
Anders Daasvand Sleire

Essays on Portfolio Risk
Management and Weather
Derivatives

2023

Thesis for the degree of Philosophiae Doctor (PhD)
University of Bergen, Norway



at the University of Bergen

Avhandling for graden philosophiae doctor (ph.d )

ved Universitetet i Bergen

.

2017

Dato for disputas: 1111

Anders Daasvand Sleire

Essays on Portfolio Risk
Management and Weather Derivatives

Thesis for the degree of Philosophiae Doctor (PhD)

Date of defense: 25.08.2023



The material in this publication is covered by the provisions of the Copyright Act.

Print:	     Skipnes Kommunikasjon / University of Bergen

© Copyright Anders Daasvand Sleire

Name:        Anders Daasvand Sleire

Title: Essays on Portfolio Risk Management and Weather Derivatives

Year:          2023



2





4



Preface

This dissertation is submitted as a partial fulfillment of the requirements for the degree

Doctor of Philosophy (PhD) at the Department of Mathematics, University of Bergen.

The research has recieved support from the Research Council of Norway via the industrial

PhD scheme. The study was supervised by Prof. B̊ard Støve and Prof. Jan Bulla. The

present work has been carried out during my time as an industrial PhD student. First at

Kinect Energy Markets (2015-2017), second at Tryg Forsikring (2017-2021), and finally

at the FinTech start up Horde, from January 2022 until present day.

This dissertation pursues several objectives. The first one is to develop a method for

performing asset allocation when there are asymmetric dependence structures between

instruments in investment portfolios using the theory of local Gaussian correlation. The

second aim is to provide market practitioners and researchers with open source soft-

ware tools for risk management and commodity price hedging in energy portfolios. The

third aim is to develop a framework for designing and pricing derivatives contracts for

managing financial risks arising from severe urban air pollution.

This thesis consists of two parts. The first part provide a brief introduction to dependence

modelling, energy market risk management and weather derivatives. The second part

consists of three papers:

Paper A Anders D. Sleire, B̊ard Støve, H̊akon Otneim, Geir Drage Berentsen, Dag

Tjøstheim and Sverre Hauso Haugen (2021), Portfolio Allocation under

Asymmetric Dependence in Asset Returns using Local Gaussian Correlations,

Finance Research Letters, p. 102475.

Paper B Anders D. Sleire (2022), etmr: Energy Trading and Risk Management in R,

The R-Journal, 14/1, p. 320.

Paper C Anders D. Sleire (2023), Modelling and Pricing Air Pollution Derivatives,

working paper.
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Abstract

This thesis is concerned with the development and practical implementation of risk man-

agement methods for investment portfolios, energy portfolios, and weather and pollution

risk. The thesis includes three scientific papers that each address different aspects of fi-

nancial risk management. The first paper focuses on portfolio allocation in the presence

of asymmetric dependence between asset returns. The second paper examines energy

price risk management, and introduces an open source toolkit for energy portfolio man-

agement which has been developed as a part of the PhD project. The final paper present

a theoretical framework for managing pollution risk using financial derivatives contracts,

which builds upon the existing theory of weather derivatives. These papers all contribute

to the overall theme, which is the development of risk management methods for various

types of portfolios and the exploration of the role of financial derivatives in managing

risks related to market prices, weather and pollution.

In order to provide a theoretical context, we have included a brief chapter exploring

alternative methods for dependence modelling and how these may be utilized when

managing investment portfolios. One of these measures, the local Gaussian correlation,

is used to extend the classical mean-variance framework for asset allocation in the first

paper. Thereafter, a short introduction to spot and forward energy markets is provided.

The primary focus here is commodity market price risk, and how this can be managed

with financial derivatives contracts. We demonstrate how portfolio management may be

performed with our open source toolkit using European energy market data. Finally,

we include a chapter on weather derivatives. This contains a introduction to weather

related risk, a brief introduction to the weather markets, frequently used contract types

and pricing methods.

To ensure reproducibility, we have also added a chapter on computer code, where the

interested reader may find links to Git repositories with all data and the R code needed

to run the analysis presented in the thesis.
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Sammendrag

Denne avhandlingen handler om utvikling og praktisk implementering av risikostyringsme-

toder for investeringsporteføljer, energiporteføljer, og h̊andtering av vær- og foruren-

sningsrisiko. Avhandlingen inkluderer tre vitenskapelige artikler som hver tar for seg

ulike aspekter av finansiell risikostyring. Den første fokuserer p̊a metoder for aktivaal-

lokering n̊ar det eksisterer asymmetrisk avhengighet mellom avkastningene for eiendelene

i en investeringsportefølje. Den andre artikkelen omhandler energiprisrisikostyring, og

introduserer et åpen kildekodeverktøy for energiporteføljeforvaltning som er utviklet som

en del av doktorgradsprosjektet. Den siste artikkelen presenterer et teoretisk rammev-

erk for h̊andtering av forurensningsrisiko ved hjelp av finansielle derivatkontrakter, som

bygger p̊a den eksisterende teorien om værderivater. Disse arbeidene bidrar alle til det

overordnede temaet for avhandlingen, som er utvikling av risikostyringsmetoder for ulike

typer porteføljer og utforskingen av rollen til finansielle derivater i h̊andtering av risiko

knyttet til markedspriser, vær og forurensning.

For å sette bidragene inn i en teoretisk kontekst har vi inkludert et kort kapittel som

presenterer alternative metoder for avhengighetsmodellering, og hvordan disse kan ut-

nyttes n̊ar man forvalter investeringsporteføljer. Ett av disse målene, lokal gaussisk

korrelasjon, brukes til å utvide det klassiske mean-variance-rammeverket for aktivaallok-

ering i den første artikkelen. Deretter følger et kort introduksjonskapittel til spot- og

forwardmarkeder for energi. Hovedfokuset her er r̊avareprisrisiko, og hvordan denne kan

h̊andteres med finansielle derivatkontrakter. Vi demonstrerer hvordan forvaltning av en-

ergiporteføljer kan gjennomføres med v̊art åpen kildekodeverktøy ved bruk av data fra

det europeiske kraftmarkedet. Til slutt inkluderes et kapittel om værderivater. Dette

inneholder en introduksjon til værrelatert risiko, en kort introduksjon til værmarkedet,

vanlige kontraktstyper og alternative metoder for prising.

For å sikre reproduserbarhet har vi ogs̊a lagt til et kapittel om programkode. Her finnes

lenker til Git-repositorier med alle data og R-kode for å gjennomføre analysene som

presenteres i avhandlingen.
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Chapter 1

Introduction

The practice of financial risk management has a long history dating back to the early

days of commerce and finance. The widespread use of financial derivatives, however,

is a fairly recent phenomenon. Financial derivatives, e.g. contracts that derive their

value from an underlying asset or index, was first applied in commodities markets to

insure farmers against crop failure and facilitate trade [Swan, 2000]. Some of the first

organised marketplaces include the Antwerp exchange for trading of commodities and

bills of exchange in the Netherlands (16th century), and the Dojima rice exchange in

Osaka, Japan (17th century). There are numerous examples of uses prior to this, where

transaction were executed over-the-counter [Kummer and Pauletto, 2012]. In modern

financial markets, there is a plethora of contract types available, and these may be

written on stocks, interest rates, commodities, currencies, weather indices and a number

of other settlement references.

The utilization of derivatives as a risk management tool has become increasingly popu-

lar and sophisticated over time, and they continue to be widely used to manage various

types of risks, [Dionne, 2013]. Financial and non-financial institutions have different

approaches to these activities. Non-financial institutions, such as corporations and gov-

ernments, may utilize financial products to manage treasuries or to hedge risks, such

as commodity price risk or interest rate risk. Financial institutions, on the other hand,

actively assume risks to make a profit, either for their own account or as trustees for

third parties. Derivatives contracts may be used as potent tools for speculation due

to the gearing effect, and it is not always trivial to determine if a transaction should

be evaluated as hedging or trading (speculative) [Goss et al., 1976]. The financial cri-

sis of 2008 highlighted the risks associated with complex financial products. The risk

assessments and lax oversight of these instruments prior to the crisis were insufficient,

which contributed to significant losses and a global economic downturn [Bordo, 2008].
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The intricacies of products such as the Collaterized Debt Obligations also offered an op-

portunity to hide risks or to pass them on to less vigilant market participants. This

underscores the importance of proper risk assessment and transparent risk management

practices in finance. In order for to these to be established, the properties of traded

contracts and related markets needs to be properly understood. This requires a solid

theoretical foundation and models that are able to describe and explain the empirical

observations from the marketplace reasonably well.

One of the early mathematical theories of finance can be found in Théorie de la

spéculation [Bachelier, 1900], where the concept of Brownian motion was first intro-

duced and used to model the behavior of stocks and option prices [Schachermayer and

Teichmann, 2008]. The contribution was not well received at time of publication, but

has later been recognised as influential on both the study of stochastic processes, and

the later Black-Scholes option pricing model [Black and Scholes, 1973]. Other signifi-

cant contributions include the mean-variance model of portfolio selection developed by

Harry Markowitz [Markowitz, 1952] and the Capital Asset Pricing Model [Treynor, 1961],

[Sharpe, 1964], [Lintner, 1965], [Mossin, 1966]. There are numerous other authors who

have played an important part in building the foundations of modern finance theory over

the last decades. While it may be tempting to elaborate further on the history of this

discipline, we will constrain ourselves to maintain focus on the topic at hand.

Options, and other derivatives such as futures and swaps may be used as effective hedging

tools when they are included in a portfolio within pre-specified boundaries. This is

typically formalized in an investment mandate with clear goals, benchmarks and risk

limits, which is monitored by by risk managers. The status of the portfolio is often

evaluated by calculating risk measures, such as Value at Risk and Expected Shortfall,

see [Duffie and Pan, 1997], [McNeil et al., 2015], [Tasche, 2002]. The use of derivatives

contracts have often been motivated by the desire to create insurance-like effects, e.g.

attempts to provide guarantees that an investment portfolio is unlikely to fall below

a specific value. Such portfolio insurance strategies [Black and Jones, 1987], [Leland,

1980] may also be implemented without the use of derivatives contracts, by dynamically

allocating capital between risky and non-risky assets in a manner that replicate the

effects of a financial derivative. These are the principles we utilize in the etrm package

in Paper B, which is used for energy price hedging in Chapter 3 of the thesis. Not all

derivatives are possible to replicate using these arbitrage arguments. If the underlying

settlement reference is non-tradable, the value of the contract cannot be calculated using

this approach. Weather related risk is a significant concern for many market participants,

and the pricing of these instruments require other methods, since the underlying weather

indices are not traded in any market. Further discussions of this subject and alternative

methods for valuation are presented in Chapter 4 and Paper C.



3

Another topic to be investigated in this thesis is the discipline of managing investment

portfolio risk via diversification, within the classical mean-variance framework which was

pioneered by Harry Markowitz [Markowitz, 1952]. In such a setting, the objective is not

to replicate the payoff structure of a derivative, but to optimize the portfolio composition

by allocating funds across a set of assets that are not exposed to the same risk dynam-

ics. By investing in mix of instruments that have low correlation with each other, the

performance of one asset should not have a significant impact on the overall portfolio.

In [Markowitz, 1952], a risk-averse investor facing the portfolio selection problem consid-

ers both expected return and risk (variance of portfolio returns) as criteria for making a

choice regarding portfolio weights. This dual problem might be formulated in two ways.

Either as a wish to i) maximize expected return subject to a constraint on portfolio vari-

ance, or as a desire to ii) minimize portfolio variance subject to a constraint on expected

return. Under the assumed constant dependency structure between the assets included

in the portfolio, the calculated weights is expected to be optimal, given the investors

preferences.

However, the dependence structures have not proven to be stable over time. It is well

known that asymmetries are present in financial returns, both in the form of skewness

in distributions for the individual instruments, and in the dependencies between them

[Patton, 2004]. This is particularly visible in times of turmoil. Stocks belonging to differ-

ent industries might have weak correlation during normal market conditions, but move

towards unity in a scenario when the market is under stress. This has important impli-

cations for portfolio construction and risk management, as the diversification effect may

be significantly reduced in time of crisis, when it is most needed. The evidence of asym-

metric dependence between asset returns highlights the need for more advanced risk

management and portfolio construction techniques. These should be based on meth-

ods that are able to model the dependencies observed in the market during differing

conditions.

In Chapter 2 and Paper A we suggest using a new nonparametric measure of local de-

pendence, the local Gaussian correlation, to improve portfolio allocation. With this ap-

proach, we are able to build easy-interpretable representations of the dependency struc-

tures (local correlation matrices) that fits well into the familiar mean-variance framework.

Asset allocation can also be improved by using competing methods, such as copulas.

These are also presented and discussed further in the following chapter.
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Chapter 2

Modelling dependence in finance

The Pearson product-moment correlation coefficient, also known as Pearson’s ρ, is a

widely used measure of statistical dependence. It measures the linear association be-

tween random variables, but it has limitations when the distribution of the variables

deviates from a normal distribution or the relationship between them is non-linear. In

such cases, the results obtained from the correlation coefficient may be misleading. In fi-

nance, this can have serious implications as the Pearson’s ρ may not accurately capture

the dependence between financial assets. In a mean-variance asset allocation setting,

this implies the global covariance matrix would not be a sufficient representation of the

dependence structure, and the investor may experience reduced effects from diversifica-

tion. The shortcomings of Pearson’s ρ has led to the development of alternative measures

of dependence. Copulas [Sklar, 1959], in particular, are popular tools in finance as they

can model the dependence structure between variables also when the variables have dif-

ferent marginal distributions. A more recent developed measure is the local Gaussian

correlation, which was introduced in [Tjøstheim and Hufthammer, 2013]. This local

characterization of dependence has also proven to be an effective instrument in many

applications, including modeling asymmetric dependence patterns in financial returns

[Støve and Tjøstheim, 2014] and testing for financial contagion [Støve et al., 2014].

In the following, we will provide short introductions to Pearson’s ρ, copulas and local

Gaussian correlation, inspired by the overview given in [Tjøstheim et al., 2021]. There-

after, we look closer at some challenges arising in portfolio management due to the

asymmetries often observed in asset returns data. The chapter is concluded with a short

motivation for using the local Gaussian correlation to improve asset allocation in invest-

ment portfolios.



6 Modelling dependence in finance

2.1 The Pearson product-moment correlation

The product-moment correlation was first introduced in Francis Galton’s hereditary

studies [Galton, 1889] as a measure of association in a regression setting. Pearson [Pear-

son, 1896] later provided a more precise mathematical treatment and introduced the

notation ρ for the population value, and r for the empirical estimate. The correlation

coefficient is a measure of linear association between two random variables, defined as

the ratio of the covariance of the variables over the product of their standard deviations.

Consider two random variables X and Y with finite second moments and covariance

σ(X, Y ) = E(X − E(X))(Y − E(Y )). The Pearson product-moment correlation is

ρ = ρ(X, Y ) =
σ(X, Y )

σXσY
(2.1)

where σX =
√
E(X − E(X))2 is the standard deviation for X and similarly for σY . The

correlation coefficient is −1 ≤ ρ ≤ 1. Given some observations (X1, Y1), ..., (Xn, Yn) the

empirical estimate r can be obtained by

r = ρ̂ =

∑n
j=1(Xj − X̄)(Yj − Ȳ )

√∑n
j=1(Xj − X̄)2

√∑n
j=1(Yj − Ȳ )2

(2.2)

with X̄ = 1
n

∑n
j=1Xj and similarly for Ȳ . Pearson’s ρ take values between −1 and 1,

and |ρ| = 1 imply the relationship between X and Y is described perfectly with a linear

equation. ρ > 0 show a positive linear association between the variables, i.e. as X

increase, so will Y . Similarly, ρ < 0 describe a negative one. When the correlation take

the value 0, there is no linear dependency between the variables.

Pearson’s ρ is widely used despite it’s known shortcomings. There are several possible

reasons for this. First, the empirical correlation coefficient r is straightforward to calcu-

late, making it accessible to a large audience. It also has a close relationship to the widely

used linear regression models. The slope of a regression line describing the relationship

between two variables X and Y is proportional to ρ, hence the empirical estimate r ap-

pears as a part of linear least squares. Furthermore, in cases where the variables actually

can be modeled by a bivariate Gaussian distribution, ρ give a complete characterization

of the dependence structure between X and Y . In such cases, the variables are deemed

independent if and only if ρ = 0. In many situations, the Gaussian is also a reasonable

approximation. Moreover, the concept of correlation is straightforward to extend to the

multivariate case, where the entire dependence structure is determined by pairwise de-

pendencies in the correlation matrix. Finally, we can also without much effort expand

the concept of correlation to a time series {Xt}. Assuming stationarity and existence
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of second moments, the autocorrelation function is given by ρ(t) = ρ(Xt+s, Xt) for arbi-

trary integers s and t. The dependence structure is completely determined by ρ(t) for

Gaussian time series.

0

5

10

−2 0 2
X

Y

Figure 2.1: Example of nonlinear dependency Y = X2 + ε

There are some serious weaknesses of Pearson’s ρ. When moving beyond the Gaussian

distribution, the equivalence between uncorrelatedness and independence is generally not

true. Uncorrelated variables may still be dependent. Moreover, the empirical correlation

estimate r is not robust. If outliers are present in the sample used for estimation, they

can have a large impact on the perceived level of dependence in the data. Even a few

outliers could dramatically change the outcome. There are attempts to remedy this by

relying on ranks when calculating the correlation. Both Spearman’s rank correlation

[Spearman, 1904] and Kendall’s τ rank correlation [Kendall, 1938] provide more robust

results, but they do share the vulnerability of Pearson’s ρ when dependencies in the

data are non-linear. To illustrate, we have included the classical example of Y = X2 + ε,

where X and ε are both standard normal. The plot in Figure 2.1 is created with 1000

random samples. We calculate the three measures of dependence using the simulated

data. For reference, the sample estimate for Spearman’s rank correlation is given by

ρ̂S =
n−1

∑n
i=1R

(n)
i,XR

(n)
i,Y − (n+ 1)2/4

(n2 − 1)/12
(2.3)
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where R
(n)
i,X is the rank of Xi amongst the n observations in {X1, ..., Xn}, and similarly

for R
(n)
i,Y . Hence Spearman’s ρ̂S is merely the Pearson correlation coefficient between the

rank variables, and −1 ≤ ρ̂S ≤ 1.

Kendall’s rank-based measure τ is calculated in a different manner. Consider the set of

n pairs (Xi, Yi) of the variables X and Y . If the ranks of both elements in two selected

pairs (Xi, Yi) and (Xj, Yj), i 6= j agree, these two pairs of observations are defined as

concordant. Concordance require that either both Xi < Xj and Yi < Yj, or Xi > Xj and

Yi > Yj. In the case that Xi < Xj and Yi > Yj, or Xi > Xj and Yi < Yj, the pairs are

discordant. Now, the estimate for Kendall´s rank correlation τ is given by

τ̂ =
(concordant pairs) - (discordant pairs)

all pairs

=
2

n(n− 1)

∑

i<j

sgn(Xj −Xi) sgn(Yj − Yi)
(2.4)

where −1 ≤ τ̂S ≤ 1. The measures calculated from the simulated data are ρ̂ = −0.0305,

ρ̂S = −0.0068 and τ̂ = −0.0081 for Pearson, Spearman and Kendall, respectively. None

of these could be said to be significantly different from zero when performing the hy-

pothesis testing, despite the imposed relationship Y = X2 + ε. Asymmetric dependence

is often present in data, in particular in the domain of finance [Campbell et al., 2002],

[Garcia and Tsafack, 2011]. Returns on assets in a stock portfolio may have a certain

dependence structure under normal market conditions, but this can change fundamen-

tally in a period of turmoil, such as the 2008 financial crisis. In the following we will

present some alternative approaches to modeling the association between random vari-

ables, which are better suited for our purpose.

2.2 Some alternative dependence measures

2.2.1 The copula

A copula is a multivariate distribution whose marginals are all uniform over [0, 1]. For a

p-dimensional random vector U on the unit cube, a copula C is

C(u1, ..., up) = P (U1 ≤ u1, ..., Up ≤ up) (2.5)
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Sklar’s theorem [Sklar, 1959] states that a multivariate model F (x1, ..., xp) with marginal

cumulative distributions Fi(xi), i = 1, ..., p can be written as

F (x1, ..., xp) = C
(
F1(x1), ..., Fp(xp)

)
(2.6)

where C(u1, ...up) is a distribution function over the unit cube [0, 1]p that decodes all

the interdependence structure of F (x1, ..., xp). The joint distribution is decomposed

into univariate marginal distribution functions Fi(xi) and the copula C(u1, ...up), and

these can be estimated separately. This structure provide a high degree of flexibility.

Competing models for the marginals may be evaluated against each other, and there

are a variety of parametric copula families available, each with parameters that govern

the strength of dependence. Copulas have been widely used in applications such as risk

management [Embrechts et al., 2001], portfolio optimization, and insurance [Bouyé et al.,

2000], [Frees and Wang, 2005], [Frees et al., 1996]. The choice of C(u1, ...up) relies on

the specific problem and the type of dependence that needs to be modeled. Elliptical

copulas and Archimedean copulas are two commonly used families of copulas in finance.

An elliptical copula is a copula that corresponds to an elliptical distribution, such as the

Gaussian or Student’s t-distribution, via Sklar’s theorem. As an example, consider the

bivariate Gaussian case. The Gaussian copula can be written as

C(u1, u2) = Φρ (Φ−1 (u1),Φ
−1 (u2)) (2.7)

where Φ−1 is the inverse cumulative distribution function of a standard Gaussian and Φρ

is the joint cumulative Gaussian distribution with mean vector equal to zero and corre-

lation −1 ≤ ρ ≤ 1. A benefit of this specification is that different degrees of correlation

between the marginals may easily be specified via ρ. On the negative side, elliptical cop-

ulas does typically not have simple closed-form solutions, and they are limited by the

restriction to have radial symmetry. Still, due to its ease of implementation, it has been

used to solve many tasks within finance, such as asset allocation and risk management.

Several studies have pointed out a potentially large weakness, though: It can be prone

to underestimate dependencies in the tail during extreme events.

See for example [Zimmer, 2012] for an analysis of the effectiveness of the Gaussian

copula when estimating ratings for Collaterized Debt Obligations during the financial

crisis of 2008. The study by [Malevergne and Sornette, 2003] report to have found that

dependence structure between most pairs of currencies and major stocks are compatible

with the Gaussian copula. The authors cannot, however, find support for the Gaussian

copula hypothesis when they analyse commodities, and issue a general warning against
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trusting the approach blindly. The t copula [Demarta and McNeil, 2005] is also part of

the family of elliptical copulas. The bivariate distribution may be specified as

C(u1, u2) = tρ,ν (t−1ν (u1), t
−1
ν (u2)) (2.8)

where tρ,ν is the joint cumulative distribution function, t−1ν is the inverse of a standard

Student-t, ν the degrees of freedom and ρ is a correlation parameter. As the degrees

of freedom ν increases, the t copula converges towards the normal. For smaller val-

ues (under 30, approximately) it has more mass in the tails, which may be preferable

when modeling financial data. It does, however, also suffer from the limitation of being

symmetric. A further treatment of elliptical distributions and copulas can be found in

[Tjostheim et al., 2021] and [Fang et al., 2018].
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Figure 2.2: 1000 observations simulated from (a) Gaussian copula and (c) t copula with
ρ = 0.7 and ν = 3 using standard normal for marginals. Right column shows the
corresponding bivariate distributions for (b) Gaussian and (d) Student t.

As shown in the simulations in Figure 2.2, the t copula has a slightly tighter formation

in the two corners compared to the Gaussian, due to the stronger tail dependency.
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In contrast to the elliptical copulas that are constructed implicitly from well-known

distributions, models in the Archimedean family [Genest and MacKay, 1986], can be

constructed explicitly using a generator function. These copulas take the form

C(u1, ..., up) = ϕ−1
(
ϕ(u1) + ...+ ϕ(up)

)
(2.9)

where ϕ−1 is the inverse of the generator function ϕ, which maps the unit interval to

itself. In order for ((2.9)) to be a copula, the generator needs to be continuous, strictly

decreasing and convex function, which is p-monotone. See [Nelsen, 2007] for a deeper

treatment of various copulas and their generators. Archimedean copulas have closed-

form expressions for their densities and cumulative distribution functions, and they can

be easily estimated and simulated from. See for example [Genest and Rivest, 1993] for a

thorough introduction to statistical inference procedures for bivariate models of this class.

Archimedean copulas are flexible and can model a wide range of dependence structures.

Some popular examples are the Gumbel [Gumbel, 1960], Clayton [Clayton, 1978], Frank

[Frank, 1979] copulas. For the sake of illustration, we move on with a presentation of

the bivariate specifications of these. They can be be extended to multivariate versions

via the generator function.

The Gumbel copula [Gumbel, 1960] is an asymmetric copula, which means that it exhibits

different levels of dependence in the positive and negative tails. For this model, the degree

of dependence is stronger in the upper tail, making it a candidate for modelling extreme

events. The copula is given by

CGu
θ (u1, u2) = exp

[
− [(− ln(u1))

θ + (− ln(u2))
θ]

1
θ

]
(2.10)

where the generator function is ϕ(u) = (− ln(u))θ. The parameter θ ∈ [1,∞) controls

the strength of the dependence, and positive values of θ indicate greater positive tail

dependence. As the value of θ increases, the positive tail dependence increases and the

negative tail dependency is reduced.

The Clayton copula [Clayton, 1978] is also asymmetric, and often used to model situ-

ations where there is greater dependence in the negative tail than in the positive. The

bivariate version is defined as:

CCl
θ (u1, u2) =

(
u−θ1 + u−θ2 − 1

)− 1
θ (2.11)

where the generator function is ϕ(u) = 1
θ
(u−1 − 1). The parameter θ ∈ [−1,∞)\{0}

controls the degree of dependence. The Clayton copula is commonly used in economics

and finance to model asymmetric dependence structure between financial asset returns.
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Finally, the bivariate Frank copula [Frank, 1979] is a symmetric copula, given by:

CFr
θ (u1, u2) = −1

θ
ln
[
1 +

(e−θu1 − 1)(e−θu2 − 1)

e−θ − 1

]
(2.12)

with generator function is ϕ(u) = −ln
(
e−θu−1
e−θ−1

)
and θ ∈ (−∞,∞)\{0}. As the value

of θ increases, the Frank copula has more prominent tails and higher density along the

diagonal from the lower left to the upper right corner. Simulation results illustrating the

properties of the Gumbel, Clayton and Frank copulas can be found in Figure 2.3.

When modelling these bivariate Archimedeans, only one copula parameter was needed to

capture the dependence structure. The choice of the copula and θ determines the shape

of the distribution and the strength and type of dependence between the variables. In

contrast, the general case with multiple variables requires a multivariate copula, which

models the dependence structure between all the variables. Archimedean copulas, while

they can be constructed in any dimension, are limited by the few parameters they have,

making them too rigid to be useful in many cases. Elliptical copulas can be utilized

when the observations follow an elliptical distribution, but they are not suitable when

the data departs from symmetry or has prominent one-sided tail dependency.

Vine copulas [Bedford and Cooke, 2001], [Bedford and Cooke, 2002] are flexible and

powerful tools for modeling multivariate dependencies in a more sophisticated manner,

as they allow complex dependence structures to be represented by combining multiple

bivariate copulas in a tree-like structure. This structure, known as a vine copula, can

capture complex interdependencies between variables by modeling them in stages, start-

ing from pairwise relationships and then working towards more complex relationships.

In [Aas et al., 2009], pair-copula constructions are used to model multivariate asset re-

turns exhibiting complex tail dependencies, by decomposing the distribution into a set

of pair copulas that are applied to the original variables and to their conditional and

unconditional distribution functions. [Low et al., 2018] investigate potential benefits

of applying such canonical vines in the context of portfolio management. Using min-

imization of the Conditional Value-at-Risk (CVaR) as main objective, they construct

portfolios ranging from 3-12 constituents, and allow weights to be determined without

any short-sales constraints. Such an approach may be complex to implement, but they

find that the selected Clayton canonical vine produces consistently better results, and

conclude the extra effort is ”worth it”. But is the extra complexity required? Could

the classical methods be improved by using simpler, more easy-interpretable techniques,

such as the local Gaussian correlation?
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Figure 2.3: 1000 observations simulated for archimedean copulas with θ corresponding
to ρ = 0.7 Left column shows the (a) Gumbel, (c) Clayton and (e) Frank copulas. The
corresponding bivariate distributions are displayed in the right column for (b) Gumbel,
(d) Clayton and (f) Frank. Standard normal distributions were used for the marginals.
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2.2.2 Local Gaussian correlation

The local Gaussian correlation was introduced in [Tjøstheim and Hufthammer, 2013].

We will briefly present the core concepts here, and refer the interested reader to Paper

A with supplementary materials. We would also like to note that this section provide a

standard introduction to local Gaussian correlation, and will to some extent follow the

presentation in Tjøstheim et al. [2021]. Further details regarding how the method can

be implemented in the R programming language can be found in [Berentsen et al., 2014]

and [Otneim, 2021].

For illustrative purposes, we will focus on the bivariate case. Let X = (X1, X2) be a

random variable with density f(x) = f(x1, x2). The local Gaussian correlation can be

calculated by approximating f locally in each point x = (x1, x2) using a Gaussian bivari-

ate density ψx(v) where where v = (v1, v2) is the running variable. The approximating

density at this specific point x is given by

ψx(v, θ(x)) =
1

2πσ1(x)σ2(x)
√

1− ρ2(x)
× exp

[
− 1

2

1

1− ρ2(x)

((v1 − µ1(x))2

σ2
1(x)

− 2ρ(x)
(v1 − µ1(x))(v2 − µ2(x))

σ1(x)σ2(x)
+

(v2 − µ2(x))2

σ2
2(x)

)]

where the parameter vector

θ(x) =
(
µ1(x), µ2(x), σ2

1(x), σ2
2(x), ρ(x)

)

contains the local means µ1(x), µ2(x), the local standard deviations σ1(x), σ2(x) and

the local correlation ρ(x). When moving to another point x∗, a new local density with

parameters µ1(x
∗), µ2(x

∗), σ2
1(x∗), σ2

2(x∗), ρ(x∗) is estimated. The population parameter

vector is obtained by minimizing the local penalty function measuring the difference

between f and ψ

q =

∫
Kb(v − x)[ψ(v, θ(x))− ln{ψ(v, θ(x))}f(v)]dv (2.13)

where Kb(v − x) = (b1b2)
−1K1(b

−1
1 (v1 − x1))K2(b

−1
2 (v2 − x2)) is a product kernel with

bandwidths b = (b1, b2). As in [Hjort and Jones, 1996], we interpret q as a locally

weighted Kullback-Leibler distance from f to ψ(·, θ(x)), and therefore require that the

minimizer θb(x) (also depending on K) needs to satisfy

∫
Kb(v − x)

∂

∂θj
[ln{ψ(v, θ(x))}f(v)− ψ(v, θ(x))]dv = 0, j = 1, . . . , 5. (2.14)
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We move further in two steps. First, we define the population value θb(x) as the minimizer

of (2.13), assuming that there is a unique solution to (2.14). Second, we let b → 0

and consider the limiting value θ(x) = limb→0 θb(x). In [Tjøstheim and Hufthammer,

2013], this is done via Taylor expansion arguments. Here, we will proceed under the

assumption that a limiting value θ(x) independent of b and K exists. We need to use

the neighbourhood of x and a finite bandwith b when estimating θ(x) and θb(x), as

in nonparametric density estimation. The parameters are then obtained via maximum

likelihood. Given observations {X1, . . . , Xn}, the local likelihood function is

L(X1, . . . , Xn, θ(x)) = n−1
∑

i

Kb(Xi − x) logψ(Xi, θ(x))

−
∫
Kb(v − x)ψ(v, θ(x))dv. (2.15)

The likelihood reduces to the ordinary global likelihood when b → ∞, since the last

term has 1 as its limiting value. This last term is of high importance, as it ensures that

ψ(x, θb(x)) is not allowed to stray far away from f(x) as b→ 0. Further details regarding

asymptotic behaviour and estimation can be found in [Tjøstheim and Hufthammer, 2013]

and the supplementary material of Paper A.
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Figure 2.4: Local correlation plot Y = X2 + ε

In Figure 2.4 we revisit the bivariate nonlinear example from Figure 2.1. Here, we have

defined a grid of 20×20 equally sized cells covering the range of X and Y , and calculated
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the local correlations for cells containing observations. A bandwidth of b = (11
10
σX ,

11
10
σY )

was applied in the estimation procedure using the R package lg described in [Otneim,

2021]. The observed estimates, such as ρ̂(−2, 5) = −0.94 and ρ̂(2, 5) = 0.95, are simple

to interpret, and the chart provides a clear summary of the dependence structure.

