, the ReceiveCanCommit transition becomes enabled due to all input places
having tokens.

In This part of the model, the ReceiveCanCommit transition sends the worker
name along with their vote to the Vote place. Depending on the vote, the
worker will either be moved to the Waiting Decision place if the respective
worker’s vote is yes, or back to the Worker Idle place if the vote is No.

The use of transition variables in arc expressions allows for dynamic evaluation
and flexible behavior within the CPN models. It enabled the model to cap-
ture different scenarios and transitions based on the values associated with the
transition variables, contributing to the versatility of the model in representing
complex system dynamics.

22



CanCommit

In
Worker

Votes

Out
WorkerxVote

Waiting
Decision

Worker

Worker
Idle

Worker.all ()

Worker

Receive
CanCommit

@+5

if vote = Yes
then 1`w 
else empty

w
if vote = No
then 1`w
else empty

w

(w,vote)

Figure 2.5: ReceiveCanCommit has the free variables; w and vote

2.2.7 Guard expressions

The inclusion of boolean guard expression in transitions enhances the flexibility
and control over the behavior of the system in coloured Petri nets. These
guard expressions serve as additional enabling conditions, allowing us to impose
restrictions on when a transition can be triggered.

In the context of two-phase commit protocol, we can observe the use of guard
expressions on the AllVotes Collected transition. This transition is associ-
ated with the guard expression All votes. This ensures that the transition will
only be enabled if all the tokens containing votes are present in its input place,
which is Collected votes.

By utilizing the guard expression, we can enforce the condition that all the votes
must be collected before the AllVotes Collected transition can occur. This
allows us to model the behaviour of the system accurately, ensuring that the
necessary conditions are met before progressing to the next phase or action.

The ability to incorporate guard expressions in transitions adds an additional

23



layer of control and specificity to the behavior of the system, enabling us to
capture complex conditions and constraints within the CPN model.

2.2.8 Substitution transitions

Substitution transtions provide a powerful mechanism for structuring and ab-
stracting complex models in CPNs. With substitution transitions, a transition
can represent an entire piece of net structure, allowing for encapsulation and
modularity.

When a substitution transition is used, the net structure contained within it
remains physically present and executable. However, it provides a higher-level
view of the model, hiding the internal details and complexity. This abstraction
improves the readability and manageability of the model, making it easier to
understand and work with.

In the context of supermodules and submodule, a module that contains a substi-
tution transition is considered a supermodule relative to the submodules it may
contain. The supermodule encapsulates and abstracts the functionality repre-
sented by the substitution transition, providing the higher-level perspective.

Submodules refer to the contained logic within the substitution transition.
These submoduels can be opened and examined to understand the detailed
internal structure. They allow for a deeper understanding of the specific func-
tionality represented by the substitution transition.

Figure 2.6 demonstrates an example of a supermodule containing a substition
transition. By examining the contained submodule in figure 2.7, we can gain
insight into the detailed logic and behavior encapsulated within the substitution
transition.

Overall, substitution transitions offer a powerful means of structuring and ab-
stracting complex models, enabling better organization, modularity, and under-
standability in CPNs.

CanCommit

In
Worker

Waiting
Votes

Coordinator
Idle

1

SendCanCommit

SendCanCommit

Figure 2.6: Substitution transition SendCanCommit

24



CanCommit

In
Worker

Waiting
Votes

Coordinator
Idle

1

SendCanCommit

@+2

Worker.all ()

Figure 2.7: Submodule of substitution transition SendCanCommit

2.3 Requirements

In order for the modernization of the existing CPN Tools to be useful, certain
requirements should be considered. Here are some key requirements related to
the technology platform.

Continued support and active development: The chosen technology platform
should be actively supported and maintained to ensure long-term viability. This
includes regular updates, bug fixes, and compatibility with modern operating
systems.

Well-documented: The technology platform should have comprehensive and
up-to-date documentation that is easy to understand and navigate. This docu-
mentation should cover both basic usage and advanced features, providing users
with a clear understanding of the platforms capabilities.

User-friendly interface: The modernized CPN editor should have an intuitive
and user-friendly interface. It should be designed to facilitate efficient modeling,
simulation, and analysis of coloured Petri nets. The interface should prioritize
ease of use and provide a smooth learning curve for new users. Having a frame-
work supporting this is of great interest.

Rich feature set: The framework should encompass a wide range of features and
functionalities to support modeling Coloured Petri nets. This includes function-
ality like copy, cut, paste, undo, and redo, which are crucial for manipulating
and organizing Coloured Petri nets objects within the tool. Additionally, the
presence of supplementary functionalities implemented by default will be con-
sidered as valuable enhancements, contributing to the overall functionality and
usability of the modeling tool.

Compatibility and interoperability: The modernized CPN editor should be com-
patible with standard file formats, ensuring seamless collaboration with other
tools and systems.

Community and support: The technology platform should have an active com-
munity of users and developers who can provide support, share knowledge, and
contribute to the tools improvement. This includes forums, discussion groups,
and online resources for users to seek assistance and exchange ideas.

25



A new software would need some of the features explained in Section 2.1 to
function as an editor.

These parts includes a modelling canvas, used for creating and editing a model.
Support for nodes in the form of places, transitions, and substitution transitions.
The different nodes also need their functionality. For places the following fields
are needed; place name, marking, color set, port and socket field. Transitions
need the following fields; transition name, guard expression, time inscription,
CPN ML field for inscriptions and a priority field. Substitution transitions need
some sort of linking to their sub models. Connecting the nodes, the software
will need arcs with inscription fields for arc inscriptions, and possibilities for
some alternative arcs; Inhibitor Arcs and Reset Arcs.

The following section will discuss these in detail.

2.3.1 Required functionality

Places

A CPN model require places to indicate the state of the a model. The fol-
lowing specifications should be implemented for complete functionality in the
modernized CPN Tools:

Places should have inscription fields to specify the initial marking and colour set.
The initial marking inscription field allows users to define the initial distribution
of tokens on the place. The colour set inscription field specifies the type or
domain of tokens that can reside on the place.

There should be a included a field to display the current marking of the place.
This field dynamically updates to show the current state of the place, indicating
the number and distribution of tokens.

Transitions

In CPN models, transitions play a crucial role in representing the actions and
events within a model. To effectively capture the behaviour of transitions, it is
important to include the following connected input fields:

• Guard Expression - Transitions may have boolean guard expressions asso-
ciated with them, as an additional enabling condition. Guard expressions
restricts the firing of the transition based on a certain conditions or values
in the model.

• Action field - This field represents the action or code segment that is
executed when the transition occurs. It defines the specific behavior or
functionality associated with the transition.

• Priority - Transitions can be assigned a priority value, which determines
their relative importance or order of execution in the model. This allows
for the management of concurrent or conflicting transitions.

• Time inscription - Time inscriptions are used to simulate the duration or
time-related aspects of a specific task or action. They specify the amount
of time required for the transition to complete its execution

26



Furthermore, it is beneficial to have a mechanism to highlight transitions to
indicate their enabled state. By highlighting transitions, users can easily identify
which transitions are currently enabled and available for firing in the model,
This visual feedback provides a clear understanding of the model’s behaviour
and facilitates effective analysis and simulation.

By incorporating these connected input fields and enabling visual highlighting,
the modeling tool ensures comprehensive representation and interaction with
transitions in CPN models.

Markings

Markings in CPN play a crucial role in representing the state of places. As
described in Section 2.2.3, they serve as indicators of the current state of a place
within a Coloured Petri net. By visually representing the number of tokens or
elements contained within a place, markings provide essential information about
the system’s state and behavior.

Arcs

To establish the relationship between places and transitions in CPN models,
we require arcs for connecting them. Arcs serve as the bridges between places
and transition, enabling the flow of tokens and influencing the behavior of the
system.

Similar to places and transitions, arcs also possess an inscription field, which
allows us to specify arc inscriptions. This inscription field will provide additional
information or conditions that affect the flow of token along the arcs. By defining
arc inscriptions, we can control the interaction between places and transitions,
influencing when and how transitions are enabled or fired based on the state of
the connected places.

In addition to standard arcs, we should implement the two other types of arcs
that are important to consider: inhibitor arcs and reset arcs. Inhibitor arcs
restricting the firing of a transition by checking if a specific condition is not
satisfied in the connected place. Reset arcs remove tokens from the connected
place when the associated transition is fired.

In our modernized CPN tool, it is essential to provide support for all three
types of arcs: standard arcs, inhibitor arcs, and reset arcs. Users should be able
to define and switch between these arc types based on the modeling require-
ments. By offering this flexibility, we can accurately capture the dynamics and
behaviour of the system being modeled.

Substitution transitions

To support the representation of larger net structures and enable abstraction,
our modernized CPN tool must include the capability to handle substitution
transitions. Substitution transitions allow us to encapsulate complex net struc-
tures within a single transition making the model more modular and manage-
able. This means including the ability to create submodules, and supermodules,
enabling hierarchical organization and composition of the model.

27



While simulation on substitution transitions is not a top priority, it would be
a valuable bonus feature to have. Simulating on substitution transitions would
provide a more complete and accurate understanding of the system’s behaviour,
allowing users to observe the dynamics within the abstracted components.

To effectively work with abstraction, it is crucial to have a clear and intuitive
overview of the hierarchical structure of the models. A visual representation,
such as a treeview or a hierarchical map, would greatly aid in comprehending and
navigating the abstraction hierarchy. This visual representation would display
the relationship between submodules and supermodules, providing users with a
high-level view of the abstracted components and their interconnections. This
feature would enhance the usability and maintainability of the models making
it easier to work with complex and abstracted systems.

Runtime environment

When developing a modeling tool, one of the crucial decisions is to determine the
platform on which it will run. There are two potential alternatives to consider:
an independent software application or a browser-based tool. This choice will
determine where the models are created and manipulated, and it has significant
implications for the tool’s accessibility and usability.

Regardless of the chosen platform, it is essential to provide the capability to
create nodes of different types and establish connections between them. This
functionality allows users to define and represent various components or entities
within their models. Users should be able to easily create, edit, and delete
nodes, as well as establish and modify the links between them. This flexibility
enables users to refine and adjust the relationships as needed.

In addition to node creation and connection, integrating a functional code field
into the modeling tool is a valuable feature. This allows users to incorporate
functional code snippets or logic directly within their models. By providing a
code field, users can implement custom behaviors or algorithms, enhancing the
expressiveness and flexibility of their models. This functionality is particularly
beneficial for capturing complex behaviors and interactions that go beyond the
visual representation of the nodes and connections.

By incorporating these features, the modeling tool offers a versatile and robust
environment for creating, editing, integrating elements within the models. It
provides the users with the necessary tools to express their ideas effectively,
manipulate the models structure, and incorporate custom behaviors. This com-
prehensive approach enhances the overall modeling experience, making the tool
a powerful resource for system analysis and design.

Saving and loading

To ensure a seamless user experience, it is important to provide the functionality
for saving and loading models in the modeling tool. This allows users to save
their work and resume it at a later time, ensuring that no progress is lost.
Additionally, it enables users to share their models with others who are using
the same software, allowing collaboration and knowledge exchange.

28



When implementing the saving and loading functionality, one important require-
ment is to use a file format that is relatively easy to read for users. This ensures
that users can easily understand and work with the saved files, even outside of
the modeling tool. A common file format that meets this requirement is JSON
(JavaScript Object Notation). JSON is a lightweight data interchange format
that is human-readable and widely supported across different programming lan-
guages and platforms. Using JSON for saving and loading models makes it easy
for users to share their models with others and allows for interoperability.

By utilizing JSON for saving and loading models, users can easily comprehend
and work with the saved files. JSON files can be shared, transferred, and opened
in different software applications, fostering interoperability, collaboration, and
seamless integration into workflows. This user-friendly approach empowers users
to effectively manage their models, enhance collaboration, facilitate knowledge
sharing, and work with models both within and outside of the software environ-
ment.

Modularity

In our modernization effort, one of our primary goals is to introduce a higher
degree of modularity to the CPN editor. We plan to achieve this by separating
submodules within substitution transitions into individual files, which offers
several benefits and improvements.

Breaking down a model into individual files for submodules in substitution tran-
sition helps in organizing the codebase more effectively. Each submodule can
have its own dedicated file, containing the relevant logic, functionality, and de-
sign elements. This modular approach enhances maintainability and makes it
easier to navigate and understand the overall code and model structure.

Modularity allows for better reusability in code. Submodules within substitu-
tion transitions can be designed as self-contained modules that can be reused
in multiple instances within the editor. This promotes code efficiency and re-
duces duplication, as the same submodule logic can be utilized across different
transitions or even different models.

The use of individual files for submodules simplifies the development and testing
process. Developers can focus on individual submodules without being burdened
by the complexity of the entire editor. This modular approach facilitates easier
debugging and integration testing of specific submodule functionalities, leading
to faster development cycles and improves software quality.

A modular CPN editor allows for greater flexibility and customization capabil-
ities. Different submodules can be developed independently, offering the ability
to tailor the behaviour and appearance of each submodule to specific require-
ments. This flexibility enables users to create unique CPN models by combining
and configuring various submodules according to their specific needs.

With individual files for submodules, collaboration becomes more seamless.
Multiple developers can work on different submodules simultaneously without
conflicts, as each submodule is independent and can be developed separately.
This modular structure also enables team members to work on different parts of

29



the editor concurrently, accelerating the development process and allows more
collaboration.

A modular CPN editor is highly scalable and extensible. As additional submod-
ules are implemented, they can be seamlessly integrated into an existing system
model without disrupting the functionality of other components in the model.
This makes it easier to introduce updates, enhancements, or new modules to
meet evolving user requirements and accommodate future growth.

Overall, the introduction of modularity through individual files for submodules
brings significant improvements to the CPN editor, including better organiza-
tion, code reusability, simplified development and testing, enhancing customiza-
tion, streamlined collaboration, and scalability for future expansions.

Common editing operations

The common editing operations, such as cut, copy, paste, undo and redo, are
essential features in many software applications, including text editors, graphic
design tools, and even productivity software like word processors and spread-
sheets. These operations serve several important purposes:

• The cut operation allows users to remove a selected portion of text or
content and place it into the clipboard. This operation is useful for moving
or relocating content within a document or between different documents.
It effectively removes the selected content from its original location and
prepares it for insertions somewhere else.

• Copying enables users to duplicate selected content without removing it
from its original location. The copied content is placed into the clipboard,
allowing users to insert it multiple times into different parts of the doc-
ument or into other documents. Copying is particularly valuable when
users need to create duplicates or repetitions of certain elements.

• The paste operation is used to insert content from the clipboard into
the document at the current cursor position. It allows users to place
previously cut or copied content into a desired location. Paste is often
used in conjunction with cut or copy to transfer content within or between
documents.

• Undo is crucial feature that allows users to revert the most recent action
or series of actions. It provides a way to reverse changes or mistakes,
restoring the document to a previous state. Undo is particularly helpful
when users make errors or need to backtrack and undo a series of actions.

• Redo complements the undo operation by allowing users reapply actions
that were previously undone. It is useful when users change their mind
after undoing an action and want to revert the revert, effectively restoring
the document to a state after an undo operation

It would be a great advantage to find a framework where these common editing
operations are implemented as default. So that there is not needed to allocate
much time developing this, as there has already been developed for almost all
editing tools.

30



2.3.2 Summary

The following table summarizes the required features for developing a functional
CPN editor. In the future chapters we will refer to the listed requirements using
the identification in Table 2.1.

ID Name Summary
R1 Places For indicating the initial and current

state of CPN models.
R2 Transition Representing actions and events within

a model.
R3 Markings Indicating the state of a place.
R4 Arcs Connecting places and transition, indi-

cating the flow of tokens in the model.
R5 Substitution transitions Representation of larger pieces of a

model, introduces abstraction.
R6 Runtime environment Modelling canvas, palette, treeview,

buttons with extra functionality.
R7 Saving and loading Saving and loading to and from a file..
R8 Modularity Have substitution transitions in indi-

vidual files.
R9 Common editing operations Support for operations such as cut,

copy, paste, undo and redo.

Table 2.1: Requirements for a modular CPN editor

These requirements serve as the foundation for developing the CPN Editor and
will be referenced in the subsequent chapters to ensure the implementation
meets the desired functionalities.

31



32



Chapter 3

Software Technology
Platforms

In this chapter we survey and evaluate potential frameworks that have the ca-
pabilities to fulfill the requirements listed in the previous chapter for developing
a modular CPN editor.

3.1 Candidate software platforms

The evaluation of these frameworks involves an investigation into their features,
documentation, community support, and suitability for the development of a
CPN editor. Our goal is to identify a framework that meets the requirements
outlined in the previous chapter, and also offers the necessary tools and capa-
bilities to create a robust and user-friendly modeling tool.

To evaluate the suitability of the different frameworks, we have conducted ”get
started” tutorials for each of them, which allowed us to gain a firsthand under-
standing of their capabilities and determine their viability for our project. For
the frameworks that showed promise, we proceeded to implement a simple two-
phase commit protocol as a practical test to further evaluate the frameworks.
Through these evaluations, we gained valuable insights into the strengths and
limitations of each framework. In the following sections, we introduce the tested
frameworks and provide explanation of the result of the conducted tests. This
analysis assist us in making an informed decision regarding the most suitable
framework for developing our modular CPN editor.

3.2 Eclipse EMF Core

During the early stages of the evaluation process, we looked into the Eclipse
EMF Core framework[8]. However, after completing some initial tasks and
considering its usability, we decided not to proceed with further testing due to
the framework occasionally being cumbersome to work with.

33



According to some software developers, the Eclipse EMF framework may be
considered overly complex for our intended functionality. While it is an es-
tablished framework, it is also relatively old, which could be viewed as both a
positive and a negative factor. One potential benefit of its age is that it has
had time to establish itself and its usefulness, whereas some newer frameworks
may be more experimental and untested. However, some developers feel that
the outdated nature of the framework can give it a feeling of being obsolete,
particularly when compared to newer, more modern alternatives. We did not
find any data on the feature set of Eclipse EMF Core.

It is important to note that opinions on the Eclipse EMF framework can vary
widely among developers and organizations, and the suitability of the framework
may depend heavily on specific project needs and requirements. Additionally,
it is worth considering other factors beyond the framework itself, such as the
availability of skilled developers and community support for the framework.