In a setting with a sample Xi = {X1i, . . . , Xpi}, i = 1, . . . , n with dimensions p >

2, it is possible to extend the method and construct local multivariate distributions.

This would provide local (p × p) correlation matrices and (p × 1) vectors for mean

and variance at each evaluation point, via maximum likelihood estimation. However,

as the number of dimensions p in the sample increases, the precision of the estimates

produced by the estimation procedure will decline, due to the curse of dimensionality. A

pragmatic approach to solving this challenge is to break it down into smaller, bivariate

problems. Instead of considering all coordinates at once in a p-variate problem, each local

correlation is estimated by only considering the corresponding pair of observation vectors.

This results in a series of bivariate problems that estimate pairwise local correlations

based on their respective pairs of coordinates. The estimated local correlations are

gathered in a (p× p) matrix. If the corresponding local covariance matrix obtained from

the bivariate problem is not positive definite, the method described in [Higham, 2002]

is used to adjust it. This can easily be implemented, for example with the nearPD()

function from the R package Matrix.

The local Gaussian correlation has been applied in various studies related to finance,

such as the analysis of dependence structure between asset returns [Støve and Tjøstheim,

2014] and in testing for financial contagion [Støve et al., 2014], [Bampinas and Panagi-

otidis, 2017], [Nguyen et al., 2020]. While it has been successful in understanding the

relationship between assets, it has not yet been applied to the process of making invest-

ment decisions and constructing portfolios. In the following, we will explore how the

local correlation matrices may be utilized within the classical mean-variance framework

introduced by Harry Markowitz [Markowitz, 1952].

2.3 Portfolio allocation under asymmetric dependence in returns

Investors use portfolios as a strategy to spread their investments across multiple assets in

order to minimize risk. By allocating wealth among different assets, the negative impact

of any single asset’s poor performance on the overall portfolio may be offset by changes

in the other constituents. This diversification effect is strongly dependent on the associ-

ations between the instruments in the portfolio, and how these change during differing

circumstances. Some common asset classes that are considered include equities, fixed
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income, commodities, currencies, cash equivalents, real estate and infrastructure. Insti-

tutional investors will typically face restrictions regarding what asset classes, companies

and countries that qualify for investment. One example is the the Norwegian Govern-

ment Pension Fund Global managed by Norges Bank Investment Management, which

needs to comply with the exclusion list and policies overseen by Norges Bank’s Exec-

utive Board, [Chambers et al., 2012]. After considering such restrictions, the portfolio

manager is left with an investment universe where funds may be allocated.

Investors may use various methods to decide on the most suitable mix for a portfolio

with their desired level of risk and return. There is a large research literature on factor

models for asset returns, dating back to the CAPM [Treynor, 1961], [Sharpe, 1964],

[Lintner, 1965], [Mossin, 1966]. The factor models developed by Fama-French [Fama

and MacBeth, 1973], [Fama and French, 1993] are other examples of key contributions.

In this school of thought, asset returns are explained by focusing on underlying factors,

such as company size and stock price compared to fundamental characteristics such as

earnings, dividends, and book value. Later studies, such as [Fama and French, 2015],

have suggested a number of other factors to be considered. The use of standard deviation

for portfolio returns as risk measure has also been questioned on numerous occasions.

While it can be a useful tool for measuring the overall volatility of a portfolio’s returns,

it has some limitations when it comes to capturing the downside risk that investors are

primarily concerned with. Measures, like as Value at Risk and Expected Shortfall, [Duffie

and Pan, 1997], [McNeil et al., 2015], [Tasche, 2002] may be be used as alternatives in

the asset allocation setting. These also have their own strengths and weaknesses.

Here, we will adopt the classical formulation for asset allocation from [Markowitz, 1952],

which consists of optimising a target objective, given risk preferences and operational

constraints on the asset allocation. We assume there are N risky assets, and use volatility

of portfolio returns as risk measure. The returns on the risky assets are denoted by

rt ∈ RN , which are assumed to have expected values µt ∈ RN , and covariance matrix

Σt ∈ RN×RN . Further, let wt ∈ RN be the unknown vector of optimal portfolio weights

at time t. The investor may choose weights wt to either i) maximize expected return

subject to a constraint on portfolio variance, or ii) minimize portfolio variance subject

to a constraint on expected return. Taking risk preferences into account, the objectives

may be expressed as maximisation problems using utility functions

max
wt

U1 = wT
t µt −

γ

2
wT

t Σtwt (2.16)

max
wt

U2 = −wT
t Σtwt (2.17)

where the parameter γ represents the investor’s degree of risk aversion under quadratic
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utility. Various operational constraints can be applied to the weights. The full investment

w1 + · · ·+ wN = 1 condition is often used. Another type of constraint is related to long

only positions, which specify that we can only buy shares and therefore only have positive

weights, in contrast to the case of short positions, in which the selling positions would

be reflected as negative weights. The full optimisation problem for a long-only investor

aiming to maximise returns under a constraint on portfolio volatility σp is

max
wt

wT
t µt −

γ

2
wT

t Σtwt

s.t. wTΣw ≤ σ2
p

wT1 = 1

w ≥ 0

(2.18)

where wT1 = 1 also dictate full investment. The minimum-variance investor with similar

weight constraints and target return R∗p for the portfolio needs to solve

max
wt

− wT
t Σtwt

s.t. wTµ = R∗p

wT1 = 1

w ≥ 0

(2.19)

For a range of different risk aversion levels, expressed via γ, the optimization is expected

to produce corresponding optimal portfolios with a trade-off between return and volatil-

ity. There are, however, a number of assumptions made by the Markowitz model that

are not met. In financial markets, investors do not necessarily behave in a rational man-

ner, they might have incomplete information, and limited opportunity to borrow an lend

at the risk-free rate. The markets can also be inefficient, e.g. prices of financial assets

might not fully reflect all publicly available information. Many studies have also shown

that the distribution of financial returns is often fat-tailed and asymmetric, meaning

that they are not normally distributed, and correlation between returns can change de-

pending on market conditions [Patton, 2004]. In [Cont, 2001], a list of stylized facts and

empirical properties of asset returns are summarized. There, and in similar studies, some

of the typical findings are that i) returns are not independent identically distributed, ii)

distributions are heavy tailed and asymmetric, iii) volatility varies over time and ex-

tremes appear in clusters, iv) volatility is mean-reverting, and v) dependencies between

asset returns are asymmetric.

This makes risk management via diversification difficult, as the portfolio is more vulner-

able to market downturns than it is assumed in the standard mean-variance framework.

There have been many attempts to improve the workhorse of modern portfolio theory.
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One significant contribution worth mentioning is the Black-Litterman asset allocation

model [Black and Litterman, 1992], which combines the traditional Markowitz-approach

with Bayesian methods for updating investor views on future asset performance. Other

approaches have focused on incorporating more advanced methods for modelling returns

and measuring risk into the original framework. Copula models, in particular, have

been popular tools for this purpose. In [Patton, 2004], copulas are applied to construct

models of time-varying dependence structures that allow for different dependence during

bear bull markets. These are used to allocate portfolio weights for an investor with con-

stant relative risk aversion. They find that the method may lead to higher gains when

short-sales are permitted. In the study by [Low et al., 2018], canonical vine copulas are

used for modelling the dependence structure for an investor aiming to minimize expected

shortfall, also without short sales constraints. When comparing elliptical and asymmet-

ric models, they find that the Clayton canonical vine copula consistently produces the

highest-ranked outcomes, and conclude that the extra complexity is worthwhile.

The choice of copula to use in modeling the dependencies between financial returns can

be overwhelming for non-technical asset managers. Complex models can also introduce

additional assumptions and reduce transparency. Could model complexity represent a

risk in itself? The use of local Gaussian correlation is a simpler approach compared to

many of the copulas suggested in the literature. By modeling the correlation structure

of asset returns at a local level, the local Gaussian correlation approach can effectively

capture complex and dynamic dependencies between assets and report it in a familiar

way. The local correlation matrices can be applied directly in the mean-variance frame-

work, and results may be evaluated and compared with the traditional approach in a

transparent way. Further details in this regard can be found in Paper A.
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Chapter 3

Energy market risk management

The markets for electricity and natural gas are complex and dynamic, where the prices

of these commodities are determined by the balance of supply and demand. They are

characterized by high volatility and price fluctuations, driven by a variety of factors such

as weather conditions, cost of production, supply disruptions, limited transmission and

storage capacity, and changes in demand. Trading takes place both through organized

exchanges such as the European Energy Exchange and Nasdaq OMX Commodities, and

over-the-counter (OTC). The market is divided into spot and forward markets. In the

spot market, physical energy is traded for near-term delivery. In contrast, the forward

market is a market where electricity and natural gas is traded for delivery at a later date,

and prices are based on expectations of future supply and demand. Forward markets

allow market participants to hedge against price risk, by buying or selling contracts at

a fixed price today, for delivery in the future. The interested reader may find a more

detailed overview of energy market structure, available contracts and the related markets

for fuel, freight and weather products in [Eydeland and Wolyniec, 2002], [Benth et al.,

2008] and [Kirschen and Strbac, 2018].

The large spot price variations leaves both consumers and producers of energy with

a significant price risk, and lack of attention and risk mitigation might lead to severe

financial stress. When energy prices are high, it can have consequences for consumers

and society as a whole. This is certainly the case in Europe at present (2022-2023),

where demand is is outstripping energy supply, causing an unprecedented price risk

crisis. Some of the main causes are the rebound after the COVID-19 pandemic and

changes on the supply side due to the transition to renewable energy production. The

problem is magnified by the Russia-Ukraine conflict, which has impacted the flow of

Russian natural gas. For individuals, high energy prices can create financial strain, as

they may need to spend more money on utility services such as heating and electricity.
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This can be especially difficult for low-income households, who may struggle to afford

these necessities. High energy prices can also have a negative impact on businesses,

as they may need to pay more for energy to power their operations. This can lead to

increased costs, which may in some cases be passed on to consumers in the form of

higher prices. Additionally, high energy prices can impact the overall economy, as they

can increase inflation and slow economic growth.

A corporate market player with a long term strategy for energy procurement can imple-

ment measures to protect against financial risk. Since the price risk management need

to take place prior to the physical delivery, we will have our main focus on the contracts

in the forward market. We will however start out with a brief presentation of some Eu-

ropean electricity spot price markets in order to motivate the need for hedging. Next, an

introduction to the forward market and the maximum smoothness forward curve is pro-

vided. We continue with a demonstration of the forward curve calculation implemented

in the etrm package. Thereafter, we discuss some key concepts within energy market

risk management, such as the energy portfolio, the management authorisation and hedg-

ing strategies. The chapter is concluded with a demonstration of price hedging with the

etrm package using a data set with Nordic electricity futures contracts listed at Nasdaq

OMX Commodities.

3.1 The spot market

Energy spot markets are markets where physical quantities are bought and sold in a

short-term timeframe prior to delivery. These markets allow buyers and sellers to trade

electricity and natural gas on a near-term basis, typically day-ahead or close to real-time.

The prices are determined by the balance of supply and demand, and they can fluctuate

based on a number of factors, including the availability of generation resources, trans-

mission constraints, and weather conditions. Prices are highly influenced by seasonal

temperature variations. During the summer months when temperatures are higher, the

demand for electricity for air conditioning will typically increase, leading to an increase

in prices. Conversely, during the winter months, when temperatures are lower, the de-

mand for heating increases leading to an increase in prices. During the day, electricity

prices tend to be higher during office hours when businesses and households are using

more power, and lower during the night and weekends when demand is reduced.

In the following, we will have a closer look at electricity spot price data from three

geographical regions in Europe; The Netherlands, Germany/ Austria and the Nordics.

The spot prices are calculated for each hour the following day, determined by the inter-



3.1 The spot market 23

section of the aggregated supply and demand curves representing all bids and offers in

the day-ahead auction at the power exchanges EPEX Spot and Nord Pool. The Physi-

cal Electricity Index (Phelix) refers to the base load price index published daily on the

power spot market for the German/Austrian market area by EPEX SPOT. This is used

as the underlying asset for the EEX Phelix Future listed on the European Energy Ex-

change (EEX). A similarly reference price is calculated on the same exchange for the

Netherlands, the Amsterdam Power Exchange Index (APX). Nordic market participants

enter their bids at Nord Pool, who is responsible for the calculation of the Nordic Sys-

tem Price (NPSYS). This is used as settlement reference for the derivatives traded at

Nasdaq OMX Commodities.

In the absence of grid bottlenecks, the indices published by spot exchanges are the

commodity prices large consumers or suppliers of energy will have to pay to procure the

volume needed for the next day, if they participate directly in the wholesale market.

Similarly, a producer will be able to sell generated volume at these prices. In practise

however, grid congestion is often present. The physical market in a specific region

may therefore be divided into price zones due to physical limitations with respect to

transmission of electric power. This creates a basis risk for market participants, as

the local power price exposure may not be fully hedged with contracts that are settled

against the index published by the spot exchange.
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Figure 3.1: Daily average Nordic System Price (NPSYS)

The data presented here consists of daily averages of the indices described above. When

we look at the Nordic System Price curve in Figure 3.1, the typical spot price char-
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acteristics with high volatility and sudden spikes followed by mean reversion is clearly

present. The recent period has seen unprecedented volatility and sharp price increases,

which have caused the majority of prices to be concentrated in a small range on the

chart. This produces a somewhat distorted view of the volatility prior to the ongoing

European energy price risk crisis. In previous years, factors such as low reservoir lev-

els, high fuel costs and cold spells have led to prices that were considered challenging for

many companies with large energy consumption.

APX Phelix NPSYS rAPX rPhelix rNPSY S

Observations 8, 782 8, 782 8, 782 8, 781 8, 781 8, 781
Mean 55.195 49.178 37.406 0.0001 -0.001 0.0002
Std.dev. 54.227 54.799 32.660 0.290 0.343 0.191
Variance 2, 940.530 3, 002.956 1, 066.668 0.084 0.118 0.036
Skewness 4.880 5.171 5.389 0.744 0.683 0.046
Kurtosis 31.070 34.356 41.977 14.496 12.157 38.267
Min -5.450 -56.870 0.720 -2.672 -2.948 -2.962
1 Quartile 32.850 27.820 23.363 -0.112 -0.161 -0.045
Median 42.480 37.140 31.330 -0.012 -0.025 -0.006
3 Quartile 54.528 49.810 42.450 0.084 0.115 0.040
Max 693.830 700.220 462.100 3.539 3.569 2.443

Table 3.1: Summary statistics for day-ahead prices and log returns

The summary statistics provide a more detailed view, and here we can identify negative

prices both in the APX and Phelix series. The non-storable nature of electricity combined

with an increased share of less flexible power generation such as wind contribute to the

increased volatility, and in extreme cases negative prices for short periods. When the

hourly negative prices are large and/ or prolonged, it will also dominate in the calculation

of daily average values. Phelix is the index showing the most extreme values, with daily

spot prices of −56.87 EUR/MWh and 700.22 EUR/MWh. For the APX, Phelix and

NPSYS we see high standard deviations, positive skew, and fat tails.

We have also calculated the logarithmic price differences in order to explore the price

dynamics further. When we did this we had to remove the negative prices from the

data set. The fat tails in the price returns are quite striking, and we can see that the log

spot prices changes were −295% and +357% in the most extreme case, which was for the

Phelix. These calculations are based on daily data, and longer average spot prices will be

smoother. Still, when we look at monthly or even yearly data, there will be considerable

variation in the prices. In this thesis we will not focus more on spot markets, but rather

used these observations as motivation for hedging the price risk by trading in the forward

markets. A rigorous treatment of the spot price dynamics can be found in [Benth et al.,

2008].
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3.2 The forward market

In this chapter we will have a closer look at the characteristics of some of the contracts

that are used in energy forward markets. Thereafter, we show how prices from these

standardized products can be used to construct a smooth forward curve able to describe

the term structure of the market with daily forward prices. This section also contains

a more detailed presentation of the mathematical approach used when generating the

Maximum Smoothness Forward Curve, see also Paper B. Finally we apply the meth-

ods and generate forward curves for Nordic electricity contracts listed at Nasdaq OMX

Commodities, and comment on how these can be used for non-standard pricing and risk

management purposes.

3.2.1 Forward market contracts on a flow delivery

The standardised forwards for electricity and gas are contracts for flow delivery. The

underlying commodity is not delivered at a fixed point in time, but over a time interval.

Strictly speaking we should think of them as swap contracts. These contracts are without

flexibility, with a continuous delivery of electricity or gas over a future time interval.

When we describe them, we will follow the procedure in [Bjerksund et al., 2010]. Here,

the forward price at time t for one unit of energy delivered at a rate 1
(τe−τ) over the time

interval (τs, τe) is given by F (t, τs, τe), where t ≤ τs ≤ τe. The time distance between τs

(start) and τe (end) for standard contracts in the market may be from a day’s length,

to week, month, quarter, season or year. A forward contract for a flow delivery may be

thought of as the average of hypothetical single-delivery contracts. At time t, each of

these would have a unique price f(t, u) for the delivery at u with an infinitesimal delivery

period. If we were to receive 1 unit of energy over the interval (τs, τe), the present value

at time t would be

Vt

[ ∫ τe

τs

f(u, u)du

]
=

∫ τe

τs

e−r(u−t)f(t, u)du (3.1)

where r represent the risk free rate of interest. The fact that the present value of entering

a forward contract should be zero at time t require

∫ τe

τs

e−r(u−t)F (t, τs, τe)du =

∫ τe

τs

e−r(u−t)f(t, u)du (3.2)

This leads to F (t, τs, τe) being the weighted average
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F (t, τs, τe) =

∫ τe

τs

w(r, u)f(t, u)du (3.3)

where

w(r, u) =
e−ru∫ τe

τs
e−rudu

=
re−ru

e−rτs − e−rτe (3.4)

is the weight function. In the following section we will construct a forward market price

curve for the entire horizon T , with all f(t, u) where t ≤ u ≤ T . In the following we will

simplify notation and use f(u) for the function describing the forward curve at time t.

3.2.2 The maximum smoothness forward price curve

In this section we will use the methods in [Ollmar, 2003] and [Benth et al., 2007a] to

develop a continuous market curve from closing prices observed in the forward market.

We will generate the smoothest possible curve able to reproduce the observed closing

prices by combining a prior function Λ(u) which contain our subjective views on the

future prices with an adjustment function ε(u) to take the observed market prices into

account. We define a functions smoothness as the mean squared value of its second

derivative, and achieve the smoothest possible curve on an interval (τs, τe) by minimising

∫ τe

τs

[e
′′
(u)]2du (3.5)

The prior function can be a fundamental model or a more simple sinusoidal function to

describe the seasonality we observe in energy markets. The smoothing is calculated on

ε(u) in order not to disturb the description of the seasonality in λ(u). If we choose to

exclude the prior, the seasonal price patterns will not be visible in the far end of the

curve, where only year or seasonal contracts are available.

Consider a market at time t with m forward contracts available for trading. Let the list

St = {(τ s1 , τ e1 ), (τ s2 , τ
e
2 ), ..., (τ sm, τ

e
m)}

contain the start and end dates for each of these contracts. The time distance between

τ si and τ ei for a contract i in 1, ..,m cover standardized periods such as week, month,

quarter, winter season, summer season and year. Some of these settlement intervals
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might overlap, and in order to handle this we create a new list of dates {t0, t1, ..., tn} to

identify each separate sub period, see Figure 3.2. The new list is made by sorting all

dates in St in ascending order and removing duplicates.

Timeτs1

t1

τs2

t2

τe1

t3

τe2

t4

first contract period

second contract period

Figure 3.2: Start and end dates for two overlapping contracts

In the following we construct a forward market price curve for the entire horizon using

a simplified notation f(u) for the function describing the forward curve at time t. In

order to model the strong seasonality in energy markets, the forward curve function is

decomposed into two elements:

f(u) = Λ(u) + ε(u) u ∈ [t0, tn] (3.6)

Following [Ollmar, 2003] we calculate f(u) by combining a prior function Λ(u) which

contain our subjective views on the future prices with an adjustment function ε(u) to

ensure match with the observed closing prices for each of the m contracts. The prior could

be generated with a simple sinusoidal function or from a fundamental model more capable

of describing the typical seasonality and calendar effects observed in energy markets.

Should the prior be excluded, the seasonal price patterns will not be visible in the far

end of the curve, where only yearly or seasonal contracts are available. The smoothing

is calculated on the adjustment function, we aim to minimize the total curvature of Λ(u)

while preserving the information from the prior. Here, smoothness is defined as the

integral of second-order derivative of the function, and the smoothest possible curve over

the interval [t0, tn] is achieved by minimising

tn∫

t0

[ε′′(u)]2 du

As shown in [Lim and Xiao, 2002], the smoothest possible curve is achieved when each

of the n sub periods are modelled by fourth-degree polynomials, and we can write the
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adjustment function as a spline

ε(u) =





a1u
4 + b1u

3 + c1u
2 + d1u+ e1, u ∈ [t0, t1],

a2u
4 + b2u

3 + c2u
2 + d2u+ e2, u ∈ [t1, t2],

.

.

anu
4 + bnu

3 + cnu
2 + dnu+ en, u ∈ [tn−1, tn].

To build the forward curve function, we need to identify the parameters of ε(u)

xᵀ = [a1 b1 c1 d1 e1 a2 b2 c2 d2 e2 . . . an bn cn dn en]

by solving the quadratic optimisation problem

min
x

τe∫

τs

[ε′′(u;x)]2 du (3.7)

subject to

(aj+1 − aj)u4j + (bj+1 − bj)u3j + (cj+1 − cj)u2j + (dj+1 − dj)uj + ej+1 − ej = 0 (a)

4(aj+1 − aj)u3j + 3(bj+1 − bj)u2j + 2(cj+1 − cj)uj + (dj+1 − dj) = 0 (b)

12(aj+1 − aj)u2j + 6(bj+1 − bj)uj + 2(cj+1 − cj) = 0 (c)

ε′(un;x) = 0 (d)

1

τ ei − τ si

τei∫

τsi

(Λ(u) + ε(u)) du = F c
i (e)

for spline knot j = 1, ..., n−1 and contract i = 1, ...,m. The constraint in (a) ensures the

adjustment function is continuous in the knots, while (b) and (c) imposes this restriction

also for the first and second order differentials. The (d) constraint require the adjustment

function to be horizontal at time T , and finally (e) also require the average value of the

forward price function f(u) over the delivery period for contract i to match the quoted

closing price F c
i . Here, we could take the interest rate effect from r into account and

set the present value of the average of the forward price function equal to present value
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of the forward contract. Instead of doing that, we will follow [Benth et al., 2008] and

[Ollmar, 2003] and assume r = 0 such that the weight function in (3.4) is approximated

with w(u, τ s, τ e) ≈ 1
τe−τs . Like [Benth et al., 2008] we will argue that both the prior

and the smoothing will outweigh a marginal interest rate effect. In order to illustrate

further, we look closer at the first spline where u ∈ [τ0, τ1], and we can see that

ε(u) = a1u
4 + b1u

3 + c1u
2 + d1u+ e1

ε′(u) = 4a1u
3 + 3b1u

2 + 2c1u+ d1

ε′′(u) = 12a1u
2 + 6b1u+ 2c1∫ τ1

τ0

[ε′′(u)]2 du =

∫ τ1

τ0

[(12a1u
2 + 6b1u+ 2c1)]

2 du

=
144

5
a21u

5 + 36a1b1u
4 + 16a1c1u

3 + 12b21u
3 + 12b1c1u

2 + 4c21u

∣∣∣∣
τ1

τ0

= [a1 b1 c1 d1 e1]




144
5

∆5
1 18∆4

1 8∆3
1 0 0

18∆4
1 12∆3

1 6∆2
1 0 0

8∆3
1 6∆2

1 4∆1 0 0

0 0 0 0 0

0 0 0 0 0







a1

b1

c1

d1

e1




= x′1h1x1

with ∆l
1 = τ l1 − τ l0, l = 1, ..., 5. We generalize for n sub periods with ∆l

j = τ lj − τ lj−1 and

express the minimization problem as

min
x

xᵀHx,

where x is a (5n× 1) vector and

H =




h1 0
. . .

0 hn


 ,hj =




144
5

∆5
j 18∆4

j 8∆3
j 0 0

18∆4
j 12∆3

j 6∆2
j 0 0

8∆3
j 6∆2

j 4∆j 0 0

0 0 0 0 0

0 0 0 0 0




where the block diagonal matrix H has dimensions of 5n× 5n. All of the constraints are

linear in x, and the optimisation problem may be expressed on the form Ax = b. The

first three constraints apply to the knots, j = 1, 2, ..., (n−1). If we focus on the first two

knots j = 1, 2, we see that these constraints may be inserted as rows in the matrix A:
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


−u41 −u31 −u21 −u1 −1 u41 u31 u21 u1 1 0 0 0 0 0 . . .

−4u31 −3u21 −2u1 −1 0 4u31 3u21 2u1 1 0 0 0 0 0 0 . . .

−12u21 −6u21 2 0 0 12u21 6u21 2 0 0 0 0 0 0 0 . . .

0 0 0 0 0 −u42 −u32 −u22 −u2 −1 u42 u32 u22 u2 1 . . .

0 0 0 0 0 −4u32 −3u22 −2u2 −1 0 4u32 3u22 2u2 1 0 . . .

0 0 0 0 0 −12u22 −6u22 2 0 0 12u22 6u22 2 0 0 . . .

...




Constraints for the remaining knots, j = 3, ..., (n− 1) are developed in a similar fashion,

producing a total of r × (n − 1) rows to be inserted into A. Combined with the end

condition and the m price constraints, we get a total of 3n + m − 2 constraints. These

are expressed as Ax = b, where A is a 3n+m− 2× 5n- dimensional matrix and b is a

3n+m− 2-dimensional vector. The end condition is added as a single row in A:

[
. . . 0 0 0 0 0 0 0 4u3n 3u2n 2un 1 0

]

In order to include the final m rows with closing price constraints, we start out with

FC
i =

1

τ ei − τ si

∫ τei

τsi

ε(u) + Λ(u) du

∫ τei

τsi

ε(u) du = (τ ei − τ si )FC
i −

∫ τei

τsi

Λ(u) du

to ensure the average value of the smoothed forward curve in the delivery period is equal

to the closing price for contract i = 1, ...,m. The left side of the above equality is put in

matrix A, and the right side is put in the b vector after the 3n− 2 zero’s from the knot

constraints. In the simplest case with no overlapping contracts, the delivery period for

each contract i is covered by a single polynomial

∫ τei

τsi

ε(u) du =
1

5
aiu

5 +
1

4
biu

4 +
1

3
ciu

3 +
1

2
diu

2 + eiu

∣∣∣∣
τei

τsi

=
1

5
[(τ ei )5 − (τ si )5]ai +

1

4
[(τ ei )4 − (τ si )4]bi +

1

3
[(τ ei )3 − (τ si )3]ci+

1

2
[(τ ei )2 − (τ si )2]di + [(τ ei )− (τ si )]ei

= ρ1i ai + ρ2i bi + ρ3i ci + ρ4i di + ρ5i ei
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and the m rows to be added to matrix A are of the form



ρ11 ρ21 ρ31 ρ41 ρ51 0 0 0 0 0 0 0 0 0 0 . . .

0 0 0 0 0 ρ12 ρ22 ρ32 ρ42 ρ52 0 0 0 0 0 . . .

0 0 0 0 0 0 0 0 0 0 ρ13 ρ23 ρ33 ρ43 ρ53 . . .

...




However, if we have a case with overlapping delivery periods, the integral needs to be

split in the number of sub periods necessary to cover the entire delivery period of the

contract. We will use the same example as [Ollmar, 2003] and assume that the first

contract has a delivery period equal to [τ0, τ1] and write the constraint as



ρ11 ρ21 ρ31 ρ41 ρ51 ρ12 ρ22 ρ32 ρ42 ρ52 0 0 0 0 0 . . .

0 0 0 0 0 ρ12 ρ22 ρ32 ρ42 ρ52 0 0 0 0 0 . . .

0 0 0 0 0 0 0 0 0 0 ρ13 ρ23 ρ33 ρ43 ρ53 . . .

...




Now that we finally have A and b, we can use the Lagrange multiplier method and

reformulate as an unconstrained minimisation problem

min
x,λ

L(x, λ) = xᵀHx+ λᵀ(Ax−B) (3.8)

If [x,λ0] is a solution, we require

∂

∂x
L(x0, λ0) = 2Hx0 + Aᵀλ0 = 0

∂

∂λ
L(x0, λ0) = Ax0 − b = 0

such that the solution can be found by solving the set of linear equations

[
2H Aᵀ

A 0

][
x

λ

]
=

[
0

B

]
(3.9)

where the left matrix has dimension of (8n + m − 2) × (8n + m − 2) and both vectors

are of dimension (8n+m− 2).
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3.2.3 Forward curve calculation with the etrm package

The etrm package developed as a part of this PhD-project can be used to specify and

solve the optimisation problem described above. The package is available on CRAN, and

may be installed and loaded into the R environment by running the following commands:

1 install.packages("etrm")

2 library(etrm)

We demonstrate the etrm functionality with a practical example using market data

from the power exchange Nasdaq OMX Commodities. The selected contracts are of

type Nordic electricity (ENO), average rate (A) futures on base load (FUTBL) with

monthly, quarterly and yearly delivery periods. Several other products are available, but

at the trading date 2021-11-05, these were the instruments actively traded.

Include Contract Start End Closing

TRUE ENOAFUTBLMNOV-21 2021-11-07 2021-11-30 62.50
TRUE ENOAFUTBLMDEC-21 2021-12-01 2021-12-31 60.25
TRUE ENOAFUTBLMJAN-22 2022-01-01 2022-01-31 62.50
TRUE ENOAFUTBLMFEB-22 2022-02-01 2022-02-28 62.00
TRUE ENOAFUTBLMMAR-22 2022-03-01 2022-03-31 44.00
TRUE ENOAFUTBLMAPR-22 2022-04-01 2022-04-30 38.40
TRUE ENOFUTBLQ1-22 2022-01-01 2022-03-31 56.00
TRUE ENOFUTBLQ2-22 2022-04-01 2022-06-30 31.00
TRUE ENOFUTBLQ3-22 2022-07-01 2022-09-30 20.90
TRUE ENOFUTBLQ4-22 2022-10-01 2022-12-31 31.15
TRUE ENOFUTBLQ1-23 2023-01-01 2023-03-30 41.30
TRUE ENOFUTBLQ4-23 2023-10-01 2023-12-31 31.40
FALSE ENOFUTBLYR-22 2022-01-01 2022-12-31 34.50
TRUE ENOFUTBLYR-23 2023-01-01 2023-12-31 29.35
TRUE ENOFUTBLYR-24 2024-01-01 2024-12-31 29.50
TRUE ENOFUTBLYR-25 2025-01-01 2025-12-31 29.83

Table 3.2: Selected base load futures, Nasdaq OMX Commodities 2021-11-05

There will typically be multiple instruments available covering the same calendar period,

for example January, February and March versus the Q1 contract. By selecting the ones

of shortest duration, we ensure that information of high granularity readily available

in market prices is utilized in the forward curve calculation. This is handled via the

boolean include argument to the msfc() constructor function, see Listing 3.1 for a

code example. Once provided the remaining data presented in Table 3.2, the constructor

returns an instance of the S4 class MSFC. Three generic methods are implemented for this

type of object: plot(), summary() and show().
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The spot wholesale electricity price in the Nordics was unusually high during the fall of

2021, partly due to low renewable energy supply, and high fuel and carbon prices. This

can be seen in the short contracts in the upper part of Table 3.2. Further ahead in time,

prices are lower. These contracts cover longer time spans (years). At this horizon, the

seasonality typically present in such markets is not reflected in market prices. To com-

pensate, the user may provide a prior function to be included in the calculation. In the

code example in Listing 3.1 we have used a simple trigonometric prior, where weekend

prices have been adjusted down by a fixed factor. The msfc() function is used to create

two instances of the MSFC class, and the plot() method create the charts in Figure 3.3.

1 library(etrm)

2 library(gridExtra)

3 load(file = "eno.Rda")

4 load(file = "prior.Rda")

5

6 # forward curve with prior

7 fwd.fut.wpri <- msfc(tdate = as.Date("2021 -11 -05"),

8 include = eno$Include ,
9 contract = eno$Contract ,

10 sdate = eno$Start ,
11 edate = eno$End ,
12 f = eno$Closing ,
13 prior = prior$mod)
14

15 # forward curve without prior

16 fwd.fut.npri <- msfc(tdate = as.Date("2021 -11 -05"),

17 include = eno$Include ,
18 contract = eno$Contract ,
19 sdate = eno$Start ,
20 edate = eno$End ,
21 f = eno$Closing ,
22 prior = 0)

23

24 grid.arrange(plot(fwd.fut.wpri , ylab = "EUR/MWh", legend = ""),

25 plot(fwd.fut.npri , ylab = "EUR/MWh", legend = ""))

Listing 3.1: Example of the msfc() constructor and the plot() method for class MSFC

As the forward curve provide a detailed description the forward market and it’s term

structure, it is a flexible tool for supporting investment- and trading decisions. Since the

standardised contracts are average price contracts for delivery at a fixed rate over some

time interval, they are not suited for finding the value of a profiled volume. Quite often,

the volume consumed by both businesses and households will be subject to a similar

type of seasonality as the energy price, creating a positive correlation between energy
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demand and price. This makes the forward curve useful when pricing non-standard

contracts and fixed price agreements tailor made for a specific consumption profile. The

curve has many other practical applications, for example within risk management and

production planning.

From the closing price constraint in the minimisation problem defined in previous chap-

ter, it is also clear that the standard contracts can be priced with this tool by cal-

culating the average value of the forward curve over the delivery period in question.

The summary() method demonstrated in Listing 3.2 provide the computed prices along

with the quotes used as input for the calculation. The method also deliver a descrip-

tion of the spline used to build the curve and a sample of the initial prior function values.

1 > summary(fwd.fut.wpri)

2 $Description
3 [1] "MSFC of length 1518 built with 25 polynomials at trade date

2021 -11 -05"

4

5 $PriorFunc
6 [1] 54.43464 54.50272 54.56650 54.62597 49.21299 49.25870

7

8 $BenchSheet
9 Include Contract From To Price Comp

10 1 TRUE ENOAFUTBLMNOV -21 2021 -11 -07 2021 -11 -30 62.50 62.50

11 2 TRUE ENOAFUTBLMDEC -21 2021 -12 -01 2021 -12 -31 60.25 60.25

12 3 TRUE ENOAFUTBLMJAN -22 2022 -01 -01 2022 -01 -31 62.50 62.50

13 4 TRUE ENOAFUTBLMFEB -22 2022 -02 -01 2022 -02 -28 62.00 62.00

14 5 TRUE ENOAFUTBLMMAR -22 2022 -03 -01 2022 -03 -31 44.00 44.00

15 6 TRUE ENOAFUTBLMAPR -22 2022 -04 -01 2022 -04 -30 38.40 38.40

16 8 TRUE ENOFUTBLQ2 -22 2022 -04 -01 2022 -06 -30 31.00 31.00

17 9 TRUE ENOFUTBLQ3 -22 2022 -07 -01 2022 -09 -30 20.90 20.90

18 10 TRUE ENOFUTBLQ4 -22 2022 -10 -01 2022 -12 -31 31.15 31.15

19 11 TRUE ENOFUTBLQ1 -23 2023 -01 -01 2023 -03 -30 41.30 41.30

20 12 TRUE ENOFUTBLQ4 -23 2023 -10 -01 2023 -12 -31 31.40 31.40

21 14 TRUE ENOFUTBLYR -23 2023 -01 -01 2023 -12 -31 29.35 29.35

22 15 TRUE ENOFUTBLYR -24 2024 -01 -01 2024 -12 -31 29.50 29.50

23 16 TRUE ENOFUTBLYR -25 2025 -01 -01 2025 -12 -31 29.83 29.83

Listing 3.2: Example of the summary() method for class MSFC

The MSFC class contain further details regarding calculation results and methods used:

1 > slotNames(fwd.fut.wpri)

2 [1] "Name" "TradeDate" "BenchSheet"

3 [4] "Polynomials" "PriorFunc" "Results"

4 [7] "SplineCoef" "KnotPoints" "CalcDat"
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The show() method can be used to access the data frame in the Results slot, where

the daily values for the forward curve and the selected contracts are stored. The method

is not demonstrated here due to space constraints. The vector with the daily forward

curve values can also be accessed directly, in our example with:

1 fwd.fut.wpri@Results$MSFC

For further information regarding the maximum smoothness forward curve implementa-

tion in etrm, the reader is referred to Paper B.
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Figure 3.3: MSFC with (top) and without (bottom) prior
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3.3 Energy price risk management

Participants in the energy markets are exposed to a number of risks. Some of these have

to do with individual characteristics of the participant (volume and profile risk), while

others are external (liquidity-, currency-, counterparty- and price risk). The main focus

in this thesis is on the price risk of the energy commodity. In this chapter we will start

out with a brief treatment of the concept of price risk and hedging as a risk mitigation

technique, before we introduce some important terms and definitions such as the energy

portfolio, the portfolio price, the portfolio management authorisation and finally the

hedging strategy. Thereafter, we continue with a presentation of five portfolio insurance

strategies that may be used for price risk management: Constant Proportion Portfolio

Insurance, Dynamic Proportion Portfolio Insurance, Option Based Portfolio Insurance,

Step Hedge Portfolio Insurance and Stop Loss Portfolio Insurance. We conclude with a

short demonstration of how these are implemented in the etrm package.

3.3.1 The energy portfolio

A fundamental energy market participant (as opposed to a financial investor) has a

physical volume to be consumed, produced or delivered over a time interval in the future.

There is uncertainty both with respect to how much energy that is needed at each point

in time, as well as the total size of the volume over that interval. Typically, a prognosis

will be made based on fundamental variables relevant for the company in question.

Some common explanatory variables are planned production or activity level, holidays

and calendar effects, and weather. The future commodity spot price to be paid for

this volume is also unknown, and represent a significant financial risk, as illustrated in

previous sections.

Market players can mitigate some of the price risk by entering into forward market

contracts, locking in the price of a future delivery today. When we evaluate the values

of the future energy volumes, we can think of them as assets (or liabilities) exposed to

the same price risk as the traded contracts. The price risk of the energy volumes can be

mitigated by taking offsetting positions in the forward contracts. At this point we will

introduce the term energy portfolio.

Definition 1 (Energy Portfolio) Consider a physical energy market participant with

a volume prognosis for N future delivery periods with start and end dates (τ is, τ
i
e),

i = 1, 2, ..., N . The volume prognosis and corresponding risk offsetting positions in the

forward market is the energy portfolio of the market participant.
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The delivery periods most commonly used for reporting in the industry are years and

seasons. In the remainder of this thesis we will be using the former.
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Figure 3.4: Example consumption prognosis with maximum hedge rate (top) and port-
folio management authorisations for year, quarter and month contracts (bottom)

In order to sharpen our focus on the commodity price exclusively, we will not go further

into other risk factors such as counter-party, market liquidity, currency, and volume

and profile risk. The reader is referred to [Eydeland and Wolyniec, 2002] for further

details regarding these topics. We also assume that the underlying settlement reference

for the derivatives contracts match the commodity price for the volumes, disregarding

potential basis risk. The unit price of the portfolio, the portfolio price, is a key metric

in commodity price risk management.

Definition 2 (Portfolio Price) The unit price of energy at time t for a specific de-

livery period (τ is, τ
i
e), i = 1, 2, ..., N is termed the portfolio price, pt. It is calculated as

the market value of the volume prognosis and the forward market positions, per unit of

energy for the period in question.
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In this set up, a portfolio manager is allowed to trade in the forward market to reduce

price exposure of the portfolio. This is where the portfolio management authorisation

comes into play.

Definition 3 (Portfolio Management Authorisation) Consider a physical energy

market participant with an energy portfolio. The portfolio management authorisation for

the energy portfolio is a set of restrictions on trading activity:

• Maximum trading horizon (delivery periods available for trading)

• Maximum and minimum hedge rate per period, typically in ht ∈ (0, 1)

• Target portfolio price, p∗t , per period (cap or floor)

In practise, one could have more complex authorisations with time varying requirements

for the hedge rates, restrictions on re-selling transacted volumes, start and end dates for

trading per contract type, and more. It is important that the elements included in the

authorisation do not come in conflict with each other, and that the mandate is possible

to implement in the current market environment. The authorisation also has to match

the portfolio owner’s needs, experience and overall risk preferences.

An example portfolio management authorisation for the years 2022-2024 is illustrated in

Figure 3.4. For the year 2022, the portfolio manager is allowed to trade year, quarter

and month contracts. Further ahead in time, there are no monthly contracts available

for trading, or liquidity might be poor. Focus is kept on the yearly and quarterly instru-

ments. As time progresses and contracts of shorted length are made available for the

last two years, the mandate may be updated.

Going forward, we will focus on delivery periods and sub periods with constant base

load volumes. As illustrated in Figure 3.4, these can be used to approximate the volume

prognosis. When operating with base load periods, the price risk can be offset by taking

positions in standardised contracts in the forward market. In the remainder of the

chapter, we will be focusing exclusively on constant rate delivery and hedging with

yearly contracts. The portfolio price pt can then be calculated with

pt =
[
f0h0q +

t∑

i=1

fi(hi − hi−1)q + ft(1− ht)q
]
/q (3.10)

= f0h0 +
t∑

i=1

fi(hi − hi−1) + ft(1− ht) (3.11)
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where q is the required base load volume, ht ∈ (0, 1) the hedge rate and ft the futures

price at time t. Prior to trading pt = ft. The first two terms in (3.11) contain the

value of the transacted volumes, while the last term is the current market value of the

unhedged part of the portfolio.

In order to manage the risk we need to enter into positions in the forward market, and

those positions need to be within the limits set by the portfolio management authorisa-

tion. The overall objective is to control risk, and the key metric is the portfolio price.

Each day of the hedging period there is a wide array of possible hedge rates for each

of the contracts in the energy portfolio. The importance of how ht is determined is

illustrated in Figure 3.5.

Figure 3.5: Nordic forward and spot price for 2010

The price of the Nordic electricity forward ENOYR-10 varied significantly before it

reached expiry in late 2009. After climbing above 65 EUR/MWh during the first half

of 2008, the following financial crisis led to a sharp drop below 30 EUR/MWh. The

spot price realised during the delivery period was also very volatile. A consumer locking

in the price prior to the market fall without exit possibilities could end up with a lost

opportunity after the drop and considerable higher cost than the average spot price

delivered during 2010. These observations underline the importance of having a good

method for determining the hedge rates of the energy portfolio.
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3.3.2 Hedging strategies

The strategies to be presented here all aim to provide portfolio insurance, e.g. they seek

to protect the portfolio from adverse market price movements, in particular breaching a

pre-defined target price level for the portfolio. We start out with a quite parsimonious

definition that captures some of the key characteristics of a hedging strategy.

Timet0 T τs τe

trading period

contract period

Figure 3.6: Trading and delivery period for an energy forward contract

Definition 4 (Hedging Strategy) Consider a base load delivery period available for

trading in the portfolio management authorisation. A hedging strategy for the forward

contract covering the period is a function

F (ft, pt, θt) −→ ht (3.12)

where t are the days in the trading period t = 0, 1, ..., T , ft the forward price, pt the

portfolio price, θt a parameter vector and the hedge rate is ht ∈ (0, 1).

The strategies all evaluate current market and portfolio price and return a desired hedge

dependent on model parameters. We will elaborate more on the model specific param-

eters when we describe the strategies below. From this point we will proceed with a

description of energy price risk management, as seen from the perspective of the con-

sumer. This discipline of managing expected future energy costs is relevant for large

end users as well as suppliers procuring energy in the wholesale market for further dis-

tribution to end users. A similar picture, seen from the viewpoint of the producer side

can easily be achieved by reversing the logic. We proceed with a short description of

the strategies implemented in etrm. For further information regarding the technical

implementation, the reader is referred to Paper B.

Introduced by [Perold, 1986] and [Black and Jones, 1987], the Constant Proportion Port-

folio Insurance (CPPI) strategy was initially used as a means for placing a floor on the

value of investment portfolios in fixed-income instruments and stocks. The manager of

an investment portfolio would adjust the proportion of bonds and stocks and thereby

create a leveraged exposure to the risky assets, that would depend on how far away the
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portfolio value departed from the floor. In our context, the CPPI strategy is set up in

the following way: For a specific future delivery period, a target price p∗ equal to the

highest acceptable portfolio price is determined. The target price must be set higher

than the market price of f0 upon start of the trading period. The difference ct between

the target price and the portfolio price is termed the cushion. The key idea of CPPI

is that the proportion of the portfolio exposed to the market should be calculated as a

constant multiple m of the cushion. The multiple is given by m = µ−1, where the risk

factor µ > 0 is the maximum daily price change to be handled by the asset allocation

scheme. The hedge rate is given by

ht = 1− ct ×m (3.13)

= 1− (p∗ − pt−1)× µ−1 (3.14)

Note that the portfolio management authorisation for the hedging scheme require that

ht ∈ (0, 1). In order to prevent the consumer to overhedge or going short in the futures

positions, we require ht = 0 if ct > µ and ht = 1 if ct < 0. When starting the CPPI

hedging, the owner of the energy portfolio will set a target price and a risk factor based on

risk tolerance. The target price will typically be set above the market in such a way that

the cushion is smaller than the risk factor. In this scenario an increase in the price ft will

lead to a smaller cushion due to the effect of the unhedged volume on the portfolio price.

This would again dictate an increase in the hedge rate to keep the target price protected.

Conversely, when the price ft falls, the cushion increases, triggering a reduction in the

hedge to allow more volume to be exposed to the falling market. In case of a sudden and

significant price spike above the target price, the CPPI strategy can run into difficulties

with liquidity and gap risk, see for example [Jessen, 2014]. The significance of the gap

risk will be determined by the choice of risk factor, and the portfolio owner needs to

make a well informed decision prior to the start of the hedging. The strategy can also

lead to the portfolio price being locked in at or above the target level, and not following

the market back down in the case of a price fall.

Dynamic Proportion Portfolio Insurance (DPPI) resembles the CPPI strategy, but as the

name suggests, the proportion exposed to the market is no longer a constant multiple of

the cushion. The risk factor is allowed to vary with time, see for example Lee et al. [2008]

and [Chen et al., 2008] for two implementations focusing on equity portfolios. By varying

the multiple, the DPPI strategy aim to better capture changing market conditions, such

as the increase in volatility observed in Figure 3.5. The time dependent µt might be

determined by using Value-at-risk, Expected Shortfall or some other risk measure, see

[McNeil et al., 2015] for a thorough treatment of this topic. Here, we will implement a

model also allowing resetting of the target price p∗t , in order to push the protected price
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cap further down, if market conditions give us this opportunity. The hedge rate is now

calculated as

ht = 1− ct ×mt (3.15)

= 1− (p∗t − pt−1)× µ−1t (3.16)

Where p∗t = Min(λpt−1, p∗t−1) and λ =
p∗0
p0

. The target for the portfolio price is evaluated

at each point in time t and reset according to the decision rule above, when possible.

This may allow the DPPI strategy to lock in a lower cap in a falling market scenario.

The DPPI is still vulnerable to gap risk though, as well as the lock-in effect if the target

price level is reached, as described above.

The Option Based Portfolio Insurance (OBPI) aims to protect the energy portfolio from

price risk by replicating a European call option on the forward contract. We do not

procure the option, but rather synthesize the contingent claim by trading in the under-

lying asset. This delta hedging scheme relies on the option pricing model used. Since

the underlying asset is a forward contract, we utilize the Black-76 formula introduced

by [Black, 1976]. The price at time t of the European call option with exercise date T

and strike price K, on a futures contract with delivery start τ s ≥ T is given by

C(t, ft, K, σ, r) = e−r(T−t)[ftN(d1)−KN(d2)] (3.17)

where ft is the futures price and N is the cumulative distribution function of the standard

normal N(0, 1), where

d1 =
ln(ft/K) + (σ2/2)(T − t)

σ
√

(T − t)
(3.18)

d2 = d1 − σ
√

(T − t) (3.19)

and r is the risk free rate of interest, σ the volatility of the underlying futures price and

(T − t) is the time to exercise. The Black-76 model assumes a frictionless market with

no transaction costs or tax implications, and a constant risk free interest rate r both for

borrowing and lending money. Furthermore, the futures price is presumed to follow a

log-normal process with constant volatility σ. Some of these assumptions are clearly not

fulfilled, and there are other models better able to capture empirical observations such as

time-varying volatility and breach of the log-normal distribution assumption. Still, we

will rely on the Black-76 as this is widely used in the industry and considered sufficient

for our purpose.

From the equations above, we see that the price of a call option is sensitive to 1) price

changes in the underlying asset and 2) changes in the parameters used in the model.
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The sensitivity measures of the option premium with respect to these changes are often

called the greeks. Some of the most frequently used greeks are the delta (change in price

of underlying asset), vega (change in volatility), theta (change in time to expiration)

and rho (change in interest rate). The first sensitivity, the delta, is a measure of risk

exposure i.e. how the value of a derivative asset will change given a certain change

in the underlying asset price. The other greeks, however, are sensitivities regarding

model parameters. It might seem contradictory to evaluate changes in these, as they are

assumed constant in the Black-76 model. This issue is also commented in [Bjork, 2009],

where it is underlined that these greeks formally should be considered as sensitivities

with respect to misspecification of the model, rather than measures of risk exposure.

We shall focus on the delta, denoted ∆C . For the call option, this sensitivity measure is

calculated with

∆C =
∂C(t, ft, K, σ, r)

∂ft
= e−r(T−t)N(d1) (3.20)

If we evaluate ∆C over over the range of possible values for ft, we quickly see from the

expression for d1 and the properties of N(0, 1) that ∆C −→ 0 as ft −→ 0 (option is out-of-

the-money). Further, we see that ∆C −→ e−r(T−t) as ft −→ +∞ (option is in-the-money).

When ft = K (option is at-the-money), d1 = (σ2/2)(T−t)
σ
√

(T−t)
, and ∆C will be closer to 1

2
,

depending on the assumed risk free rate of interest, volatility and time to exercise date.

The ∆C plays an decisive role in portfolio hedging, and it is used in the derivation of the

Black-Scholes equation. Using arbitage arguments, the writer of a call can sell one unit

of the option and hedge the exposure by taking a position of ∆C units of the underlying

asset. Such a portfolio that is insensitive to small changes in the price of the underlying is

said to be delta neutral, see [Bjork, 2009]. The corresponding position in the underlying

asset is the delta hedge.

Consider a simple portfolio, consisting of a short position in the European call, and a

long position in the underlying futures contract. Formally, at time t we have

−1 = number of units of the call

ht = number of units of the futures contract at time t

ft = futures price at time t

The portfolio value is Vt = −1× C(t, ft, K, σ, r) + ht × ft, and delta neutrality require

∂

∂ft

[
− C(t, ft, K, σ, r) + ht × ft

]
= 0
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which is solved by

ht =
∂C(t, ft, K, σ, r)

∂ft
= e−r(T−t)N(d1) (3.21)

Thus, if we were to issue a call option, the option delta give us the number of units of the

underlying futures contract needed to hedge the short position in the option. This delta

hedge will only work for small changes in ft, and the position would have to be evaluated

and updated continuously if the portfolio should be perfectly delta neutral. In practice,

one would have to come up with some rules for when the futures positions should be

updated, and by how much at the time. This is probably what our counterparty would

do if we were to implement the OBPI strategy by purchasing a call option. The writer

of the call would calculate a daily hedge ratio based on the delta neutral position for the

underlying contract. The counterparty will then adjust the hedge ratio as the market

moves, aiming for a cost of rebalancing the hedge portfolio which is lower than what

is received in option premium. When we implement the Black-76 delta hedge strategy

we seek to replicate the characteristics of the option by using exactly the same hedging

regime as the seller of the option. For a specific future delivery period we will select the

appropriate futures contract and set strike price upon start of hedging. The daily hedge

ratio will give us the risk neutral position of the portfolio moving forward. The hedge

level will be increased when the market price ft go up in order to protect the portfolio.

A decreasing hedge rate when market price ft is falling makes it possible for the portfolio

price to fall together with the market.

Note that also for this strategy, we are facing some risks associated with the portfolio

rebalancing. In a situation with poor liquidity, we might struggle to transact the volumes

wee need at reasonable prices. If the price of ft spikes and we do not succeed to rebalance

as planned, the hedging strategy can lose some of its protection. As we may face these

issues of liquidity and gap risk, we should expect that the portfolio price most likely

will be capped at initial market price plus the premium of the European call option. In

practise, one could take these problems into account by adding a buffer on top of the

strike + option premium when setting the cap for the portfolio price. This would be

the same as making a conservative estimate of the replication costs. Our goal, however,

is to achieve the same protection as the option holding OBPI strategy, at a lower cost

than the option premium. Note that here, the expected target price to be protected for

the portfolio is given implicitly via the selected strike price K and the option replication

costs (premium).

p∗ ≈ K + Ĉ(t, ft, K, σ, r)
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In order to protect this price level, the level of trading activity and related transaction

costs cannot be too high before they make the rebalancing too costly.

The Step Hedge Proportion Portfolio Insurance (SHPI) strategy is also included as a

simple benchmark strategy. The hedge rate for a buyer at time t is given by

ht =





t
T−t0+1

if pt < p∗

1 if pt ≥ p∗
(3.22)

Consider a situation where the portfolio manager has a mandate allowing trading to

start 500 days prior to the contract expiry. I this case, the hedge rate would be gradually

increased during the period ht = 1
500
, 2
500
, ..., 1. This approach aim to smoothen out the

hedging price by mechanically spreading transactions over the entire trading period. If

the target level is reached before time T , the portfolio is fully hedged. The strategy is

vulnerable to the same gap risk and lock-in effects mentioned above, and it may require

large volumes to be locked in rather quickly if the target level is reached early in the

trading period.

Finally, the Stop Loss Portfolio Insurance (SLPI) is a rudimentary approach to hedging,

where the future volume is left unprotected unless the target level p∗ is reached. The

hedge rate is determined according to the rule

ht =





0 if pt < p∗

1 if pt ≥ p∗
(3.23)

In the event that the target price level is not reached before contract expiry, the volume

is left open. Also this approach is vulnerable to gap risk and target price lock-in in

a potentially falling market. It will also be the strategy most exposed to poor market

liquidity, as the entire volume needs to be procured in the event that target price level

is reached. This may also happen with the other strategies though, if the market price

ft first drop from the initial f0 level, leading to a low hedge rate, followed by a sharp

increase in price.

The strategies described above all implement a forward trading scheme procuring energy

prior to the actual consumption to protect against spot prices realised through the de-

livery period. However, the only approach that will automatically end up at a full hedge

rate hT = 1 at the time of contract expiry is the SHPI. In a scenario where the mar-

ket price evolves in a favourable way, the remaining strategies will lower hedge rates in

an effort to achieve lower prices for the portfolio. When approaching expiry, the portfo-
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lio manager has the option either to 1) lock in a desired hedge level for the contract, or

2) decide to leave the position as-is and ”roll-forward” into shorter duration contracts,

see the example mandate in Figure 3.4. It is important to underline that in practical

applications, the models presented here are contract-specific strategies to be included

into a complex multi-contract strategy managing positions matching the consumption

prognosis more closely, all within the limits of the management authorisation given by

the portfolio owner. This is a challenging task. The strategies and corresponding etrm

package portfolio insurance functions should be considered tools that may be used when

solving such a problem.

From Definition 4 and the presentation of the individual models above, we also see

that there has not been made any attempt to include fundamental factors explaining the

changes in ft when making decisions regarding hedging. Most energy market participants

will have a market view based on factors affecting the price, such as temperature, fuel

and carbon prices, wind and hydrology. One way to include this could be to treat the

portfolio insurance strategies as benchmarks, and allow deviations from the benchmark

within pre-defined limits. In a setting where OBPI is used, we could also mimic an

option trading scheme by resetting the strike K in the delta hedging based on market

price expectations. When expectations are included in the decision making, one can

dispute whether the activity performed by the portfolio manager still can be defined as

hedging, though. Further exploration of this approach to energy procurement is left for

future studies.

Before we move on with some strategy evaluation criteria we should underline one im-

portant point: If you enter into positions in the forward market in order to hedge against

future price risk, you can think of that activity as procuring insurance, and insurance

come at a cost. Even though the expected value of insurance agreements are negative,

people still buy them - due to risk aversion. Therefore, it would be reasonable to expect

to pay a (preferably low) premium relative to the market for the price risk manage-

ment, which will protect you in times of turmoil. When comparing the strategies in the

empirical analysis below, we will using the following metrics:

1. Difference between portfolio price and market price at contract expiry

2. Maximum difference between portfolio price and market price

3. Target price protection

4. Rebalancing and required trading activity

For the cases where the portfolio price does not reach the target price level, the first cri-

teria identify the added costs associated with hedging activity by comparing the achieved
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portfolio price at the contract expiry with the market price fT . When the market passes

the target level, the criteria measures savings achieved with hedging. The second met-

ric evaluate the maximum difference between the price of the portfolio and the market

over the entire trading period. A participant in the forward market will have to meet

margin requirements and manage cash flows for settlement, and this metric provide in-

sight to be considered in this regard. As mentioned above, the strategies are vulnerable

to gap risk. The third metric evaluate how effective the target price level protection has

been. As the DPPI might adjust the target during the trading period, the metric is cal-

culated by comparing the initial target price with final portfolio price. We also evaluate

the maximum difference between the portfolio price and the target over the entire trad-

ing period. Finally, rebalancing and trading activity is added to the evaluation criteria.

By calculating the proportion of transacted volumes over the volume q to be delivered,

we get the portfolio churn rate. This is an important input when assessing costs of trade.

An example of how the strategies can be implemented using the etrm package is pre-

sented below.

3.3.3 Price risk management with the etrm package

In this chapter we will explore how the hedging strategies perform when applied to actual

forward market data. The data set provided by Montel consists of daily closing prices for

16 yearly contracts for Nordic electricity (ENOFUTBLYR), for delivery in 2006-2021.

The first 12 contracts are of type Delayed Settlement Future where the mark-to-market

settlement is delayed to the delivery period. These contracts resemble traditional forward

contracts, but are typically cleared at a clearinghouse to manage counterparty risk. The

remaining part of the data set consists of the new products introduced at Nasdaq OMX

Commodities, e.g. traditional futures contracts with daily mark-to-market settlement.

Both have the Nordic system price as settlement reference.

The etrm package has tools for implementing trading strategies for price risk manage-

ment, for commercial hedgers with both long or short exposure. We will focus on a large

consumer in the following example. The strategy functions cppi(), dppi(), obpi(),

shpi() and slpi() all aim to achieve a favorable unit price for the energy portfolio,

while preventing it from breaching a predefined target price level, as described in previ-

ous chapter. They act as constructor functions for their corresponding S4 classes CPPI,

DPPI, OBPI, CPPI, SHPI and SLPI. Each of these classes have implemented the meth-

ods plot(), summary() and show(). This design makes it convenient to test alternative

assumptions regarding the model parameters and trading costs without too much effort.
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1 library(etrm)

2 load(file = "enocal.Rda")

3

4 # back test settings

5 q <- 30 # 30 mw base load delivery

6 rper <- 0.2 # constant risk factor 0.2 * f_0 for cppi

7 vol <- 0.14 # simple fixed annualized volatility

8 daysleft <- 750 # approximately three years horizon

9 r <- 0 # zero risk free interest rate

10 tcost <- 0.1 # 0.1 EUR/MWh fixed transaction cost

11 tdate <- enocal$Day # day number 1,..,750 for time vector

12

13 # lists for storing strategy objects

14 cppi_list <- list()

15 dppi_list <- list()

16 obpi_list <- list()

17 shpi_list <- list()

18 slpi_list <- list()

19

20 for (i in 1:( dim(enocal)[2]-1)){

21

22 # price , contract name and rf_t for contract i

23 f <- enocal[, (i + 1)]

24 cn <-names(enocal)[i + 1]

25 rper_t <- rep(rper , length(f))

26

27 # run strategies on contract i

28 obpi_list[[cn]] <- obpi(q = q, tdate = tdate , f = f, vol=vol ,

29 r = r, daysleft=daysleft , tcost = tcost)

30

31 # implicitly defined tper from option strategy

32 tper <- obpi_list[[cn]] @Results$Target [1]/f[1] - 1

33

34 cppi_list[[cn]] <- cppi(q = q, tdate = tdate , f = f, tper = tper ,

35 rper = rper , tcost = tcost)

36

37 dppi_list[[cn]] <- dppi(q = q, tdate = tdate , f = f, tper = tper ,

38 rper_t = rper , tcost = tcost)

39

40 shpi_list[[cn]] <- shpi(q = q, tdate = tdate , f = f, daysleft =

41 daysleft , tper = tper , tcost = tcost)

42

43 slpi_list[[cn]] <- slpi(q = q, tdate = tdate , f = f, tper = tper ,

44 tcost = tcost)

45 }

Listing 3.3: etrm strategies example
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In the R code in Listing 3.3, we run all strategies for the 16 contracts. The results will

naturally depend on the assumptions used in the test. Here we have assumed an annual

base load consumption equivalent to 30 MW, and a constant risk factor µ for the CPPI

calculated with µ = f0 × rper for each of the contracts. For simplicity and illustrative

purposes, we use a constant annualized volatility of 14 percent, and trading starts ap-

proximately three years (750 days) prior to contract expiry. We set the option strike

price K at-the-money first day of trading, and use the implicit target price from OBPI

to calculate target prices for the remaining strategies. We assume a risk free rate of in-

terest equal to zero, and constant trading costs equal to 0.1 EUR/MWh. The strategy

functions handle both dates and numeric time vectors, an integer vector is used here.