3.3 Eclipse Graphical Language Protocol

The Graphical Langugage Server Platform (GLSP)[13] is a versatile framework
that supports the development of diagram editors on various Integrated De-
velopment Environments (IDEs), including Visual Studio Code, Eclipse Theia,
and Eclipse desktop application. The GLSP architecture promotes flexibility by
facilitating clear separation of domain-specific diagram logic from the rendering
part. This framework allows customization and extensibility of the diagram
client by adding custom shapes or editing features through the defined proto-
col, which can be extended with custom messages if necessary. GLSP provides
several implementation options, including servers written in either Java or Type-
script based on NodeJS, and source model management based on any format or
framework. Additionally, GLSP editors can be integrated into any web applica-
tion, and dedicated integration components are provided for deployment inside
of supported IDEs.

The GLSP framework is designed with a strong focus on customizability and
extensibility. This is achieved through the use of two principles: dependency
injection and slim abstraction with direct access to the underlying technology.
Dependency injection enables every service and component to be configured in a
global DI container, providing adopters with the same power for their diagram
editors as the framework authors. Slim abstraction and direct access to the
underlying technology provide full control over the rendering and user interface
technologies, such as Eclipse Sprotty, SVG, and CSS, without the use of abstrac-
tion layers. This feature allows for an excellent debugging experience. GLSP
also provides a decent feature set, with some implementation needed for adding
common editing operations. Nonetheless, GLSP lacks in-depth documentation
and community support for troubleshooting.

3.3.1 Testing the Eclipse GLSP

Initially, we found Eclipse GLSP to be a promising choice to begin our project.
The framework provided valuable information and an overview of its capabili-
ties. Additionally, there were several example projects available for reference.

34



Figure 3.1: Example model from GLSP tutorial

However, when we attempted to modify the example models, we encountered
difficulties due to the lack of documentation explaining these examples in detail.

The documentation for Eclipse GLSP proved to be imprecise and unhelpful
when it came to assisting developers in testing the framework. Another chal-
lenge we faced was the extensive amount of code required to run even a simple
example, such as the coffee brewing example shown in Figure 3.1. The size of the
codebase for this particular example was relatively large, making it challenging
to maintain a potential prototype software in the long run.

This makes the codebase overwhelming and together with poor documentation,
we found ourselves scanning the directories of the example without finding any
real code to expand and edit to create a CPN model or a CPN editor. We also
observed that the codebase for simple examples where relatively large, making
a potential software hard to maintain.

3.4 Elm Petri Net editor

Elm is a statically-typed functional language that targets web application de-
velopment, offering a balance of simplicity and quality tooling, and compiles to
JavaScript. It has a syntax similar to Haskell and emphasizes both type safety
and developer productivity. Elm was first introduced in 2012 as a thesis by
Evan Czaplicki, a former Harvard University student. The language has since
then kept evolving and had its last big update in 2019 with version 0.19.1.

Elm boasts of several features that make it stand out as a web development
tool. These include its ability to prevent runtime errors in practice through its
static typing feature, which validates and corrects errors at compile-time. It also
provides user-friendly error messages, supports reliable refactoring, and enforces
semantic versioning for all Elm packages automatically. Elm does not inherently
provide built-in functionality tailored for modeling purposes. Consequently,
significant development time would be required to implement essential editing
operations necessary for efficient modeling.

The adoption of Elm for our project did not involve starting from scratch;
instead, we built upon an existing codebase available at [24]. The initial de-
velopment of a Coloured Petri Net (CPN) editor in Elm was initiated by Kent

35



Inge Fagerland Simonsen around 2017. However, when building on the code-
base, encountered several challenges, as significant portions of it had become
deprecated. It was discovered through research that Elm underwent continu-
ous updates until 2019, resulting in changes to semantics, syntax and libraries
during the period after the project’s inception.

Approximately six weeks were dedicated to updating the codebase and resolv-
ing various errors. This endeavor exposed a lack of documentation specific to
our intended purpose. Despite our efforts, we only managed to create a basic
functioning editor with limited capabilities and difficulty in expansion. Conse-
quently, we embarked on the search for an alternative framework to fulfill our
listed requirements.

3.5 GoJS

GoJS[26] is a Javascript library for interactive diagrams in modern web browser.
It is designed to make it easy to create complex diagrams, with support for
a wide range of customization options and predefined functionalities available
through its API. With GoJS, developers can create custom node and link types,
customize the appearance of individual nodes and links, and add animations to
enhance the user experience.

Additionally, GoJS provides support for data-binding, allowing developers to
connect graphical objects to model data and automatically update the diagram
as the data changes. This feature can help make applications more dynamic
and easier to maintain, as changes in the underlying data will automatically be
reflected in the diagram. Diagrams in GoJS are conveniently represented in text
form using JSON. This approach is highly practical because JSON is a widely
adopted and standardized file format for data transfer.

GoJS has a well-sized and active community, which provides great support and
resources for developers. The library is continuously updated with new features
and improvements, making it more powerful and easier to use. Moreover, GoJS
has a highly searchable documentation, which offers clear and concise expla-
nations of the library’s features and functionalities, helping developers quickly
find the information they need to implement their diagrams. They also have a
great set of example models to draw inspiration from and shows the potential
of GoJS.

Following a thorough examination of the comprehensive tutorial provided by
Northwood Studios on GoJS, showcasing its exceptional editability and wide
range of functionalities, it became apparent that this framework possesses the
necessary features and capabilities to effectively construct a CPN editor. The
tutorial highlights the extensive functionality and flexibility of GoJS, thereby
affirming its suitability for fulfilling the requirements of a CPN editor.

3.6 Electron

Electron[10] (formerly known as Atom Shell) is an open source software frame-
work developed and maintained by GitHub. It allows developers to create cross-

36



platform desktop applications using web-technology such as HTML, CSS and
JavaScript. Electron was first released in 2013, and since then, it has gained
popularity among developers due to its ease of use and versatility.

The framework allows developers to create desktop applications using the same
tools and languages that they use to build web applications. This makes it easy
for web developers to enter the desktop development world without needing to
learn new programming languages or framework. Electron embeds Chromium
and Node.js into its binary, which allows users to maintain one JavaScript code-
base and create cross-platform apps that work on Windows, macOS, and Linux.

One of the key features of Electron is its ability to package applications for
different platforms, such as Windows, macOS, and Linux, using a single code-
base. This means that developers can write an application once and distribute
it to multiple platforms without needing to create different versions for each
platform.

Electron is a widely adopted framework that powers numerous popular appli-
cations, including Visual Studio Code, Slack, and Discord, among others. Its
versatility and robustness have made it a favored choice among developers for
creating cross-platform desktop applications.

Considering the capabilities of Electron and its successful integration with vari-
ous tools and libraries, we have identified a potential synergy between Electron
and GoJS for our modeling tool development. With Electron as the foundation,
we can ensure cross-platform compatibility, enabling users to utilize the model-
ing tool on different operating systems. GoJS complements this by providing a
comprehensive set of features for creating and manipulating visual representa-
tion of CPN models.

By leveraging the strengths of Electron and GoJS, we aim to develop a high-
quality modeling tool that meets our requirements and provides an intuitive and
efficient user experience.

3.7 Candidate software summary

Table 3.1 summarizes the candidate software platforms. It gives an overview of
the candidate software platforms, evaluating them on criteria such as moder-
nity, documentation, maintainability, and community support. After careful
consideration and analysis of the table, we have determined that GoJS in con-
junction with Electron for cross-platform desktop development aligns best with
our application requirements.

Framework Modern Documentation Maintainability Community Feature set
Eclipse EMF Core No Mediocre High Active Unknown
Eclispe GLSP Yes Poor High Inactive Medium
Elm lang Yes Poor Low Inactive Small
GoJS Yes Good High Active Large

Table 3.1: Comparison of frameworks based on modernity, documentation,
maintainability, and community.

37



GoJS, a modern framework, offers extensive documentation and high maintain-
ability, making it a reliable choice for building our modeling tool. Additionally,
it benefits from an active community, which ensures ongoing support and further
development. When combined with Electron, we gain the advantage of cross-
platform compatibility, enabling users to utilize our modeling tool on various
desktop operating systems.

38



Chapter 4

Design and Implementation

In this chapter, we discuss the design and implementation of the CPN editor,
presenting an overview of the modeling environment and introducing innovative
solutions for existing features found in CPN Tools.

The CPN editor is designed to provide users with a comprehensive and intuitive
modeling environment. It encompasses various components such as the model-
ing canvas, palette, and tree view, all of which works harmoniously to facilitate
the creation and manipulation of CPN models. The modeling canvas serves as
the main workspace where users can visually design their models by placing
and connecting different elements. The palette offers the main CPN compo-
nents, enabling users to easily select and add them to their models. The tree
view provides a hierarchical representation of the models structure, allowing for
convenient navigation and management of components.

Throughout this chapter, we will delve into the details of these design and
implementation choices. By introducing a modern and user-friendly approach
to CPNmodeling, we aim to empower users with a powerful tool that streamlines
their modeling processes and enhances their productivity.

4.1 Overview

Figure 4.1 represents a high-level view of our application’s architecture and
its main components. The ElectronJS desktop application serves as the user
interface, which visualizes and runs our modelling tool using GoJS, to create,
edit and view CPN Models.

The core functionality of the application revolves around the modeling tool and
functionality, which enables the users to design CPN models using intuitive and
user-friendly interfaces. Users can define places, transitions, and arcs, specifying
the behavior and connections within their models.

To facilitate simulation of the CPN models, the application interfaces with a
mock simulator. When the user requests to simulate a model, a message is
sent to the simulator, requesting the next simulation step. The simulator then

39



returns a response containing the state of all nodes, including highlighted tran-
sitions and correct markings for places. This feedback provides the user with
valuable insights into the behavior and dynamics of the model during simulation.

Figure 4.1: High Level view of the application

We will now go through the implementation of features in our application using
GoJS. This will show the features that results in creating CPN model of the
two-phase commit protocol as show in Figure 4.2.

4.2 Implementation

In the code listings provided, the symbol $ is utilized following the GoJS cod-
ing convention. This practice serves the purpose of reducing code clutter and
enhancing code readability. As per this convention, it is customary to com-
mence a file by declaring the constant const $ = go.GraphObject.make;. By
assigning the go.GraphObject.make function to the $ variable, developers can
subsequently employ the $ symbol in place of go.GraphObject.make through-
out the file. This approach contributes to the production of cleaner and more
concise code, thereby facilitating a more streamlined and manageable coding
process within the GoJS framework.

4.2.1 Electron

To begin the development of our CPN editor, we utilized the npm(the Node
Package Manager)[19] to create a new initial Electron project. Within our
Electron project, we created an index.js file which serves as the entry point
for our application. This file is responsible for starting the Electron application
and initializing the main browser window that will display the modeling tool
and its associated features.

Shown in Listing 4.1, we define an Electron BrowserWindow. When the Electron
application is ready it opens a mainWindow with a set width and height, and
prefences nodeIntegration and enableRemoteModule set to true and
contextIsolation set to false.

40



Figure 4.2: Two-phase commit protocol without substitution transitions using
GoJS

By setting the nodeIntegration property to true, we allow the application to
access Node.js APIs. This enabled the use of modules and functionalities from
Node.js within the rendered content.

When the contextIsolation property is set to false, it disables the context iso-
lation for the renderer process. Without context isolation, the renderer process
has direct access to Node.js APIs and can use Electron APIs without the need
for a preload script. This allows for more flexibility in terms of accessing system
resources and utilizing Electron’s full range of capabilities. However, this also
increases the risk of potential security vulnerabilities: the renderer process has
broader access and potentially execute unsafe code.

Setting the enableRemoteModule property to true, it enables the use of the re-
mote module in the application. This allows the application to access Electron’s
main process modules directly. This can be useful for inter-process communica-
tion and accessing Electron specific functionality from within the application.

We define a rule so that closing all Electron browser windows, will make electron
quit its execution. When we have done this we have a fully functional application
that visualises our application running using HTML, CSS and JavaScript.

41



1 const e l e c t r on = r equ i r e ( "electron" ) ;
2 const app = e l e c t r on . app ;
3 const BrowserWindow = e l e c t r on . BrowserWindow ;
4 var mainWindow = null ;
5 app . on ( "ready" , ( ) => createWindow ( ) ) ;
6

7 function createWindow ( ) {
8 mainWindow = new BrowserWindow({
9 width : 1600 ,

10 he ight : 400 ,
11 webPreferences : {
12 node Integ ra t i on : true ,
13 c on t e x t I s o l a t i o n : false ,
14 enableRemoteModule : true ,
15 } ,
16 }) ;
17 mainWindow . loadURL ( ‘ f i l e : //${__dirname }/index.html ‘);
18 mainWindow . on ( "closed" , ( ) => {
19 mainWindow = null ;
20 }) ;
21 }

Listing 4.1: Opening a window using electronjs

The integration of Electron with GoJS proved to be a smooth process, despite
being introduced four weeks after initially using GoJS. We successfully incor-
porated Electron into our project by including an index.js file, which serves
as the entry point for opening a window that references the index.html file.
Within the index.html file, we seamlessly integrated GoJS and leveraged its
functionalities for our modeling tool. The combination of GoJS and Electron
worked harmoniously, allow us to harness the interactive and dynamic features
of GoJS within the Electron desktop application environment. This integration
enabled us to create a seamless user experience creating CPN models.

4.2.2 Object style

The styling of our places and transitions is primarily determined by the
nodeStyle function. This function is responsible for defining the resizing be-
havior, as demonstrated in lines 5-7 of Listing 4.2. Initially resizing is enabled,
and the size of the resize cells is set to 10x10 pixels. During resizing, the func-
tion looks for the object named "PANEL" to determine the appropriate behavior
for the correct part of the node selected.

In line 9, we bind the node.location property to the loc property of the node
data. This binding is achieved by converting the location using the Point.parse
static method. This means, if the Node.location is changed, it automati-
cally updates the loc property of the node data, and vice versa, using the
Point.stringify static method for conversion.

Additionally, we ensure that the node location is set to the center of each node,
providing the most coherent movement for the node. We also link the context
menu of the nodes to a predefined context menu, which will be further described
in Section 4.2.9. This allows users to access specific styling by right-clicking
them.

42



1 function nodeStyle ( ) {
2 return [
3

4 {// Resize the node , with cells to drag

5 r e s i z a b l e : true ,
6 r e s i z eC e l l S i z e : new go . S i z e (10 , 10) ,
7 res izeObjectName : "PANEL" ,
8 } ,
9 new go . Binding ( "location" , "loc" , go . Point . parse ) .

makeTwoWay(
10 go . Point . s t r i n g i f y
11 ) ,
12 { l o ca t i onSpot : go . Spot . Center } ,
13 { contextMenu : context . diagramContextMenu ( ) } ,
14 ] ;
15 }

Listing 4.2: Styling nodes

4.2.3 Places

The places in our application have two marking fields: The initial marking and
the current marking. The initial marking field is used to set the initial marking
of the place, used to indicate the initial state of the CPN model. On the other
hand, the current marking field displays the current marking of the place. This
field remains hidden until the node receives a marking from the mock simulator.
When the marking is received, this field becomes visible, displaying the current
marking of the place.

In addition to the marking fields, there is a colour set inscription field with
placeholder UNIT. This field specifies the type of association with the specific
place. This will be used in simulation to to determine the type of token that
can be put in the place.

The places also have an I/O field, which is in use if the place is a port or socket
for a substitution transition. This field will be used to manage input/output
communication between different part of the CPN model.

These fields and properties on the places contribute to the overall functionality
and behavior of the CPN editor, providing the user with the ability to define ini-
tial states, track current marking, specify unit types, and manage input/output
operation in their models.

In Figure 4.3, we can see two places: the Coordinator Idle place and the
Waiting Votes place. The Coordinator Idle place is represented with an
initial marking of 1, indicating its initial place. Waiting Votes place has its
colour set set to Workers.

Both places exhibit the default style for places in our application. The default
style includes the visual representation of places as circles and by default a shade
of cyan.

Listing 4.3 showcases the initial implementation of places in our CPN editor,
focusing on their style and shape. This portion of the code defines the visual

43



Figure 4.3: Example of Two places in our solution

appearance of places, such as their size, colour, and shape. It sets the foundation
for the further enhancements and functionality added.

It is important to note that the code snippet in Listing 4.3 specifically addresses
the visual representation of places, and it does not encompass the implemen-
tation of inscription fields. The implementation of inscription fields, which are
used to display and manipulate information associated with places and transi-
tions, will discussed in Section 4.2.5.

The implementation of the place template begins by creating an object named
Place. This object contains a node, in the style of a Table. Within the node,
we add a Panel and a Shape to the Panel. The Panel becomes visible when the
place is selected, as the selection border highlights the panel. The Shape defines
the shape and colors of the node, with the node color matching the modeling
canvas for visually cohesive appearance.

In the code snippet, you can see that we bind the properties of the go.Shape

element, such as figure, stroke, and fill. These bindings allow us to change
these values dynamically, which can be useful for future features or interactions
within the CPN editor. For example, the bindings could be used to modify the
figure shape, change the stroke colour, or update the fill color based on certain
conditions or user actions.

1 myDiagram . nodeTemplateMap . add (
2 "Place" ,
3 $ (
4 go . Node ,
5 "Table" ,
6 nodeStyle ( ) ,
7 $ (
8 go . Panel ,
9 "Auto" ,

10 { name : "PANEL" } ,
11 $ (
12 go . Shape ,
13 "Ellipse" ,
14 {
15 name : "NODESHAPE" ,
16 f i l l : "#282 c34" ,
17 s t r oke : "#00 A9C9" ,
18 strokeWidth : 3 . 5 ,
19 } ,

44



20 new go . Binding ( "figure" , "figure" ) ,
21 new go . Binding ( "stroke" , "color" ) ,
22 new go . Binding ( "fill" )
23 ) ,
24 . . .

Listing 4.3: Start of place implementation

By setting up these bindings, we create a flexible and customizable template for
places in CPN editor. It provides the foundation for incorporating additional
functionality and allows for easy modification of the place’s visual attributes as
needed.