We also would like to underline that the inputs used here are not to be considered a best

attempt to achieve a specific goal with respect to price risk management, but merely for

illustrative purposes. The 80 strategy objects that have been generated are stored in

lists for analysis and evaluation. The metrics needed for the strategy evaluation can be

collected from the list elements. Some are also calculated by the summary() method:

1 > summary(dppi_list$‘Cal -07‘)
2 $Description
3 [1] "Hedging strategy of type DPPI and length 750"

4

5 $Volume
6 [1] 30

7

8 $Target
9 [1] 31.32706 31.32413 31.19073 31.07011 30.92757 30.41440 30.34167

30.21557

10

11 $ChurnRate
12 [1] 2.6

13

14 $Stats
15 Market Trade Exposed Position Hedge Target Portfolio

16 First 28.57 16 14 16 0.5333333 31.32706 28.62333

17 Max 59.00 16 15 30 1.0000000 31.32706 30.10367

18 Min 26.27 -2 0 15 0.5000000 30.21557 27.55633

19 Last 37.04 0 0 30 1.0000000 30.21557 30.10367

20 }

Listing 3.4: DPPI strategy summary() method example

As we can see in Listing 3.4, the DPPI strategy managed to lower the target price level

a number of times when applied to the Cal-07 contract. The reported churn rate tell

us the underlying volume has been traded 2.6 times during the three years. The largest
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trade was made at the very beginning, where the DPPI needed to transact 16 MW in

order to reach initial hedge rate of 53.3 percent. This is a consequence of the selected

target price and risk factor. The initial portfolio price deviate from market price due to

the transaction costs. Final portfolio price achieved is approximately 30.10 EUR/MWh,

almost 7 EUR/MWh lower than the market, which trended upwards most of the period.

We continue with some charts created with the plot() method to illustrate 2007 and

2017 results for all strategies.
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Figure 3.7: Market (red) and CPPI and DPPI results (blue) for Cal-07 and Cal-17

In the rising Cal-07 contract on the left side of Figure 3.7, there are minor differences

between the CPPI and the DPPI. For Cal-17 however, the DPPI successfully move the

target level down and secure a lower price for the portfolio. In Figure 3.8, all strategies

have a reasonable target level protection for the increasing Cal-07 contract. For the Cal-

17, the OBPI breach the target level, and the SLPI shows an example of the undesired

target level lock-in. In this test, the SHPI achieved the lowest portfolio price for Cal-17

by steadily locking in volumes in a falling market. When ft increased towards the end

of trading, SHPI was not strongly affected due to the already high hedge rate.
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Figure 3.8: Market (red) and OBPI, SHPI and SLPI results (blue) for Cal-07 and Cal-17
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Most large buyers of energy have a strategy for handling market price risk. They might

all run some hedging scheme, but the underlying reasons and motivation for doing so can

vary. Furthermore, their risk preferences are not the same. An energy supplier about to

sign a fixed price agreement with an industrial client will require a high degree of price

certainty in order not to get exposed to the risk associated with future price develop-

ment. A large real estate owner able to pass on some costs to tenants might not need

the same degree of predictability. The key point in this respect is that the nature of the

price risk can depend on individual characteristics of the owner of the energy portfolio,

who should select a strategy that matches the owners needs and risk preferences. The

evaluation metrics we defined above can serve as inputs for such decisions. The calcu-

lated test results can be found in Table 3.3 and Table 3.4.

Strategy Contract pT /fT Max(pt/ft) pT /p
∗
0 Max(pt/p

∗
t ) Churn

CPPI Cal-06 0.821 1.086 0.994 0.994 4.8
CPPI Cal-07 0.844 1.043 0.998 0.998 3.1
CPPI Cal-08 0.758 1.006 0.998 0.998 2.4
CPPI Cal-09 1.213 1.29 0.998 0.998 3.9
CPPI Cal-10 1.328 1.701 0.979 0.988 9.4
CPPI Cal-11 0.713 1.199 0.998 0.998 7.7
CPPI Cal-12 1.153 1.184 0.971 0.992 4.9
CPPI Cal-13 1.158 1.179 0.901 0.957 8.8
CPPI Cal-14 1.217 1.217 0.822 0.926 9.9
CPPI Cal-15 1.155 1.155 0.847 0.913 8.9
CPPI Cal-16 1.232 1.266 0.66 0.929 7.3
CPPI Cal-17 1.097 1.205 0.957 0.965 6.7
CPPI Cal-18 0.869 1.132 0.998 0.998 5.3
CPPI Cal-19 0.461 1.034 0.997 0.997 2.5
CPPI Cal-20 0.815 1.057 0.997 0.997 3.4
CPPI Cal-21 1.379 1.752 0.852 0.948 10
DPPI Cal-06 0.79 1.087 0.957 0.994 3.4
DPPI Cal-07 0.813 1.049 0.961 0.996 2.6
DPPI Cal-08 0.756 1.006 0.995 0.997 2.2
DPPI Cal-09 1.163 1.237 0.956 0.999 2.5
DPPI Cal-10 1.304 1.748 0.961 0.998 10.1
DPPI Cal-11 0.649 1.233 0.908 0.998 4.7
DPPI Cal-12 1.142 1.172 0.962 0.991 5.8
DPPI Cal-13 1.165 1.198 0.906 0.96 7.9
DPPI Cal-14 1.27 1.27 0.858 0.96 8.5
DPPI Cal-15 1.183 1.219 0.868 0.968 7.4
DPPI Cal-16 1.422 1.533 0.761 0.97 8.4
DPPI Cal-17 0.924 1.473 0.807 0.997 7.3
DPPI Cal-18 0.814 1.165 0.934 0.997 3.6
DPPI Cal-19 0.451 1.034 0.975 0.997 2.5
DPPI Cal-20 0.777 1.065 0.952 0.997 2.3
DPPI Cal-21 1.371 2.705 0.847 1.002 7.3

Table 3.3: Strategy evaluation CPPI and DPPI
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Strategy Contract pT /fT Max(pt/ft) pT /p
∗
0 Max(pt/p

∗
t ) Churn

OBPI Cal-06 0.834 1.072 1.01 1.01 5.5
OBPI Cal-07 0.862 1.047 1.02 1.02 3.8
OBPI Cal-08 0.775 1.007 1.02 1.02 3.9
OBPI Cal-09 1.218 1.232 1.002 1.056 7.7
OBPI Cal-10 1.207 1.294 0.89 1.006 7.1
OBPI Cal-11 0.782 1.152 1.094 1.094 12.2
OBPI Cal-12 1.145 1.15 0.965 1.022 9.3
OBPI Cal-13 1.111 1.117 0.864 0.955 5.5
OBPI Cal-14 1.13 1.13 0.764 0.925 5.6
OBPI Cal-15 1.109 1.12 0.814 0.913 4
OBPI Cal-16 1.159 1.182 0.62 0.929 4.9
OBPI Cal-17 1.154 1.188 1.007 1.022 6.1
OBPI Cal-18 0.958 1.115 1.099 1.099 9
OBPI Cal-19 0.475 1.033 1.027 1.027 4.1
OBPI Cal-20 0.838 1.057 1.026 1.026 4.1
OBPI Cal-21 1.174 1.346 0.726 0.949 5.5
SHPI Cal-06 0.827 1.06 1.002 1.002 1
SHPI Cal-07 0.85 1.071 1.005 1.005 1
SHPI Cal-08 0.767 1.017 1.009 1.009 1
SHPI Cal-09 1.221 1.299 1.005 1.005 1
SHPI Cal-10 1.363 2 1.005 1.005 1
SHPI Cal-11 0.68 1.028 0.951 0.964 1
SHPI Cal-12 1.192 1.23 1.005 1.005 1
SHPI Cal-13 1.107 1.168 0.861 0.996 1
SHPI Cal-14 1.196 1.196 0.808 0.918 1
SHPI Cal-15 1.07 1.127 0.785 0.912 1
SHPI Cal-16 1.51 1.729 0.808 0.939 1
SHPI Cal-17 0.854 1.313 0.746 0.919 1
SHPI Cal-18 0.879 1.145 1.009 1.009 1
SHPI Cal-19 0.473 1.115 1.023 1.023 1
SHPI Cal-20 0.826 1.037 1.012 1.012 1
SHPI Cal-21 1.215 2.389 0.75 0.954 1
SLPI Cal-06 0.849 1.047 1.028 1.028 1
SLPI Cal-07 0.856 1.078 1.012 1.012 1
SLPI Cal-08 0.77 1.021 1.013 1.013 1
SLPI Cal-09 1.225 1.303 1.008 1.008 1
SLPI Cal-10 1.365 2.002 1.006 1.006 1
SLPI Cal-11 0.724 1.079 1.013 1.013 1
SLPI Cal-12 1.19 1.227 1.003 1.003 1
SLPI Cal-13 1.303 1.389 1.013 1.013 1
SLPI Cal-14 1 1 0.676 0.919 0
SLPI Cal-15 1 1 0.734 0.912 0
SLPI Cal-16 1 1 0.535 0.941 0
SLPI Cal-17 1.154 1.408 1.007 1.007 1
SLPI Cal-18 0.875 1.139 1.005 1.005 1
SLPI Cal-19 0.475 1.119 1.026 1.026 1
SLPI Cal-20 0.824 1.034 1.009 1.009 1
SLPI Cal-21 1 1 0.618 0.954 0

Table 3.4: Strategy evaluation OBPI, SHPI and SLPI
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Market participants needing a high degree of price predictability could start by inspecting

the column pT/p
∗
0. From Table 3.3 we can verify that none of the initial target price

levels were breached for the CPPI and the DPPI. When looking closer at the column

Max(pt/p
∗
t ), we do see one minor breach of 0.2 percent of the downwards adjusted target

price for DPPI in Cal-17, but the portfolio price is well below initial target p∗0. Churn

rates are fairly high for both, and the portfolio manager will depend on sufficient market

liquidity in order to execute the strategy. We also keep in mind that calculated prices

in the analysis are including transaction costs. When comparing the two, we see that

DPPI achieved a lower pT/p
∗
0 in 12 out of 16 contracts. It also achieved a lower portfolio

price relative to the market pT/fT in 12 out of 16 cases. The premium paid via hedging

can in some years be large for both. For example, in the downwards trending Cal-16

contract, DPPI maintain a fairly high hedge rate due to the lowering of the target level,

thus ending up with a portfolio price 42.2 percent above the market. As the CPPI does

not readjust the target price level, the hedge rate is lowered during the trading period,

creating a smaller premium versus the market price. Finally, by studying Max(pt/ft),

we see that there will be periods were ability to meet margin requirements and manage

cash flows might be subject to a stress test. For the Cal-21 contract, the DPPI strategy

had a trading day where the locked-in portfolio price was 2.705 times higher than the

market price, possibly putting a strain on liquidity and cash management.

Similar comparisons can be made for OBPI, SHPI and SLPI by studying the results in

Table 3.4. Here, we see that these strategies have not offered the same level of target

price protection in this test. The largest breach of target level can be found for OBPI

in the Cal-11 contract, where pT ended 9.9 percent above p∗0. In cases where the market

price oscillate close to the strike price level K, the OBPI will make large adjustments

to the hedge rate, and accumulate costs as well as exposing the portfolio to gap risk.

Formally this effect can be studied by calculating the second order greek Gamma, which

give the rate of change for the option delta based on changes in ft. As the Cal-11

varied close to the 40 EUR/MWh level a significant part of the trading period, large

adjustments were made in hedge rate and the churn rate ended at 12.2. Since the SHPI

and SLPI strategies do not resell volumes, their churn rates are capped at 1. Looking

at the portfolio price versus the market at expiry, the worst performance was achieved

by the SHPI for Cal-16, where the portfolio price ended 51 percent above the market.

The largest strain on margin requirements and cash management would also be given by

the SHPI, where the largest difference between portfolio and market for Cal-21 was by

a factor of 2.389.

This concludes our illustrative example of how the etrm package may be used for man-

aging energy price risk. The case we have been studying has been fairly simple. In

practical applications, the strategies would have to be used on multiple contracts match-
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ing the volume prognosis more closely. The portfolio manager would also need to take

other risk factors into account, such as basis risk. In the case for Nordic electricity, this

can be handled via Electricity Price Area Differentials (EPAD) contracts. There will

also be additional focus on issues such as volume, profile and currency risk, and regu-

latory requirements. Lack of market liquidity for certain types of instruments is also a

challenge practitioners often face. Energy markets are complex. It is our ambition that

the etrm package provide some useful open source tools that may help decision mak-

ers and analysts to implement, evaluate and use alternative strategies for handling price

risk management.
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Chapter 4

Weather derivatives

In this chapter, we start with a brief discussion of weather risk and alternative tools for

risk mitigation. In the following section, we provide a short overview of temperature-

based derivatives, including common temperature indices, active markets and contract

types. We proceed with a literature review of alternative approaches to pricing these

instruments. Finally, we introduce the idea of using such contracts for managing ambient

air pollution risk, which is the topic for Paper C in the thesis.

4.1 Weather risk

The volatile and unpredictability nature of weather variations creates weather risks,

and this may have a significant financial impact on firms. Some industries are more

exposed than others. According to the Weather Risk Management Association, the

majority of inquiries regarding weather derivatives come from the energy, agricultural,

retail, construction, and transportation sectors, [WRMA, 2011]. Unfavorable weather

conditions such as abnormally mild winters, cool summers, and periods of protracted

drought or low wind can affect customer demand, and a producers ability to deliver the

desired quantity of goods to be sold. For an electric power plant, the mild winter would

typically lead to a reduction in energy to be delivered on the grid. In general, weather

is primarily considered a volume risk amongst commercial enterprises.

While insurance has long been used by corporations and governments to control the

risk of catastrophic weather occurrences [Mills, 2005], weather derivatives have gained

in importance as a risk management tool for uncertainty in cash flows caused by non-

catastrophic events. The instruments are written on indices linked to the sources of

weather exposure, such as temperature, rainfall, snowfall and wind. Unlike insurance,
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the holder of the contract does not need to file a claim and provide documentation of

a loss, the payoff is automatically paid out according to contract specifications. The

instruments are freely bought and sold in the financial markets, where fundamental

players can transact with each other. Insurance companies and participants from capital

markets, such as hedge funds and investment banks are also active. Weather derivatives

may be traded on exchanges, or over-the-counter (OTC). In OTC trading the parties in

the transaction also have flexibility to define structures that are tailor-made to match a

specific company’s exposure.

4.2 Temperature derivatives

Temperature-based contracts are by far the most popular and actively traded of all the

weather derivatives currently available [WRMA, 2011]. A possible explanation for this

might be that temperature is the weather phenomenon that represent a risk for most com-

panies, irrespective of industry. Temperature can also be closely related to other sources

of weather exposure, like rainfall, snowfall and wind. According to [Thind, 2014], the first

transaction containing a weather component was made in 1996 between Aquila Energy

and Consolidated Edison. This dual-commodity trade combined a purchase of electric

power with a temperature clause. The first pure weather trade was also based on tem-

perature. It took place in Milwaukee for the winter 1997-1998, with Enron and Koch In-

dustries. The Chicago Mercantile Exchange (CME) introduced exchange-traded weather

derivatives contracts later that year, see https://www.cmegroup.com/trading/weather/.

4.2.1 Settlement indices

The most frequently used temperature indices for derivatives contracts are the cumulative

average temperature (CAT), the cooling degree-day (CDD) and the heating degree-day

(HDD). These are based on the daily average temperature.

Definition 5 (Daily average temperature) Let T (t)max and T (t)min denote the max-

imum and minimum temperatures measured at a specific location for day t. The daily

average temperature for day t is

T (t) =
T (t)max − T (t)min

2
(4.1)

In practical applications, it is of vital importance that the temperature measurements
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are of high quality, and trusted by both sides of the transaction. The time series most

commonly used are published by neutral third parties, such as meteorology institutions.

For a given measurement period [τ1, τ2], the settlement indices are calculated with

CAT (τ1, τ2) =

τ2∑

t=τ1

T (t) (4.2)

CDD(τ1, τ2) =

τ2∑

t=τ1

max{T (t)− b, 0} (4.3)

HDD(τ1, τ2) =

τ2∑

t=τ1

max{b− T (t), 0} (4.4)

where T (t) is the average daily temperature for day t, and b is a base temperature

level, normally set at 18oC/ 65oF . The CAT index considers the accumulated average

temperature during a specific period. The degree-days indices focus on temperatures

breaching a pre-specified threshold. By accumulating the days above the base level,

the CDD index quantifies the need for cooling during the period. Similarly, the HDD

reflects the need for heating. HDD instruments can be traded in the winter season to

hedge against risks related to unusually low temperatures. CDD contracts may mitigate

risks during the summer season due to abnormal heat. Winter contracts typically cover

November 1 through March 31, and May 1 through September 30 is often used to define

the summer season. Contracts covering other time spans such as week, month and

quarter are also used. Instruments built on these indices may also be combined to

construct more complex payoff structures.
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To illustrate a use case for temperature derivatives, we look closer at some data from

the Nordic power market. The upper part of Figure 4.1 present the daily total power

consumption in GWh for the Nord Pool power exchange bidding area NO1 (central

eastern Norway). The bottom panel contain the HDD index calculated in Celsius with

(4.4) on temperature observations from the metering station at Blindern, Oslo. The

relationship between energy demand and temperature is quite strong, and a consumer

could hedge against events such as the early 2021 cold spell with a HDD-based contract.

It is worth noting that contracts written on the indices presented here are different from

the traditional derivatives used in equities and interest rate markets. The underlying

settlement reference, the temperature index, is non-tradable. This makes the weather

derivatives market incomplete. We cannot replicate the instruments by trading in the

underlying, as we did when delta hedging the call option in Chapter 3. We will discuss

the implications of this when exploring strategies for valuation below.

4.2.2 Markets and contract types

After the Chicago Mercantile Exchange established the first exchange-traded weather

contracts in 1999, the market for these products increased. In the following years, the

CME introduced derivatives linked to metering stations in a number of cities in the US,

Europe, Canada, Australia, and Japan. The majority of these financial instruments

measured cooling or heating degree days. Weather derivatives were also listed on other

market venues such as the The Intercontinental Exchange (ICE). At the time of writing,

the number of locations available at the CME has declined. The exchange currently of-

fer contracts for nine US cities, two European cities, and one Japanese city [CME, 2021].

The market for weather derivatives is relatively illiquid, and bid/ ask spreads are large.

The weather services marketed by ICE at present date are not standardized exchange

traded futures, but rather access to the OTC derivatives quotes in the weather data feed

on the ICE Chat. Even though weather represent a risk to many participants in the

modern economy, the need for customization can be quite high, making the standard-

ized contracts listed at exchanges less relevant for end users. The two European cities

available for temperature trading at the CME are London and Amsterdam. A Norwe-

gian power producer fearing a mild winter will not be able to implement a satisfactory

hedging scheme with instruments based on indices from these locations. This basis risk

is simply to great, and market players resort to bilateral agreements traded OTC with

specialized institutions, such as large energy traders and reinsurance companies. In [Till,

2014] it is argued that this type of market participants are the ones best suited to man-

age weather risk, due to their ability to tailor contracts to the needs of the counterparty.
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A disadvantage of trading off-exchange is the exposure to counterparty risk. In the event

that the seller of the temperature derivative is not able to meet contractual obligations,

the buyer might have to face a significant loss. This risk can be mitigated with bilateral

collateral requirements. Some of the significant players in the OTC weather derivatives

market can be found amongst the participants in the Weather Risk Derivative Survey

conducted by the Weather Risk Management Association [WRMA, 2011]. The list in-

clude major reinsurance companies and energy traders, such as Swiss Re, Centrica, EDF

Trading and Munich Re.

The most commonly used contract types in temperature markets are futures, swaps and

options based on the indices defined above. The futures contracts are agreements to buy

or sell the value of the selected index at a specific date in the future. For exchange traded

instruments, there is also daily cash settlement based on the mark-to-market value of the

position. In swap contracts, the two parties agree to exchange risk over a predefined time

period, where one side pays a fixed price, while the other pays a variable price. Swaps

can often be multi-period, involving a series of future payments. Finally, when using an

option contract, the holder pays a premium to the issuer up front. If the index breaches

an agreed strike level, the holder receive a payoff. The contracts normally include a

maximum payoff level. Even though most trades are non-standard OTC agreements,

they share some common attributes, such as the contract type, temperature index, and

measuring station.

We will illustrate with an example. Consider a large power consumer located in south-

east Norway who wants to protect itself against a spike in energy demand due to an

unusually cold winter. The consumer decides to buy a HDD call option for the period

December - February:

• Contract type: Call option

• Contract period: 01.12.2021 - 28.02.2022

• Measuring station: Blindern, Oslo

• Weather variable: Temperature (degrees in ◦C)

• Settlement index: HDD

• Strike level: 1.890 HDD

• Tick size: 10.000 EUR

• Maximum payout: 5M EUR

If the index passes the strike level, the option will give a payout. The 1.890 HDD strike

specified in the contract is equivalent to an average temperature of 18 − 1.890/90 = −3

degrees Celsius during the 90 day period. One tick corresponds to one heating-degree-



62 Weather derivatives

day, and the tick size determine the amount to be paid out by the contract. The profit

function for the power consumer can now be specified as:

Payoff = Min
[
(Maximum payout - Premium), (Tick size×Max(HDD− Strike, 0)− Premium

)
]

Assuming the option premium paid is 835.930 EUR and the index value turn out to be

2.300 HDD, the consumer will receive:

Payoff = Min
[
(5.000.000− 835.930), (10.000×Max(2.300− 1.890, 0)− 835.930)

]

= 3.264.070 EUR

We can also calculate a break-even level for the HDD index:

10.000× (HDD∗ − 1890)− 835.930 = 0

HDD∗ = (835.930/10.000 + 1.089) = 1.973, 59

This value corresponds to an average temperature of 18 − 1973.59/90 = −3, 93 degrees

Celsius. If the average temperature over the three months falls below this level, the

consumer will obtain a positive financial result from the temperature hedge. In the

event that the temperature average falls in between the break-even level and −3 degrees,

the option will be exercised, but the payout will not cover the option premium. If the

average temperature stays above −3 degrees, the contract will expire worthless. The

consumer can now hedge volume risk by entering into HDD options. The commodity

price may also be hedged, for example in the electricity futures market.

4.3 Valuation of temperature derivatives

Since the weather indices presented above are non-tradable, the market for weather

derivatives is said to be incomplete. The no-arbitrage approach often used when pric-

ing traditional financial derivatives cannot be utilized. In a complete market, we can

replicate the payoff structure of a derivative by establishing a self-financing portfolio

consisting of the underlying and a riskless asset. Via arbitrage arguments, one can ar-

rive at a price for the instrument by evaluating the cost of establishing the replicating

portfolio, see for example [Bjork, 2009]. In weather markets, this is not possible.

In the literature review by [Schiller et al., 2012], the methods for valuation of weather

derivatives are divided into three main categories: burn analysis, index modelling and

daily temperature modelling. There are however a number of initiatives that does not

fit into this grouping. Therefore, we follow [Benth and Saltyte-Benth, 2012] and add a
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fourth category: utility-based approaches. These four will be described further below.

The simplest method for pricing weather derivatives is the so-called historical burn anal-

ysis. This is an actuarial approach, where the price is estimated by simply calculating

the payoff of the instrument on historical temperature data. The time series may require

detrending, due to global warming and the heating effects from increased urbanization

described in [Alaton et al., 2002]. The derivative price is calculated as the expected

value of historical payoffs, often adjusted upwards with a risk premium [Jewson and

Brix, 2005]. A downside of this approach is the loss of of information when only relying

on the historical payoff calculations. It also require a fairly long temperature history,

and prices obtained typically have large standard deviation. If the weather has been

subject to change for example due to global warming, parts of the historical data may

also be less relevant.

Index modelling is yet another actuarial approach, where historical data is used to esti-

mate distributions for the relevant settlement index. Rather than being limited to the

historical data, we can perform a large number of simulations to estimate the average

payout, [Jewson and Brix, 2005]. Assuming a good estimate can be achieved, this ap-

proach may provide more stable price estimation compared to burn analysis, [Schiller

et al., 2012]. A benefit shared by both methods is the conceptual simplicity, but it may

be challenging to fit a suitable distribution for the index.

The work presented in [Cao and Wei, 2004] is an example of utility-based approaches.

They extend the equilibrium pricing framework from [Lucas, 1978], and include temper-

ature as another source of uncertainty in the economic environment. Weather is related

to the aggregated output in the economy, and numerical analysis finds the market price

of risk for temperature derivatives to be significant. A strength of this approach is that

it enables estimation of the market price of risk, but the framework relies on a host of

assumptions and would be complex to implement. Another example is [Davis, 2001],

where pricing is investigated using a marginal-utility approach, where participants in

the economy have different exposures to weather, and will only procure hedging instru-

ments if they gain an increase in utility. The HDD index and commodity prices are

modeled as geometric Brownian motions, allowing closed form expressions for swaps and

options. Also this model relies heavily on model assumptions, such as specification of

utility functions. Several other contributions can be placed in this category. [Platen and

West, 2004] suggest an approach to pricing which is based on the existence of an op-

timal benchmark portfolio, and [Brockett et al., 2006], proposes an indifference pricing

approach focusing on portfolio effects and possible hedging strategies.
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The final category of pricing methods is based on daily temperature modelling. By

creating a model for the daily average temperature (DAT), a large number of temperature

series may be simulated and used for valuation of the derivatives contracts. In some

situations, closed form pricing formulas may be derived. A considerable benefit of using

this approach is that all contracts at a single location may be priced using a single model.

This ensures consistency in contract prices. DAT modelling has gained popularity in the

weather derivatives literature, and there is a large number of studies and alternative

model specifications, see for example [Benth and Saltyte-Benth, 2012], [Alaton et al.,

2002] and [Dornier and Queruel, 2000].
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Figure 4.2: Daily average temperature, Blindern

As illustrated in Figure 4.2, the DAT is highly seasonal. The upper part of the chart

show daily temperatures the last ten years from the Blindern station in Oslo. The bot-

tom left histogram reveal the bimodality of temperature, whereas the bottom right chart

can be used to evaluate the distribution for daily temperature changes. These have been

made with data from the period 1950-2020. It’s worth noting that the temperature data

naturally will vary depending on the location of the measuring station. The tempera-

ture level in Norway will be quite different from readings from Morocco, but also the

magnitude of fluctuations may be different.

Based on the empirical properties of temperature, it is typically modelled as a mean

reverting process with seasonality. In [Dornier and Queruel, 2000], the model consist of
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two parts: a triginometric seasonal function and a random component. The seasonal

mean function is on the form

Tmt = A+Bt+ Csin(ωt+ ϕ) (4.5)

where t denotes time and ω = 2π/365. This specification allows a trend in temperature,

and the phase angle ϕ account for the fact that the coldest period of the year is not neces-

sarily at January 1. The mean-reverting process is modeled with an Ornstein-Uhlenbeck

process, which fluctuate around the seasonal mean. The volatility of temperature is

assumed constant, and the innovations are assumed to follow a Brownian motion. [Ala-

ton et al., 2002] improve this model by allowing non-constant volatility. Here, the DAT

process is defined as

dTt =

[
dTmt
dt

+ α(Tmt − Tt)
]
dt+ σtdWt (4.6)

where σt is a piecewise constant function with a fixed value for each month. The term
dTmt
dt

ensures the process reverts to the mean in (4.5), and a solution is obtained via Ito’s

Lemma. The solution when starting at temperature Ts is

Tt = (Ts − Tmt )e−α(t−s) + Tmt +

∫ t

s

e−α(t−τ)στdWτ (4.7)

[Alaton et al., 2002] use an approximation for the HDD index and the fact that (4.6) is

a Gaussian process to derive a pricing formula for HDD options. They argue that this

approach holds given that the probability of Max(18−Tt, 0) = 0 is very low in the winter

season. They also price the HDD options using monte carlo simulation, and find that

results are similar, but sensitive to the assumed market price of risk.

In [Brody et al., 2002] it is pointed out that temperature fluctuations around the seasonal

mean are Gaussian, with a long-range dependence. Therefore, they argue a fractional

Brownian motion is better suited for the noise driving process in the Ornstein-Uhlenbeck

process:

dTt = α(Tmt − Tt)dt+ σtdW
H
t (4.8)

where WH is a fractional Brownian motion. The solution is again found using Ito’s

Lemma, and pricing methods are developed for derivatives written on the HDD and

CAT indices. One weakness in this approach pointed out by [Benth and Šaltytė-Benth,

2005] is that (4.8) lack the
dTmt
dt

term which is needed to ensure reversion to the sea-

sonal mean. In the last mentioned paper, a structure similar to (4.6) is used, but with

Levy processes for the noise term. In [Schiller et al., 2012] a spline model is proposed

for modelling the DAT from a number of weather stations across the United States,
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whereas [Caballero et al., 2002] rely on ARMA and ARFIMA models. Campbell and

Diebold [2005] suggest an autoregressive time series model with linear trend and a sum

of trigonometric functions for describing the seasonality. By regressing the deseasonal-

ized and de-trended temperature against a large number of lagged observations, it differs

from the widely used Ornstein-Uhlenbeck approach. They find a large seasonal varia-

tion in the squared residuals of the model, which they suggest to handle with an ARCH

approach.

[Benth et al., 2007b] suggest a continuous-time autoregressive model (CAR) with seasonal

variation for modelling the daily average temperature. They let X(t) be a stochastic

process in IRp for p ≥ 1 defined by the vectorial Ornstein-Uhlenbeck equation

dX(t) = AX(t)dt+ epσ(t)dW (t) (4.9)

where ek is the kth unit vector in IRp, k = 1, ..., p and σ(t) > 0 is a real-valued and

square integrable function. A is the p× p matrix

A =




0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

...
...

0 0 0 0 1

−αp −αp−1 −αp−2 . . . −α1




(4.10)

where αk, k = 1, ..., p are constants. In order to represent X(t) explicitly, the multi-

dimensional Ito’s Lemma is applied to (4.9), and we get:

X(s) = exp(A(s− t))X(t) +

∫ s

t

exp(A(s− u))epσ(u)dW (u) (4.11)

for s ≥ t ≥ 0 and X(t) ∈ IRp. Then, the model for the daily average temperature

dynamics can be specified with

T (t) = Λ(t) +X1(t) (4.12)

where Λ(t) is a seasonal function similar to (4.5) and the stochastic component X1(t),

represented by a CAR(p) process is

X1(t) = e1
TX(t) (4.13)

where Xq is the qth coordinate of the vector X, q = 1, ..., p and e1
T denote the transpose

of e1. The seasonal volatility in the temperature residual process is modeled with a



4.3 Valuation of temperature derivatives 67

truncated Fourier series, which is also similar to (4.5), but without a trend. [Benth

et al., 2007b] estimate CAR(3) models on temperature data from Stockholm, Sweden.

They find a pronounced variation in volatility during the year, and the highest levels are

reached during the winter season and early summer. The modelling framework also allow

them to provide derivations of explicit prices for several futures and options contracts.

The weather, in particular temperature, represent a source of risk for many participants

in the economy. This exposure is likely to increase as the global warming trend lead

to more volatile weather patterns. In order to hedge against the financial risk, we need

to be able to design and price instruments at the local level, where a specific economic

activity is being affected. There is another phenomenon closely linked to the weather

that exhibit even stronger spatial variation. The level of ambient air pollution can vary

greatly within a country, but the severe cases are often found in highly urbanized areas,

where a significant proportion of value creation is taking place. The magnitude of the

issue is closely monitored by public agencies, and typically reported to the public using a

standardized scale, such as the Air Quality Index (AQI), [EPA, 2009], [EPA, 2021]. The

problem is particularly urgent in the mega cities of Asia, where rapid industrialization

and urbanization have led to a dramatic increase in air pollution. Many of these cities

have some of the highest pollution levels in the world, and the problem is compounded

by factors such as population density and lack of green spaces. These cities play an

important part in the global value chain, and they have millions of citizens. There are

numerous examples of extreme pollution incidents, such as the lock-downs and serious

pollution episodes in Beijing [An et al., 2007] and Delhi [Kumar et al., 2015].

What are the financial consequences of a pollution alert lock-down in Beijing, a city with

more that 22 million inhabitants? What if the financial risks arising from extreme urban

air pollution could be managed with instruments similar to the temperature derivatives?

This is the topic of Paper C.
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Chapter 5

Computer code

The R programming language [R Core Team, 2021] has been used to write all of the

computer code in this thesis. Most programming effort has been put into the develop-

ment of the package etrm presented in Paper B. The package is available on CRAN,

and can be installed and loaded into the R environment by running the following com-

mands:

1 install.packages("etrm")

2 library(etrm)

There are six functions in the package. These are msfc(), cppi(), dppi(), obpi(),

shpi() and slpi().

msfc(): Calculates the Maximum Smoothness Forward Curve (MSFC) for energy for-

ward contracts with flow delivery, as described in [Ollmar, 2003] and [Benth et al., 2007a].

The function arguments are: A date for when to calculate the curve, a Boolean vector

indication if a available contract should be included in the calculation, two vectors with

start and end dates for the contracts, a price vector, and finally a prior for the price

curve as an optional argument. It returns an S4 object of type MSFC which contains

details regarding the calculation method as well as calculation results stored in a data

frame. There methods plot(), summary() and show() are has been implemented for

the class for visualization, analysis and reporting.

The remaining five functions offer alternative forward trading strategies for hedging

purposes. They share a number of arguments, such as the volume to be hedged, a date

vector with trading dates, the futures price vector, assumed trading cost, and a Boolean

argument deciding whether the lot size of traded volume should be restricted to whole

numbers. Sharing of properties and functionality is handled with inheritance in the
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etrm implementation. The strategy classes inherit most of their fields from a parent

class GenericStrat, which has the methods plot(), summary() and show() associated

with it. The strategy functions are:

cppi(): Implements the Constant Proportion Portfolio Insurance (CPPI) strategy for

setting the portfolio hedge rate, see [Perold, 1986] and [Black and Jones, 1987]. Requires

the additional arguments tper and rper to set the forward market allocation. The

former is used to calculate a target price level to be protected, the latter for calculating

the risk factors, which again affects the gearing of the strategy. The function returns an

instance of the CPPI class.

dppi(): Implements the Dynamic Proportion Portfolio Insurance (DPPI) strategy for

price risk management [Lee et al., 2008]. Arguments are similar to cppi(), but the

target price can be subject to adjustments by the DPPI model, and rper is may be

vector with (non-constant) risk factors. An instance of the DPPI is returned as output.

obpi(): Implements a synthetic Option Based Portfolio Insurance (OBPI) strategy via

delta hedging, see [Black, 1976] and [Bjork, 2009]. Required additional arguments are

the option strike price level, assumed volatility, risk free rate of interest, trading days

per year and days to expiry. The obpi() aim to protect the strike price level by entering

into positions in the underlying futures contract using the Black-76 option pricing model

to determine hedge rates. The expected target level is hence set implicitly for this

strategy, where the portfolio price is not expected to breach a threshold given by the

strike, adjusted for option premium. The obpi() act as a constructor for the OBPI class.

shpi(): Implements the Step Hedge Portfolio Insurance (SHPI) strategy, a mechanical

benchmark approach where hedging positions are gradually built throughout the trading

period, aiming to smoothen out the price of the hedged volume. The shpi() function

require the tper argument to calculate a target price level. If this is reached, positions

are locked and not opened again. The function returns an instance of class SHPI.

slpi(): Implements the Stop Loss Portfolio Insurance (SLPI) strategy for hedging,

a simple benchmark where no positions are taken unless the target price level to be

protected is reached. In this situation a full hedge is entered, and it is not opened again.

An instance of the SLPI is returned as output.

The etrm package makes us of some other R packages, these are ggplot2 [Wickham,

2016], reshape2 [Wickham, 2007], and testthat [Wickham, 2011]. The project is ac-

tively maintained, and the code can be found at:

https://github.com/sleire/etrm.
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In order to make results reproducible, we have put the R code used in this PhD-project

in open source code repositories. These have been organized in accordance with the

structure in the thesis. The interested reader can recreate results in Chapter 3 by

running the code available at:

https://gitlab.com/sleire/energyrisk

If further details regarding results in Paper A or Paper C are of interest, the code can

be found at:

https://gitlab.com/sleire/lgportf

https://gitlab.com/sleire/aqider

These Git repositories can be used to replicate results in the papers, or to run a similar

analysis on new data sets.
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Chapter 6

Summary of papers

6.1 Portfolio Allocation under Asymmetric Dependence in Asset
Returns using Local Gaussian Correlations

Anders D. Sleire, B̊ard Støve, H̊akon Otneim, Geir Drage Berentsen, Dag Tjøstheim,

Sverre Hauso Haugen, (2021), Finance Research Letters, p. 102475.

It is well documented that there are asymmetric dependence structures between finan-

cial returns, and the correlations between certain asset classes may often strengthen dur-

ing crisis periods. This asymmetry can weaken the diversification effect achieved when

constructing a portfolio under the assumption that returns follow a joint-Gaussian dis-

tribution. In this paper we improve portfolio allocation by using a new non-parametric

measure of local dependence, the local Gaussian correlation. We extend the classical

mean-variance framework, and show that the portfolio optimization is straightforward

using our new approach. Local covariance matrices are estimated using local Gaus-

sian correlations for all pairs of assets in evaluation points that are selected via simple

moving averages of the returns series. Using a data set consisting of monthly index re-

turns from commodities, stocks and interest rate markets, the new method is shown to

outperform the equally weighted (”1/N”) portfolio and the classical Markowitz portfo-

lio. Results are evaluated with standard performance metrics such as the Sharpe ratio,

the Certainty Equivalent, the Sortino ratio and the Omega ratio. The need for portfo-

lio re-balancing is also taken into consideration and performance is assessed both with

and without transaction costs. The results in the paper indicate that standard methods

for portfolio construction can be improved with this approach, and we suggest further

analysis of alternative local covariance matrix calculation approaches.
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6.2 etrm: Energy Trading and Risk Management in R

Anders D. Sleire (2022), The R-Journal, 14/1, p. 320.

This paper introduces the R package etrm, which was developed during the PhD project.

Prices for commodities such as electricity and natural gas are typically subject to large

volatility and seasonal variation. These markets have some unique characteristics that

need to be considered when performing risk management tasks such as forward curve

calculation and price risk hedging. The relevant tools are often bundled into proprietary

Energy Trading Risk Management (ETRM) systems that are not openly available to the

public. The etrm package offers a transparent solution for building forward price curves

which is consistent with methods widely used in the industry. The package also provide

implementations of five portfolio insurance trading strategies that may be used for price

risk management with energy derivatives contracts. This paper serves as a general

introduction of the package into the R ecosystem. It provides the necessary background

from theory of finance, an overview of the package structure, available functions and

data sets, and examples of use. The tools included in etrm can be used for tasks such

as risk evaluations, analysis, back testing and decision support for trading.

6.3 Modelling and Pricing Air Pollution Derivatives

Anders D. Sleire, working paper.

An important part of the financial risk management discipline consist of handling market

price risk, often using derivatives contracts. Many organisations also aim to manage

volumetric risk. In industries such as energy, tourism, agriculture and construction,

businesses manage volume risk by trading in financial instruments that are linked to the

underlying source of this risk - the weather. By holding a weather derivatives contract

protecting against abnormally low temperatures, a farmer can secure income lost due

to failed crops. In this paper, we build upon weather derivatives theory and design

contracts whose payoff depend on measured air pollution levels in Asian mega cities. A

significant part of the global value chain is located in heavily polluted cities with large

populations. We argue that many of the adverse financial effects of pollution incidents

such as those in Beijing [An et al., 2007] and Delhi [Kumar et al., 2015] can be managed

with instruments resembling the contracts traded in temperature markets. Air pollution

data reported in accordance with the Air Quality Index (AQI) standard introduced by
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the US Environmental Protection Agency are reported by government agencies and made

available to the public. We develop stochastic models to describe the pollution dynamics

for a selection of cities in China, and show how these can be used to price derivatives

contracts written on AQI-based indices. The contracts may be used to manage financial

risk related to public health, government imposed lock-downs and changes in consumer

behaviour, to name a few examples. Some practical use cases are also presented and

discussed.
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A B S T R A C T
It is well known that there are asymmetric dependence structures between financial returns. Thispaper describes a portfolio selection method rooted in the classical mean–variance frameworkthat incorporates such asymmetric dependency structures using a nonparametric measure oflocal dependence, the local Gaussian correlation (LGC). It is shown that the portfolio opti-mization process for financial returns with asymmetric dependence structures is straightforwardusing local covariance matrices. The new method is shown to outperform the equally weighted(‘‘1/N’’) portfolio and the classical Markowitz portfolio when applied to historical data on sixassets.

1. Introduction
Modern portfolio theory aims to allocate assets by maximizing the expected return while minimizing risk. Markowitz (1952)provides the foundation for the mean–variance (MV) approach under the crucial assumption that the asset returns follow ajoint-Gaussian distribution. The idea is simple; highly correlated assets should be avoided to obtain a diverse portfolio. Severalempirical studies, however, document asymmetries in the distribution of financial returns. In particular, one often observes strongerdependence between assets when the market is going down. This phenomenon is known as asymmetric dependence structures, seee.g. Silvapulle and Granger (2001), Campbell et al. (2002), Okimoto (2008), Ang and Chen (2002), Hong et al. (2007), Cholleteet al. (2009), Aas et al. (2009), Garcia and Tsafack (2011).Asymmetric dependence may lead to less effective diversification of mean–variance balanced portfolios. Several studies seek toovercome this shortcoming by modeling the dependence structure using copula theory and then applying this modeling into theportfolio allocation problem, see e.g. Patton (2004), Hatherley and Alcock (2007), Low et al. (2013), Kakouris and Rustem (2014),Bekiros et al. (2015) and Han et al. (2017). These procedures are quite complicated, and a non-technical asset manager might beoverwhelmed by such choices. Moreover, there is no guarantee that portfolio allocations based on complex models will improveperformance compared with simpler methods, see e.g., DeMiguel et al. (2009) and Low et al. (2016), who show that outperformingthe naive 1∕𝑁 portfolio remains an elusive task.Without making assumptions about the nature of the underlying probability model, we present a simple adjustment to the MVapproach by replacing the correlation matrix of the assets with a local correlation matrix. This approach is based on the local Gaussiancorrelation (LGC), see Tjøstheim and Hufthammer (2013), and has been applied successfully to analyze dependence structuresbetween asset returns, see e.g., Støve and Tjøstheim (2014), Støve et al. (2014), Bampinas and Panagiotidis (2017) and Nguyen
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et al. (2020), but has yet to be utilized in the portfolio allocation setting. The LGC provides a market-dependent adjustment tothe correlation matrix that takes the current state of the market into account, and the main goal of this paper is to extend theclassical MV framework by using the theory of the local Gaussian correlation, hence taking into account any asymmetric dependencestructures between returns, and providing a simple alternative to the copula-based approaches. The organization of the paper is asfollows. Section 2 presents the classical mean–variance portfolio approach and the extension using the local Gaussian correlation.In Section 3, we present a data set consisting of six asset returns, and in Section 4, we investigate the performance of portfoliosconstructed by our new approach and other methods. Finally, Section 5 offers some conclusions. In the supplementary material, webriefly review the local Gaussian correlation and provide some additional empirical study results.
2. Portfolio allocation using local Gaussian correlation

Denote the returns on𝑁 risky assets at time 𝑡 = 1,… , 𝑛 by𝑹𝑡 ∈ R𝑁 . Let 𝑓𝑡(𝒓𝑡) denote the probability density function of 𝑹𝑡, and let
𝝁𝑡 ∈ R𝑁 and 𝜮𝑡 ∈ R𝑁 ×R𝑁 denote its expectation vector and covariance matrix, respectively. Finally, let 𝒘𝑡 = (𝑤1,𝑡,… , 𝑤𝑁,𝑡)𝑇 ∈ R𝑁be the vector of portfolio weights at time 𝑡, to be determined by the portfolio selection strategy. We adopt the full investmentconstraint: 𝑤1,𝑡 +⋯ +𝑤𝑁,𝑡 = 1, for 𝑡 = 1,… , 𝑛. Moreover, in the empirical example in Section 4, we investigate the performance ofour proposed procedure with and without the long-only constraint (0 ≤ 𝑤𝑖,𝑡 ≤ 1, 𝑖 = 1,… , 𝑁, 𝑡 = 1,… 𝑛). We do not include a risk-freeasset in our treatment of the portfolio allocation problem, but this does not impact our main findings.The general portfolio optimization problem requires the investor to select weights 𝒘𝑡 that maximizes an expected utility functionat each time 𝑡. We consider the classical mean–variance as well as the minimum-variance utility functions, given respectively as

𝑈1 = 𝒘𝑇
𝑡 𝝁𝑡 −

𝛾
2
𝒘𝑇

𝑡 𝜮𝑡𝒘𝑡 and 𝑈2 = −𝒘𝑇
𝑡 𝜮𝑡𝒘𝑡, (2.1)

where 𝛾 represents the investor’s degree of risk aversion. Maximizing 𝑈1 with respect to the portfolio weights provides a trade-offbetween expected volatility and expected returns for a given level of risk aversion (for simplicity fixed at 𝛾 = 1 throughout thepaper). Maximizing 𝑈2 results in the minimum variance portfolio.We take as our point of departure the portfolio allocation approach as described by DeMiguel et al. (2009), Tu and Zhou (2011),and Low et al. (2016) when estimating the expected return vector 𝝁𝑡 and covariance matrix 𝜮𝑡 for monthly data. The approach isgiven as follows;
1. Select a sampling window of 𝑀 trading months.2. In each month 𝑡 > 𝑀 , estimate the expected return vector 𝝁𝑡 and the covariance matrix 𝜮𝑡 by their empirical counterparts,using the 𝑀 preceding monthly returns.3. Rebalance the portfolio on the first trading day of each month by solving the relevant optimization problem, i.e. optimizingone of the utility functions in (2.1).
The above algorithm implicitly assumes that the covariance matrix 𝜮𝑡 completely describes the dependence structure amongthe assets under consideration. This property is not true in general unless the returns are jointly normally distributed, which is astrong assumption that is rarely satisfied in practice. Indeed, as mentioned in Section 1, there have been many attempts to replacethe normality assumption in portfolio selection with more sophisticated distributions that better fit the return density 𝑓𝑡. However,this also results in a more complicated optimization routine than under the classical Markowitz framework indicated in the threesteps listed above.We propose to describe asymmetric dependence by making adjustments directly to the covariance matrix 𝜮𝑡, which allows us touse the classical Markowitz formulation. To this end, we employ the local Gaussian correlation. The idea originated in Tjøstheim andHufthammer (2013), who in turn based themselves on the local parameter concept of Hjort and Jones (1996). The latter authorsapproximate an unknown density function 𝑓 (𝒓) by fitting a parametric family 𝑓 (𝒓,𝜽) locally to 𝑓 (𝒓), where 𝜽 ∈ 𝛩 is an unknownparameter in a parameter space 𝛩. This means that instead of constructing a single estimate 𝜽̂ of 𝜽, they rather estimate a parameterfunction, 𝜽̂(𝒓), meaning that different members of the parametric family {𝑓 (𝒓,𝜽),𝜽 ∈ 𝛩} approximate 𝑓 (𝒓) in different parts of thedomain of 𝑓 (𝒓). Here, 𝒓 represents a generic location in the domain of 𝑹𝑡.Hjort and Jones (1996) estimate 𝜽(𝒓) using a nonparametric local likelihood procedure, and Tjøstheim and Hufthammer (2013)consider the special case where {𝑓 (𝒓,𝜽)} is the multivariate Gaussian distribution, that is, 𝜽 = (𝝁,𝜮). Under this specification, it isnatural to interpret the local covariance matrix 𝜮(𝒓) as a measure of local dependence, which in particular gives a natural descriptionof the asymmetric dependence relationships so often observed in financial returns.Consider, for example, the observed returns on two of the assets in our data set displayed in the left panel of Fig. 1. The classicalGaussian assumption results in a single estimated covariance matrix 𝜮̂; while the local likelihood estimate 𝜮̂(𝒓) is a function of 𝒓.In the right-hand panel of Fig. 1 we see the corresponding local Gaussian correlation, which clearly indicates that these returns aremost strongly dependent in the lower left part of the distribution.In order to incorporate the asymmetry observed in the right-hand panel of Fig. 1, we propose to replace step 2 in the aboveprocedure with the following:
2.’ In each month 𝑡 > 𝑀 , estimate the expected return vector 𝝁𝑡 by its empirical counterpart, and the local Gaussian covariancematrix 𝜮𝑡(𝒓), using the 𝑀 preceding monthly returns.
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Fig. 1. Observations on two of the assets considered in the empirical analysis and the corresponding estimated local Gaussian correlation.
Table 1Overview of the data series and abbreviations.Name Description
FTALLSH FTSE Actuaries All Share IndexS&P500 Standard and Poor’s 500 IndexBMUK10Y UK Benchmark 10 Year DS government bond IndexBMUS10Y US Benchmark 10 Year DS government bond IndexEWCI Thomson Reuters Equal Weight Commodity IndexGSGCSPT Standard and Poor’s GSCI Gold Index

There are several approaches for choosing the evaluation point 𝒓. A risk-averse investor can guard against large losses by selectingan evaluation point representing the asset returns during crisis periods. In this way, the corresponding estimated local covariancematrix reflects the (historical) dependence structure during crisis periods, provided that the window length 𝑀 is chosen sufficientlylarge. However, the selection of the evaluation point can also be dynamic, i.e. 𝒓 = 𝒓𝑡. For instance, the evaluation point maycorrespond to a subjective opinion of where the investor thinks the market is heading in the following trading month. The selectionmay also be based on more advanced statistical predictions.In the empirical analysis in Section 4, we opt for a simple data-driven selection of evaluation points by computing the averageof the last three months of observed returns. More specifically, the evaluation point at time 𝑡 is defined for all pairs of assets 𝑖, 𝑗 as
𝒓𝑡 =

(
1
3

3∑
𝑘=1

𝑅𝑖
𝑡−𝑘,

1
3

3∑
𝑘=1

𝑅𝑗
𝑡−𝑘

)
. (2.2)

This is a simple way of letting the covariance matrix dynamically adapt to the dependence structure of the market under thenaïve assumption that the dependence structure between asset returns in month 𝑡 is similar to the dependence structure of assetreturns in the neighborhood of 𝒓𝑡. As the empirical analysis in Section 4 will demonstrate, this simple selection of evaluation pointsperforms well in practice.
3. Data

Our data set consists of monthly closing prices on six US dollar-denominated indices sourced from Refinitiv (past ThompsonReuters) Datastream. We calculate the returns as 100 times the difference in the log of the price indices. The sample period extendsfrom February 1980 to August 2018, yielding 463 monthly return observations of the following assets: FTSE Actuaries All ShareIndex, (FTALLSH), Standard and Poor’s 500 Index (S&P500), UK Benchmark 10 Year DS government bond Index (BMUK10Y), USBenchmark 10 Year DS government bond Index (BMUS10Y), Thomson Reuters Equal Weight Commodity Index (EWCI), and Standardand Poor’s GSCI Gold Index (GSGCSPT) (see Table 1).From the descriptive statistics in Table 2, we note that all of the returns are skewed and show relatively high kurtosis. Normalityis rejected with the Jarque–Bera test on the 1% level for all series. This suggests that the multivariate normal distribution witha global covariance matrix does not provide a sufficient description of the dependence structure, particularly in the tails of thedistribution.
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Table 2Correlations and descriptive statistics for the asset returns studied in the empirical analysis.FTALLSH S&P500 BMUK10Y BMUS10Y EWCI GSGCSPT
Global correlation matrixFTALLSH 1S&P500 0.760 1BMUK10Y 0.184 0.017 1BMUS10Y −0.067 −0.029 0.489 1EWCI 0.246 0.288 −0.094 −0.185 1GSGCSPT 0.038 0.031 0.080 0.077 0.483 1
Local correlation matrix, bear market (lower 5% percentiles)FTALLSH 1S&P500 0.843 1BMUK10Y 0.174 −0.017 1BMUS10Y 0.020 0.034 0.635 1EWCI 0.161 0.185 −0.140 −0.224 1GSGCSPT −0.135 −0.131 0.204 0.215 0.480 1
Descriptive statisticsObservations 463 463 463 463 463 463Mean 0.628 0.704 0.769 0.583 0.079 0.177Std. Dev. 4.588 4.406 2.376 2.417 3.511 5.211Variance 21.050 19.413 5.643 5.839 12.326 27.159Skewness −1.300 −0.968 −0.128 0.453 −0.592 0.026Kurtosis 6.288 3.665 1.325 1.960 3.775 3.036Jarque–Bera 903.903 335.969 36.135 91.622 306.377 180.971Sharpe ratio 0.137 0.160 0.324 0.241 0.023 0.034Max. drawdown 49.887 59.811 15.764 12.035 48.397 73.680Min −32.711 −24.677 −7.824 −7.600 −20.050 −21.8871 Quartile −1.474 −1.694 −0.585 −0.922 −1.794 −2.668Median 1.176 1.242 0.843 0.497 0.151 −0.1613 Quartile 3.559 3.265 2.151 1.853 1.998 2.899Max 12.523 14.612 8.851 12.660 13.384 26.336

The two top panels in Table 2 show the global and local correlation matrices over the entire sampling period. The latter isconstructed for a bear market scenario using the lower 5% percentiles for the evaluation point selection in the pairwise calculationapproach described in the supplementary material. The strongest positive and negative correlation is observed between the stockindices FTALLSH and S&P500 (𝜌̂ = 0.76), and between EWCI and BMUS10Y (𝜌̂ = −0.185), respectively. The corresponding LGCsin the bear market scenario are 𝜌̂ = 0.843 and 𝜌̂ = −0.224, respectively, indicating the ability of the LGC to capture asymmetricdependence structures, see also Tjøstheim and Hufthammer (2013).
4. Empirical results

Our analysis1 compares the portfolio selection strategies listed in Table 3 by evaluating their performance using both terminalwealth as well as a range of risk-adjusted performance measures. Following Low et al. (2016), we use the naïve 1∕𝑁 weightedportfolio strategy as a benchmark model in the analysis. This strategy distributes weights equally across the portfolio at the startof the sampling period and is left unadjusted for the rest of the investment horizon. Tu and Zhou (2011) find that longer samplingwindows result in improved portfolio strategy performance; hence we use both 𝑀 = 120 and 𝑀 = 240 month sampling windows.We report the 𝑀 = 240 in the following sections. The corresponding results using 𝑀 = 120 months are given in the supplementarymaterial.Inspired by Low et al. (2013), we proceed to evaluate the portfolio rebalancing, terminal wealth as well as the risk-adjustedperformance for each of the strategies. A descriptive analysis of out-of-sample results is available in the supplementary material.
4.1. Portfolio rebalancing and terminal wealth

Table 4 provides a summary of the portfolio rebalancing analysis and the terminal wealth reached by each of the strategies. Theaverage standard deviation within target portfolio weights across the entire out-of-sample time period is calculated as follows:
𝜎̄𝑘 =

∑𝑛−𝑀
𝑡=1 𝜎𝑡,𝑘
𝑛 −𝑀

,

where
𝜎𝑡,𝑘 =

√√√√ 1
𝑁

𝑁∑
𝑖=1

(𝑤̂𝑖,𝑡,𝑘 − 𝑤̄⋅,𝑡,𝑘)2,

1 Reproduce results or perform new studies with: https://gitlab.com/sleire/lgportf
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Table 3Portfolio strategies applied in the empirical analysis. All strategies allowing short sales have a lower limit on portfolio weightsequal to −0.5.Strategy Description
Benchmark strategyEW 1∕𝑁 (equal weight portfolio) without rebalancingGlobal approachMVS Mean–variance portfolio with short salesMVSC Mean–variance portfolio with short sales constraintMIN Minimum variance portfolioMINC Minimum variance portfolio with short sales constraintLocal approachMVS-L Mean–variance portfolio with short sales using local covariance matricesMVSC-L Mean–variance portfolio with short sales constraint using local covariance matricesMIN-L Minimum variance portfolio using local covariance matricesMINC-L Minimum variance portfolio with short sales constraint using local covariance matrices

Table 4Portfolio rebalancing analysis and terminal wealth based on an initial investment of $1 for the different strategies (cf. Table 3) considered. Window size 𝑀 = 240months.
𝜎̄𝑘 Max. adj. Min. adj. Avg.turnover Wealth Wealth incl.tcost

Benchmark strategyEW 0 0 0 0 2.231 2.231
Global approachMVS 16.663 9.228 −6.741 6.325 2.605 2.551MVSC 15.813 9.228 −7.426 5.622 2.571 2.524MIN 16.249 5.036 −4.434 3.090 2.729 2.701MINC 15.952 5.039 −4.428 2.793 2.742 2.717
Local approachMVS-L 15.660 73.184 −89.316 16.967 2.855 2.698MVSC-L 14.253 18.096 −26.245 12.105 2.745 2.637MIN-L 17.014 53.636 −79.931 21.617 2.953 2.749MINC-L 15.243 19.646 −26.028 13.762 2.910 2.780

The Max.adj. and Min.adj. is the maximum values for positive and negative weight adjustments, respectively. Avg.turnover is defined in Eq. (4.1). Basis pointsof 15 per transaction are imposed as costs.

and where 𝑤̂𝑖,𝑡,𝑘 is the portfolio weight for asset 𝑖 at time 𝑡 using portfolio strategy 𝑘, and 𝑤̄⋅,𝑡,𝑘 is the average weight across the 𝑁assets in portfolio 𝑘 at time 𝑡. The maximum values for positive and negative weight adjustments are the largest positive and negativeweight changes on the asset level. Following DeMiguel et al. (2009), we also report the average turnover, which is calculated as
Average turnover = 1

𝑛 −𝑀

𝑛−𝑀∑
𝑡=1

𝑁∑
𝑖=1

(|𝑤̂𝑖,𝑡+1,𝑘 − 𝑤̂𝑖,𝑡,𝑘|), (4.1)
We compute terminal wealth with and without a transaction cost of 15 basis points; such cost is comparable to prior studies, seee.g Low et al. (2016).The variability of portfolio weights reported in Table 4 shows no systematic differences between the local and global approaches.Looking at the maximum and minimum adjustments of portfolio weights, however, there are clear differences. The local Gaussianstrategies require adjustments of larger magnitude in both directions. This is particularly the case for the unconstrained modelsallowing short sales. Viewed across all strategies, we see larger and more frequent adjustments in the local portfolio strategies.We see that increased trading volume translates into lower terminal wealth when transaction costs are included in the analysis.However, all local Gaussian strategies achieve higher terminal wealth than their traditional counterparts, also when transaction costsare included. The top-ranked strategy exclusive costs is MIN-L. When costs are included, the long-only portfolio MINC-L achievesthe best result.Fig. 2 shows wealth accumulation and drawdowns for the hypothetical investment of $1 in each of the nine strategies includedin the analysis. As seen in the upper part of the figure, the local Gaussian MIN-L produces the largest final wealth when disregardingtrade costs. It remains top-ranked during most months in the sample and suffers from smaller drawdowns in volatile periods suchas the 2008 Financial Crisis. During this period, the EW strategy loses out substantially, which partially explains the overall poorperformance of this strategy relative to the rest. The other local strategies also performs better than the corresponding global onesduring this period. This is as expected, as we typically observe higher local dependence between asset returns during crisis periods(see e.g. Støve and Tjøstheim (2014)). When transaction costs are included, the strategy MIN-L still performs well but is surpassedby the constrained MINC-L, which has a lower turnover.In Fig. 3, we see an illustration of the difference between the traditional Markowitz minimum variance, short sale constrainedportfolio (MINC), and the proposed local counterpart (MINC-L). In the top panel, we see the estimated global and local variancesof one of the assets in our example (EWCI) and the corresponding weight as a function of time. The local estimates are naturally



Finance Research Letters 46 (2022) 102475

6

A.D. Sleire et al.