4.2.4 Transitions

The transitions in our CPN editor have several inscription fields: guard, time,
code, and priority. These are the same as mentioned earlier in 2.1

The guard field is used for specifying guard expressions. Guard expressions
define conditions that must be satisfied for a transition to be enabled and fired.
They allow for conditional behavior in the CPN model.

The time field is used to simulate the duration of a specific task. It allows us to
add to the total time of the simulation. The syntax for the time inscription is
@+x, where x represents the time specified in integers. This helps in modeling
time-dependent processes and capturing the time aspect of the CPN model.

The code segments in the transition represents executable code that is executed
when the parent transition occurs. These code segments can include input and
output variables, and perform specific actions or calculations. They enable
execution of custom logic or algorithms associated with the transition.

Lastly, the priority field is used to specify the priority of a transition. It is often
set with predefined values such as P_HIGH, P_NORMAL or P_LOW. By default, these
variables are assigned the respective values of 100, 1000, and 10 000. The priority
of a transition determines its precedence in cases where multiple transitions are
enabled simultaneously.

Figure 4.4 illustrates the representation of the Send CanCommit transition in our
CPN editor. In this example, the transition is depicted without any inscription
between Coordinator Idle place(with an initial marking), the
CanCommit Message place, and the Waiting Votes place. It is worth to note
that in the absence of a simulator, the transition is not currently highlighted as
it would be in a fully functional model.

Although the highlighting is not present in this specific example due to the lack
of a simulator, the design and implementation of the transition in our CPN
editor follows the established conventions and principles of CPN modeling.

These inscription fields provide additional flexibility and functionality to the
transitions in our CPN editor, allowing for more sophisticated modeling and
simulation of processes. We discuss the implementation of inscription fields in
Section 4.2.5.

45



Figure 4.4: Example of the transition Send CanCommit

4.2.5 Shared attributes in nodes

Both places and transitions in our CPN editor have a value called category,
which serves to indicate their respective node types. The category value is
automatically assigned as either Place or Transition and cannot be edited by
the user. This categorization is also used when connecting arcs between nodes.
If the user attempts to connect two nodes of the same category, no port indicator
will be displayed, and the connection between them cannot be established

In addition to the category, both places and transitions have their own editable
name field. This field allows users to provide descriptive names for the nodes,
enabling them to provide information about the specific functionality or purpose
of each node in the model. The name serves a way to enhance the understand-
ability and clarity of the CPN model, making it easier for users to identify and
comprehend the actions or meaning associated with each node.

In the provided Listing 4.4, we demonstrate an example of an inscription field
implementation that can be for both transitions or places. This specific code
snippet showcases the integration of the guard expressions for transitions.

To begin, we create a new TextBlock object, which is responsible for displaying
the guard expression text. By default this TextBlock is styled according to the
predefined TextStyle. We position the TextBlock in the top left corner of the
node and align the text to the left within the TextBlock.

The wrap property is utilized to control the wrapping behaviour of the node.
We assign wrap with the value go.TextBlock.WrapFit. By doing this the
width of the node will adjust to accommodate the longest line of text within
the TextBlock, ensuring proper visibility of the guard expression.

We establish a binding mechanism that allows dynamic updates to the guard
expression. This enables the ability to modify the guard text through a textarea
input field or potentially through alternative methods used in the future, pro-
viding flexibility and ease of use for users interacting with the CPN editor.

46



1 $ (
2 go . TextBlock ,
3 t e x tS t y l e ( ) ,
4 {
5 al ignment : go . Spot . TopLeft ,
6 t extAl i gn : "left" ,
7 margin : 8 ,
8 wrap : go . TextBlock .WrapFit ,
9 e d i t a b l e : true ,

10 } ,
11 new go . Binding ( "text" , "guard" ) .makeTwoWay( )
12 ) ,

Listing 4.4: Implementation of guard expression field

The templates for places and transitions in our implementation share many
similarities, but they are distinguished by their naming, shape, and their specific
set of inscriptions they contain.

Both templates incorporate multiple TextBlocks, similar to the example pro-
vided in Listing 4.4, which demonstrates the implementation of a guard ex-
pression on transitions. These TextBlocks are responsible for displaying various
inscriptions associated with the places and transitions, such as names, guard
expressions, time inscriptions, and code segments.

Figure 4.5 provides a visual representation of a selected transition and a place,
showcasing the default inscription included in our CPN editor. These inscrip-
tions provide users with essential information about the nodes and their associ-
ated behaviors, enhancing the usability and comprehensibility of the modelling
environment.

Figure 4.5: Example of place and transition with their inscription fields

4.2.6 Ports

Mapping transitions and places in our implementation involves assigning ports
to these nodes. Ports serve as connection points for arcs, allowing arcs to be
drawn to and from transitions and places. Each transition and place in our
CPN editor has four ports, positioned on all sides of the nodes: top, bottom,
left and right.

To provide visual feedback to users, we have implemented a hover effect on the
ports of the nodes. When hovering over a port, a purple shape is highlighted
as demonstrated in Figure 4.6, indicating that an arc can be dragged from that

47



spot. While dragging an arc to another node, a new purple shape appears,
indicating a valid location to place the arc.

Figure 4.6: Example of visible port

Listing 4.5 demonstrates an example implementation of ports on places and
transitions. The makePort function is used for creating ports and accepts several
parameters. The name parameter is used to identify the port, while align

determines the side to which the port aligns. The spot parameter specifies the
position of the port. Lastly, the boolean parameters output and input define
whether the port is meant for output arcs, input arcs, both, or neither.

This port implementation enables users to establish connections between tran-
sitions and places, allowing for the creation of complex and interconnected CPN
models within our modelling tool.

1 // implementation of ports on nodes and transitions.

2 makePort ( "T" , go . Spot . Top , go . Spot . Top , true , true ) ,
3 makePort ( "L" , go . Spot . Left , go . Spot . Left , true , true ) ,
4 makePort ( "R" , go . Spot . Right , go . Spot . Right , true , true ) ,
5 makePort ( "B" , go . Spot . Bottom , go . Spot . Bottom , true , true ) ,

Listing 4.5: Implementation of ports

4.2.7 Arcs

In our CPN editor, the implementation of arcs is an essential part of creating
CPN models. Arcs serve as connections between places and transition, indicat-
ing the flow of tokens and information.

The arc template we have developed is designed to accommodate different types
of arcs. By default, arcs are represented in a gray color. When hovering over
an arc, it highlights to indicate its selection.

We have enabled the feature making users able to reshape and resegment arcs.
Users can adjust the shape and segments of arcs needed to create the desired
visual representation of their CPN models. Additionally, arcs can be relinked
to different places or transitions if required, providing flexibility in modeling
connections.

To handle the different types of arcs, we have implemented a single arc template
that includes the most common arrowhead options, such as default, inhibitor,
reset, and bidirectional arcs. By default, the arc template uses a standard
arrowhead pointing towards the place or transition it connects into. By using the
context menu, users can change the type of arc, which updates the visibility of
arrowheads accordingly. For example, selecting an inhibitor arc would make the
inhibitor arrowhead visible and the previous arrowhead transparent. The same
principle applies to bidirectional arcs, which are represented by a transparent

48



arrowhead near the place or transition from which the arc originates, but can
be made visible when needed.

There are different kinds of arcs. We have solved the implementation of this by
just having one arc template. This arc template has all the kinds of arrowheads
on it; default, inhibitor and reset arc, but also the option of bidirectional arc.
By default we have a standard arrowhead towards the place or transition the
arc is pointing at. On changing the type of arc using the context menu, we
make the arrowhead we need visible, and the previous arrowhead transparent.
The same goes for bidirectional arc, which is just an, by default transparent,
arrowhead by the place or transition the arc originates from that we could make
visible when needed.

Arcs has a ruleset that checks their connecting nodes. We make sure that if
the node the arc originates from is a place, then the connecting node must be a
transition. This also goes for the other way around. So if the originating node
is a transition, the node that the arc is connected to, must be a place.

Figure 4.7 illustrates an example of an arc in our CPN editor, connecting the
Send CanCommit transition with the CanCommit place. The arc represents the
flow of tokens and information between these two elements in the CPN model.

This arc demonstrates the essential role of arcs in our CPN editor, enabling
the modeling of relationships and interactions between transitions and places.
It helps to define the behavior and dynamics of the CPN model, capturing the
flow of tokens or data as it moves through the system.

Figure 4.7: Arc in GoJS application between Send CanCommit and CanCommit

Listing 4.6 provides demonstration of parts of the link template in our CPN
editor. The link template defines the behavior and appearance of arcs connecting
places and transitions.

In lines 4-17, we define the initial object properties of the arc. These properties
govern various aspects such as avoiding places and transitions using routing
go.Link.AvoidsNodes, rounding corners, and setting the length of the end
segment using toShortLength. By avoiding places, transitions, and comments,
the arcs provide a visually pleasing and clear representation of the model.

The link template allows for interactive features such as relinking, reshaping,
and resegmenting. Users can modify the structure and layout of arcs as needed,
providing flexibility in designing their CPN models. The context menu is refer-
enced to handle right-click events, enabling substituting of arc types.

The code also includes event handles for mouse enter and mouse leave events,
which control the highlighting of the arcs when the cursors hover over a specific
one. The highlight shape, represented by a blue colour with an alpha blend-
ing value of 0.2, provides visual feedback to the user without disrupting the
entire shape of the arcs. The highlight is a go.Shape with a slightly larger

49



strokeWidth value than the default arc shape, which is 1. The highlight shape
is initially set to be transparent.

1 myDiagram . l inkTemplate = $ (
2 go . Link , //the whole link panel

3 {
4 rout ing : go . Link . AvoidsNodes ,
5 curve : go . Link . JumpOver ,
6 corner : 5 ,
7 toShortLength : 4 ,
8 re l inkableFrom : true ,
9 r e l i nkab l eTo : true ,

10 r e shapab le : true ,
11 resegmentable : true ,
12 contextMenu : context . linkContextMenu ( ) ,
13 // mouse -overs subtly highligh links:

14 mouseEnter : ( e , l i n k ) =>
15 ( l i n k . f indObjec t ( "HIGHLIGHT" ) . s t r oke = "rgba (30 ,144 ,255 ,0.2)"

) ,
16 mouseLeave : ( e , l i n k ) =>
17 ( l i n k . f indObjec t ( "HIGHLIGHT" ) . s t r oke = "transparent" ) ,
18 } ,
19 new go . Binding ( "points" ) .makeTwoWay( ) ,
20 $ (
21 go . Shape , //the highligh shape , normally transparent

22 {
23 i sPanelMain : true ,
24 strokeWidth : 8 ,
25 s t r oke : "transparent" ,
26 name : "HIGHLIGHT" ,
27 }
28 ) ,
29 . . .

Listing 4.6: Template for arcs

This flexible arc template allows users to create different types of arcs within
their CPN models and provides intuitive visual cues for understanding the flow
and nature of each arc.

We further discuss the implementation of changing arrowheads using the context
menu under Section 4.2.9

4.2.8 Arc inscriptions

Arc inscriptions provide additional conditions associated with arcs in CPN mod-
els. In our implementation, we position the arc inscription in the middle of the
arc to make sure longer inscription does not overlap the places or transitions
being connected by the arc.

As shown in Figure 4.8, the arc inscription specifies that if the incoming token
from the Receive CanCommit place is of the type Vote, the transition will send
a token 1’w. Otherwise, if there is no incoming token or the incoming token is
not a Vote, the transition will have an empty output.

In the implementation of arc inscriptions seen in Listing 4.7, we use a panel
named LABEL to contain the inscription text. The segmentFraction property
determines the position of the arc inscription along the arc and is a floating-point

50



Figure 4.8: Example arc inscription in GoJS solution

number between 0 and 1, where 0 represents the starting point of the arc and 1
represents the ending point of the arc. By setting the segmentFraction to 0.5,
we instruct the arc inscription to position itself in the middle of the arc, ensuring
that it is visually centered between the connected places and transitions. This
allows us to maintain consistent positioning of the arc inscription, regardless of
the length or shape of the arc. It ensures that the inscription remains easily
readable and visually aligned with the flow of the arc.

In the implementation of the arc inscription, we have set up a binding for the
visibility property. This binding allows us to control the visibility of the arc
inscription based on its content. We still render inscription field, as it would
be hard for the user to guess the location of where they should click to start
editing. An empty inscription field is rendered as a simple white space in the
middle of the arc. This is demonstrated in Figure 4.11 in the next Section.

Last part of the implementation of the arc inscription field, we use a TextBlock
element to display the text. The name expr is used as both the placeholder
text and as the identifier for the TextBlock element. This choice of name aligns
with the default placeholder for arc inscriptions used in CPN Tools. We have
customized the TextBlock element by setting text alignment to be centered, set
the default font to be black 10 pt helvetica. If helvetica is not available in the
runtime environment or the system running for some reason, it will fall back on
arial. Similarly, if arial is not available, it will fall back on sans serif. Lastly, we
enable the editing, so that users can modify the inscription.

51



1 $ (
2 go . Panel ,
3 "Auto" ,
4 {
5 v i s i b l e : true ,
6 name : "LABEL" ,
7 segmentFract ion : 0 . 5 ,
8 } ,
9 new go . Binding ( "visible" , "visible" ) .makeTwoWay( ) ,

10 $ (
11 go . Shape ,
12 "RoundedRectangle" , //label shape

13 { f i l l : "#F8F8F8" , strokeWidth : 0 }
14 ) ,
15 $ (
16 go . TextBlock , // the label

17 "expr" ,
18 {
19 t extAl i gn : "center" ,
20 f ont : "10pt helvetica , arial , sans -serif" ,
21 s t r oke : "#333333" ,
22 e d i t a b l e : true ,
23 } ,
24 new go . Binding ( "text" ) .makeTwoWay( )
25 )
26 )

Listing 4.7: Implementation of arc inscription

By including arc inscriptions, we can capture and represent various conditions,
or expressions associated with the flow of tokens between places and transitions
in our CPN editor. This provides a richer and more expressive modeling capa-
bility, allowing users to define complex behaviour and rules within their CPN
models.

4.2.9 Context menu

The context menu in our implementation serves the purpose of allowing users
to edit the visualization of places, transitions, and arcs. It can be accessed by
right-clicking on any object on the modeling canvas.

The context menus consist of buttons with two different functionalities:
ColorButtons and ArrowButton functions. These functions are responsible for
creating buttons specific to each context menu. However, there is a common
function that handles the changes requested by the user and commits them to
the model. This function is the ClickFunction and is shown in Listing 4.8.

When a button in a context menu is clicked, the ClickFunction is invoked
with the relevant input parameters: propname represents the property to be
changed, and value represents the new value to which the property is going to
be changed. To prevent unintended changes, we set the e.handled property to
true, indicating that the event has been handled and further changes should be
stopped.

After ensuring that only the intended changes are made, we send a commit to
the model. The set function is used to locate the object that was clicked on and

52



find the specific property that needs to be changed. Once found, the property
is updated with the new value provided.

1 function ClickFunct ion ( propname , va lue ) {
2 return ( e , obj ) => {
3 e . handled = true ;
4 e . diagram . model . commit ( (m) => {
5 m. s e t ( obj . part . adornedPart . data , propname , va lue ) ;
6 }) ;
7 } ;
8 }

Listing 4.8: Function handling a selection in one of the context menus

To summarize, the context menu functionality allows users to customize the
visual aspects of the elements in the modeling canvas. The associated functions,
such as ColorButtons and ArrowButton, generate the buttons in the context
menu, while the common ClickFunction ensures that the desired changes are
properly committed to the model.

Context menu for places and transitions

For places and transitions, we can use the context menu to change the color of
the border, or fill the inside of our node/transition of choice. We also have imple-
mented a button that returns the color scheme of the selected place/transition
to default. The context menu is shown in Figure 4.9.

Figure 4.9: Example of open context menu on a place

Listing 4.9 demonstrates the template function for creating buttons with the
different colours in the context menu. The function takes the two inputs: color,
which represents the colour we want to change the property to, and propname,
which denotes the property we intend to modify.

The function first checks if a propname is provided. If it is not, the function sets
the propname to color. This simplifies the implementation by automatically
associating the propname to color.

Next the function checks if the provided color is equal to cyan. If it is, the func-
tion adjust the color to the correct shade of cyan we have used by default. This
adjustment is made to ensure better code readability and maintain consistency
with the desired color representation.

The ColorButton function provides a template for creating buttons with differ-
ent colours in the context menu for places and transitions. The function allows
for the customization of properties by associating the chosen colour with the
target property, simplifying the implementation process.

53



After the initial checks, the function in Listing 4.9 creates the shape of the
button. Starting with the function setting the size of the buttons. The function
then handles the mouseEnter and mouseLeave events to add a subtle highlight
effect to the buttons when the mouse cursors hovers over them. This visual
feedback enhances the user experience by indicating interactivity.

When a button is clicked, either by left-clicking or right-clicking, the function
sends the corresponding values of the button and object of the context menu,
property name and the chosen colour, to the ClickFunction mentioned in List-
ing 4.8. This ensures that the desired changes are properly processed and com-
mitted to the model. The shape containing this functionality is then returned
to the rest of the context menu.

1 function ColorButton ( co lo r , propname ) {
2 i f ( ! propname ) propname = "color" ;
3 i f ( c o l o r === "cyan" ) c o l o r = "#00 A9C9" ;
4 return $ ( go . Shape , {
5 width : 16 ,
6 he ight : 16 ,
7 s t r oke : "lightgrey" ,
8 f i l l : co lo r ,
9 margin : 1 ,

10 background : "transparent" ,
11 mouseEnter : ( e , shape ) => ( shape . s t r oke = "dodgerblue" ) ,
12 mouseLeave : ( e , shape ) => ( shape . s t r oke = "lightgrey" ) ,
13 c l i c k : Cl ickFunct ion ( propname , c o l o r ) ,
14 contextC l i ck : Cl ickFunct ion ( propname , c o l o r ) ,
15 }) ;
16 }

Listing 4.9: Template for colour changing buttons in context menus

Listing 4.10 shows the function responsible for changing the filling and border
colors of the selected place or transition back to the default values. This function
is associated with a button in the context menu, which has the same background
color as the objects and displays the text ”default”.

The functionality of this function is similar to the previously mentioned click
function. However, instead of sending individual property changes to the model,
this function combines two set commands into a single commit. The set com-
mands are used to reset the filling and border colors of the selected object to
their default values. Adding both these changes in a single commit ensures that
the default color restoration is performed simultaneously, avoiding any delay or
inconsistency in the visual appearance of the objects.

1 function de fau l tC l i ckFunct i on ( ) {
2 return ( e , obj ) => {
3 e . handled = true ;
4 e . diagram . model . commit ( (m) => {
5 m. s e t ( obj . part . adornedPart . data , "color" , "#00 A9C9" ) ;
6 m. s e t ( obj . part . adornedPart . data , "fill" , "#282 c34" ) ;
7 }) ;
8 } ;
9 }

Listing 4.10: Function for changing back to default colour

54



For transitions, we have added an extra button for linking a transition to the
corresponding submodule. This is related to the implementation of substitution
transitions. The extra button in the context menu executes the linkSubModule
function. The implementation of the linkSubModule function and related func-
tionality to substitution transitions can be seen in Section 4.2.11. The context
menu for transition is displayed in Figure 4.10

Figure 4.10: Context menu of a transition

Context menu for arcs

Context menu for arcs are used to change the arc type. In practice we change
the arrowhead of an existing arc, as mentioned in Section 4.2.7. This is done by
making all other arrowheads transparent and the arrowhead we want visible.

Figure 4.11: Example of a open context menu on an arc

Implementing the arrowheads of the arcs, SVG paths are used to define their
shapes. This choice of format allows for easy scalability and the ability to modify
their colors. To simplify the code and make it more manageable, a numbering
system is introduced to identify the different arrowhead shapes.

In the code, each arrowhead shape is assigned a corresponding geometry string,
denoted as geo. These geometry strings represents the SVG path data that de-
fines the shape of the arrowhead. By associating a number with each arrowhead,
the code becomes more concise and easier to maintain.

When a user clicks on an arrowhead button in the context menu, the corre-
sponding number is sent as the value, and "dir"is sent as the propname to the
click function. This allows the click function to identify which arrowhead shape
is selected and perform necessary changes to the model.

By organizing the arrowhead shapes in this particular way and utilizing the
numbering system, the code becomes more modular and flexible. It allows for
easy addition or modification of arrowhead shapes in the future without the
need for extensive code changes.

55



1 function ArrowButton (num) {
2 // Single arrow

3 var geo = "M0 0 M16 16 M0 8 L16 8 M12 11 L16 8 L12 5" ;
4 i f (num === 0) {
5 // No arrow

6 geo = "M0 0 M16 16 M0 8 L16 8" ;
7 } else i f (num === 2) {
8 // double arrow

9 geo = "M0 0 M16 16 M0 8 L16 8 M12 11 L16 8 L12 5 M4 11 L0 8

L4 5" ;
10 } else i f (num === 3) {
11 // reset arc

12 geo = "F M 0 0 M 16 16 M 8 8 M 12 11 L 16 8 L 12 5 M 4 11 L 8 8

L 4 5" ;
13 } else i f (num === 4) {
14 // Inhibitor arc

15 geo = "F M 0 0 M 16 16 M 4 8 m 0 0 a 2 2 0 1 0 7 0 a 2 2 0 1 0

-7 0 " ;
16 }
17 return $ ( go . Shape , {
18 geometryStr ing : geo ,
19 margin : 2 ,
20 background : "transparent" ,
21 mouseEnter : ( e , shape ) => ( shape . background = "dodgerblue" ) ,
22 mouseLeave : ( e , shape ) => ( shape . background = "transparent" ) ,
23 c l i c k : Cl ickFunct ion ( "dir" , num) ,
24 contextC l i ck : Cl ickFunct ion ( "dir" , num) ,
25 }) ;
26 }

Listing 4.11: Function for changing arrowheads on arcs

Listing 4.12 is showing the implementation of the arrowhead themselves and
not the context menu selection of the arrowhead. This listing we see a new
arrowhead geometry definition, specifically for the reset arc. This geometry
represents the shape of the arrowhead and is created using a series of path
commands in SVG format.

On lines 6-15, a shape element is created within the linkTemplate. This shape
uses the arrowhead geometry Reset and is initially set to be invisible. The color
of the arrowhead is defined as grey.

The visibility of the arrowhead shape is bound to the value of the dir property.
By using this binding, the visibility of the shape can be dynamically controlled
based on the value of the dir property. When the dir property is set to 3,
which is the number assigned to the reset arc in the context menu selection,
the visibility of the arrowhead shape will be set to true according to the defined
predicate.

This implementation allows for the dynamic display of different arrowhead
shapes based on the value of the dir property. By changing the property
through the context menu, the corresponding arrowhead shape will become
visible, providing visual feedback to the user for the type of arc.

56



1 go . Shape . defineArrowheadGeometry (
2 "Reset" ,
3 "F M 19 6 M 12 12 L 19 6 L 12 0 L 15 6 L 12 12 M 3 12 L 10 6 L 3

0 L 6 6 L 3 12"

4 ) ;
5

6 $ (
7 go . Shape ,
8 {
9 toArrow : "Reset" ,

10 v i s i b l e : false ,
11 f i l l : "gray" ,
12 s t r oke : "gray" ,
13 } ,
14 new go . Binding ( "visible" , "dir" , ( d i r ) => d i r === 3)
15 )

Listing 4.12: Custom arrowhead and selecting it

4.2.10 Tree view

The tree view within our application serves as a visual representation of the
underlying file hierarchy of the model the user is modeling. As depicted in
Figure 4.12, the tree view displays the structure of the model in a hierarchical
manner, starting with the outermost and most abstracted model file, which in
the case of our example is the twophase.json file.

Within the twophase.json file, we can observe two submodules: The Coor-
dinator and the Workers. These submodules are presented as nested elements
within the tree view, reflecting the hierarchical relationship between them and
the main model. This hierarchical representation allows users to easily navigate
and understand the models components.

The tree view itself is implemented using GoJS, which provides the necessary
functionality for rendering the hierarchical structure and interactions. Due to
the security measure of ”Same Origin Policy”[5], retrieving the directory struc-
ture requires user interaction. The Same Origin Policy restricts JavaScript from
making requests to resources that are not from the same origin as the web page
itself. This policy is implemented to prevent potential security threats, such as
cross-site scripting attacks and unauthorized access to local files.

Figure 4.12: The tree view of the two-phase commit protocol

The tree view in our application functions as an independent diagram, and
therefore, it requires specific properties to be set in order to customize its ap-

57



pearance and behavior. In Listing 4.13, we define these properties to ensure
optimal visualization and interaction within the tree view.

Firstly, we disable any editing capabilities for the tree view model since its
purpose is solely to provide links to different models and offer an overview of
the current model the user is working on.

To control the layout of the tree view, we utilize various properties. The
alignment property determines the alignment of parent nodes to their chil-
dren. In our case, we set it to AlignmentStart, which places the parent node
above its children, close to the first child.

The angle property defines the direction in which the tree grows. By setting
angle to 0, we ensure that the tree grows downwards, providing a top-to-bottom
layout.

To control the spacing and positioning of nodes within the tree view, we set the
compaction property to CompactionNone, which ensures a consistent spacing
style without compacting subtrees.

The layerSpacing property determines the distance between layers, specifically
the parent node and its child nodes. We set layerSpacingParentOverlap to
1, allowing the nodes to be placed closely together.

The nodeIndentPastParent property specifies the additional space given to the
first child node when positioned relative to its parent.

The nodeSpacing property defines the space between nodes within a layer,
ensuring an appropriate visual separation.

Lastly, since ports in the tree view is not necessary, we disable the automatic
adjustment of port spots based on the angle by setting setsPortSpot and
setsChildPortSpot to false.

1 myTreeView = $ ( go . Diagram , "myTreeDiv" , {
2 allowMove : false ,
3 allowCopy : false ,
4 a l l owDe l e t e : false ,
5 a l l owHo r i z on t a l S c r o l l : false ,
6 l ayout : $ ( go . TreeLayout , {
7 al ignment : go . TreeLayout . AlignmentStart ,
8 ang le : 0 ,
9 compaction : go . TreeLayout . CompactionNone ,

10 l aye rSpac ing : 16 ,
11 l ayerSpac ingParentOver lap : 1 ,
12 nodeIndentPastParent : 1 . 0 ,
13 nodeSpacing : 0 ,
14 se t sPortSpot : false ,
15 se t sChi ldPortSpot : false ,
16 }) ,
17 }) ;

Listing 4.13: Treeview properties

In the projects tree view, there are features that allow users to collapse and ex-
pand the tree nodes. These functionalities enhance the users ability to navigate
and organize the tree structure.

58



In Listing 4.14, we can see the implementation of these features. The code
snippet demonstrates an event handler for the double-click event on a tree node.

To ensure the safety of the operation, the event handler first checks if the se-
lected node has children that can be expanded or collapsed, this prevents any
unexpected behavior when attempting to perform these actions on nodes in the
tree view without children.

Next, the code checks the current state of the nodes children. If the children are
already expanded, executing the double-click action will collapse them, making
the child nodes appear under the selected node. Conversely, if the children are
currently collapsed, double-clicking on the node will expand them, displaying
the child nodes beneath the selected node.

Lines 16-23 in the provided code listing shows the customization applied to the
appearance of the expander buttons in the tree view. The expander buttons are
predefined buttons specifically designed for tree models.

To customize the expander buttons, the code modifies the figure displayed on
the button based on the state of the tree node. When the tree node is expanded,
the figure of the button is changed to a downwards-facing arrow, indicating that
the child nodes are currently visible. On the other hand, when the tree node
is not collapsed, the figure of the button is changed to an arrow facing right,
indicating that the child nodes are hidden. Furthermore, the code sets the code
color of the expander button to whitesmoke and removes the stroke, or the
border, around the button.

For more visual information to the user, the tree view incorporates different
figures to represent the various types of tree nodes, such as directories or files, in
a more intuitive manner. This is achieved through the binding mechanism that
connects the current state of each tree node to the imageConverter function.

The imageConverter function determines the appropriate figure to display for
each node. It examines the type of node, distinguished between leaf nodes,
for files, and branch nodes, for directories. Based on this evaluation, the
imageConverter function dynamically assigns the corresponding figure that ac-
curately represents the status of the node.

By incorporating collapsing and expanding functionalities, the tree view en-
hances the usability and navigation experience for users. The visual represen-
tation of different nodes, such as directories and files, through distinctive icons
enables users to quickly differentiate between them. For instance, an opened
directory is depicted with an icon resembling a collapsed folder, while file nodes
have their own distinct icon.

This approach empowers users to effectively manage the visibility and organi-
zation of the tree structure according to their specific requirements. They can
expand or collapse nodes as needed, allowing for a more streamlined and per-
sonalized view of the project components. As a result, the tree view becomes a
user-friendly tool that facilitates seamless navigation through the project.

59



1 doubleCl i ck : ( e , node ) => {
2 var cmd = myDiagram . commandHandler ;
3 i f ( node . isTreeExpanded ) {
4 i f ( ! cmd . canCol lapseTree ( node ) ) return ;
5 } else {
6 i f ( ! cmd . canExpandTree ( node ) ) return ;
7 }
8 e . handled = true ;
9 i f ( node . isTreeExpanded ) {

10 cmd . co l l ap s eTre e ( node ) ;
11 } else {
12 cmd . expandTree ( node ) ;
13 }
14 } ,
15 . . .
16 $ ( "TreeExpanderButton" , {
17 // customize the button ’s appearance

18 treeExpandedFigure : "LineDown" ,
19 t r e eCo l l ap s edF i gu r e : "LineRight" ,
20 "ButtonBorder.fill" : "whitesmoke" ,
21 "ButtonBorder.stroke" : null ,
22 buttonF i l lOver : "rgba (0 ,128 ,255 ,0.25)" ,
23 buttonStrokeOver : null ,
24 }) ,
25 . . .
26 go . Picture ,
27 {
28 width : 18 ,
29 he ight : 18 ,
30 margin : new go . Margin (0 , 4 , 0 , 0) ,
31 imageStretch : go . GraphObject . Uniform ,
32 } ,
33 // bind the picture source on two properties of the Node

34 // to display open folder , closed folder , or document

35 new go . Binding ( "source" , "isTreeExpanded" , imageConverter ) .
o fObject ( ) ,

36 new go . Binding ( "source" , "isTreeLeaf" , imageConverter ) . o fObject ( )

Listing 4.14: Functionality handling collapsing tree view

We provide the ability to link to substitution transitions using the tree view.
This functionality is implemented using the event handler and the fetchFile

function, shown in Listing code:fetchfile.

The contextClick event handler is defined within the nodeTemplate for the
treemodel. When the user right-clicks on a file node in the tree view, this event
handler is triggered. It then passes the path of the clicked file to the fetchFile
function. The fetchFile function utilizes the Fetch API in JavaScript to re-
trieve the contents of the file specified by the path. Once the file is successfully
retrieved, the function extracts the data and updates the model to represent
the model corresponding to the file.

This feature allows for easy navigation through the tree view, selecting specific
files, and seamlessly switch to associated models. It enhances the flexibility,
modularity, and interactivity of the application, allowing users to explore dif-
ferent parts of their model in a convenient manner.

60



1 contextC l i ck : ( e , node ) => {
2 i f ( node . i sTreeLea f ) {
3 f e t c hF i l e ( node . data . path ) ;
4 }
5 } ,
6

7 function f e t c hF i l e ( path ) {
8 f e t ch ( "../" + path )
9 . then ( ( r e s ) => r e s . j s on ( ) )

10 . then ( ( data ) => (myDiagram . model = go . Model . fromJson ( data ) ) ) ;
11 }

Listing 4.15: Open submodule from file

To overcome the restrictions imposed by the ”Same Origin Policy” and enable
the loading of file trees in our application. The solution is depicted in Listing
code:loadTree along with defining the tree structure.

The solution involves the usage of a select file button located below the JSON
representation of the model. When the user clicks this button and selects a
folder, a method is triggered to create a file tree based on the files within the
selected directory. This method receives the folder and subfolder names from
the file path.

The file tree structure is then stored as an object and assigned to the
window.tree property. This allows us to access and reference the file tree
structure later in the application. Once the user has selected a folder and the
file tree structure is available in the window.tree property, they can utilize the
show folder button. Clicking this button triggers the loading of the file tree from
window.tree into the file tree canvas, where it can be displayed and interacted
with.

In the implementation of creating the file tree described above, the file is rep-
resented by the fileObj object. This object serves as the container for storing
information about the separate files. The filename itself serves as a key to
uniquely identify the file within the file tree structure.

Additionally, the parent folder of the file is also stored as a property within the
fileObj object. This is used to establish the hierarchical relationship between
files and folders within the file tree.

The files path is also preserved as a property in the fileObj object. This path
information can be used to locate and access the file when utilizing the file tree
structure to read or perform other operations on the file.

1 function r eadDi rec to ry ( event ) {
2 const f i l e s = event . t a r g e t . f i l e s ;
3 const d i r e c t o r y = f i l e s [ 0 ] . webkitRelat ivePath ;
4 const f i l e T r e e = c r ea t eF i l eTr e e ( f i l e s ) ;
5

6 conso l e . l og ( "Selected directory:" , d i r e c t o r y ) ;
7 conso l e . l og ( "File tree:" , f i l e T r e e ) ;
8 conso l e . l og (JSON. s t r i n g i f y ( f i l eT r e e , null , 2) ) ;
9 window . t r e e = f i l eT r e e ;

10 }
11

12 function loadTree ( ) {

61



13 myTreeView . model = new go . TreeModel (window . t r e e ) ;
14 }
15

16 const f i l eOb j = {
17 key : f i leName ,
18 parent : cur rentDi r . key ,
19 path : f i l ePa th ,
20 } ;

Listing 4.16: Functionality for loading the tree

4.2.11 Substitution transitions

The concept of substitution transitions has gone through some changes to en-
hance modularity in our version of the CPN editor compared to CPN Tools. In
our editor, a substitution transition is designed to serve as a transition element,
while the underlying model associated with it is stored in a separate file. This
approach allows for better organization and separation of concerns within the
overall system.

As described in the previous Section 4.2.10, we have implemented the func-
tionality for the user to open the corresponding models using the tree view.
This provides a convenient way to access and explore the underlying models
associated with each substitution transition.

In addition, we have also implemented the possibility of adding a connection
between transitions and a corresponding submodule. This is done using the
context menu option, Link Submodule. Listing 4.17 exhibits the connection
implementation of this feature.

The process of linking a transition is implemented using the
dialog.showOpenDialog function in Electron. Electron opens the file structure
on the users computer. Here the user can select the corresponding submodule
JSON file to the transition. The function will return the file path and add it to
the data of the selected transition. The user can open the related submodule by
double clicking on a transition linking to a submodule using the fetch method.

1 d i a l o g
2 . showOpenDialog ({
3 t i t l e : "Select File" ,
4 p r op e r t i e s : [ "openFile" ] ,
5 f i l t e r s : [{ name : "JSON" , e x t en s i on s : [ "json" ] } ] ,
6 })
7 . then ( ( r e s u l t ) => {
8 i f ( ! r e s u l t . cance l ed && r e s u l t . f i l e P a t h s . l ength > 0) {
9 var f i leURL = "file :///" + r e s u l t . f i l e P a t h s [ 0 ] . r e p l a c eA l l ( "\\

" , "/" ) ;
10 // Update the nodeData with the file URL

11 myDiagram . model . setDataProperty ( node . data , "fileURL" , f i leURL
) ;

12 // Refresh the diagram

13 myDiagram . requestUpdate ( ) ;
14 . . .
15

16 doubleCl i ck : ( e , node ) => {
17 conso l e . l og ( node . data . f i leURL ) ;
18 i f ( node . data . f i leURL !== null ) {

62



19 f e t ch ( node . data . f i leURL )
20 . then ( ( re sponse ) => re sponse . j son ( ) )
21 . then (
22 ( jsonResponse ) =>
23 (myDiagram . model = go . Model . fromJSON( jsonResponse ) )
24 . . .