Fig. 2. Wealth accumulation of the different strategies based on an initial investment of $ 1, using a rolling window of size 𝑀 = 240 monthly observations, topplot excluding transaction costs, bottom plot including transaction cost of 15 basis points per transaction.

more volatile due to their nonparametric estimation. However, they are also more sensitive to the state of the market, which ismost easily visible during the financial crisis of 2008. The local variance of the asset increases sharply in this period, which isimmediately reflected in the portfolio weight that quickly decreases to zero. We see similar effects for other instances of increased
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Fig. 3. Top panel: The estimated variance for one of the assets (EWCI) in our sample for the minimum variance and short sales constrained portfolio withtraditional (global) Markowitz optimization (MINC), as well as the corresponding local version (MINC-L). In the bottom panel, we see the corresponding weightfor this asset under the two strategies. See the online appendix for a corresponding plot covering all the assets in this example. The sample window is 𝑀 = 240months.

local variance. Note also that under the traditional (global) estimate, the estimated global variance reflects the financial crisis inthe entire remaining sample period, leading to smaller investments in this asset than for the locally estimated portfolio.
4.2. Evaluation of risk-adjusted performance

Table 5 reports the out-of-sample performance of the different strategies considered using the following risk-adjusted metrics;The Sharpe ratio (Sharpe, 1966), the two modified Sharpe ratios VaR Sharpe, and ES Sharpe, where the Value at Risk and ExpectedShortfall are used as risk measures Gregoriou and Gueyie (2003) and Favre and Galeano (2002). We also consider the CertaintyEquivalent (CEQ), the Sortino ratio (Sortino and Price, 1994) and finally, the Omega ratio (Keating and Shadwick, 2002). All metricsproduce high values for the best-performing strategies. Furthermore, we have performed the z-test of Ledoit and Wolf (2008), whichis applied to the Sharpe Ratios to indicate the statistical differences for all MV optimizations against the 1∕𝑁 benchmark.Results excluding and including transaction costs are reported in Panel A and B, respectively. In both cases, the local portfoliostrategies systematically outperform their traditional counterparts. Furthermore, we note that the local minimum variance portfoliohas the highest performance across all metrics. The Sharpe and the annualized Sharp ratios prefer the long-only version (MINC-L), while the Var Sharpe, ES Sharpe, Sortino, and Omega ratios prefer the unconstrained version (MIN-L). The CEQ prefers theconstrained version when costs are excluded and the unconstrained version when costs are included.
5. Concluding remarks

The results in this paper suggest that challenges related to return asymmetries may be handled in a familiar and well-establishedframework for portfolio management by replacing the global covariance matrix with a local version. Improved performance andsimplicity are some of the appeals with the local Gaussian approach to portfolio management, even when considering highertransaction costs due to increased rebalancing requirements. There are, however, matters to keep in mind when implementing theapproach. The selection of evaluation points for calculating the pairwise local correlations will affect the local Gaussian covariancematrix. We have evaluated alternative approaches to the moving evaluation point selection without observing substantial changesin results and conclusions. Nevertheless, there is a variety of options and possibilities for this choice. A more thorough analysis ofthese effects is left for future studies.
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Table 5Out-of-sample performance for the different portfolio strategies (cf. Table 3) considered. The sample window is 𝑀 = 240 months.Sharpe VaR Sharpe ES Sharpe Ann. Sharpe CEQ Sortino Omega
Panel A: Ex. transaction costs
Benchmark strategyEW 0.174 0.110 0.057 0.577 0.353 0.263 1.593
Global approachMVS 0.267 0.179 0.099 0.919 0.433 0.427 2.025MVSC 0.264 0.175 0.097 0.905 0.426 0.417 2.009MIN 0.289∗ 0.198 0.116 0.999 0.455 0.474 2.120MINC 0.290∗ 0.199 0.117 1.000 0.457 0.474 2.120
Local approachMVS-L 0.276∗ 0.203 0.115 0.951 0.472 0.472 2.126MVSC-L 0.270∗ 0.193 0.107 0.929 0.454 0.453 2.075MIN-L 0.301∗ 0.317 0.317 1.041 0.489 0.567 2.303MINC-L 0.309∗ 0.240 0.157 1.070 0.482 0.554 2.268
Panel B: Incl. transaction costs
Benchmark strategyEW 0.179 0.113 0.058 0.593 0.362 0.270 1.613
Global approachMVS 0.261 0.174 0.097 0.895 0.423 0.415 1.989MVSC 0.258 0.171 0.095 0.885 0.418 0.407 1.978MIN 0.285∗ 0.194 0.114 0.982 0.449 0.465 2.095MINC 0.285∗ 0.195 0.115 0.985 0.451 0.466 2.097
Local approachMVS-L 0.262 0.188 0.106 0.900 0.448 0.440 2.041MVSC-L 0.260 0.183 0.101 0.890 0.438 0.430 2.014MIN-L 0.281 0.279 0.279 0.969 0.456 0.518 2.174MINC-L 0.295∗ 0.225 0.148 1.019 0.461 0.522 2.182

The maximum values for the risk-adjusted performance metrics are in bold. 15 basis points per transaction is imposed as costs in Panel B. ‘*’ indicates that theSharpe ratio is statistically different on the 5 percent level from the benchmark (EW) strategy using the z-test of Ledoit and Wolf (2008).
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1 Local Gaussian correlation

This paper relies on the recent developed dependence measure, the local Gaussian correlation
(LGC), introduced by Tjøstheim and Hufthammer [2013]. This is a local characterization of
dependence, and this idea has also been extended to several different situations, as test of
independence, see Berentsen and Tjøstheim [2014], Lacal and Tjøstheim [2017] and Lacal and
Tjøstheim [2019], density and conditional density estimation, see Otneim and Tjøstheim [2017]
and Otneim and Tjøstheim [2018], a local Gaussian partial correlation, Otneim and Tjøstheim
[2021], and local Gaussian spectral estimation, see Jordanger and Tjøstheim [2020]. Finally,
the relationship between the local Gaussian correlation and different copulas has been studied
in Berentsen et al. [2014]. For completeness, we briefly present the local Gaussian correlation
in a standard way, and we note that this section closely follows the presentation of the LGC in
Tjøstheim et al. [2021].

Let R = (R1, R2) represent the return on two risky assets with density f(r) = f(r1, r2).
For simplicity we drop the time index in the following. We approximate f locally in each point
r = (r1, r2) by a Gaussian bivariate density, ψr1,r2(v), where v = (v1, v2) are running variables.
Let µ(r) = (µ1(r), µ2(r)) be the mean vector in the normal distribution having density ψr,
σ(r) = (σ1(r), σ2(r)) is the vector of standard deviations, and ρ(r) is the correlation coefficient

∗Corresponding author. Tel. +47 55 58 28 86. E-mail: Bard.Stove@math.uib.no.
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in the normal distribution ψr. The approximating density is then given as

ψr = ψ(v, µ1(r), µ2(r), σ2
1(r), σ2

2(r), ρ(r)) = 1
2πσ1(r)σ2(r)

√
1− ρ2(r)

× exp
[
− 1

2
1

1− ρ2(r)
((v1 − µ1(r))2

σ2
1(r) − 2ρ(r)(v1 − µ1(r))(v2 − µ2(r))

σ1(r)σ2(r)

+ (v2 − µ2(r))2

σ2
2(r)

)]
. (1.1)

Moving to another point r′ = (r′1, r′2) gives another approximating normal distribution ψr′

depending on a new set of parameters (µ1(r′), µ2(r′), σ1(r′), σ2(r′), ρ(r′)). One exception to
this is the case where f itself is Gaussian with parameters (µ1, µ2, σ1, σ2, ρ), in which case
(µ1(r), µ2(r), σ1(r), σ2(r), ρ(r)) ≡ (µ1, µ2, σ1, σ2, ρ).

The population parameter vector, θ(r) def= (µ1(r), µ2(r), σ1(r), σ2(r), ρ(r)), are obtained by
minimizing the local penalty function measuring the difference between f and ψr. It is defined
by

q =
∫
Kb(v − r)[ψ(v,θ(r))− ln{ψ(v,θ(r))}f(v)]dv (1.2)

where Kb(v−x) = (b1b2)−1K1(b−1
1 (v1−r1))K2(b−1

2 (v2−r2)) is a product kernel with bandwidths
b = (b1, b2). As is seen in Hjort and Jones (1996, pp 1623-1624), the expression in (1.2) can
be interpreted as a locally weighted Kullback-Leibler distance from f to ψ(·,θ(r)). Hence, the
minimizer θb(r) (also depending on K) should satisfy

∫
Kb(v − r) ∂

∂θj
[ln{ψ(v,θ(r))}f(v)− ψ(v,θ(r))]dv = 0, j = 1, . . . , 5. (1.3)

In the first step we define the population value θb(r) as the minimizer of (1.2), assuming that
there is a unique solution to (1.3). The definition of θb(r) and the assumption of uniqueness
are essentially identical to those used in Hjort and Jones [1996] for more general parametric
families of densities.

In the next step we let b → 0 and consider the limiting value θ(r) = limb→0 θb(r). This
is in fact considered indirectly by Hjort and Jones [1996] and more directly in Tjøstheim and
Hufthammer [2013], both using Taylor expansion arguments. In the following we assume that
a limiting value θ(r) independent of b and K exists.

When estimating θ(r) and θb(r) we have to use a neighborhood with a finite bandwidth,
which is in analogy to nonparametric density estimation. The estimate θ̂(r) = θ̂b(r) is then
obtained from maximizing a local likelihood. Given observations R1, . . . ,Rn the local log
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likelihood is determined by

L(R1, . . . ,Rn,θ(r)) = n−1∑

i

Kb(Ri − r) logψ(Ri,θ(r))

−
∫
Kb(v − r)ψ(v,θ(r))dv. (1.4)

When b→∞, the last term has 1 as its limiting value, and the likelihood reduces to the ordinary
global likelihood. This last term is essential, as it implies that ψ(r,θb(r)) is not allowed to stray
far away from f(r) as b→ 0. Indeed, using the notation

uj(·,θ) def= ∂

∂θj
logψ(·,θ), (1.5)

by the law of large numbers, or by the ergodic theorem in the time series case, assuming
E(Kb(Ri − r) logψ(Ri,θb(r))) <∞, we have almost surely

∂L

∂θj
= n−1∑

i

Kb(Ri − r)uj(Ri,θb(r))

−
∫
Kb(v − r)uj(v,θb(r))ψ(v,θb(r))dv

→
∫
Kb(v − r)uj(v,θb(r))[f(v)− ψ(v,θb(r))]dv. (1.6)

Setting the expression in the first line of (1.6) equal to zero yields the local maximum likelihood
estimate θ̂b(r) (= θ̂(r)) of the population value θb(r) (and θ(r) which satisfies (1.3)).

An asymptotic theory has been developed in Tjøstheim and Hufthammer [2013] for θ̂b(r)
for the case that b is fixed and for θ̂(r) in the case that b → 0. The first case is much
easier to treat than the second one. In fact for the first case the theory of Hjort and Jones
[1996] can be used almost directly, although it is extended to the ergodic time series case in
Tjøstheim and Hufthammer [2013]. In the case that b → 0, this leads to a slow convergence
rate of (n(b1b2)3)−1/2, which is the same convergence rate as for the the estimated dependence
function treated in Jones [1996].

We have thus far concentrated on the bivariate case, in which we estimate a single local
Gaussian correlation based on a bivariate sample. In principle, it is straightforward to extend
to the case of more than two variables. Assume that we observe a multivariate sample Ri =
{R1i, . . . , Rpi}, i = 1, . . . , n with dimension p > 2. We can then estimate the p × p local
correlation matrix ρ(r) = {ρk`(r)}, 1 ≤ k < ` ≤ p, r = (r1, . . . , rp), as well as the p local means
and local variances µ(r) = {µ1(r), . . . , µp(r)} and σ(r) = {σ1(r), . . . , σp(r)} by maximizing the
local likelihood function (1.4). The precision of such estimates, however, deteriorates quickly
as the dimension p grows, due to the curse of dimensionality.

However, a simplifying technique that reduces the complexity of this estimation problem
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is to estimate each local correlation ρk`(z) as a bivariate problem by only considering the
corresponding pair of observation vectors {Rik, Ri`}, i = 1, . . . , n. Thus, we reduce the p-
variate problems of estimating the local parameters depending on all coordinates, to a series
of bivariate problems of estimating pairwise local correlations depending on their respective
pairs of coordinates. In this way, we obtain a simplification that is analogous to an additive
approximation in nonparametric regression. In the event that the resulting local covariance
matrix is not positive definite, it is adjusted with the method described in Higham [2002]. his
technique is applied in the empirical analysis that follows. For more details regarding this
pairwise modeling approach, see Otneim and Tjøstheim [2017]. In particular, they show that
the convergence speed is improved to (nb2)−1/2.

As already mentioned, the local estimates depend on the smoothing device - the bandwidth
vector b and a specific choice of the kernel function, K. In the empirical analysis, we use the
Gaussian kernel, and the bandwidth selector used is the plug-in selector suggested in Støve et al.
[2014] – the global standard deviation of the observations times a constant equal to 1.1.

Finally, we note that the local Gaussian correlation has been used in several studies
examining the dependence structure between asset returns, and in testing for financial contagion,
see e.g. Støve and Tjøstheim [2014], Støve et al. [2014], Bampinas and Panagiotidis [2017] and
Nguyen et al. [2020].

2 Descriptive statistics portfolio strategies

Descriptive statistics of the portfolio strategies out-of-sample returns are shown in Table 1. We
report the mean, standard deviation, skewness, kurtosis, minimum value, maximum value, and
the maximum portfolio drawdown, which is the maximum observed loss from a peak to a trough
of the portfolio before a new peak is attained, for window size M = 120 (top) and M = 240
(bottom).

The mean return tends to increase with the different local Gaussian approaches, and all
portfolios achieve moderately higher average returns. In the M = 120 case, MVS-L reaches
the highest mean, followed by MVSC-L, MIN-L, MINC-L, MVS, MVSC, MIN, MVSC and
EW. For the M = 240 window size, the average return ranking is MIN-L, MINC-L, MVS-L,
MVSC-L/MINC, MIN, MVS, MVSC and EW. These findings indicate that the local Gaussian
approach may capture asymmetries and outperform the corresponding benchmark models.

The lowest standard deviation for M = 120 is achieved by MINC-L. However, this is an
exception, as all other strategies have slightly higher values when the local Gaussian method is
applied. For M = 240, all local Gaussian portfolios have moderately higher standard deviations,
except for MINC-L. As noted in Low et al. [2013], this can be due to a larger upside variation,
which is desirable for investors. We will follow their approach and include downside risk
measures when evaluating performance below.
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Table 1: Descriptive statistics of the different portfolio strategies examined
Mean Std.dev. Skewness Kurtosis Min Max Max. drawdown

Window size M = 120

EW 0.423 1.999 -0.714 4.052 -11.916 7.342 22.857
MVS 0.455 1.492 -0.209 1.645 -5.451 5.778 9.479
MVSC 0.444 1.486 -0.256 1.644 -5.451 5.688 9.479
MIN 0.435 1.426 -0.190 1.211 -5.108 5.382 9.404
MINC 0.427 1.430 -0.195 1.181 -5.108 5.382 9.404
MVS-L 0.491 1.539 -0.214 1.693 -5.701 6.177 8.959
MVSC-L 0.484 1.494 -0.156 1.592 -5.020 6.079 8.881
MIN-L 0.462 1.459 -0.218 1.182 -5.194 5.429 8.577
MINC-L 0.460 1.401 -0.080 1.222 -4.620 5.743 8.065
Window size M = 240

EW 0.376 2.158 -0.750 4.356 -11.916 7.342 22.857
MVS 0.447 1.671 -0.672 3.012 -8.294 5.061 15.677
MVSC 0.440 1.670 -0.703 3.047 -8.294 5.122 15.677
MIN 0.468 1.619 -0.564 2.316 -7.493 5.053 13.530
MINC 0.470 1.624 -0.558 2.272 -7.476 5.053 13.524
MVS-L 0.488 1.765 -0.243 3.461 -8.522 7.516 15.354
MVSC-L 0.470 1.737 -0.348 3.434 -8.522 7.182 15.364
MIN-L 0.503 1.673 0.805 7.357 -6.023 11.198 10.458
MINC-L 0.495 1.604 0.012 1.981 -5.926 7.142 11.036

All strategy returns exhibit slight negative skewness, except for MIN-L and MINC-L for the
M = 240 window, with values of 0.805 and 0.012, respectively. Disregarding the EW strategies,
the largest negative skew of −0.703 can be found in MVSC, for M = 240. Hence, the strategies
are all moderately skewed or approximately symmetric.

The MIN-L for M = 240 holds the largest kurtosis value in the analysis. When examining
the minimum and maximum returns for this strategy, we observe larger values for both. The
MIN-L also achieves the lowest drawdown for M = 240. The smallest maximum drawdown for
M = 120 is produced by MINC-L. Overall, the local gaussian strategies all have lower maximum
drawdowns when compared to their benchmarks in both windows.

3 Portfolio rebalancing and terminal wealth, M = 120

In this section and the following, we present a corresponding performance analysis of the
portfolio selection strategies as found in the main article and an estimation window of M = 120
months. We see that the smaller estimation window naturally leads to more sampling variation
in the estimates and thus in the performance metrics of the various portfolio selection strategies,
but the conclusions from the main article remain essentially unchanged.

Table 2 provides a summary of the portfolio rebalancing analysis and the terminal wealth
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Table 2: Portfolio rebalancing and terminal wealth (based on an initial investment of $1) for
the different strategies considered

σ̄(ŵk,M ) Max. adj. Min. adj. Avg.turnover Wealth Wealth incl.tcost
Window size M = 120

EW 0 0 0 0 4.052 4.052
MVS 20.671 18.759 -14.112 8.402 4.680 4.483
MVSC 17.944 18.737 -17.349 7.117 4.506 4.346
MIN 19.332 6.966 -8.769 4.135 4.376 4.285
MINC 18.536 6.966 -8.769 3.533 4.254 4.178
MVS-L 20.760 122.681 -132.874 32.084 5.283 4.484
MVSC-L 16.521 29.529 -30.509 17.045 5.166 4.736
MIN-L 21.174 117.820 -147.244 38.222 4.775 3.927
MINC-L 17.710 45.461 -46.261 18.301 4.747 4.323
Window size M = 240

EW 0 0 0 0 2.231 2.231
MVS 16.663 9.228 -6.741 6.325 2.605 2.551
MVSC 15.813 9.228 -7.426 5.622 2.571 2.524
MIN 16.249 5.036 -4.434 3.090 2.729 2.701
MINC 15.952 5.039 -4.428 2.793 2.742 2.717
MVS-L 15.660 73.184 -89.316 16.967 2.855 2.698
MVSC-L 14.253 18.096 -26.245 12.105 2.745 2.637
MIN-L 17.014 53.636 -79.931 21.617 2.953 2.749
MINC-L 15.243 19.646 -26.028 13.762 2.910 2.780

reached by each of the strategies. We present the results for M = 240 as well for easy
comparison.

Figure 4 shows wealth accumulation and drawdowns for the hypothetical investment of $1
in each of the nine strategies included in the analysis when a sampling window of M = 120 is
used. As seen in the upper part of the figure, the local Gaussian MVS-L produces the largest
final wealth when disregarding trade costs. It remains top-ranked during most months in the
sample and suffers from smaller drawdowns in volatile periods such as the 2008 financial crisis.
When transaction costs (15 basis points per transaction, as in the main paper) are considered,
the strategy still performs well but is pushed down from the top position by the constrained
MVSC-L, which has a lower turnover.

4 Comparison between Local and Global portfolio strategies

This section provides a comparison between the local and global strategies. As the difference
between these strategies is the choice of covariance matrix, we start by inspecting the differences
between local and global variances and correlations.

Figure 1 displays the local variances of the asset returns, i.e. the diagonal of the matrix

6



Σ̂(r), together with their global counterparts. For BMUK10Y and BMUS10Y (top panel), the
local estimates agree well with the global estimates. However, for the four other assets (the two
lower panels), there are two interesting differences. Firstly, all four local estimates capture the
increased volatility during the 2008 financial crisis. Secondly, the local variances are typically
smaller than the global ones in other periods, particularly after the 2008 financial crisis. This
is expected since the local variance estimates will quickly reflect high volatility once estimated
at extreme evaluation points rt. Moreover, in less extreme evaluation points, events such as the
2008 financial crisis will be smoothed away in the estimation of Σt(rt), regardless of window size.
In contrast, the global estimates suffer from an averaging effect that may result in variances
that are neither representative for the high volatility periods (too low) or calm periods (too
high).

Figure 2 displays the local and global correlations between the asset returns. Though not
to the same degree, Figure 2 displays similar characteristics as Figure 1; The local correlations
between many assets increases significantly during the 2008 financial crisis and for these assets
the global correlations are typically are larger than the local ones in the period that follows.

Figure 3 displays the weights of the global and local MINC strategy (MINC and MINC-L)
and mainly reflects the results displayed in 1;, i.e., increasing variances translates to higher risk
and thus lower weights. For example, the assets BMUS10Y,EWCI, GSGCSPT, and S&P500
are assigned higher local weights after the 2008 financial crisis compared to the global weights,
which, apart from BMUS10Y, is in line with our observations in Figure 1. It is difficult to
evaluate the impact of correlations on the weights directly. However, it is reasonable to believe
that better diversifications are obtained since Σ̂(rt) picks up the increased dependence between
assets during the 2008 financial crisis and perhaps reflects a more realistic dependence structure
estimates (weaker) later on.
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Figure 1: Local and global variances of asset returns.
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Figure 2: Local and global correlations between asset returns.
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Figure 3: Local and global portfolio weights for the MINC strategy.
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5 Evaluation of risk-adjusted performance, M = 120

Table 3 reports out-of-sample performance by evaluating portfolio strategy returns using the
same metrics as in the main article. Again, we include the corresponding results for M = 240
here as well for easy comparison between the two strategies. When using the smaller estimation
windows, all but one of the performance measures prefer the long-only version of the local
minimum variance portfolio, the only exception being the CEQ, which prefers the unconstrained
local mean-variance portfolio, both with and without transaction costs. Furthermore, we have
performed the z-test of Ledoit and Wolf [2008] which is applied to the Sharpe Ratios to indicate
the statistical differences for all MV optimizations against the 1/N benchmark.

For windows M = 120 and M = 240, the remaining top rankings are: MINC-L and MIN-L
(VaR Sharpe), MINC-L and MIN-L (ES Sharpe ratio), MVSC-L and MINC-L (CEQ), MINC-L
and MIN-L (Sortino ratio), MINC-L and MIN-L (Omega ratio). These results again confirms
that the local Gaussian approach seems to improve performance.

11



Figure 4: Wealth accumulation for the different strategies based on an initial
investment of $1, using a rolling window of size M = 120 monthly observations,
top plot excluding transaction costs, bottom plot including transaction cost of 15
basis point
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Table 3: Portfolio strategies out-of-sample performance
Sharpe VaR Sharpe ES Sharpe Ann. Sharpe CEQ Sortino Omega

Panel A: Ex. transaction costs

Window size M = 120

EW 0.212 0.137 0.071 0.715 0.403 0.327 1.737
MVS 0.305 0.224 0.143 1.057 0.444 0.525 2.221
MVSC 0.299 0.216 0.138 1.035 0.433 0.508 2.191
MIN 0.305 0.223 0.148 1.057 0.425 0.528 2.199
MINC 0.299 0.217 0.145 1.034 0.417 0.514 2.169
MVS-L 0.319∗ 0.237 0.150 1.108 0.479 0.557 2.298
MVSC-L 0.324∗ 0.244 0.157 1.126 0.473 0.569 2.315
MIN-L 0.317∗ 0.232 0.154 1.099 0.451 0.555 2.264
MINC-L 0.328∗ 0.250 0.168 1.141 0.450 0.587 2.340
Window size M = 240

EW 0.174 0.110 0.057 0.577 0.353 0.263 1.593
MVS 0.267 0.179 0.099 0.919 0.433 0.427 2.025
MVSC 0.264 0.175 0.097 0.905 0.426 0.417 2.009
MIN 0.289∗ 0.198 0.116 0.999 0.455 0.474 2.120
MINC 0.290∗ 0.199 0.117 1.000 0.457 0.474 2.120
MVS-L 0.276∗ 0.203 0.115 0.951 0.472 0.472 2.126
MVSC-L 0.270∗ 0.193 0.107 0.929 0.454 0.453 2.075
MIN-L 0.301∗ 0.317 0.317 1.041 0.489 0.567 2.303
MINC-L 0.309∗ 0.240 0.157 1.070 0.482 0.554 2.268
Panel B: Incl. transaction costs

Window size M = 120

EW 0.215 0.140 0.072 0.727 0.410 0.332 1.753
MVS 0.303 0.222 0.141 1.051 0.440 0.521 2.213
MVSC 0.298 0.215 0.136 1.031 0.430 0.506 2.188
MIN 0.307 0.225 0.149 1.064 0.426 0.532 2.213
MINC 0.301 0.219 0.145 1.041 0.419 0.517 2.183
MVS-L 0.294 0.212 0.132 1.015 0.440 0.500 2.152
MVSC-L 0.313∗ 0.233 0.150 1.087 0.456 0.545 2.256
MIN-L 0.282∗ 0.199 0.130 0.971 0.401 0.476 2.065
MINC-L 0.313 0.236 0.158 1.087 0.429 0.553 2.256
Window size M = 240

EW 0.179 0.113 0.058 0.593 0.362 0.270 1.613
MVS 0.261 0.174 0.097 0.895 0.423 0.415 1.989
MVSC 0.258 0.171 0.095 0.885 0.418 0.407 1.978
MIN 0.285∗ 0.194 0.114 0.982 0.449 0.465 2.095
MINC 0.285∗ 0.195 0.115 0.985 0.451 0.466 2.097
MVS-L 0.262 0.188 0.106 0.900 0.448 0.440 2.041
MVSC-L 0.260 0.183 0.101 0.890 0.438 0.430 2.014
MIN-L 0.281 0.279 0.279 0.969 0.456 0.518 2.174
MINC-L 0.295∗ 0.225 0.148 1.019 0.461 0.522 2.182
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etrm: Energy Trading and Risk
Management in R
by Anders D. Sleire

Abstract This paper introduces etrm, an R package with tools for trading and financial risk man-
agement in energy markets. Contracts for electric power and natural gas differ from most other
commodities due to the fact that physical delivery takes place over a time interval, and not at a specific
point in time. There is typically strong seasonality, limited storage and transmission capacity and
strong correlation between price and required volume. Such characteristics need to be taken into
account when pricing contracts and managing financial risk related to energy procurement. Tools for
these task are usually bundled into proprietary Energy Trading Risk Management (ETRM) systems
delivered by specialized IT vendors. The etrm package offers a transparent solution for building a
forward price curve for energy commodities which is consistent with methods widely used in the
industry. The user’s fundamental market view may be combined with contract price quotes to form
a forward curve that replicate current market prices, as described in Ollmar (2003) and Benth et al.
(2007b). etrm also provides implementations of five portfolio insurance trading strategies for energy
price risk management. The forward market curve and the energy price hedging strategies are core
elements in an ETRM system, which to the best of the author’s knowledge has not been previously
available in the R ecosystem.

1 Introduction

The purpose of this paper is to introduce the R package etrm and its tools for energy trading and
financial risk management. Substantial fluctuations in energy prices represent a significant risk for
market players, in particular for large consumers, producers and utility companies, see Benini et al.
(2002). The price dynamics is complex due to strong weather dependency and physical constraints
related to storage, distribution, and the introduction of new technology. See for example Nicolosi
(2010) for an analysis of renewable energy production and the negative prices following extreme events
in the German power market. Derivatives securities, such as futures contracts, are often used to hedge
against the commodity price risk. Specialized Energy Trading and Risk Management (ETRM) systems
provide the necessary tools to handle key activities such as position management, valuation and risk
reporting. Several proprietary alternatives exist. The annual Energy Risk’s Software Survey in Farrington
(2020) gives an overview of major providers along with rankings based on industry polls. There,
ETRM systems are divided into the operational categories derivatives software, physical trading and
operations software and front- and middle-office functionality. Historically, many system providers within
this domain have bundled modules into large monolithic architectures serving a variety of purposes,
including accounting and regulatory reporting. During the last decade, a general trend within system
development has moved towards splitting software into smaller stand-alone components. The etrm
package solely focus on financial trading, and may be viewed as a module for front- and middle-office
functionality for energy derivatives. The package currently offers transparent tools for two main
ETRM activities 1) construction of forward market curves and 2) implementation of trading strategies
for price risk management.

After the liberalization of electricity and gas markets started in the 1990s, a rich research literature
emerged. Topics studied include pricing and hedging in the forward market and modelling of spot
price processes, see for example Bessembinder and Lemmon (2002), Janczura et al. (2013) and Benth
et al. (2007a). Alternative methods for pricing options in power markets can be found in Burger
et al. (2004) and Benth and Schmeck (2014). Textbooks such as Eydeland and Wolyniec (2002), Benth
et al. (2008) and Kirschen and Strbac (2018) may be used to gain a more detailed overview of market
structure, available instruments, methods for risk management and the related markets for fuel, freight
and weather products. In this paper, we will cover some of the theory regarding forward curve
modelling from Ollmar (2003) and Benth et al. (2007b). The theoretical framework for price risk
management is gathered from the portfolio insurance literature, see Leland (1980), Perold and Sharpe
(1988), Leland and Rubinstein (1976). This will be presented in further detail below.

We would like to note that there are some tools available outside the domain of proprietary ETRM
software providers. Two examples are the MathWorks case studies Sundar (2021) and Deoras (2021),
focusing on risk assessment for gas-fired power plants and electricity load and price forecasting
using MATLAB. These topics are however somewhat ad-hoc, and the supplied code cannot be easily
incorporated into a generic ETRM system for general use. Similarly within the R ecosystem, there
are related tools in the Rmetrics suite of packages, such as fOptions and fPortfolio, but they are not
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directly applicable. Due to the unique properties of energy markets, standard methods for generating
forward curves in interest rate markets cannot be used either. To fill this gap and provide practitioners
and researchers with tools dedicated to energy price risk management, we have created etrm. The
package is available on CRAN, and may be installed and loaded into the R environment by running
the following commands:

if(!require(etrm)==TRUE) {install.packages("etrm")}
library(etrm)

The rest of the article is organized as follows. First, we give a brief introduction to energy
market forward curves and the maximum smoothness forward curve (MSFC) model. We describe
the etrm implementation and provide examples of use. Second, a short treatment of energy price risk
management with futures contracts is provided, followed by a presentation of five portfolio insurance
models. The etrm implementation is described and illustrated with practical examples for energy
portfolios with both short and long market exposure. The third part provide an overview of the etrm
package structure, available functions and included data sets. Finally, the last section summarizes the
paper and provide some suggestions for future work.

2 Energy market forward price curves

The standardised forwards for electricity and gas are contracts for flow delivery. The underlying
commodity is not received at a fixed point in time, but over a time interval. In mature markets,
participants can trade a variety of products, both over-the-counter (OTC) and on exchanges such
as Nasdaq Commodities, European Energy Exchange and the Intercontinental Exchange. Liquidity
is often best in the so called front-products, and there is normally higher activity in contracts for
next week, month, quarter and year compared to similar products further ahead in time. Shorter
period contracts may not even be available on a longer horizon, and seasonal price variation is thus
not directly observable in prices far ahead in time. Transacted volume and prices also inhibit quite
pronounced seasonality, during the year, week and within a specific day. For this reason, forward
contracts are divided into categories based on a load pattern. In the base load contracts, volume is
delivered at a constant rate during the contract period, while peak load products are linked to high
volume hours, such as Monday to Friday from 8 am to 8 pm. Other, more exotic load patterns exist,
but they are less common. Further details can be found in Eydeland and Wolyniec (2002) and Kirschen
and Strbac (2018).