Listing 4.17: Implementation of linking transition to submodule

4.2.12 Tools

Our CPN editor offers several basic features that enhance the user experience
and streamline the modeling process. One feature is the ability to undo and
redo operations using keyboard shortcuts. The shortcuts for the undo and redo
is the default Ctrl+Z and Ctrl+Y, respectively. The mouse wheel behaviour
is set to zooming, in the modelling field, allowing them to adjust the level of
detail in the models according to their preference. These essential undo, redo
and mouse wheel behavior are set up when creating the diagram, as shown in
Listing 4.18

1 myDiagram = $ ( go . Diagram , "myDiagramDiv" , {
2 "undoManager.isEnabled" : true , // enable undo and redo

3 "toolManager.mouseWheelBehavior" : go . ToolManager .WheelZoom ,
4 }) ;

Listing 4.18: Modelling rules properties

To navigate the canvas, users can utilize click-and-drag functionality. Using
this, users can pan around the model, providing a flexible and intuitive way to
explore different parts of the diagram.

By clicking and holding, the user can create a selection box, enabling selection
of multiple places, transitions, and arcs at once and perform operations on the
selected elements.

Additionally, the GoJS incorporates common editing operations by default, such
as copy, paste and cut, which further enhance the editing capabilities of the
framework.

These features and interaction features contribute to a more efficient and user-
friendly modelling experience.

4.2.13 Simulation

In order to integrate simulation functionality into our editing tool, we have de-
veloped a mock up of a simulator along with a visualization component that
illustrates the changes made to a model during simulation. We will going for-
wards in this section refer to the mock up simulator as simulator. The simulator
operates based on a set of states that the model can assume, where each state
represents the state of each place and transition. An example of a state will be
shown in Section4.3.1.

When a message is sent to the simulator, it responds with the next state of the
model. Our software then iterates through each node in the model and updates

63



its state accordingly. For places, this involves modifying their marking, while
for transitions, they may be highlighted based on whether they comply with the
rules of a CPN model.

To interact with the simulator, we have implemented a HTML button with
an onClick event that trigger the sending of messages to the simulator. In
response, the simulator provides the next state of the model.

The simulator functions, as depicted in Listing 4.19, manage the states of the
model. The states are stored as JavaScript objects in a list. The simulate
function selects the appropriate state to be sent to the editor. The count variable
keeps track of the number of states modeled, and once it reaches 6, it resets to
0.

The testServerExecution function is executed when the execute button is
clicked. It receives the state from the simulator and sends it to the sim function.

The sim function processes each property in the state object and identifies the
corresponding node in the model. If the node is a transition, it checks whether
it should be highlighted and sets the highlight color accordingly. Otherwise, it
sets the color to the default stroke, effectively disabling an enabled transition
from the previous state. For places, the marking text is set to the appropriate
message, ensuring the correct current marking is displayed.

This simulator functionality provides a glimpse into how the model would behave
when executed, allowing users to visualize and analyze its dynamics. It serves
as a valuable tool for testing and verifying the behavior of the model under
different scenarios.

1 export s . s imulate = function ( ) {
2 i f ( count === 6) ; count = 0 ;
3 count++;
4 return runningSequence [ count −1] ;
5 } ;
6

7 function t e s tSe rve rExecut i on ( ) {
8 sim ( mockserver . s imulate ( ) ) ;
9 }

10

11 function sim (m) {
12 Object . e n t r i e s (m) . forEach ( ( [ nodeName , message ] ) => {
13 myDiagram . nodes . each ( ( n) => {
14 nodeText = n . f indObjec t ( "NODENAME" ) ;
15 i f ( nodeText . t ex t === nodeName) {
16 i f (n . category === "Transition" ) {
17 i f ( message === "highlight" ) {
18 n . f indObjec t ( "NODESHAPE" ) . s t r oke = enabledColour ;
19 } else {
20 n . f indObjec t ( "NODESHAPE" ) . s t r oke = "#00A9C" ;
21 }
22 } else {
23 n . f indObjec t ( "MARKING" ) . t ex t = message ;
24 }
25 . . .

Listing 4.19: Function for loading the model

64



4.2.14 Saving and loading

Saving and loading the progression on models is an important part of modeling.
We have introduced a different set of functionality, which we introduce in this
Section.

The application includes a mechanism for listening to changes in the model, as
shown in Listing 4.20. This functionality is implemented using GoJS
DiagramListener, which monitors modifications made to the diagram. When a
modification occurs, the listener locates the save button and enables the button
by setting its disabled property to false, if found.

Next, the listener searches for the index of the * symbol in the document title
and stores it in the variable idx. If the diagram has been modified and idx is
less than 0, indicating that the * is not present in the title, the listener adds
the * symbol to the document title, signifying that changes have been made.
Conversely, if the diagram has not been modified and idx is greater or equal to
0, indicating that the * symbol is present in the title, the listener removes the
* symbol from the title, indicating that there are now no unsaved changes.

This is implemented to ensure that the user is aware of any modifications made
to the diagram and provides visual feedback on the save status, allowing them
to decide when to save their changes.

1 myDiagram . addDiagramListener ( "Modified" , ( e ) => {
2 var button = document . getElementById ( "SaveButton" ) ;
3 i f ( button ) {
4 button . d i s ab l ed = !myDiagram . i sMod i f i ed ;
5 }
6 var idx = document . t i t l e . indexOf ( "*" ) ;
7 i f (myDiagram . i sMod i f i ed ) {
8 i f ( idx < 0) {
9 document . t i t l e += "*" ;

10 }
11 } else {
12 i f ( idx >= 0) {
13 document . t i t l e = document . t i t l e . s l i c e (0 , idx ) ;
14 }
15 }
16 }) ;

Listing 4.20: Listener for modifications in diagram

The saving and loading functionality in GoJS is demonstrated in several sam-
ples provided on their website. One common approach involves using an HTML
<textarea> element to displayed the last save JSON representation of the
model.

To implement saving, an HTML button is assigned an onClick event that trig-
gers the saving function, shown in Listing 4.21. The save function retrieves the
JSON representation of the model and sets it as the value of the <textarea>

element located beneath the modelling canvas. Additionally, the function resets
the isModified variable of the diagram to false, ensuring that any changes
made to the previous model are cleared.

This makes it easy to save the current model by clicking the save button, up-
dating the JSON representation.

65



1 function save ( ) {
2 document . getElementById ( "mySavedModel" ) . va lue = myDiagram . model .

toJson ( ) ;
3 myDiagram . i sMod i f i ed = fa l se ;
4 }

Listing 4.21: Function for saving the model

Loading, shown in Listing 4.22, complements the saving functionality by allow-
ing users to load a model from the <textarea>.

To implement loading, an HTML button is assigned an onClick event that
triggers the loading function. When the button is clicked, the function retrieves
the text from the <textarea> element using the getElementById method. The
text represents the JSON representation of the model. The function then up-
dates the model by setting it to the JSON representation obtained from the
<textarea>.

1 function load ( ) {
2 myDiagram . model = go . Model . fromJson (
3 document . getElementById ( "mySavedModel" ) . va lue
4 ) ;
5 }

Listing 4.22: Function for loading the model

By default the stored model will be in the source code of the HTML textarea.
As we explained, the loading function only loads changes from the textarea. For
a more functional loading we would rather load from a file. Having the possibility
to load from a file also opens up the need for downloading the current JSON
representation of the model.

4.2.15 Downloading and uploading

We have implemented the ability to download the model in our application. In
order to do this, the user first needs to specify a filename using an input field
and then click the download button.

Listing 4.23 demonstrates the downloading function-. To create the download-
able file, we generate an element and assign it the JSON representation of the
model as its content. This JSON model, along with the filename is then passed
to a download function. Within this function, the JSON model is converted
into a blob with the MEME type application/json. By generating a file URL
for this blob, we enable the user to download the file represented by the blob.

Next, we set the generated URL and the filename as attributes of the element.
To ensure that the element remains hidden from the user, its visibility is set to
none.

To initiate the file download, we add the element to the documents body and
simulate a click on it. This action triggers the download of the file specified in
the element. Consequently, we remove the element from the body, effectively
cleaning up the DOM and completing the download process.

66



1 function downloadFile ( ) {
2 const f i l ename = document . getElementById ( "filename" ) . va lue ;
3 const content = document . getElementById ( "mySavedModel" ) . va lue ;
4

5 i f ( f i l ename && content ) {
6 download ( f i l ename , content ) ;
7 }
8 }
9

10 function download ( f i l ename , content ) {
11 const element = document . createElement ( "downloadElement" ) ;
12 const blob = new Blob ( [ content ] , { type : "application/json" }) ;
13 const f i leURL = URL. createObjectURL ( blob ) ;
14

15 element . s e tAt t r i bu t e ( "href" , f i leURL ) ; // file location

16 element . s e tAt t r i bu t e ( "download" , f i l ename ) ; // filename

17 element . s t y l e . v i s i b i l i t y = "none" ;
18

19 document . body . appendChild ( element ) ;
20 element . c l i c k ( ) ;
21 document . body . removeChild ( element ) ;
22 }

Listing 4.23: The code for downloading functionality

The uploading and creation of the file tree is integrated with the tree view
functionality as described in Section 4.2.10. To provide an overview, the pro-
cess involves an HTML input element that accepts repositories as input. The
user selects the repository containing their desired model. The file tree is then
generated based on the files within the selected repository.

In our example, we will use the file structure for the two-phase commit protocol,
which is outlined below:

TwoPhaseCommitProtocol

TwoPhaseCommitProtocol.json

Submodules

Coordinator.json

Workers.json

The ”TwoPhaseCommitProtocol” directory serves as the root director, con-
taining the main model with a subdirectory containing the submodules of the
two-phase commit protocol model.

An example of creating this sort of file tree from the model example is given in
6.1.

4.2.16 Palette

As GoJS explains it, ”A palette is a subclass of Diagram that is used to display
a number of Parts that can be dragged into the diagram that is being modified
by the user”[25]. The palette component that facilitates the drag-and-drop
functionality for adding places and transitions to the diagram. These places and
transitions come preloaded with placeholder data in their connected inscription
fields. The purpose of the placeholders is to visually indicate the location of
the inscription fields and provide examples of how to utilize them. The palette
itself comprises the following components, in the order of Figure 4.13:

67



• Placeholder - This element is used to place the frequently used places and
transitions under the watermark from Northwood studios and GoJS.

• Transition - Representing a transition node, this component tends to be-
come crowded due to its default small size and the inclusion of inscription
fields within its border.

• Place - As a place node, this component showcases inscriptions as examples
of how to label and annotate places within the model

• Group - Deprecated group object

• Comment - Although not previously mentioned, this component offers a
means to add commentary or notes to specific elements within the model.

Figure 4.13: The palette in GoJS solution

Listing 4.24 shows us the implementation of the palette in our application.
Palette is a separate diagram in GoJS and serves as a tool for users to drag and
drop places and transitions onto the diagram.

To configure the behavior of the palette, we make some adjustments. Firstly,
we disable the initial animation style, enabling us to use a custom animation
called animateFadeDown.

The palette utilizes the same node templates as the main diagram, ensuring
consistency in the appearance of the nodes. The deprecated group object is still
included in the palette.

To define the contents of the palette, we set up various nodes in a specific order.
First is the placeholder node, which serves as a visual reference for pushing
frequently used transitions and places beneath the watermark. Following the
placeholder, we include the transition and place nodes in the palette. These
nodes can be dragged and dropped onto the main diagram, with the placeholders
in the correct inscription fields.

Finally, we add group and comment nodes to the palette. The comment node
provides a way to add annotations or notes.

The palette component enhances the usability of our application by providing
an intuitive interface for adding nodes to the diagram. Users can easily select
and drag the desired nodes from the palette.

68



1 myPalette = $ (
2 go . Pa let te ,
3 "myPaletteDiv" ,
4 {
5 "animationManager.initialAnimationStyle" : go . AnimationManager .

None ,
6 I n i t i a lAn ima t i onS ta r t i n g : animateFadeDown ,
7

8 groupTemplateMap : myDiagram . groupTemplateMap ,
9 nodeTemplateMap : myDiagram . nodeTemplateMap ,

10 model : new go . GraphLinksModel ( [
11 { category : "Start" , t ex t : "PLACEHOLDER" } ,
12 {
13 category : "Transition" ,
14 t ex t : "Transition" ,
15 guard : "[]" ,
16 time : "@+" ,
17 code : "new Int = 0" ,
18 p r i o r i t y : "P_NORMAL" ,
19 } ,
20 {
21 category : "Place" ,
22 t ex t : "Place" ,
23 in itMark : "0" ,
24 uni t : "INT" ,
25 IO : "In" ,
26 } ,
27 { category : "Group" , t ex t : "Group1" , isGroup : true } ,
28 { category : "Comment" , t ex t : "Comment" } ,
29 ] ) ,
30 }
31 ) ;

Listing 4.24: Implementation of the palette

4.3 Code structure

4.3.1 Integration against the simulator

We have not yet started on implementing integration against the simulator.
What we know now is that the modelling software uses JSON to represent the
model and the simulator uses .cpn files as input, and outputs .fs(F#) files.
Example data of what the simulator might send as a response to a request to
simulate a step in the editor might be something like Listing 4.25.

To open the possibility of integrating the simulators F# output to the editors
JSON representations, it is essential to incorporate a parser component, that
is responsible for converting F# CPN files to JSON format. This parser plays
a crucial role in enabling seamless data transfer and compability in a possible
united system, ensuring efficient communication and accurate representation of
simulation results within the editor environment.

At the same time, the mock simulator that the editing software so far supports
lacks the support to read more than the highlighting of a transition and the
current marking of a place. We can see an example of a state in Listing 4.26.
One of the softwares would need to implement either a naming convention or

69



id convention. The preferred solution would probably be to create a parser
component as mentioned earlier.

1 // Place

2 { id = "ID1591819253"

3 name = "CoordinatorIdle"

4 c o l s e t = "UNIT"

5 i n i t i a lMa rk i ng = Some "1^()" }
6

7 // Arcs

8 { p lace = "ID1591819253"

9 t r a n s i t i o n = "ID1591819228"

10 expr = "1^()"

11 d i r e c t i o n = PT }
12

13 // Transition

14 { id = "ID1591819228"

15 name = "SendCanCommit"

16 guard = None ; }

Listing 4.25: Information about a place, an arc and a transition

1 var ack = {
2 "Worker\nIdle" : "1‘wrk(1) ++\n1‘wrk(2)" ,
3 Acknowledge : "1‘wrk(1) ++\n1‘wrk(2)" ,
4 "Waiting\nAcknowledgements" : "1‘[wrk(1),wrk (2)]" ,
5 "Receive\nAcknowledgement" : "highlight" ,
6 Dec i s i on : "" ,
7 "Receive\nDecision" : "" ,
8 "Waiting\nDecision" : "" ,
9 "Collected\nVotes" : "" ,

10 "AllVotes\nCollected" : "" ,
11 "Waiting\nVotes" : "" ,
12 Votes : "" ,
13 "Collect\nOneVote" : "" ,
14 CanCommit : "" ,
15 "Receive\nCanCommit" : "" ,
16 "Coordinator\nIdle" : "" ,
17 SendCanCommit : "" ,
18 Co l l e c tA l lVot e s : "" ,
19 } ;

Listing 4.26: Example state of from the mocksimulator

4.3.2 Canvases

The application has three different canvases; Modelling canvas, palette canvas
and the tree view canvas. These canvases are placed in their own HTML div
elements that links to the diagram, palette or tree view. The three HTML div

elements, that are as shown in Listing 4.27, put inside their own ”editor” div

1 <div id=” ed i t o r ” style=”width : 100%; he ight : 1000 pt ; d i sp l ay : f l e x ;
j u s t i f y −content : space−between”>

2 <div>
3 <div id=”myPaletteDiv” style=”he ight : 50%; width : 160px ; margin

−r i g h t : 2px ; background−c o l o r : #282c34 ; ”>
4 </div>
5 <div id=”myTreeDiv”
6 style=”he ight :50%; width : 160px ; margin−bottom : 2px ; margin−

r i g h t : 2px ; background−c o l o r : #282c34”>

70



7 </div>
8 </div>
9 <div id=”myDiagramDiv” style=” f l e x−grow : 1 ; background−c o l o r :

#282c34 ; ”></div>
10 </div>

Listing 4.27: Link between HTML and GoJS canvases

The linking is done, so that the diagram referring to a div id. as in Listing 4.28,
will be rendered in the referred div. In the Listing below, myDiagramDiv refers
to myDiagramDiv in Listing 4.27.

1 function i n i t ( ) {
2 myDiagram = $ ( go . Diagram , "myDiagramDiv" , {
3 . . .

Listing 4.28: Link from GoJS to HTML

71



72



Chapter 5

Code Base

In this chapter we explain the structure of the code base in the project, providing
insights into the organization and architecture of the software implementation.

5.1 File Structure

The following list shows the file collection used in developing the CPN editor.

A significant portion of the functionality residing in the gojs.js file. This
is due to the interconnected objects and coding standard of GoJS. Especially
the templates for nodes, links and the setup for the three canvases: modeling,
palette and tree view.

1. index.js

2. index.html

3. gojs.js

4. grouping.js

5. filemanagement.js

6. contextmenu.js

7. mockserver.js

8. styles.css

The following sections provide insights into the structure of the listed files and
how they connect to the overall architecture of the CPN editor application. Each
file has a specific role and contributes to the cohesive functioning of the software.
By understanding their relationships and roles, we gain an understanding of the
software’s architecture and design.

73



5.2 Electron implementation

The index.js file is responsible for initializing the Electron browser window
for our application. In Listing 5.1, we can observe the step-by-step process of
initializing the window. To ensure proper functionality, we import and obtain
the necessary dependencies. Once the application is ready, it proceeds to create
the BrowserWindow, which serves as the foundation for the entire application.

The BrowserWindow is instantiated with specific dimensions of 1600 pixels width
and 400 pixels height. To facilitate integration with Node.js, we enable the
nodeIntegration feature, while ensuring that contextIsolation is disabled.
Additionally, we enable the remoteModule to support remote functionality within
the application.

Subsequently, we load the index.html file as the initial action of the application.
From this point forward, the development process aligns with standard web
development practices, apart from one listener event: the window-closed event
listener, which monitors for the closure of the window.

1 const e l e c t r on = r equ i r e ( "electron" ) ;
2 const app = e l e c t r on . app ;
3 const BrowserWindow = e l e c t r on . BrowserWindow ;
4 var mainWindow = null ;
5 app . on ( "ready" , ( ) => createWindow ( ) ) ;
6

7 function createWindow ( ) {
8 mainWindow = new BrowserWindow({
9 width : 1600 ,

10 he ight : 400 ,
11 webPreferences : {
12 node Integ ra t i on : true ,
13 c on t e x t I s o l a t i o n : false ,
14 enableRemoteModule : true ,
15 } ,
16 }) ;
17 mainWindow . loadURL ( ‘ f i l e : //${__dirname }/index.html ‘);
18 mainWindow . on ( "closed" , ( ) => {
19 mainWindow = null ;
20 }) ;
21 }

Listing 5.1: Opening a window using electronjs

Listing 5.2 demonstrates the functionality for quitting the application if all win-
dows running is closed. This works for all the operating systems that Electron
can run on, except if the operating system is based on Darwin, which typically
refers to macOS. The reason for this distinction is that while Linux and Win-
dows operating systems usually terminates an application when all windows are
closed, macOS tends to continue the execution even without any open windows.

Since the development of the application primarily took place on a Windows
platform, the macOS activation and related functionalities have not been ex-
tensively addressed. It is worth noting that further implementation details may
be required to ensure optimal behavior on macOS, such as handling application
activation and window management in accordance with macOS convention.

74



1 app . on ( "window -all -closed" , function ( ) {
2 i f ( p roce s s . p lat form !== "darwin" ) {
3 app . qu i t ( ) ;
4 }
5 }) ;

Listing 5.2: Closing the application

5.3 Editor HTML page

In the index.html file, illustrated in Listing 5.3, we have set the layout of the
page to accommodate the various components of our CPN editor. The page
structure includes dedicated sections for the modeling canvas, palette, and tree
view canvas, which are positioned at the top of the page. These sections provide
the primary workspace for creating and manipulating CPN models.

Directly below these canvases, we have placed the applications buttons for saving
and loading the model to and from the JSON representation, and also the button
for executing the mock simulator.

The textarea, used for displaying the JSON representation of the model, is
located just below the buttons and the modeling canvas. This placement ensures
that it is easily accessible while working with the model.

The file management buttons, such as the download and load from files buttons,
are positioned under the textarea. These buttons are not as frequently used as
the core functionality buttons, but are still important for managing external
files. Additionally, the button for creating the tree view is also placed within
this section, allowing users to generate and visualize the file tree structure.

1

2 <button id=”SaveButton” onclick=” save ( ) ”>Save</button>
3 <button onclick=” load ( ) ”>Load</button>
4 <button id=”pr intbutton ” onclick=”printData ( ) ”>Print Data</button

>
5 <button id=” execute ” onclick=” te s tSe rve rExecut i on ( ) ”>execute</

button>
6 <textarea id=”mySavedModel” style=”width : 100%; he ight : 300px ; ”>
7

8 </textarea>
9 <input id=” f i l ename ” p l a c eho ld e r=” Spec i f y a f i l ename ” />

10 <button id=”SavetoFi leButton ” onclick=”downloadFile ( ) ”>Download</
button>

11 <br />
12 <input type=” f i l e ” id=” f i l e ” onchange=” readF i l e ( t h i s ) ”>
13 <input type=” f i l e ” id=” f i l e I n p u t ” webk i td i r e c to ry multiple

onchange=” readDi rec to ry ( event ) ”>
14 <br />
15 <button onClick=” loadTree ( ) ”>Show f o l d e r s / f i l e s</button>
16 </body>
17 </html>

Listing 5.3: HTML snippet from index.html

75



5.4 The GoJS implementation

The gojs.js file is the largest file as stated earlier due to most of the func-
tionality being defined here, using over 800 lines. The reason for collecting so
much code in one file is to collect all GoJS at the same place. Some examples
includes; defining most of the objects, as places, transitions and arcs. The size is
mostly due to places, and transitions taking up much space for defining several
TextBlocks for their inscriptions. Places and transition templates occupy 80-90
lines each.

Functionality associated with defining ports in the CPN editor amounts to a
large code base. This is due to the functionality and shape of the ports.

In addition to the mentioned above definitions, the same file also handles the
creation and template for the file tree.

Furthermore, the file plays a significant role in loading the process of JSON
files into CPN models. Since the diagram object, which contains the model,
communicates with this file, it facilitates the seamless integration of external
JSON files into the editor.

5.5 Grouping

The deprecated functionality from the grouping feature was originally located in
the gojs.js file, but after being deprecated it was moved to grouping.js. The
functionality includes setting layout, adding properties to the group template,
making sure the group has the correct ruleset and behaviour. Functionality for
adding places and transitions to the group by dragging and dropping. At last
there is highlighting for when holding a place or transition above the group,
indicating the node will be placed in the group if dropped at that moment.

5.6 File management

The filemanagement.js file in the CPN editor project serves as a crucial com-
ponent for the addition of various functionality related to file handling. The
implementation include saving files, downloading files, reading directories and
generating the file tree. See Section 4.2.15 for a more in-depth explanation.

5.7 Context menu

The contextmenu.js file comprehensively handles all aspects of the context
menu’s implementation. As explained in Section 4.2.9, it encompasses the in-
clusion of various buttons within the two context menus. Also functionality for
changing the colours on transitions and places, and arrowheads to change the
type of arc.

We have also started created some functionality towards linking file URLs to
transitions, and use this towards easier and better functionality concerning sub-
stitution transitions.

76



5.8 Mockserver

Mockserver.js contains the 6 necessary states for going through a complete
commit run. We have put all of these in a list and lastly there is a function
for sending the correct state to the application. Section 4.3.1 presents more
information on this file.

77



78



Chapter 6

Evaluation

In this chapter, we look at the different features of CPN Tools and our ap-
plication, comparing them and assessing their functionality, performance and
usability among others.

6.1 Creating a CPN Model

When initiating the creation of a CPN model using our new editor, it is beneficial
to begin by outlining the desired model structure. As an illustrative example, we
consider the two-phase commit protocol. Initially, our focus is on constructing
the complete model without incorporating any abstractions. This approach
allows us to gain a comprehensive understanding of the model’s interconnections
before introducing any higher-level conceptualization.

The initial step involves positioning the initial places and transitions in the
model, placing them approximately in their respective locations. As part of
this step, we assign meaningful names to each place and transition and resize
them to accommodate future inscriptions. At this stage, our model takes shape,
resembling the structure depicted in Figure 6.1, consisting of a total of 9 places
and 6 transitions positioned within the model.

We proceed to establish connections between our places and transitions by in-
troducing arcs between them. This process, as detailed in Section 4.2.6, involves
hovering the mouse over one of the four sides of a place or transition, dragging
the arc to the desired port of a node of the opposing type, and finalizing the
connection by releasing the left mouse button. By following this procedure, our
model begins to take shape, resembling the structure depicted in Figure 6.2.

We proceed to add place and transition inscriptions to our model. In the case
of the two-phase commit protocol, we begin with the Coordinator Idle place,
where we set the initial state to 1. For the CanCommit place, we need to specify
the colour set type as Worker by entering this information in the lower right
corner inscription field of the place. The Worker Idle place is assigned an initial
marking of Worker.all() and colour set of Worker. By incorporating these
inscriptions, we indicate that in the initial state, the Worker Idle place will

79



Figure 6.1: Current state of the model after adding places and transitions

contain, by default, both workers represented as 1‘wrk(1)++1‘wrk(2) during
simulation.

For the Collected Votes place, we set the colour set as WorkerxVotes and the
initial mark is assigned to an empty list, denoted as [], representing no col-
lected votes initially. As for the AllVotes Collected place, it requires a guard
expression, and in this model, the only guard expression used is [All Votes].

Moving on to the two lowest places in our model, the Decision place is assigned
the colour set WorkerxDecision, indicating that it represents decisions made
by the workers. The Acknowledge place, on the other hand, has the colour set
Worker.

Lastly, we have the Waiting Acknowledgements place, which is assigned with
the colour set Workers, indicating the wait from multiple workers.

In our example model, we have assigned arbitrary timed values to represent
the duration or execution time these transitions. Specifically, the transitions
Receive CanCommit, Receive Decision and Receive Acknowledgement have
been assigned the respective timed values of @+5, @+3 and @+4.

The final step before having a complete two-phase commit protocol without any
abstraction is adding arc inscriptions. This involves assigning inscriptions to the
arcs connecting different places and transitions. In our case, we have several arc
inscriptions to add.

Starting from CanCommit and Worker Idle going into Receive CanCommit,
both arcs have the inscription w. Moving on to Receive CanCommit, there
are three outgoing arcs. Two of these arcs have the inscriptions specified in
Listing 6.1. These inscriptions determine the behavior of the arcs based on the
vote received. If the vote is Yes, the arc sends 1‘w to Waiting Decision. On

80



Figure 6.2: State of model after adding arcs

the other hand, if the vote is No, the arc sends 1‘w to Worker Idle. These arc
inscriptions define the flow of the model and the actions performed based on
specific conditions.

1 // To Waiting Dec i s i on
2 i f vote = Yes
3 then 1 ‘w
4 else empty
5

6 // To Worker I d l e
7 i f vote = No
8 then 1 ‘w
9 else empty

Listing 6.1: Arc inscription from Receive CanCommit to Waiting Decision and
Worker Idle respectively

The remaining arc from Receive CanCommit is responsible for sending
(w, vote) to Votes. The next arc from Votes contains the same inscrip-
tion. Moving on to the Collect OneVote and Collected Votes, these two
places are connected by two arcs. One arc goes from Collect OneVote to
Collected Votes, while the other arc goes in the opposite direction. From
Collect OneVote we send the function Addvote as the arc inscription. This is
a function which is in the CPN Tools version of the model, defined as shown in
Listing 6.2. The other arc, returning from Collected Votes is inscribed with
votes.

From Collected Votes there is an arc going to AllVotes Collected with in-
scription votes. AllVotes Collected returns an empty list to
Collected Votes, indicated using another arc with inscription []. With these
inscriptions, we have completed the Collected votes path of the two-phase com-
mit protocol, defining the flow and actions associated with the collection of

81



votes.

1 // Co l l e c t OneVote to Co l l e c t ed Votes arc i n s c r i p t i o n
2 Addvote ( (w, vote ) , votes )
3

4 // De f i n i t i o n o f Addvote func t i on
5 fun AddVote ( (w, vote ) , votes ) = (w, vote ) : : votes ;

Listing 6.2: Addvote definition and inscription

In the final part of the model, we have a few more arc inscriptions to com-
plete. Starting with the out arcs from AllVotes Collected, there are two
destinations: Decision and Waiting Acknowledgement. The arc inscription to
Waiting Acknowledgement is YesWorkers votes. This indicates that the arc
carries the information of the workers voting yes to the next place.

Moving on to the arc connecting AllVotes Collected and Decision, the in-
scription InformYesWorkers votes. This function will decide if the workers
voting yes, should receive a commit or abort message as a response from the
coordinator.

Next, from Decision to Receive Decision, the arc inscription is w, decision.
For the three other arcs connected to Receive Decision, their inscriptions are
all w. Sending workers to the connecting places.

Finally, the two input arcs to Receive Acknowledgements, have their own in-
scriptions. The arc coming from Waiting Acknowledgement is inscribed with
workers. On the other arc coming from Acknowledge has the inscription
list_to_ms workers after being converted into a list.

6.1.1 Abstraction

Creating substitution transitions in the editor can still be a somewhat deli-
cate process. One approach is to selectively delete selections of the model and
download the remaining part as separate models.

To begin, it is important to save the current progress by clicking on the save
button. Then, the model can be downloaded by assigning it a suitable name,
such as ”2FCP”, and selecting the download button. It is recommended to
create a dedicated directory to store the downloaded ”2FCP.json” file and move
it to this directory. Additionally, a second directory named ”submodules” needs
to be created in the same location.

To create the Coordinator submodule, the Worker section of the model needs
to be deleted, resulting in a structure similar to Figure 6.3. After making
these modifications, pressing the save button and download the Coordinator
submodule with an appropriate name, such as ”Coordinator”. To ensure correct
file hierarchy, we download the file to the submodule directory.

To create the Worker submodule as shown in Figure 6.5, we start by loading the
full model from its file. Then, we proceed to delete all the objects making up
the Coordinator submodule, while ensuring to retain the connections between
the two substitution transitions, which are CanCommit, Votes, Decision, and
Acknowledge places. It is important to rename the In/Out sockets correctly,
with CanCommit and Decision as In sockets, and Votes and Decision as Out

82



Figure 6.3: Coordinator submodule in new editor

sockets. Once these modifications are made, we save and download the submod-
ule as explained previously. The file will be named ”Workers” and downloaded
into the same submodules directory as the Coordinator submodule.

The final step involves creating an overview of the model. We once again load
the main model file, ”2FCP.json”, and delete all the places and transitions,
except for the socket places: CanCommit, Votes, Decision, and Acknowledge.
Subsequently, we create two new transitions that will be used to represent the
submodules. We place one on the left, with the name Coordinator, while the
other is placed on the right and called Workers. The socket inscriptions on
the two, lowest socket places, Decision and Acknowledge, should be removed.
The two highest places, CanCommit and Votes, should retain their In/Out in-
scription. At this point, our model should resemble Figure 6.4. To link the
transitions to their submodules, right-click the transitions to open the context
menu, click link submodule and select the corresponding file of the submodule.
We can save and download this final model, overwriting the previous version.
It is important to note that there is a bug where the text may appear cluttered
when reloading this model. For more information on this bug, see Section 7.3.1
and Figure 7.2.

83



Figure 6.4: The two-phase commit protocol in our application with abstraction

We have now modelled and saved the entire two-phase commit protocol with
abstraction, the model directory, should now look something like the directory
tree as seen in Section 4.2.16, when loading the directory.

Figure 6.5: Workers submodule in new editor

6.2 Comparison to CPN Tools

In this section we will compare our new editor to the CPN Tools. We will refer
to our project as the editor or application. We will refer to Table 2.1 from
Section 2, which outlines the various requirements and the extent to which we
have successfully addressed them. By examining these requirements, we aim
to assess the comparative strengths and limitations of our editor in relation to
CPN Tools.

6.2.1 Feature comparison

The layout of the editor has been redesigned to enhance the user experience and
provide a more comprehensive modeling overview. Several notable changes have

84



been implemented, including changes in features such as downloading, saving,
loading functionality. Additionally, certain features like editing the style of of
places and transitions, as well as changing arc types, have been relocated to con-
text menus for improved accessibility and ease of use. These modifications aim
to streamline the modeling process and empower users with enhanced control
and navigation options within the editor.

One of the reasons for improved overview in the editor is the removal of the
simulator component. As previously mentioned, the focus of the current version
is solely on providing a comprehensive editing environment. As an temporary
replacement, we have included a mock simulator. In addition, the editor still
lacks some functionality that has been given lower priority.

CPN Tools offers a comprehensive toolbox in their layout, containing 11 binders
that provide various tools for editing, simulation, state space analysis, and other
common editing operations. In the following sections, we explore and compare
specific aspects of the toolbox along with other features and compare them to
the our application and how well we fulfill our requirements.

6.2.2 Places, transitions and arcs

In this subsection, we compare the places, transitions and their associated fea-
tures in CPN Tools and our application.

CPN Tools provides a ”Create” binder, as depicted in Figure 6.6, which includes
transitions, places, and three types of arcs; normal, inhibitor and reset arcs.
Additionally, CPN Tools offers tools for deletion, cloning, changing arc direction,
and horizontal and vertical magnetic line.

In our application, we have implemented a palette as a replacement for the
toolbox. The palette contains the main CPN objects of places and transitions,
conveniently located on the left-hand side of the modeling canvas.

Unlike CPN Tools, where each arch type has a dedicated tool for placing it,
our application simplifies the process by allowing users to drag and drop arcs
between places and transitions. Once an arc is places, we provide the option to
edit its direction or type, through the context menu, accessible by right-clicking
on the desired arc.

Figure 6.6: Create binder in CPN Tools

Not taking style into account, places and transitions in CPN Tools and our
editor is similar from a front-end perspective. However, the main difference lies
in how arcs are connected to places and transitions.

85



In CPN Tools, arcs are directly connected to the shape of the places and tran-
sitions. The arcs visually intersect or attach to the shape of the node itself. In
contrast, our editor has introduced a different approach to connecting arcs. We
use ports that are placed on the places and transitions. These ports become
visible when hovering the cursor over the corresponding location on the node.
Each place and transition in our editor has ports on all sides of their shape,
providing multiple connection points for arcs.

This port-based approach is a practical solution for handling arcs in our editor.
However, it should be noted that when multiple arcs are connected to the same
port, particularly on places, they may overlap each other, potentially affecting
the visual clarity of the model.

Places and transitions provide the necessary functionality for visualizing simula-
tions and incorporating the required inscriptions fields. These nodes effectively
represents the essential components of the Coloured Petri net models, allow-
ing for the representation and manipulation of data and events throughout the
model. They successfully meet the requirements outlined in R1 and R2.

6.2.3 Moving objects

In CPN Tools, nodes can be freely moved around the canvas, and the magnetic
grid provides a helpful guide by snapping places and transitions to the gridlines.
The feature assists in aligning nodes horizontally or vertically with each other,
ensuring better visual organization. On the other hand, our application utilizes
a default grid net in GoJS with a size of 10x10 pixels, which has been determined
as the optimal size through testing different size grids. This grid net serves a
similar purpose to CPN Tools’ magnetic grid, aiding in aligning nodes on the
canvas. Without this grid, it would be more challenging to achieve precise
horizontal and vertical alignment of nodes in our editor.

6.2.4 Binders

In CPN Tools, the concept of binders allows users to open and view multiple
models simultaneously, facilitating side-by-side comparison and analysis. On
the other hand, our application takes a different approach by providing a single
modeling canvas and utilizing a file tree view for managing multiple models.
This design choice allows users to quickly switch between different models with-
out the need for separate windows or complex menu navigation. We prioritize
simplicity and ease of use, enabling users to rapidly access and edit the desired
model without unnecessary distractions.