The aim of the energy market forward price curve calculation is to create a compact representation
of the forward market, at a given point in time. The curve must be able to price the quoted instruments
correctly, while accounting for typical energy market characteristics such as seasonality and (possibly
overlapping) contracts for flow delivery. The curve is an essential decision making tool with many
uses, such as pricing non-standard supply agreements, investment decisions and risk management.

The topic of forward curve fitting has been studied for decades in interest rate markets, see for
example McCulloch (1971) and Anderson et al. (1996). These techniques cannot be applied directly
to commodities with flow delivery and strong seasonality in prices. There are several alternative
approaches to calculating a forward price curve for energy commodities. In Fleten and Lemming
(2003), market data is combined with forecasts generated by a bottom-up model constrained by
the bid/ask spread in order to meet the no-arbitrage condition. Borak and Weron (2008) propose a
semiparametric factor model for the forward curve dynamics in electricity markets, while Hildmann
et al. (2012) develop a calculation method by combining parametric estimation and prediction of
futures prices under constraints.

In etrm, we have opted for a method that combines a seasonal function with the maximum
smoothness-approach from interest rate markets, see Adams and Van Deventer (1994). Hence, we
follow the approach in Ollmar (2003) and Benth et al. (2007b). Base load contracts are used to calculate
a curve with daily granularity. This method has several benefits. It produces a continuous curve
which has a closed form solution, it is fast to calculate, flexible and used by many practitioners in the
industry. The next section provide a brief overview of the method, followed by a description of the
etrm implementation with examples.

Maximum smoothness forward curve model

Consider a market at time t with m forward contracts available for trading. Let the list

St = {(τs
1 , τ

e
1), (τ

s
2 , τ

e
2), ..., (τ

s
m, τ

e
m)}
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contain the start and end dates for each of these contracts. The time distance between τs
i and τe

i
for a contract i in 1, ..,m cover standardized periods such as week, month, quarter and year. Some of
these settlement intervals might overlap, and in order to handle this we create a new list of dates
{t0, t1, ..., tn} to identify each separate sub period, see Figure 1. The new list is made by sorting all
dates in St in ascending order and removing duplicates.

Timeτs1

t1

τs2

t2

τe1

t3

τe2

t4

first contract period

second contract period

Figure 1: Illustration of two overlapping contracts with start (τs) and end (τe) dates. Due to the
overlap, the total delivery period is split into sub intervals identified with {t1, t2, t3, t4}.

The forward price at time t for one unit of energy delivered at a constant rate (τe − τs)−1 over
the time interval (τs, τe) is denoted by F(t, τs, τe), where t ≤ τs < τe. A forward contract for a flow
delivery may be thought of as the average of hypothetical single-delivery contracts. At time t, each
of these would have a unique price f (t, u) for the delivery at u with an infinitesimal delivery period.
This leads to F(t, τs, τe) being the weighted average

F(t, τs, τe) =
τe∫

τs

w(u, τs, τe) f (t, u)du (1)

where w(u, τs, τe) =
ŵ(u)∫ τe

τs
ŵ(v)dv

is a weight function accounting for the rate of interest r and the time

value of money. If the contract in question is settled at the end of the delivery period (forward contract),
the weight function is given by w(u, τs, τe) = 1/(τe − τs). If the contract is settled continuously over
the delivery period (futures contract), w(u, τs, τe) = re−ru

e−rτs−e−rτe . In the following we construct a forward
market price curve for the entire horizon using a simplified notation f (u) for the function describing
the forward curve at time t. In order to model the strong seasonality in energy markets, the forward
curve function is decomposed into two elements:

f (u) = Λ(u) + ϵ(u) u ∈ [t0, tn] (2)

Following Ollmar (2003) we calculate f (u) by combining a prior function Λ(u) which contain
our subjective views on the future prices with an adjustment function ϵ(u) to ensure match with the
observed closing prices for the m contracts. The prior could be generated with a simple sinusoidal
function or from a fundamental model more capable of describing the seasonality and calendar effects
observed in energy markets. Should the prior be excluded, the seasonal price patterns will not be
visible in the far end of the curve, where only yearly or seasonal contracts are available. Smoothing is
calculated on the adjustment function, we aim tominimize the total curvature of Λ(u)while preserving
the information from the prior. Smoothness is defined as the integral of the second-order derivative of
the function, and the smoothest possible curve over [t0, tn] is achieved by minimising

tn∫

t0

[ϵ′′(u)]2 du

under five constraints presented below. Lim and Xiao (2002) show the smoothest possible curve is
found when the n sub periods are modelled by fourth-degree polynomials. We write ϵ(u) as a spline

ϵ(u) =





a1u4 + b1u3 + c1u2 + d1u+ e1, u ∈ [t0, t1],
a2u4 + b2u3 + c2u2 + d2u+ e2, u ∈ [t1, t2],

.

.
anu4 + bnu3 + cnu2 + dnu+ en, u ∈ [tn−1, tn].
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In order to construct the forward curve function we need to identify the parameters of ϵ(u)

x⊺ = [a1 b1 c1 d1 e1 a2 b2 c2 d2 e2 . . . an bn cn dn en]

by solving the quadratic optimisation problem

min
x

τe∫

τs

[ϵ′′(u; x)]2 du (3)

subject to

(aj+1 − aj)u4j + (bj+1 − bj)u3j + (cj+1 − cj)u2j + (dj+1 − dj)uj + ej+1 − ej = 0 (a)

4(aj+1 − aj)u3j + 3(bj+1 − bj)u2j + 2(cj+1 − cj)uj + (dj+1 − dj) = 0 (b)

12(aj+1 − aj)u2j + 6(bj+1 − bj)uj + 2(cj+1 − cj) = 0 (c)

ϵ′(un; x) = 0 (d)

1
τe
i − τs

i

τe
i∫

τs
i

(Λ(u) + ϵ(u))du = Fci (e)

for spline knot j = 1, ..., n− 1 and contract i = 1, ...,m. The constraint in (a) ensures the adjustment
function is continuous in the knots, while (b) and (c) imposes this restriction also for the first and
second order differentials. The (d) constraint require the adjustment function to be horizontal at
time T, and finally (e) also require the average value of the forward price function f (u) over the
delivery period for contract i to match the quoted closing price Fci . Here, we could take the interest
rate effect from r into account and set the present value of the average of the forward price function
equal to present value of the forward contract. Instead of doing that, we will follow Benth et al.
(2008) and Ollmar (2003) and assume r = 0 such that the weight function in 1 is approximated with
w(u, τs, τe) ≈ 1

τe−τs . Like Benth et al. (2008) we will argue that both the prior and the smoothing will
outweigh a marginal interest rate effect. This minimisation problem can be expressed as

min
x

x⊺Hx,

where x is a (5n× 1) vector and

H =



h1 0

. . .
0 hn


 ,hj =




144
5 ∆5

j 18∆4
j 8∆3

j 0 0
18∆4

j 12∆3
j 6∆2

j 0 0
8∆3

j 6∆2
j 4∆j 0 0

0 0 0 0 0
0 0 0 0 0




The block diagonal matrix H has dimensions (5n× 5n) and ∆j = tlj+1 − tlj. As the constraints in (3)
are all linear in x and may be expressed on the form Ax = B, the problem may be rephrased as an
unconstrained minimisation problem via the Lagrange multiplier method:

min
x,λ

x⊺Hx+ λ⊺(Ax− B)

where A is a (3n+m− 2× 5n) matrix and B is a (3n+m− 2× 1) vector. The spline parameter vector
and Lagrange multipliers are identified by solving

[
2H A⊺

A 0

] [
x
λ

]
=

[
0
B

]
(4)

where the left matrix has dimension of (8n+m− 2)× (8n+m− 2) and both vectors are of dimension
(8n+m− 2).
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The "MSFC" class with examples

The forward curve calculation in etrm is implemented in the S4 "MSFC" class. By supplying all
required arguments to the constructor function msfc(), the user may create an object that contains the
calculation results, input arguments and further calculation details. In addition to the arguments from
the list of contracts, the user may also provide a prior to the calculation. By default the prior is set to
zero, but the user can input any vector expressing a belief regarding the market to be combined with
the observed prices. An overview of the msfc() arguments can be found in Table 1.

Argument Description Default value

tdate Trading date none
include Logical vector for contract selection none
contract Character vector with contract names none
sdate Date vector with contract start dates none
edate Date vector with contract end dates none
f Numeric vector with contract prices none
prior Numeric prior curve vector 0

Table 1: Arguments for the msfc() constructor function for forward curve calculation.

The "MSFC" class properties and available methods are summarised in Figure 2, and a brief
description is provided in the following. The "Name" slot describe the type of forward curve model
used by storing the character value "MSFC", while "TradeDate" keeps the trade date used in the
calculation. A data frame containing details for selected contracts along with the calculated forward
price based on the curve can be found in "BenchSheet". A count of the (n− 1) number of polynomials
used in the spline is available as a scalar value in "Polynomials", and the prior curve vector in
"PriorFunc". The main calculation result is stored in a data frame which contains daily values for all
selected contracts along with the calculated forward curve. The data frame span the date range from
"TradeDate" to the end date of the contract furthest ahead in time, and can be found in "Results".
The interested user may also extract additional information regarding the spline itself. Coefficients
for all polynomials can be found in the "SplineCoef" list and the knotpoints separating them in the
numeric vector "KnotPoints". Further details regarding the calculation of the daily forward curve
values are available in the "CalcDat" data frame. This table is essentially an extended version of
"Results", where numeric time vectors and the spline coefficients have been added.

MSFC

Name : "character"
TradeDate : "date"
BenchSheet : "data.frame"
Polynomials : "numeric"
PriorFunc : "numeric"
Results : "data.frame"
SplineCoef : "list"
KnotPoints : "numeric"
CalcDat : "data.frame"

plot()
summary()
show()

1
Figure 2: Attributes and methods of the "MSFC" class.

The "MSFC" class has the generic methods plot(), summary() and show(). The plot()method may
be used to create a chart of the calculated curve and underlying contracts from the "Results" data
frame. All plot methods in etrm are based on ggplot2, see Wickham (2011a). The summary()method
returns a list with three elements; a description string, a sample of the prior vector, and the bench
sheet. Finally, the show()method returns the "Results" data frame.

We proceed with a practical example using two of the embedded etrm data sets to represent
information available to a European power market participant. All market-related inputs to the msfc()
constructor (trade date and contract properties) are required arguments. These are collected from a
synthetic data set for the trading date 2013-05-13, and can be found in "powfutures130513" presented
in Table 2. Contracts covering long time spans are excluded with include = FALSE if futures of shorter
duration are available for the same time interval in order to preserve the seasonality available in
market prices. We use a seasonal prior with high energy prices during the winter season, followed by
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a drop toward the lower summer levels. It also take into account some well known calendar effects,
such as weekends. The prior is simple, and merely used for illustrative purposes. It can be found
in the data set "powpriors130513" included in the package. A calculation excluding the prior is also
added for comparison.

Include Contract Start End Closing

TRUE W21-13 2013-05-20 2013-05-26 33.65
TRUE W22-13 2013-05-27 2013-06-02 35.77
TRUE W23-13 2013-06-03 2013-06-09 36.58
TRUE W24-13 2013-06-10 2013-06-16 35.93
TRUE W25-13 2013-06-17 2013-06-23 33.14
TRUE W26-13 2013-06-24 2013-06-30 34.16
FALSE MJUN-13 2013-06-01 2013-06-30 35.35
TRUE MJUL-13 2013-07-01 2013-07-31 33.14
TRUE MAUG-13 2013-08-01 2013-08-31 35.72
TRUE MSEP-13 2013-09-01 2013-09-30 38.41
TRUE MOCT-13 2013-10-01 2013-10-31 38.81
TRUE MNOV-13 2013-11-01 2013-11-30 40.94
FALSE Q3-13 2013-07-01 2013-09-30 35.72
TRUE Q4-13 2013-10-01 2013-12-31 40.53
TRUE Q1-14 2014-01-01 2014-03-31 42.40
TRUE Q2-14 2014-04-01 2014-06-30 33.39
TRUE Q3-14 2014-07-01 2014-09-30 31.78
TRUE Q4-14 2014-10-01 2014-12-31 38.25
TRUE Q1-15 2015-01-01 2015-03-31 40.73
TRUE Q2-15 2015-04-01 2015-06-30 32.64
TRUE Q3-15 2015-07-01 2015-09-30 30.87
TRUE Q4-15 2015-10-01 2015-12-31 37.22
FALSE CAL-14 2014-01-01 2014-12-31 36.43
FALSE CAL-15 2015-01-01 2015-12-31 35.12
TRUE CAL-16 2016-01-01 2016-12-31 34.10
FALSE CAL-17 2017-01-01 2017-12-31 35.22
FALSE CAL-18 2018-01-01 2018-12-31 36.36

Table 2: Closing prices for futures contracts used in the forward curve calculation for 2013-05-13.
Contracts are selected for the calculations with the include vector. Prices for these contracts can be
found as horizontal lines in Figure 3

As shown in Figure 3, the shorter contracts close in time to the trading date clearly reflect a seasonal
pattern. This is typical in power markets, where weather and calendar effects have strong influence
on transacted volume and price formation. On a longer horizon however, this information is not
observable in market prices, as the quoted contracts cover longer time spans. This is where price
data may be supplemented with prior knowledge in order to create a representation of the market
consistent with both the underlying fundamentals and the listed contracts. The following code will
create the "MSFC" objects and plot calculation results:

library(etrm)
library(gridExtra)
data(powfutures130513)
data(powpriors130513)

# instance of MSFC class with prior
fwd.fut.wpri <- msfc(tdate = as.Date("2013-05-13"),

include = powfutures130513$Include,
contract = powfutures130513$Contract,
sdate = powfutures130513$Start,
edate = powfutures130513$End,
f = powfutures130513$Closing,
prior = powpriors130513$mod.prior)

# instance of MSFC class without prior
fwd.fut.npri <- msfc(tdate = as.Date("2013-05-13"),

include = powfutures130513$Include,
contract = powfutures130513$Contract,
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sdate = powfutures130513$Start,
edate = powfutures130513$End,
f = powfutures130513$Closing,
prior = 0)

# the generic plot() method
pw <- plot(fwd.fut.wpri, ylab = "EUR/MWh", legend = "")
pn <- plot(fwd.fut.npri, ylab = "EUR/MWh", legend = "")

# combine plots
gridExtra::grid.arrange(pw, pn)
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Figure 3: Two alternative forward curve calculations based on the same contract selection. In the top
panel, a prior function is included in the calculation. This curve shows price variation on the weekly
level, with lower prices during weekends. The prior also ensures that yearly seasonality is visible
in the far end of the curve. The bottom plot is based solely on market prices, which does not reflect
seasonality on such long horizon.

The computed prices may be verified via the summary()method, which also return a sample of the
prior and information regarding the spline calculation:
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> summary(fwd.fut.wpri)
$Description
[1] "MSFC of length 1329 built with 41 polynomials at trade date 2013-05-13"

$PriorFunc
[1] 30.10842 30.16396 30.19572 30.16144 29.06268 28.93272

$BenchSheet
Include Contract From To Price Comp

1 TRUE W21-13 2013-05-20 2013-05-26 33.65 33.65
2 TRUE W22-13 2013-05-27 2013-06-02 35.77 35.77
3 TRUE W23-13 2013-06-03 2013-06-09 36.58 36.58
4 TRUE W24-13 2013-06-10 2013-06-16 35.93 35.93
5 TRUE W25-13 2013-06-17 2013-06-23 33.14 33.14
6 TRUE W26-13 2013-06-24 2013-06-30 34.16 34.16
8 TRUE MJUL-13 2013-07-01 2013-07-31 33.14 33.14
9 TRUE MAUG-13 2013-08-01 2013-08-31 35.72 35.72
10 TRUE MSEP-13 2013-09-01 2013-09-30 38.41 38.41
11 TRUE MOCT-13 2013-10-01 2013-10-31 38.81 38.81
12 TRUE MNOV-13 2013-11-01 2013-11-30 40.94 40.94
14 TRUE Q4-13 2013-10-01 2013-12-31 40.53 40.53
15 TRUE Q1-14 2014-01-01 2014-03-31 42.40 42.40
16 TRUE Q2-14 2014-04-01 2014-06-30 33.39 33.39
17 TRUE Q3-14 2014-07-01 2014-09-30 31.78 31.78
18 TRUE Q4-14 2014-10-01 2014-12-31 38.25 38.25
19 TRUE Q1-15 2015-01-01 2015-03-31 40.73 40.73
20 TRUE Q2-15 2015-04-01 2015-06-30 32.64 32.64
21 TRUE Q3-15 2015-07-01 2015-09-30 30.87 30.87
22 TRUE Q4-15 2015-10-01 2015-12-31 37.22 37.22
25 TRUE CAL-16 2016-01-01 2016-12-31 34.10 34.10

The forward curve values can be extracted along with daily prices for the contracts used in the calcula-
tion with the show()method:

> head(show(fwd.fut.wpri), 20)[1:5]
Date MSFC W21-13 W22-13 W23-13

1 2013-05-13 29.89373 NA NA NA
2 2013-05-14 30.40235 NA NA NA
3 2013-05-15 30.88704 NA NA NA
4 2013-05-16 31.30634 NA NA NA
5 2013-05-17 30.66200 NA NA NA
6 2013-05-18 30.98687 NA NA NA
7 2013-05-19 32.33591 NA NA NA
8 2013-05-20 32.74655 33.65 NA NA
9 2013-05-21 33.19772 33.65 NA NA
10 2013-05-22 33.63844 33.65 NA NA
11 2013-05-23 34.02161 33.65 NA NA
12 2013-05-24 33.34168 33.65 NA NA
13 2013-05-25 33.62327 33.65 NA NA
14 2013-05-26 34.91272 33.65 NA NA
15 2013-05-27 35.24208 NA 35.77 NA
16 2013-05-28 35.59669 NA 35.77 NA
17 2013-05-29 35.92499 NA 35.77 NA
18 2013-05-30 36.17633 NA 35.77 NA
19 2013-05-31 35.34194 NA 35.77 NA
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20 2013-06-01 35.44437 NA 35.77 NA

We have excluded columns from the data frame for the sake of presentation. Further details regarding
the calculation such as spline coefficients and knot points can be found in the slots:

> slotNames(fwd.fut.wpri)
[1] "Name" "TradeDate" "BenchSheet"
[4] "Polynomials" "PriorFunc" "Results"
[7] "SplineCoef" "KnotPoints" "CalcDat"
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See for example the numeric vector with knot points, measured in years from the trading date:

> fwd.fut.npri@KnotPoints
[1] 0.00000000 0.01917808 0.03561644 0.03835616 0.05479452 0.05753425 0.07397260
[8] 0.07671233 0.09315068 0.09589041 0.11232877 0.11506849 0.13150685 0.13424658
[15] 0.21643836 0.21917808 0.30136986 0.30410959 0.38356164 0.38630137 0.46849315
[22] 0.47123288 0.55068493 0.63561644 0.63835616 0.88219178 0.88493151 1.13150685
[29] 1.13424658 1.38356164 1.38630137 1.63561644 1.63835616 1.88219178 1.88493151
[36] 2.13150685 2.13424658 2.38356164 2.38630137 2.63561644 2.63835616 3.63835616

The coefficients for the first polynomial in the adjustment function spline can be found with

> fwd.fut.npri@SplineCoef[[1]]
[1] -355585.14451 10911.10580 -78.47028 151.90713 29.54903

The most elaborate presentation of the curve calculation is available in fwd.fut.npri@CalcDat. This
slot contains a data frame with all calculation details for each of the daily values returned by msfc().
It is not included here due to space requirements.

3 Energy price risk management

Energy market participants may be exposed to number of risk factors such as volume, profile and basis
risk, counter party defaults, foreign exchange and market liquidity, to name a few. See for example
Eydeland and Wolyniec (2002) and Kirschen and Strbac (2018) for a comprehensive treatment of the
topic. The main focus in etrm is on the market price risk of the energy commodity. Consider the price
risk associated with the constant base load volume q to be delivered over a future time interval (τs, τe).
The risk can be mitigated by taking positions in the futures market during a trading period (t0, T),
which ends before the actual delivery of the energy takes place at T < τs.

Timet0 T τs τe

trading period

contract period

Figure 4: Trading and settlement periods for energy forward contract.

The price risk may be reduced by constructing a portfolio, consisting of the physical energy market
exposure and derivatives contracts. The portfolio price per energy unit pt is calculated as the weighted
average of the value of the transacted volumes and the open volume evaluated mark-to-market

pt =
1
q

(
f0h0q+

t

∑
i=1

fi(hi − hi−1)q+ ft(1− ht)q
)
= f0h0 +

t

∑
i=1

fi(hi − hi−1) + ft(1− ht) (5)

where ht ∈ (0, 1) is the hedge rate and ft the futures price at time t. In the simplest possible scenario,
the risk can be managed by locking the entire volume in the forward market. This removes the price
risk and the portfolio owner knows up front what to pay or receive when delivery of the energy takes
place. On the downside, one might regret locking if the market develops in a favourable way.

Portfolio insurance strategies

In the portfolio insurance approach, dynamic hedging strategies that allow buying and selling the
hedging instrument are used to protect the portfolio, while seeking to benefit from advantageous
market developments. Historically, the theory of portfolio insurance has focused on protection against
downside risk in financial investment portfolios, see Leland and Rubinstein (1976) , Perold and Sharpe
(1988) and Leland (1980). Here, we apply the same principles to manage commodity price risk in
the forward market. A consumer following a dynamic hedging program may control price risk by
locking a share of future volume in the futures market, and increase (decrease) the share if the price
increase (falls). A seller can implement similar strategies to maximise value of the energy portfolio.
The size of the initial hedged share and how it is adjusted affects both the protective properties of the
hedging scheme as well as its ability to exploit opportunities in the market. Trading activity needs

The R Journal Vol. 14/1, March 2022 ISSN 2073-4859



CONTRIBUTED RESEARCH ARTICLE 330

to be carefully managed and harmonized with overall objectives and risk preferences. A variety of
portfolio insurance strategies offer different approaches to this task. The allocation strategies presented
below all aim to control pt and prevent breach of a pre-specified cap (or floor) price, p∗, under the
hedge rate restriction ht ∈ (0, 1).

The Constant proportion portfolio insurance (CPPI) strategy was introduced by Perold (1986)
and Black and Jones (1987) for management of investment portfolios with capital guarantees. When
applied to an energy portfolio, it aims to insure the portfolio by protecting a target price, a cap (floor)
value for the portfolio price. Prior to start of hedging, p∗ is set equal to the highest (lowest) acceptable
portfolio price. This target price must be set higher than the first day’s market price f0 to implement
cap protection, or lower for a floor protection model. The difference between the target price and the
current portfolio price is termed the cushion. The key idea of CPPI is that the proportion of the volume
exposed to the market should be calculated as a constant multiple m of the cushion. The multiple is
given by m = µ−1, where µ > 0 is a risk factor set to handle the maximum daily price change to be
handled by the hedging model, which again affects strategy gearing. The unexposed proportion, the
hedge rate, is

ht =





0 if ct > µ

1−mct if µ ≥ ct ≥ 0
1 if ct < 0

(6)

where ct = p∗ − pt−1 for a short hedger, and ct = pt−1 − p∗ for the long hedger.

In the Dynamic proportion portfolio insurance (DPPI) strategy, a decision rule similar to CPPI is
applied, but the multiple mt is allowed to vary. Changing market conditions may require re-evaluation
of the risk factor in the multiple. Methods such as Value-at-Risk or Expexted Shortfall, or even simple
heuristics can be used for this purpose. For a further treatment of DPPI type strategies, the reader is
referred to Lee et al. (2008) and Chen et al. (2008). In etrmwe also allow adjustments in the target price
p∗t , to catch opportunities to lower the capped value, or to increase the floor value. The hedge rate is
determined similarly to CPPI, with

p∗t =





min(λpt−1, p∗t−1) short hedger

max(λpt−1, p∗t−1) long hedger
(7)

where λ =
p∗o
po for a short hedger, and λ =

po
p∗o

for the long hedger.

Option based portfolio insurance (OBPI) was first introduced in Leland and Rubinstein (1976) as
a means of providing insurance for investment portfolios. By combining an investment in a risky asset
with a put option on the asset, the portfolio value is prevented from falling below the option strike
price, K. A similar approach can be taken for the energy portfolio. As we are using futures contracts to
manage the energy price risk, the Black-76 formula introduced in Black (1976) is used to approximate
the contingent claim premium. The price at time t of the European call and put options with exercise
date T and strike price K, on a futures contract with delivery start τs ≥ T is given by

C( ft, t,K, σ, r) = e−r(T−t)[ ftN(d1)− KN(d2)] (8)

P( ft, t,K, σ, r) = e−r(T−t)[KN(−d2)− ftN(−d1)] (9)

where ft is the futures price and N is the cumulative distribution function of N(0, 1), where

d1 =
ln( ft/K) + (σ2/2)(T − t)

σ
√
(T − t)

(10)

d2 = d1 − σ
√
(T − t) (11)

and r is the risk free rate of interest, σ the volatility of the underlying futures price and (T − t) is the
time to exercise date. The sensitivity in the option premiums with respect to changes in the underlying
futures price is given by the call and put option deltas:

∂C
∂ f

= e−r(T−t)N(d1) (12)

∂P
∂ f

= e−r(T−t)N(−d1) (13)

These are used to synthesise the option, by setting portfolio hedge rate ht ∈ (0, 1) with the call (buyer)
and put (seller) option deltas. By implementing this delta hedging scheme, a cap (floor) for the portfolio
price is set at the option strike price K, adjusted for the option premium/ replication costs. For a more
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detailed presentation of the underlying theory, the reader is referred to Bjork (2009).

Step hedge portfolio insurance (SHPI) is a simple and mechanical benchmark strategy that builds
hedging positions gradually by transacting identical volumes each day through the trading period
(t0, T), reaching a full hedge prior to the start of the settlement period. The hedge rate for a buyer at
time t is given by

ht =

{
t

T−t0+1 if pt < p∗

1 if pt ≥ p∗
(14)

The hedges for a seller is entered mechanically in a similar manner as long as pt > p∗. In the event
pt ≤ p∗ a full hedge ht = 1 is implemented. By distributing the transacted volumes evenly across the
trading period while monitoring the target, the strategy portfolio price will either be locked in at the
target price, or end up equal to the average forward market price over (t0, T).

Finally, the Stop loss portfolio insurance (SLPI) is another simple benchmark, where no hedge
positions are entered unless the target level is reached. For a buyer, this may be expressed as

ht =

{
0 if pt < p∗

1 if pt ≥ p∗
(15)

For a seller, the logic is reversed with ht = 0 for pt > p∗ and ht = 1 for pt ≤ p∗. In the event that the
target level is reached, the portfolio is kept fully hedged until start of settlement. If this does not occur,
the portfolio follows the forward market, leaving an option to lock in the price at contract expiration.

The strategies presented above all have strengths and weaknesses. CPPI, SHPI and SLPI are simple
and intuitive, but can be vulnerable to so-called lock in, the inability to improve portfolio price once the
target level has been reached. This is also the case for DPPI. The OBPI does not suffer from this trait,
but it relies on more assumptions regarding model parameters. In some scenarios, it will also generate
more trading activity (costs), for example if the market fluctuate around the option strike price, K.
Finally, as the strategies must be implemented in discrete time, they will all be exposed to gap risk.

The strategy classes with examples

The portfolio insurance strategies in etrm are implemented as S4 classes. Since they share many
characteristics, they inherit most of their properties from a parent class, "GenericStrat". In fact, the
implementation of the simple benchmark strategies SLPI and SHPI do not require any additional
properties to be added to the parent. The remaining strategy classes have some additional model
specific features, in accordance with the descriptions in previous section. This modular design offers
flexibility, and new strategies for price risk management can easily be added to the package.

GenericStrat

Name : "character"
Volume : "numeric"
TargetPrice : "numeric"
TransCost : "numeric"
TradeisInt : "logical"
Results : "data.frame"

plot()
summary()
show()

CPPI

RiskFactor : "numeric"

DPPI

TargetPercent : "numeric"
RiskFactor : "numeric"

OBPI

StrikePrice : "numeric"
AnnVol : "numeric"
InterestRate : "numeric"
TradingDays : "numeric"

SHPI SLPI

1

Figure 5: Attributes and methods for portfolio insurance strategy classes in the etrm package.

Figure 5 provide an overview of the class hierarchy, and a brief description is given in the following.
In "GenericStrat", the "Name" property is used to store a strategy identifier. Allowed character values
are "CPPI", "DPPI", "OBPI", "SHPI" and "SLPI". The volume to be managed and the corresponding
price cap (floor) can be found in "Volume" and "TargetPrice", respectively. If a transaction cost has
been included in the calculation of the portfolio price, this is to be found in "TransCost". One may
also set a restriction on transactions by requiring that the smallest volume available for trading is
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equal to 1 unit. This lot size limitation is stored as TRUE/FALSE in "TradeisInt". The main output
from a strategy calculation can be found in "Results". This data frame keeps daily values for market
prices, transactions, exposed volume, open volume, hedge rate, target price and portfolio price.

The generic methods plot(), summary() and show() are implemented in "GenericStrat" and
inherited by the strategy classes. The plot()method returns a chart based on "Results", with daily
values for portfolio, market and target prices and portfolio hedge rate. The summary()method returns
a list with five elements; a description string, portfolio volume, target price, calculated churn rate and
a data frame with summary statistics for the trading period. Finally, the show()method returns the
"Results" data frame.

Argument Description Default value

q Numeric volume none
tdate Date vector with trading days none
f Numeric price vector none
tcost Numeric transaction cost 0
int Logical lot size integer restriction TRUE

Table 3: Arguments shared by the portfolio insurance strategy functions.

The strategy constructor functions cppi(), dppi(), obpi(), shpi() and slpi() share five of the
arguments, see Table 3. Each strategy require some additional arguments to implement the models
presented in previous section. All of these inputs are of "numeric" data type. They are summarised in
Table 4.

Function Argument Description Default value

cppi()
tper Target price factor none
rper Risk factor percentage none

dppi()
tper Target price factor none
rper Risk factor percentage none

obpi()

k Option strike price k = f0
vol Annualized volatility none
r Interest rate 0
tdays Trading days per year 250
daysleft Days left to expiry none

shpi()
tper Target price factor none
daysleft Days left to expiry none

slpi() tper Target price factor none

Table 4: Model specific arguments for the portfolio insurance strategy functions.

To illustrate further, we proceed with an example. Consider a European consumer of electricity
procuring 30 MW to be delivered in 2006. The CAL-06 baseload power future from the synthetic etrm
"powcal" data set is used as hedging instrument. Trading is started 500 days prior to the contract
expiry, approximately a horizon of 2 years. For the "OBPI" strategy presented below, the target price is
calculated as an expected price cap given by the option premium-adjusted strike price selected for
the delta hedging scheme within a standard Black-76 option pricing framework. The default obpi()
strike price is set at-the-money, in this case at 26.82 EUR/MWh. The expected target price illustrated
with the horizontal dotted line in Figure 6 is calculated to be 29.84 EUR/MWh. The "OBPI" delta
hedging scheme dictate an initial hedge rate of 57 percent, and the consumer enters a 17 MW position
in CAL-06 on the first day of trading.