6.2.5 Style

In CPN Tools, the style tool offers users the ability to customize the visual ap-
pearance of places, transitions, and arcs, see Figure 6.7. This includes changing
the color outline, line width arc head size, and toggle filling of elements. The
style can also be cloned from one object to another. In our editor, we have
simplified the process by allowing users to right-click on places and transitions
to select the desired color from a context menu. Additionally, users can easily
return the style to its default setting. However, we have not implemented the

86



option to change the line width of elements in our editor. To clone the style of
an object, users can utilize the built in functionality of GoJS by holding down
the CTRL key and clicking on the object they wish to clone, then dragging it
to the desired location.

Figure 6.7: Style binder in CPN Tools

6.2.6 Functions and variables

In CPN Tools, users have the capability to define their own functions and vari-
ables in a dedicated field located in the sidebar, below the toolbox. This allows
users to input custom code when loading or creating a model. However, in our
current application, we have not yet implemented a separate code input field,
apart from the code input inscription fields on the transition themselves. The
inclusion of a code input feature is something that our application could consider
in future updates, particularly if there is a plan to merge the CPN Simulator
functionality with our application. While it may not be explicitly mentioned
as a requirement, it can be viewed as a subrequirement that aligns with R6 -
providing advanced modeling capabilities.

6.2.7 Inscriptions

Inscriptions in CPN Tools and our editor share similar functionality. In our
application, inscriptions are placed within the nodes, which due to some limita-
tions within the GoJS framework. However, during the late stages of this thesis,
a potential solution was discovered. It involves creating a selection adornment
for the inscription field to be positioned ”outside” the node.

In our application, inscriptions are placed in the same manner as in CPN Tools.
However, it is important to note that there is currently no direct connection
between our editor and a simulator. Therefore, we rely on state changes from a
simulator to provide functionality for our inscriptions.

The process of selecting inscriptions has undergone some changes as well. While
CPN Tools allows for toggling between different inscriptions using the tabular
button, in our application, the user needs to click on the location of the inscrip-
tion fields to select them. This may pose a challenge for new users, particularly
since the inscription fields are initially invisible when there is no text present. To
address this, we utilized placeholders when placing new places and transitions
to provide guidance to the user.

87



6.2.8 Markings

In CPN Tools, the current marking is visually represented by a green circle,
indicating the count of elements in the marking, along with a block of text
displaying the specific markings. However, in our editor, we have chosen a more
minimalist approach for the current marking. This is primarily due to the issue
of text cluttering within the place node, as the current marking overlaps within
the name of the place it is located on.

While our current implementation serves as a prototype and fulfills the require-
ment R3, there is room for improvement to enhance readability. This would
ultimately make the editor more user-friendly. The solution for improving both
the current marking and addressing the concerns mentioned in Section 6.2.7
would be the same.

6.2.9 Arcs

In our application, we have implemented ports as the connection points for arcs,
as discussed in Section 4.2.7. Unlike CPN Tools, where the placement of arc
inscription field follows a more intricate logic to avoid overlapping with other
objects in the model, we have a semi-fixed arc inscription field. Additionally, our
arcs follow orthogonal pathing to leverage the predefined pathing functionality
provided by GoJS, specifically the AvoidNodes option. This choice ensures that
when moving or resizing arcs, their pathing will not overlap any nodes in the
model.

Another distinction between CPN Tools and our application is that we have a
single type of arc, but allow for customization by changing the arrowhead style.
Moreover, arcs in our application are added by dragging from ports, as opposed
to placing them as separate objects in CPN Tools.

Considering the differences between our application and CPN Tools in terms of
how arcs are handled, we can state that we fulfill the requirement R4 that we
established for arcs.

6.2.10 Substitution transitions

The use of substitution transitions is significant in large CPN models as they
provide a means of abstracting the model, making it easier to introduce, edit,
and use in general. Fulfilling this requirement was important during the devel-
opment of our editor.

During the development process, we explored two potential solutions for im-
plementing substitution transitions: utilizing GoJS groups and the current ap-
proach of creating separate files and models for submodules (see Section 4.2.11).

Initially, we considered using GoJS groups as they visually resembled substi-
tution transitions in CPN Tools. However, we encountered several challenges
with this approach. When opening groups, the placement of nodes would not
be preserved, resulting in a cluttered arrangement of places and transitions.
Additionally, the arcs between nodes would take inefficient paths. Moreover,
achieving the desired level of abstraction proved difficult using this solution. As

88



a result, the decision was made to deprecate grouping for substitution transi-
tions.

Instead, we developed a solution that involved creating separate files for each
submodule, allowing for easy navigation between them using the tree view fea-
ture discussed in Section 4.2.10, but also the addition of linking transitions to
submodules using the context menu. While there is still room for further refine-
ment, the current solution provides a high level of abstraction and functionality,
fulfilling R5.

This approach parallels the concept of substitution transitions in CPN Tools.
While using binder tabs to view only the substitution transitions is a potentially
useful feature, it does not serve as a functional requirement.

6.2.11 Runtime environment

Requirement R6 in Table 2.1 stated the need for a runtime environment to run
our application. This requirement aims to provide users with a baseline for
modeling CPN models. We conclude in the following subsections on how we
fulfill the requirement for a runtime environment.

Canvas

The need for a canvas to facilitate the the modeling process was identified early
on in our project. We ended up creating three distinct canvases to cater to
different functionalities required by our application. These canvases are the
modeling canvas, the palette canvas, and the tree view canvas, as discussed in
Chapter 4.

The modeling canvas serves as the primary workspace for users to create and
modify their CPN models. It is the only canvas where users can directly edit
the model by placing and connecting nodes. The palette canvas, on the other
hand, functions as a repository of nodes that the users can drag and drop onto
the modeling canvas to build their models. Lastly, the tree view canvas provides
a hierarchical representation of the models and allows users to switch between
different models by selecting the corresponding file.

In CPN Tools, a binder system is used, where a large canvas acts as the back-
ground, and users can open multiple binders to work with different models or
modules. Each binder can contain a single model, and users can navigate be-
tween submodules and supermodules using binder tabs.

While the binder system in CPN Tools provides a flexible way to manage multi-
ple models, we decided to follow a more traditional approach of having a single
modeling canvas in our application. The tree view serves as a substitute for the
binder tabs, allowing users to navigate between different models and view their
hierarchical structure.

While implementing a tab system could potentially enhance the user experience,
the presence of the tree view adequately fulfills the purpose of managing the
modules of a model and the hierarchy. Thus, we believe that the decision to use
a single modeling canvas was complemented by the tree view offers a suitable
alternative to the binder system found in CPN Tools.

89



Buttons

During the development process, we recognize the need for additional features
and incorporated them into our application by introducing new buttons to trig-
ger these functions. The requirement R7 involves saving and loading function-
ality. Initially, we implemented saving and loading buttons to facilitate testing
and development. These buttons primarily interacts with the textarea, enabling
the saving of the model from the canvas to the textarea and loading a model
from the textarea to the modeling canvas. While this satisfies the requirements
to some extent, as it allows internal saving and loading within the application,
it falls short of the requirements to save and load from files.

To address the saving functionality, we implemented a file download feature.
When the the user downloads a file, the application creates a file containing the
contents of the textarea, thereby achieving the saving to a file functionality.

For loading from a file, we provide two options. The first option is to choose
a single file to load, which updates the model in the canvas with the contents
of the selected file. The second option is to load a directory containing a CPN
model. In this case, we also generate a corresponding tree view that displays
the model’s hierarchy. The user can then switch between different models by
right-clicking on the files in the tree view.

In CPN Tools, there is also two different ways to load a model. Users can either
open the radial menu by right-clicking on the background canvas, where the
option to load a net is available. Alternatively, users can open the Net tool
binder, which provides the functionality to load and save a net.

While we could enhance the saving functionality by automatically saving to files,
the current functionality of manual saving and loading is still present. With a
functioning loading mechanism and the ability to save models to files, we are
confident that we have fulfilled the requirements stated in R7.

Extra features

As an additional feature in our application, we introduced a textarea located
below the model canvas, as depicted in Figure 6.8. This textarea serves the
purpose of displaying the JSON representation of the model.

The textarea provides an enhanced view of the model structure and data. By
presenting the JSON representation, users can easily understand and analyze
the various components of the CPN model. Furthermore, the textarea allows
users to make modifications to the model if desired.

The presence of the textarea offers an alternative way to load and edit a model
without relying solely loadign a function from a file. Users can directly input
or modify the JSON representation in the textarea, providing flexibility and
convenience.

To facilitate some interaction with the model in the textarea, we have included
save and load buttons. The save button enables users to save the content of the
model to a file, while the load button loads the model from the textarea into
the canvas. We have also placed the execution button here, which executes the
mock simulator to visualize state changes in the two-phase commit protocol.

90



Figure 6.8: A view of the textarea with JSON representation of a two-phase
commit protocol model

Listing 6.3 presents a snippet of the JSON representation of the two-phase
commit protocol, showcasing some key aspects of the protocol’s structure and
attributes.

1 { ” c l a s s ” : ”GraphLinksModel” ,
2 ” l inkFromPortIdProperty ” : ” fromPort” ,
3 ” l inkToPortIdProperty ” : ” toPort ” ,
4 ”nodeDataArray” : [
5 {” category ” : ”Place ” , ” t ext ” : ”Coordinator \ nId l e ” , ” initMark ” : ”1” , ”

key” :−3 ,” l o c ” : ”−250 −440” } ,
6 {” category ” : ”Place ” , ” t ext ” : ”Waiting\nVotes” , ” initMark ” : ”” , ”key”

:−4 ,” l o c ” : ”−250 −110” } ,
7 {” category ” : ” Trans i t i on ” , ” t ext ” : ”SendCanCommit” , ”guard” : ”” , ” time”

: ”@+2” , ” code” : ”” , ” p r i o r i t y ” : ”” , ”key” :−6 ,” l o c ” : ”−250 −270” } ,
8 {” category ” : ”Place ” , ” t ext ” : ”CanCommit” , ” initMark ” : ”” , ” un i t ” : ”

Worker” , ”IO” : ” In” , ”key” :−5 ,” l o c ” : ” 261.83865649201147 −275” } ,
9 {” category ” : ” Trans i t i on ” , ” t ext ” : ”Al lVotes \ nCol l ec ted ” , ”guard” : ”” ,

” time” : ”” , ” code” : ”” , ” p r i o r i t y ” : ” [ Al l Votes ] ” , ”key” :−2 ,” l o c ” : ”
−230 100” } ,

10 {” category ” : ”Place ” , ” t ext ” : ”Votes” , ” initMark ” : ”” , ” un i t ” : ”
WorkerxVote” , ”IO” : ”Out” , ”key” :−7 ,” l o c ” : ”460 −120” } ,

11 {” category ” : ”Place ” , ” t ext ” : ”Dec i s i on ” , ” initMark ” : ”” , ” un i t ” : ”
WorkerxDecision” , ”IO” : ”” , ”key” :−8 ,” l o c ” : ” 304.43259997700534
275.0847030462221 ” } ,

12 . . .

Listing 6.3: partial JSON representation of the two-phase commit protocol

6.2.12 Modularity

In accordance with our requirement R8 for increased modularity, we have in-
creased modularity, we have successfully achieved a higher level of modularity
in our CPN editor compared to CPN Tools. While CPN Tools uses a single file
for an entire model or net, our application takes a different approach by split-
ting the different substitution transitions into individual files. This modularity
structure offers several advantages.

Firstly, it facilitates collaborative work on the same model, as different individ-
uals can work on separate submodules simultaneously. This enables concurrent
development and reduces conflicts when merging changes.

Secondly, the modular design allows for easier refactoring and making significant
changes to submodules without impacting the entire model. Each submodule

91



can be modified independently, providing flexibility and maintainability.

By adopting this approach, we have successfully achieved our goal of increasing
modularity in the CPN editor. This modular design not only enhances collab-
oration and flexibility but also fulfills our requirement R8 for a more modular
editor compared to CPN Tools.

6.2.13 Common editing operations

Our CPN editor includes several common editing operations that are considered
standard in modern software applications. These operations include copy, cut,
paste, undo, and redo. These functionalities were readily available in GoJS
framework, which we utilized for our editor. By incorporating these features,
we aimed to provide users with familiar and intuitive editing capabilities.

The inclusion of keyboard shortcuts for these operations allows users to per-
form tasks more efficiently, enhancing their productivity while working with the
editor. The availability of these shortcuts aligns with our requirement R9 for
common editing operations

Furthermore, we also considered enhancing the user experience by providing
context menus that include these common editing operations. Making it easier
for users to discover and utilize these functionalities when interacting with the
model elements.

6.3 Grading requirements

We have graded the requirements from low to high based on how we fulfill the
requirements in Table 6.1. We have based the scored on functionality and visual
functionality and ease of use.

ID Name Fulfillment

R1 Places High
R2 Transitions High
R3 Markings High
R4 Arcs High
R5 Substitution transitions Medium
R6 Runtime environment Medium
R7 Saving and loading Medium
R8 Modularity High
R9 Common editing operations High

Table 6.1: Grading the results of requirements

Concerning the requirements with medium fulfillment, we discuss the reasoning
for this.

Substitution transitions: Currently, there is no visual indicator to distin-
guish when a transition is connected to a submodule. Enhancements can be
made to establish clearer links between substitution transitions and submod-
ules, providing improved visual feedback to users.

92



Runtime environment - The application exhibits slow startup times and may
require a manual refresh to load the implemented test model. Further refinement
of the runtime environment’s design and performance can contribute to a more
seamless user experience.

Saving and loading - The current implementation of saving and loading func-
tionality involves manual synchronization between the JSON representation and
the model. This process can be perceived as tedious. Enhancements can be
made to streamline the process by directly working with files, simplifying the
interaction and eliminating the need for manual synchronization.

The proposed improvement for the requirements mentioned above are discussed
in Section 7.3.

93



94



Chapter 7

Conclusion and Future
Work

We conclude this thesis with summarizing the evidence and findings we have
discovered through this thesis. The technologies we have used have shown to
be suitable for the CPN editor we have developed.

7.1 Conclusion

These were the main questions we intended to investigate and answer at the
start of this thesis.

• RQ1 What specific functionalities are essential for a CPN editor to effec-
tively support modeling and simulation activities?

• RQ2 What are the strengths and limitations of various candidate software
technologies in meeting the requirements identified in RQ1?

• RQ3 To what extent does our developed prototype demonstrate the nec-
essary functionality and usability required for an effective CPN editor, as
identified in RQ1?

In Chapter 2, we conducted an analysis of CPN and its features, and identified
the important features of CPN modeling and simulation. We also identified the
need for improved modularity to support hierarchical in the context of modern
software, particularly for distributed systems. The requirements summarized in
Table 2.1 and discussed in Section 2.3 outlined the essential features and their
significance in a modern CPN editing tool. This addresses RQ1.

In Chapter 3, we explored various technology platforms for implementing the
CPN editor. We evaluated Eclipse EMF Core, Eclipse GLSP, Elm programming
language, GoJS, and lastly Electron for the runtime environment. After care-
ful consideration, we determined that GoJS was suitable technology platform
for developing a modern CPN editor, answering RQ2 when summarizing the
frameworks in Section 3.7.

95



GoJS was our choice due to the following: The framework is relatively modern
and was first released in 2012, and has since been updated regularly and is still
currently updated and developed. It also has solid documentation with online
API that provides a good search functionality. It is easy to maintain, due
to being highly modular. The framework makes it easy to introduce features
without disrupting the flow of the software. The community is still highly active,
both on Stack Overflow, being the most popular community forum in software
development, but also the Northwoods software support forum.

Chapters 4-6 detailed the development of the CPN editor throughout the the-
sis. We discussed the implementation of various features and functionalities,
addressing the identified requirements from RQ1 as well as other necessary com-
ponents for the application. We examined the underlying code structure and
compared the implemented features with those in CPN Tools. The completion
of a fully usable CPN model, such as the two-phase commit protocol, demon-
strated the effectiveness of the developed editor. Although some small issues
concerning substitution transitions, the overall functionality is robust. Thus, it
is reasonable to conclude that the CPN editor would yield similar results with
other CPN models as well, addressing RQ3.

7.2 Related Work

In this section, we provide an overview of existing tools for handling CPNs.

CPN IDE[7] is a tool that serves as a Java-based port of CPN Tools. It utilizes
a JavaScript-based editor, and builds the simulating upon the capabilities of
Access/CPN[30]. Access/CPN, a framework designed for extending analysis ca-
pabilities and integrating CPN models into external applications. To facilitate
the communication between the editor and Access/CPN, CPN IDE employs a
REST interface. This interface is implemented through a Java-based controller,
which runs as a Spring Boot[27] server. Spring Boot, a popular Java frame-
work, simplifies the development process by providing opinionated defaults and
convenient auto-configuration capabilities.

Renew - The Reference Net Workshop[22] is a Java-based tool that offers a
versatile environment for modeling and simulating systems using reference nets.
It is designed to run on any machine equipped with a Java virtual machine.
One features notable in Renew is its support for multi-formalism modeling. This
allows users to create and manipulate reference nets, which provide a mechanism
for interconnecting nets through synchronous channels. This capability enables
concurrency and simulating multi-processor architectures.

CosyVerif[6] is a software environment designed for the formal specification and
verification of dynamic systems. It provides a common framework that in-
tegrates various existing tools for specification and verification[1], aiming to
streamline the process of analyzing system behaviour and properties. CosyVerif
is not primarily focused on CPNs, but does offer support for CPNs to some ex-
tent. CPNs can be used as one of the formalisms within the framework, allowing
users to create CPN models and perform analysis on them.

The ePNK[9] framework is a platform specifically designed for developing Petri

96



net tools based on the Petri Net Markup Language (PNML) transfer format.
Its primary focus area is to facilitate the definition of different Petri net types,
which can then be used within a GMF editor for visually editing nets of the
corresponding type. There is thereby also a focus on high-level Petri nets.

Various other frameworks for editing CPNs, Petri nets, or other variations of
Petri nets, are GCPN[14], MEdit4CEP-CPN[2], GreatSPN[11]. We have not
investigated these further, due to their difference to CPN Tools and our CPN
editor.

The difference between our CPN editor and other existing CPN tools primarily
lies in the choice of frameworks and their specific areas of focus. While our editor
utilizes GoJS as its framework and emphasizes the creation of a comprehensive
editing platform for Coloured Petri Net, with future possibility of connecting
a CPN simulator. Other tools may prioritize different types of Petri nets or
emphasize specific analysis techniques.

7.3 Future Work

In this section, we discuss features of the project that have the potential for
improvement and further development, with the aim to enhancing its function-
ality and user experience. By identifying areas for improvement, we can explore
potential opportunities for future enhancements and advancements.

The CPN editor we have developed would have more finished features and simu-
lation if a simulator is to be implemented as part of future work. The following
subsections explain the most prominent bugs appearing when modeling, and
other features and functionalities that could do with further development as
part of the future work.

This project has not yet looked into taking .cpn files as input for the model.
This is due to the possibility of developing a conversion tool for converting JSON
files, being the default model representation of GoJS models, to .cpn for the use
in CPN simulating tools and related to CPN Tools.

7.3.1 Places and transitions

There is for the time being a bug where the size of places and transitions reset
to fit only the size of their name when restarting, or loading the project. This
leads to clutter with text if the place or transition has inscriptions as seen in
figure 7.1. Preferably, these inscriptions would be moved outside the place or
transition itself, or outside the shape of the transition or place. As a minimum,
the size of the places and transitions should be saved.

7.3.2 Arcs

Figure 7.2 shows a bug appearing with arcs are when loading a model or starting
the software, some arcs are not fully connecting to their places and transition,
this is related to the bug discussed in Section 7.3.1. To fix this, the user would
have to move or resize the place or transition for the arc to snap to its port. This
leads to the arcs repathing to their connected places and transitions, leading to

97



Figure 7.1: Transition in palette with all inscription fields used

another bug discussed below.

The bug is correlated to automatic pathing, the model does not save break-
points in arcs when moving connecting places or transitions. This can lead to
overlapping of arcs. More research into alternative arc pathing could potentially
fix these issues.

Figure 7.2: AllVotes after restart of application

7.3.3 Layout

To improve the user experience, the layout below the modeling canvas can be
updated to provide a more organized and user-friendly interface. This can be
achieved by designing a proper CSS layout that clearly explains the purpose of
each field and button, reducing any perceived clutter.

Additionally, updating the default color scheme of the modeling canvas can
contribute to a more pleasant and calming environment for users. By selecting a
visually appealing color palette, users can concentrate better on their modeling
tasks, resulting in increased productivity and overall satisfaction within the
application.

7.3.4 Substitution transitions

To enhance the usability of substitution transitions, it would be beneficial to
provide a clear visual indicator that distinguishes them from other types of tran-
sitions. Additionally, improving the implementation of submodules and their
connection to substitution transitions can be advantageous. For instance, when
creating a substitution transition, an empty submodule could be automatically
generated. The user can then open and start modeling within this submod-
ule. Once the submodule is complete, the user can save it and integrate it into
the current working module. This approach streamlines the modeling process

98



and provides a more intuitive way of handling submodules within substitution
transitions.

7.3.5 Saving and loading

Currently, the saving and loading functionality in the application involves syn-
chronizing the model and the JSON representation. To save a file, the user
needs to ensure that the JSON representation is up to date with the model
and then initiate the download process. Subsequent saves require the user to
redownload the file and, if desired, overwrite the initial download.

Implementing automatic synchronization between JSON representation and model
and some functionality for saving directly to a user determined file would help
with these problems.

7.4 Usability Evaluation

In this section, we explore what we believe the user adoption process for our
CPN editor would look like and discuss how new users are likely to approach
its various aspects.

During the development process, one of our main focuses was to create a mod-
eling tool that is easy to use for both experienced and inexperienced users in
the field of modeling Coloured Petri nets. To achieve this, we implemented
drag-and-drop functionality, which is a common and intuitive feature in many
modeling tools. We made sure that the places and transitions, which are the
most used objects, are easily accessible for the users to add to the modeling
canvas. Additionally, we followed standard practices for connecting nodes with
arcs, providing clear and easily identifiable ports on places and transitions.

Although the application has not undergone user testing yet, we believe that by
incorporating these common modeling practices, the tool is straightforward for
users to learn and use effectively.

Regarding the saving and loading functionality, we adopted a slightly uncon-
ventional approach approach. Both saving and loading are done locally within
the HTML textarea, represents the model JSON format. While this approach
may require some practice to become familiar with, it offers a straightforward
and intuitive solution for managing the model data.

Saving the model by downloading it as a file is a common practice found in many
applications. Similarly, loading a single file is a familiar feature to users. The
only difference in our application is that these options are the primary methods
for storing and loading models to and from the local system.

When loading a directory that contains a CPN model, the application auto-
matically generates a tree view that represents the hierarchical structure of the
model. This provides users with a visual representation of the model’s organi-
zation. To load specific modules, users can simply right-click on the desired file
in the tree view, a practice commonly used in applications for opening files.

99



100



Acronyms

CPN Coloured Petri Net.

GLSP Graphical Langugage Server Platform.

PNML Petri Net Markup Language.

101



102



Appendix A

Source code and
Installation

The source code for the application at the following URL: https://github.
com/smartoceanplatform/cpn-editor. The repository is currently private,
but can be made available if you contact my supervisor.

A.1 Installation guide

Make sure you have Node.js and npm installed. Node.js is available from
https://nodejs.org/en.
npm can be installed using your commandline with the following command:
npm install -g npm

When you have installed both Node.js and npm it is advised to check your
versions and make sure the installations where successful. To do this, use the
following commands:

node -v

npm -v

Per April 2023, the following versions where recommended; node v16.14.2 and
npm 8.7.0

Clone the project from github using the link above. Navigate to the electronTrial
folder and run the command:
npm run start

103

https://github.com/smartoceanplatform/cpn-editor
https://github.com/smartoceanplatform/cpn-editor


104



List of Figures

1.1 Brown and Wellnaus Technology evaluation framework . . . . . . 11

2.1 Two-Phase Commit Protocol in CPN Tools . . . . . . . . . . . . 16
2.2 Examples of places and transition. . . . . . . . . . . . . . . . . . 18
2.3 First phase of 2PC simplified and without transitions . . . . . . . 20
2.4 Arcs connecting places and transitions . . . . . . . . . . . . . . . 22
2.5 ReceiveCanCommit has the free variables; w and vote . . . . . . 23
2.6 Substitution transition SendCanCommit . . . . . . . . . . . . . . 24
2.7 Submodule of substitution transition SendCanCommit . . . . . . 25

3.1 Example model from GLSP tutorial . . . . . . . . . . . . . . . . 35

4.1 High Level view of the application . . . . . . . . . . . . . . . . . 40
4.2 Two-phase commit protocol without substitution transitions us-

ing GoJS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Example of Two places in our solution . . . . . . . . . . . . . . . 44
4.4 Example of the transition Send CanCommit . . . . . . . . . . . . 46
4.5 Example of place and transition with their inscription fields . . . 47
4.6 Example of visible port . . . . . . . . . . . . . . . . . . . . . . . 48
4.7 Arc in GoJS application between Send CanCommit and Can-

Commit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.8 Example arc inscription in GoJS solution . . . . . . . . . . . . . 51
4.9 Example of open context menu on a place . . . . . . . . . . . . . 53
4.10 Context menu of a transition . . . . . . . . . . . . . . . . . . . . 55
4.11 Example of a open context menu on an arc . . . . . . . . . . . . 55
4.12 The tree view of the two-phase commit protocol . . . . . . . . . 57
4.13 The palette in GoJS solution . . . . . . . . . . . . . . . . . . . . 68

6.1 Current state of the model after adding places and transitions . . 80
6.2 State of model after adding arcs . . . . . . . . . . . . . . . . . . 81
6.3 Coordinator submodule in new editor . . . . . . . . . . . . . . . 83
6.4 The two-phase commit protocol in our application with abstraction 84
6.5 Workers submodule in new editor . . . . . . . . . . . . . . . . . . 84
6.6 Create binder in CPN Tools . . . . . . . . . . . . . . . . . . . . . 85
6.7 Style binder in CPN Tools . . . . . . . . . . . . . . . . . . . . . . 87
6.8 A view of the textarea with JSON representation of a two-phase

commit protocol model . . . . . . . . . . . . . . . . . . . . . . . . 91

105



7.1 Transition in palette with all inscription fields used . . . . . . . . 98
7.2 AllVotes after restart of application . . . . . . . . . . . . . . . . . 98

106



List of Tables

2.1 Requirements for a modular CPN editor . . . . . . . . . . . . . . 31

3.1 Comparison of frameworks based on modernity, documentation,
maintainability, and community. . . . . . . . . . . . . . . . . . . 37

6.1 Grading the results of requirements . . . . . . . . . . . . . . . . . 92

107



108



Bibliography

[1] Étienne André et al. “CosyVerif: An Open Source Extensible Verification
Environment.” In: 2013 18th International Conference on Engineering of
Complex Computer Systems. 2013, pp. 33–36. doi: 10.1109/ICECCS.
2013.15.

[2] Juan Boubeta-Puig et al. “MEdit4CEP-CPN: An approach for complex
event processing modeling by prioritized colored petri nets.” In: Informa-
tion Systems 81 (2019), pp. 267–289. issn: 0306-4379. doi: https://doi.
org/10.1016/j.is.2017.11.005. url: https://www.sciencedirect.
com/science/article/pii/S0306437917300108.

[3] Alan W Brown and Kurt CWallnau. “A framework for evaluating software
technology.” In: IEEE Software 14.5 (1997), pp. 37–46.

[4] Connecting a Smart Ocean. https://www.investinbergen.no/news-
and-events/connecting-a-smart-ocean/. Accessed: 19.05.2023.

[5] World Wide Web Consortium. Same Origin Policy. https://www.w3.
org/Security/wiki/Same_Origin_Policy. [Online; accessed April 28,
2023].

[6] CoSyVerif Website. Website. Accessed: 23.05.2023. url: https://www.
cosyverif.org/.

[7] CPN IDE. CPN IDE. https://cpnide.org/. Accessed: 23.05.2023.
[8] Eclipse Modeling Framework (EMF). https://www.eclipse.org/modeling/

emf/. Accessed on 2023-05-05.
[9] ePNK Website. Website. Accessed: 23.05.2023. url: http://www.imm.

dtu.dk/~ekki/projects/ePNK/index.shtml.
[10] OpenJS foundation. ElectronJS webpage. Accessed 11.04.2023. url: https:

//www.electronjs.org/.
[11] G Franceschinis, S Donatelli, and R Gaeta. “GreatSPN 2.0: Graphical

editor and analyzer for timed and stochastic Petri Nets.” In: Petri Nets
2000 (2000), p. 43.

[12] Andreas Garvik. “A Compiler and Runtime Environment for Execution
of Coloured Petri Net Models.” In: (2022).

[13] Graphical Language Server Platform for next-generation diagrams editors.
Accessed: 2023-02-17. url: https://www.eclipse.org/glsp/.

[14] Dalton Serey Guerrero, Jorge C.A. de Figueiredo, and Angelo Perkusich.
“An Object-Based Modular CPN Approach: Its Application to the Spec-
ification of a Cooperative Editing Environment.” In: Concurrent Object-
Oriented Programming and Petri Nets: Advances in Petri Nets. Ed. by Gul
A. Agha, Fiorella De Cindio, and Grzegorz Rozenberg. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2001, pp. 338–354. isbn: 978-3-540-45397-0.

109

https://doi.org/10.1109/ICECCS.2013.15
https://doi.org/10.1109/ICECCS.2013.15
https://doi.org/https://doi.org/10.1016/j.is.2017.11.005
https://doi.org/https://doi.org/10.1016/j.is.2017.11.005
https://www.sciencedirect.com/science/article/pii/S0306437917300108
https://www.sciencedirect.com/science/article/pii/S0306437917300108
https://www.investinbergen.no/news-and-events/connecting-a-smart-ocean/
https://www.investinbergen.no/news-and-events/connecting-a-smart-ocean/
https://www.w3.org/Security/wiki/Same_Origin_Policy
https://www.w3.org/Security/wiki/Same_Origin_Policy
https://www.cosyverif.org/
https://www.cosyverif.org/
https://cpnide.org/
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/
http://www.imm.dtu.dk/~ekki/projects/ePNK/index.shtml
http://www.imm.dtu.dk/~ekki/projects/ePNK/index.shtml
https://www.electronjs.org/
https://www.electronjs.org/
https://www.eclipse.org/glsp/


doi: 10.1007/3-540-45397-0_12. url: https://doi.org/10.1007/3-
540-45397-0_12.

[15] R Heldal et al. “Towards a Formal and Executable Software Architecture
Specification of the Smart Ocean Data Service Platform.” In: 2023.

[16] Kurt Jensen and Lars M. Kristensen. Coloured Petri Nets. 1st ed. Springer
Berlin, Heidelberg, 2009, pp. 1–384. isbn: 9783642002847.

[17] Kurt Jensen et al. A tool for editing, simulating, and analyzing Colored
Petri nets. Accessed: 2023-02-17. url: http://cpntools.org/.

[18] Keila Lima et al. “Marine Data Sharing: Challenges, Technology Drivers
and Quality Attributes.” In: Product-Focused Software Process Improvement-
23rd International Conference, PROFES 2022. Vol. 13709. Lecture Notes
in Computer Science. Springer, 2022, pp. 124–140. doi: 10.1007/978-3-
031-21388-5\_9. url: https://doi.org/10.1007/978-3-031-21388-
5_9.

[19] npm. https://www.npmjs.com/. Accessed on May 16, 2023.
[20] James L Peterson and Wolfgang Reisig. “Petri net.” In: Scholarpedia 2.9

(2007), p. 6474.
[21] Eric Newcomer Philip A. Bernstein. Principles of Transaction Processing.

2nd ed. 2009. isbn: 978-1-55860-623-4.
[22] Renew - The Reference Net Workshop. Website. Accessed 23.05.2023. url:

http://www.renew.de/.
[23] SFI Smart Ocean. https://sfismartocean.no/. Accessed: May 2, 2023.
[24] Kent Inge Fagerland Simonsen. elm-pn-editor GitLab Repository. https:

//gitlab.com/kentis/elm-pn-editor. Accessed on 2023-05-05.
[25] NORTHWOODS Software. GoJS - Palette. https://gojs.net/latest/

intro/palette.html. [Online; accessed April 28, 2023].
[26] Northwoods Software. GoJS A Web FrameWork for Rapidly Building In-

teractive Diagrams. Accessed: 2023-02-17. url: https : / / gojs . net /

latest/.
[27] Spring. Spring Boot. https : / / spring . io / projects / spring - boot.

Accessed: May 27, 2023.
[28] Standard ML Family GitHub Project. Accessed: 17.04.23. url: https:

//smlfamily.github.io/.
[29] The BETA Programming Language. Accessed: 17.04.23. url: https://

beta.cs.au.dk/.
[30] Michael Westergaard and Lars Michael Kristensen. “The Access/CPN

Framework: A Tool for Interacting with the CPN Tools Simulator.” In:
Applications and Theory of Petri Nets. Ed. by Giuliana Franceschinis
and Karsten Wolf. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,
pp. 313–322. isbn: 978-3-642-02424-5.

110

https://doi.org/10.1007/3-540-45397-0_12
https://doi.org/10.1007/3-540-45397-0_12
https://doi.org/10.1007/3-540-45397-0_12
http://cpntools.org/
https://doi.org/10.1007/978-3-031-21388-5\_9
https://doi.org/10.1007/978-3-031-21388-5\_9
https://doi.org/10.1007/978-3-031-21388-5_9
https://doi.org/10.1007/978-3-031-21388-5_9
https://www.npmjs.com/
http://www.renew.de/
https://sfismartocean.no/
https://gitlab.com/kentis/elm-pn-editor
https://gitlab.com/kentis/elm-pn-editor
https://gojs.net/latest/intro/palette.html
https://gojs.net/latest/intro/palette.html
https://gojs.net/latest/
https://gojs.net/latest/
https://spring.io/projects/spring-boot
https://smlfamily.github.io/
https://smlfamily.github.io/
https://beta.cs.au.dk/
https://beta.cs.au.dk/

	Introduction
	Context and Approach
	SFI Smart Ocean
	CPN Tools
	Problem Description
	Research Method
	Development Method
	Research Questions
	Outline

	Background
	Two-phase commit protocol
	Coloured Petri Nets
	Places and transitions
	Colour sets
	Marking and multi-sets
	Tokens and current marking
	Arcs and arc weights
	Transition variables
	Guard expressions
	Substitution transitions

	Requirements
	Required functionality
	Summary


	Software Technology Platforms
	Candidate software platforms
	Eclipse EMF Core
	Eclipse Graphical Language Protocol
	Testing the Eclipse GLSP

	Elm Petri Net editor
	GoJS
	Electron
	Candidate software summary

	Design and Implementation
	Overview
	Implementation
	Electron
	Object style
	Places
	Transitions
	Shared attributes in nodes
	Ports
	Arcs
	Arc inscriptions
	Context menu
	Tree view
	Substitution transitions
	Tools
	Simulation
	Saving and loading
	Downloading and uploading
	Palette

	Code structure
	Integration against the simulator
	Canvases


	Code Base
	File Structure
	Electron implementation
	Editor HTML page
	The GoJS implementation
	Grouping
	File management
	Context menu
	Mockserver

	Evaluation
	Creating a CPN Model
	Abstraction

	Comparison to CPN Tools
	Feature comparison
	Places, transitions and arcs
	Moving objects
	Binders
	Style
	Functions and variables
	Inscriptions
	Markings
	Arcs
	Substitution transitions
	Runtime environment
	Modularity
	Common editing operations

	Grading requirements

	Conclusion and Future Work
	Conclusion
	Related Work
	Future Work
	Places and transitions
	Arcs
	Layout
	Substitution transitions
	Saving and loading

	Usability Evaluation

	Acronyms
	Source code and Installation
	Installation guide