As time progresses and the market price changes, the obpi() function adjust the required hedge
rate in order to replicate the call option on the CAL-06 contract. Hedge rate is gradually built up as the
market increase from the second quarter of 2004, followed by a reduction after the sharp price drop
starting late in the same year. Eventually, the volume is fully hedged due to the strong upwards price
trend in 2005. The CAL-06 contract closes at 37.81 EUR/MWh on the expiry date, while the consumer
has a hedge of 30 MW and a portfolio price of 29.29 EUR/MWh. The calculated price of the option to
be synthesized (and the delta hedges) will depend on the Black-76 model parameters. In this example
the risk free rate of interest is set to r = 0 and annualized volatility σ is assumed to be 20 percent. The
following code will implement the strategy and create the plot in Figure 6:
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# data frame with final 500 trading days for CAL-06 contract
dat06 <- tail(na.omit(powcal[, c(1,2)]), 500)

# instance of the OBPI class
cal06_obpi_b <- obpi(q = 30,

tdate = dat06$Date,
f = dat06$`CAL-06`,
k = dat06$`CAL-06`[1],
vol = 0.2,
r = 0,
tdays = 250,
daysleft = 500,
tcost = 0,
int = TRUE)

# the generic plot() method
plot(cal06_obpi_b, title = "", legend = "right", ylab.1 = "EUR/MWh")

Figure 6: Option based portfolio insurance (OBPI) strategy for buyer CAL-06. Daily observations for
prices (top panel) and hedge rate (bottom panel). As the market price continue to rise, the hedge rate
is increased and the portfolio price is locked below the target price level.

An aggregated view of the trading activity over the 2 year period and final results can be retrieved
by running the summary()method on the object created above:

> summary(cal06_obpi_b)
$Description
[1] "Hedging strategy of type OBPI and length 500"

$Volume
[1] 30

$Target
[1] 29.83626

$ChurnRate
[1] 4.333333
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$Stats
Market Trade Exposed Position Hedge Target Portfolio

First 26.82 17 13 17 0.5666667 29.83626 26.82000
Max 39.01 17 17 30 1.0000000 29.83626 29.29433
Min 25.60 -3 0 13 0.4333333 29.83626 26.46833
Last 37.81 0 0 30 1.0000000 29.83626 29.29433

We note from the "ChurnRate" that the underlying 30 MW volume had to be traded 4.33 times in order
to synthesize the call option and achieve the results summarised in "Stats". By also considering the
trading costs in the calculations, the user can get valuable inputs when considering alternatives, such
as simply buying the option in the market. However, such contract may not always be available.

Finally, the show()method provide details regarding daily values for market price, transactions,
exposed volume, futures contract position, hedge rate, the target price and the calculated portfolio
price:

> head(show(cal06_obpi_b))
Date Market Trade Exposed Position Hedge Target Portfolio

1 2004-01-02 26.82 17 13 17 0.5666667 29.83626 26.82000
2 2004-01-05 26.63 -1 14 16 0.5333333 29.83626 26.73767
3 2004-01-07 26.31 0 14 16 0.5333333 29.83626 26.58833
4 2004-01-08 26.31 0 14 16 0.5333333 29.83626 26.58833
5 2004-01-09 26.54 0 14 16 0.5333333 29.83626 26.69567
6 2004-01-12 26.32 0 14 16 0.5333333 29.83626 26.59300

For the sake of comparison, the OBPI strategy for CAL-06 from a sellers point of view can be
implemented with similar assumptions by setting the volume to q = −30. Using the default at-the-
money strike price, the seller calculates an expected target floor to protect at 23.80 EUR/MWh and an
initial hedge rate of 43 percent. As the market starts to rise, the hedge is reduced. The seller increases
the hedge in late 2004 to dampen the effect from the market drop, and finally exits the forward market
positions as the price increases during 2005. The portfolio price follows the market upwards with a
premium for the put option replication, as expected for an insurance scheme. The CAL-06 contract
closes at 37.81 EUR/MWh, and the seller has a portfolio price of 35.34 EUR/MWh, which may be
locked in on the final trading day.

Figure 7: Option based portfolio insurance (OBPI) strategy for seller CAL-06. Daily observations for
prices (top panel) and hedge rate (bottom panel). The hedge rate is lowered in the upwards trending
market, and the portfolio price continue to increase.
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# instance of the OBPI class
cal06_obpi_s <- obpi(q = - 30,

tdate = dat06$Date,
f = dat06$`CAL-06`,
k = dat06$`CAL-06`[1],
vol = 0.2,
r = 0,
tdays = 250,
daysleft = 500,
tcost = 0,
int = TRUE)

# the generic plot() method
plot(cal06_obpi_s, title = "", legend = "right", ylab.1 = "EUR/MWh")

> summary(cal06_obpi_s)
$Description
[1] "Hedging strategy of type OBPI and length 500"

$Volume
[1] -30

$Target
[1] 23.80374

$ChurnRate
[1] 4.2

$Stats
Market Trade Exposed Position Hedge Target Portfolio

First 26.82 -13 -17 -13 0.4333333 23.80374 26.82000
Max 39.01 2 -13 0 0.5666667 23.80374 36.64867
Min 25.60 -13 -30 -17 0.0000000 23.80374 25.95167
Last 37.81 0 -30 0 0.0000000 23.80374 35.33567

In the examples above, we have implicitly assumed that both the consumer and the seller have
a flat volume corresponding to 30 MW over the entire year which can be covered by a base load
contract such as the CAL-06. In practice, this is typically not the case. Industrial energy consumers
will have consumption profiles determined by the activity level in their production facilities, and
often face seasonal shifts due to variation in demand, or holidays. Weather also play a large role, both
for consumers and producers such as hydroelectric plants. In order to hedge the predicted volume
more precisely, some of the other contract types presented in Table 2 will need to be included in the
portfolio. Market players will "roll forward" and start trading contracts covering shorter periods
such as quarters, months and weeks, as they become available. The mandate for the energy portfolio
will typically be broken down into smaller time intervals with expected volume and required hedge
levels. All strategies presented here may be used to make decisions for several years and their sub
periods, and the market value of a specific volume prognosis and corresponding futures positions can
be evaluated using the forward curve discussed in previous sections.

In order to maintain focus on the strategies themselves, we continue with the baseload example
with 30 MW. In Figure 8 we plot results for the remaining four strategies for the consumer hedging
with CAL-06. The benchmark strategies "SHPI", and "SLPI" follow simple, mechanical patterns. The
"SHPI" builds a full hedge gradually over the trading period, ending at either the average forward
market price for the period, or the target price. This approach will always ensure a full hedge at expiry,
without intervention. The "SLPI" does not take any positions unless the target is reached, ending
either at the target level, or leaving an option to close at the contract expiry price. As the CAL-06
increase significantly during 2005, both end up at the target level.

The "CPPI", and "DPPI" strategies are more dynamic and adjust hedge rate according to market
developments and the model parameters. As the "DPPI" implements a dynamic risk factor, µt, the
strategies are geared differently. In this example, the "DPPI" successfully adjusts the target price
downward on one of the first trading days, and achieves a lower portfolio price on last trading day.

A similar overview from a seller’s perspective is provided in Figure 9. As the market trends
upwards during the hedging period, none of the strategies end up at the initial target price. The
"SHPI" builds the hedge positions in a step-wise manner, ending up with a portfolio price equal to
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Figure 8: Achieved results for the strategies CPPI, DPPI, SHPI and SLPI for buyer CAL-06. Daily
observations for prices (top panels) and hedge rate (bottom panels).

the average futures market price for the period. The "SLPI" does not enter any positions, leaving
an option to lock in market price at expiry. Finally, we can also here see some differences between
"CPPI", and "DPPI". This is due to the dissimilar gearing of the portfolios, but also because of the
rather frequent adjustments of the target price by "DPPI". In order to protect the higher targets, hedge
rate must be increased and "DPPI" falls behind "CPPI" and ends up at a lower portfolio price for the
seller.

Figure 9: Achieved results for the strategies CPPI, DPPI, SHPI and SLPI for seller CAL-06. Daily
observations for prices (top panels) and hedge rate (bottom panels).
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etrm can also be used in conjunction with other R packages to evaluate risks related to energy
procurement. Metrics such as Value-at-Risk and Expected Shortfall can for example be calculated using
the PerformanceAnalytics package. We will proceed with a simple, illustrative example. Consider
the OBPI portfolios "cal06_obpi_b" and "cal06_obpi_s" in the code example above. If we need to
calculate risk measures at a specific point in time, say at day 350 in the trading period, we can execute
the following code:

library(PerformanceAnalytics)

# CAL-06 returns prior to t=350
ret_06 <- head(diff(log(show(cal06_obpi_b)$Market)), 349)

# portfolio status at t=350
pdat <- rbind(
Buyer =show(cal06_obpi_b)[350,],
Seller =show(cal06_obpi_s)[350,]

)

# add risk measures to pdat
pdat <-cbind(pdat,

VaR = abs(rep(VaR(ret_06, p=.95, method="historical"), 2)*pdat$Market*pdat$Exposed*8760),
ES = abs(rep(ES(ret_06, p=.95, method="historical"), 2)*pdat$Market*pdat$Exposed*8760))

The calculation above evaluate market risk related to the unhedged volume (exposed MW ×8760
hours in the year 2006) at current market prices under the (simplistic) assumption of symmetry in the
returns distribution. The portfolio status, including risk metrics is

> pdat[c(-1, -3)]
Market Exposed Position Hedge Target Portfolio VaR ES

Buyer 32.54 3 27 0.9 29.84 28.98 10671.55 18237.06
Seller 32.54 -27 -3 0.1 23.81 30.38 96043.94 164133.52

4 Overview of the etrm package

Package etrm offers an open source implementation of core functionalities of an ETRM system:

• Construction of forward curves

• Strategies for price risk management

Functions included in the package are listed in Table 5.

Function Description

msfc() Maximum Smoothness Forward Curve
cppi() Constant Proportion Portfolio Insurance
dppi() Dynamic Proportion Portfolio Insurance
obpi() Option Based Portfolio Insurance
shpi() Step Hedge Portfolio Insurance
slpi() Stop Loss Portfolio Insurance

Table 5: Overview of etrm package functions

All functions act as constructors for their corresponding S4 classes, as described in further detail
in previous sections. The classes all have generic methods plot(), summary() and show(). Unit tests
covering all functions in etrm have been implemented using the testthat framework introduced in
Wickham (2011b).

Three synthetic data sets are included in the package, see Table 6. The "powfutures130513" and
"powpriors130513" data may be used to create forward curves with the msfc() function for the trading
date 2013-05-13. The portfolio insurance strategies may be tested on the "powcal" data set, which
contains historical prices for 11 base load power futures.
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Data set Description

powfutures130513 Synthetic data for a set of electricity base load futures
quoted at 2013-05-13. Closing prices for contracts with
weekly, monthly, quarterly and yearly settlement periods

powpriors130513 Two simple priors for forward market price curve
Daily values for calculation to be used with powfutures130513

powcal Synthetic data set with daily closing prices for 11 electricity
base load futures with yearly settlement periods for 2006-2016

Table 6: Overview of etrm package data sets

5 Summary and suggestions for future work

This paper introduces etrm, an R package for energy market risk management. The package contains
tools previously not available in the R ecosystem, such as the msfc() function for building a forward
curve for energy commodities with flow delivery contracts and strong seasonality. The forward
curve is a key decision making tool with many uses, such as pricing non-standard supply agreements,
investment decisions and risk management. etrm also provides implementations of portfolio insurance
strategies for handling price risk, suitable for both long and short hedgers. The functions can be
used for back testing strategies on historical futures price data, risk and strategy evaluations, and as
decision support tools for trade execution.

The etrm package may be developed further by incorporating new elements. First, the forward
curve calculationmay be done on an hourly level. The bid-ask spread can be used as price constraint for
the optimization, as an extension of the current solution based on closing prices. Competing forward
curve calculation methods can also be added to the package, and new asset allocation strategies for
price risk management could be included.

A further extension of etrm functionality can be to implement a "PORTFOLIO" class, consisting
of a daily volume prognosis covering the full management horizon, supplemented with authorized
volumes per (sub)period and hedging strategy objects implemented in accordance with these autho-
rizations. The portfolio object could contain multiple strategy objects for contracts such as "year",
"quarter", "month" and "week", depending on the shape of the volume prognosis. This construction
can be priced using the forward curve, and portfolio wide risk measures could be calculated via Monte
Carlo simulations on the curve.
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Abstract

Severe air pollution in densely populated urban areas represent a significant health threat

to millions of people. The alarming cases are often found in some of the world’s most

populous cities, where incidents with extreme pollution levels directly affect a significant

proportion of the global population. In recent years, there has been increased focus on the

financial impact of air pollution, including consequences for business and industry. The

pollution level is typically assessed by measuring concentrations of the so-called criteria air

pollutants; ground-level ozone, particulate matter, carbon monoxide, sulfur dioxide, and

nitrogen dioxide. Results are reported to the public on a standardized scale, such as the

widely-adopted Air Quality Index introduced by the US Environmental Protection Agency

(US EPA AQI). Building upon weather derivatives theory, we design contracts whose payoff

depend on publicly available AQI data. We develop stochastic models for the pollution

dynamics for three major cities in China, and show how these can be used to price derivatives

contracts written on AQI-based indices. Results are compared to valuations from alternative

pricing strategies, and a practical use case is presented and discussed.

Keywords: Air pollution derivatives; weather derivatives; option pricing; stochastic modelling; financial

risk management; air quality index.

JEL Classification: G13, G32, Q53.

1 Introduction

Rapid development and urbanization in fast-growing developing economies of the world have led

to increased levels of air pollution, which is becoming a growing concern. The soaring demand

for energy, transportation, and industrial activities associated with growth have resulted in in-

creased emissions and higher levels of air pollution in many of the world’s most populous cities
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[Chan and Yao, 2008], [Mage et al., 1996]. This has become a significant concern for public

health and the environment. In many Asian cities, air pollution levels are among the highest in

the world, and the health effects of pollution, such as respiratory and cardiovascular diseases,

are becoming increasingly prevalent [Manisalidis et al., 2020], [Gurjar et al., 2010]. In regions

heavily impacted, the consequences are far-reaching and can include reduced life expectancy,

decreased worker productivity, and negative impacts on industries such as agriculture, manufac-

turing, construction and tourism [Marlier et al., 2016]. Governments aim to play an active role

in mitigating the risks through the implementation of regulations and programs for sustainable

urban development. Other initiatives include creating incentives for clean energy production

and investment in public transportation infrastructure. Many countries have adopted national

air quality standards, which are used to regulate and monitor the levels of pollutants in the air.

These standards typically specify limits for a range of pollutants, including ozone, particulate

matter, carbon monoxide, nitrogen dioxide, and sulfur dioxide [Kuklinska et al., 2015], [Marlier

et al., 2016]. The implementation of these standards is supported by air quality monitoring

programs, which are designed to measure the levels of pollutants in the air and provide infor-

mation on their impacts. This information is used by governments to assess the effectiveness

of air quality management strategies and to identify areas where additional measures may be

needed.

Megacities such as Beijing and Delhi are facing significant air pollution challenges. The emissions

generated by their rapidly growing populations and economies have contributed to multiple

episodes of extreme air pollution, which have required immediate action from the authorities.

While the generally poor air quality pose a long-term threat to public health, these incidents

represent an acute risk. As a result, governments have been forced to take drastic measures,

such as implementing lockdowns, to reduce emissions and improve air quality [An et al., 2007],

[Kumar et al., 2015]. Pollution incidents and lockdowns can have a significant impact on the

economy, hindering business operations and causing economic disruption in regions that play

an important role in the global supply chain. Both the extraordinary circumstances during a

pollution incident, and the imposed shut down of activities may represent a significant financial

risk for business owners.

While insurance agreements can to some extent be used to reduce this exposure, they may not

cover all relevant outcomes and be costly and time-consuming to implement. In an insurance

settlement process, the policyholder would have to file a claim and provide documentation of

loss, which needs to be evaluated by the provider of the insurance. As an alternative, we sug-

gest using standardized financial derivatives contracts as tools for managing financial pollution

risk. Similar instruments have already been used for decades in the market for weather deriva-

tives Thind [2014]. The traded contracts are settled against standardized indices that are built

on weather data reported by trusted third parties, typically meteorological organizations, gov-
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ernment agencies, and private weather companies. Depending on the outcome of the measured

weather event, settlement is conducted without delay, according to contract specifications. This

provides increased transparency and flexibility, as there is no need for further documentation,

and the derivative may be freely bought and sold in the market.

The remainder of the article is organized as follows. In Section 2 we give an introduction to

weather markets, and consider how weather derivative-like contracts may be suited to manage

pollution risk. Thereafter, an overview of previous studies is presented. In Section 3 we give an

introduction to the US Environmental Protection Agency AQI 1 standard, and show how pub-

licly available AQI data can be used to define indices for the derivatives contracts. We continue

with a discussion of alternative approaches to pricing, and present a stochastic model for the

AQI dynamics. Section 4 contains an empirical analysis of pollution data from three large cities

in China, and stochastic models for the reported AQI series. In section 5 we compare results

from alternative pricing methods and explore some practical applications. Main conclusions

and suggestions for further work are presented in Section 6.

2 Motivation and review of literature

Weather derivatives are financial instruments that allow market participants to hedge against

the impacts of adverse weather conditions. They are similar to other financial derivatives, in

that their value is derived from an underlying settlement reference, which in this case is weather.

The Chicago Mercantile Exchange (CME) offers trade in futures and options based on several

weather indices, including temperature, snow fall and precipitation, and the listed contracts are

written for locations mainly in North America, Australia, Japan, and Europe. A significant

proportion of the global weather market is managed OTC, as this provides more flexibility

[WRMA, 2011]. By trading bilaterally, the parties are able to specify the geographical location

and tailor contract terms to meet their risk management needs. The first recorded weather

trade was executed OTC. This was an energy supply contract with a temperature clause for

volume risk management between Aquila Energy and Consolidated Edison Thind [2014]. The

first pure weather trade was based on temperature and took place in Milwaukee for the winter of

1997-1998 between Enron and Koch Industries. This trade marked the beginning of the modern

weather derivatives market and demonstrated the potential for financial instruments to manage

weather-related risks.

Temperature-based contracts are the most popular and actively traded weather derivatives

currently available [WRMA, 2011]. The most common instrument types are based on indices

1https://www.epa.gov/outdoor-air-quality-data/how-aqi-calculated
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that measure the cumulative average temperature (CAT), the cumulative heating-degree days

(HDD), and the cumulative cooling-degree days (CDD). For a given measurement period [τ1, τ2],

the indices are calculated with

CAT (τ1, τ2) =

τ2∑

t=τ1

T (t) (2.1)

HDD(τ1, τ2) =

τ2∑

t=τ1

max{b− T (t), 0} (2.2)

CDD(τ1, τ2) =

τ2∑

t=τ1

max{T (t)− b, 0} (2.3)

where T (t) is the average of the daily maximum and minimum temperature for day t, and b is a

base temperature level, typically set at 18oC/ 65oF . By accumulating the days above the base

level, the CDD index quantifies the need for cooling during the measurements period. Similarly,

the HDD reflects the need for heating. The CAT index reflects the aggregated temperature

during a period of time by accumulating the average temperatures, without considering any

threshold. Derivatives, such as futures, swaps and options, are written on these indices, and the

contracts can cover periods such as weeks, months or seasons. There is a rich research literature

on weather markets and pricing methods for traded instruments [Jewson and Brix, 2005]. See

[Schiller et al., 2012] and [Benth and Saltyte Benth, 2012] for an overview of approaches to

temperature derivative pricing. Commonly used techniques include historical pricing (burn

analysis), temperature index modeling daily temperature modeling [Alaton et al., 2002], [Benth

and Saltyte Benth, 2005] , [Benth and Saltyte Benth, 2007], [Benth and Saltyte Benth, 2011]

and utility based approaches [Cao and Wei, 2004], [Davis, 2001], [Platen and West, 2004] and

[Brockett et al., 2006]. Alternative approaches to pricing are further described in Section 3.3.

These instruments are used in a variety of sectors that are impacted by weather, including

energy production, agriculture and tourism [WRMA, 2011]. By taking a position in a CDD

futures contract, an energy company can swap a fixed level of the index against the floating

CDD to offset financial loss due to reduced electricity demand. Farmers can hedge against

crop failure by procuring contracts that generate a payoff in the event of extreme temperature

and drought. For companies with significant weather exposure, these instruments can serve as

effective tools for volume risk management. See for example [Pérez-González and Yun, 2013] for

an evaluation of the relationship between active weather risk management practices and firm

value for weather-sensitive companies.

Episodes with extreme air pollution have led to lockdowns in several Asian megacities, causing

a range of negative consequences for businesses, individuals, and the wider economy. Both

the magnitude of the pollution incident itself, and the related shutdown of factories, schools,
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airports, and restrictions on traffic may contribute to a significant reduction in economic activity

[An et al., 2007], [Kumar et al., 2015]. As these challenges occur in fast-growing cities of

considerable size, they may affect large populations and number of industries active in the

international trade. The degree of air pollution during an incident can be evaluated by assessing

the official Air Quality Index (AQI) for the location. Using the AQI as settlement reference for

weather-type derivatives is a fairly new idea. Early works include [Li and Zhu, 2016] and [Sleire,

2018] 2 . Both of these independently developed studies design option contracts for financial

pollution risk management based on air quality data from the city of Beijing, but the underlying

AQI used are solely based on PM2.5 measurements. Although particulate matter often is the

dominant pollutant, a broader index including all of the air quality index constituents would

be preferable. The quality and trustworthiness of this data is of vital importance, both for

public health and the relevance of the suggested pollution derivatives, which depend on the

AQI. Pollution levels are typically reported by local authorities or environmental protection

agencies, and published studies have documented likely misreporting of official air quality data

from China, see [Stoerk, 2016]. Further details regarding the index constituents and calculation

methodology for the internationally established US EPA AQI standard are presented in Section

3.1. In [Xue et al., 2019], multiple pollutants are considered when calculating an AQI based

on China’s national air quality standards, which deviate from the most widely used US EPA

AQI. This AQI is then employed to calculate an air quality deviation index to be used as

settlement reference, which unfortunately does not reflect the pollution level well, and hence is

less relevant when assessing the severity of pollution during a specific time period. An attempt

to improve upon this can be found in [Liu et al., 2019], where a new index is suggested. The

authors use the average AQI as settlement reference for contracts covering periods such as week,

month or quarter, which is more consistent with existing indices from weather markets. They

base the study on the national air quality standard from China, and describe daily AQI with

an Ornstein–Uhlenbeck model with a seasonal function, similar to the temperature model in

Benth and Saltyte Benth [2007], but with an AR-GARCH term. As the AQI is modeled directly

without any transformation, the estimated seasonal function implies the series may take negative

values, which is not consistent with the physical properties of pollutant concentrations.

The present study is based on the US EPA AQI, to contribute to the standardization of air qual-

ity reporting and promote transparency in the design of derivatives contracts for pollution risk

management. We construct a settlement index that is similar to those in the weather market,

as these are relevant and well known by market participants. The proposed AQI model involves

a combination of a deterministic seasonal function and a continuous autoregressive model with

a geometric model specification, to ensure that the predicted pollutant concentrations are non-

negative. This model is used for pricing, and compared to alternative methods.

2The idea for the present study was first introduced at the EcoSta 2018 conference in Hong Kong.
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3 Air pollution derivatives

3.1 The Air Quality Index

Poor air quality is caused by the release of pollutants such as gases, chemicals or airborne

particles into the atmosphere. The dosage received by an individual is determined by the

pollutant concentration level, and the time of exposure. TheWorld Health Organization released

it’s first air quality guidelines in 1987, and these have been revised on several occasions, based on

systematic reviews of a rapidly growing research literature of the adverse health effects [WHO,

2006]. In order to improve air quality management and report status to the public in a clear

and concise manner, numerous countries have developed national air quality standards, see for

example [Kuklinska et al., 2015] for a review of US and EU policies. The standards typically

include a framework for converting concentration levels measured over a specific exposure period

to a standardized scale that can be used for reporting and issuing health recommendations.

The Air Quality Index (AQI) developed by the US Environmental Protection Agency is fre-

quently used for international reporting and comparisons, [EPA, 2009], [EPA, 2021]. The index

covers the so-called criteria air pollutants from the US Clean Air Act. These are ground-level

Ozone (O3), Particulate Matter (PM2.5 and PM10), Carbon Monoxide (CO), Sulfur Dioxide

(SO2) and Nitrogen Dioxide (NO2). Concentration measurements for each of the index con-

stituents are converted to AQI values based on pollutant specific threshold values. Given a

concentration measurement C, the AQI value can be obtained with

AQI =
(AQIhigh −AQIlow)(C − Clow)

(Chigh − Clow)
+AQIlow (3.1)

where Clow and Chigh are the concentration breakpoints closest to C and AQIlow and AQIhigh

the corresponding AQI breakpoints. The index value is calculated for each of the criteria air

pollutants, and rounded to the nearest whole number. The dominant pollutant with the highest

AQI value is reported. For each hour, the following evaluation takes place

AQI = max
{
AQIO3 , AQIPM2.5, AQIPM10, AQICO, AQISO2 , AQINO2

}
(3.2)

A detailed AQI calculation table for all of the criteria air pollutants is available online in the US

EPA AQI technical documentation. For sake of illustration, we provide the PM 2.5 breakpoints

in Table 1 and use them to convert a concentration measurement to the index value.

As an example, consider a measurement of PM2.5 levels. The 24-hour average concentration

is registered at 59µ/m3. The AQI value is (200− 151)(59− 55.5)/(150.4− 55.5) + 151 ≈ 153.

This degree of air pollution is considered Unhealthy.
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Table 1: AQI calculation for PM 2.5, micrograms per cubic meter (µ/m3)

AQI PM2.5 (µ/m3) Evaluation

0-50 0-12 Good
51-100 12.1-35.4 Moderate
101-150 35.5-55.4 Unhealthy for Sensitive Groups
151-200 55.5-150.4 Unhealthy
201-300 150.5-250.4 Very Unhealthy
301-400 250.5-350.4 Hazardous
401-500 350.5-500.4 Hazardous

AQI above 300 is classified as Hazardous. According to the US EPA guidelines ”values over 300

trigger health warnings of emergency conditions. The entire population is even more likely to

be affected by serious health effects”, [EPA, 2009]. Prolonged periods at these levels have led to

government imposed lock-downs in several countries, forcing parts of industry, airports, schools

and public transport to halt, see for example the Beijing [An et al., 2007] and Delhi [Kumar

et al., 2015] episodes. Air pollution is closely linked to the rapid economic development and

urbanization over the last decades, but also to the topography and meteorology of the regions

where urbanization is taking place. An extensive review of air pollution in mega cities in China is

presented in [Chan and Yao, 2008]. Further enquiries regarding underlying causes and resulting

health effects can be found in [He et al., 2002], [Chen et al., 2013]. In the study performed by

[Rohde and Muller, 2015], hourly measurements from a large number of sites during the period

April-August 2014 are used to create pollution maps for eastern China. They report that 38%

of the population experienced average concentrations that were unhealthy according to the US

EPA standard, and estimate that air pollution is a contributing factor to approximately 17%

of all deaths in China. When the AQI reaches extreme levels during pollution incidents, other

more short term challenges may appear. Airport activity and general traffic is hindered due to

poor visibility, parts of industry is forced to shut down, and a large proportion of the public will

suffer from acute respiratory problems. These are the hazardous 300-level AQI events, which

have led to lock downs on numerous occasions in several of the large cities in Asia.

It is worth noting that the reported pollution concentration is highly dependent on the location

of the measuring device, and one may observe variation across metering stations placed relatively

close to each other. For this reason, the overall pollution level in a city is assessed by including

measurements from multiple stations, located in different types of environments. There may

also be strong seasonality in air pollution levels, due to social factors such as increased need for

heating during wintertime. The official AQI values for a given area are typically published by

public institutions and environmental protection agencies.
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3.2 Settlement index for air pollution derivatives

The construction of settlement references based on trustworthy and publilcy available AQI

measurements is a crucial initiative towards ensuring accurate and reliable trading of derivatives

contracts. The index should be based on data from multiple monitoring stations, to certify

readings are representative of the overall air quality in a specific region. This requirement is

also expected to reduce the likelihood of manipulation and bias, as the values from different

stations can be cross-verified and compared. Following standard practice from temperature

markets [Alaton et al., 2002], [Benth and Saltyte Benth, 2005], we base the settlement reference

on the daily AQI value. Here, we calculate the daily average with

AQI(t) =
1

24

24∑

i=1

(AQIi) (3.3)

for the hours i = 1, . . . 24 of day t = 1, . . . , n. The index to be constructed have to meet certain

requirements to be suited for financial risk management. In order to be relevant, it must be a

representative and accurate reflection of the source of risk to be protected against for market

participants. The calculation methodology should be objective, transparent, easily accessible to

all parties involved, and free from bias and manipulation. In order to achieve this, we suggest

to primarily focus on the time limited pollution incidents, using well-established and familiar

concepts from existing weather markets. The 300-level AQI events represent extraordinary

circumstances, where a larger proportion of the public and industry is likely to face difficulties.

These are also the levels where where governments typically intervene, as policy actions are

informed by AQI-frameworks and related monitoring programs. In contrast to [Xue et al.,

2019], [Liu et al., 2019], we will not attempt to define new index types specific for the purpose

of pollution risk management, but rather implement settlement references similar to the CDD

used in the temperature market. This threshold based approach is well suited for capturing

effects from pollution incidents, it is well known among market practitioners, and there is a

rich research literature on pricing methods. Furthermore, as the US EPA AQI is considered the

de facto standard for international pollution reporting, we also prefer using this over national

frameworks, in order to promote standardization and improve transparency.

The calculation of the proposed Hazardous Air Quality Index (HAQI) score is based on the

daily average AQI for a specific location. If the reported value exceeds a pre-specified limit,

the Hazardous 300 level, the severity of the breach is calculated by subtracting 300 from the

measured value. The index value for a specific period, such as a week, is then calculated as

the sum of all the daily HAQI scores for that period. For a specific time interval [τ1, τ2], the
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cumulative Hazardous Air Quality Index is thus given by

HAQI(τ1, τ2) =

τ2∑

t=τ1

max{AQI(t)− 300, 0} (3.4)

where AQI(t) is the daily mean value, and the measurement period is typically of fixed length,

like week or month. The index may be used as underlying settlement reference for various

derivatives contracts, such as futures or options. In this work we will focus on the latter.

Options written on the HAQI will give the contract holder a right, but not an obligation to

exercise, and the payoff received will depend on the realized HAQI, an agreed strike value for

the index, K, and the contract size, α. The buyer of a call option with strike K and contract

size α will have the following profit function

πb = αmax{HAQI(τ1, τ2)−K, 0} − C0(τ1, τ2;K) (3.5)

where the first term is the payoff from the contract upon the time of settlement t ≥ τ2, and

C0(τ1, τ2;K) is the option premium paid. In the event that the HAQI ends up below the

strike value, the option expires worthless, and the option holder is left with a loss equal to the

premium. For the option seller, the profit is given by

πs = C0(τ1, τ2;K)− αmax{HAQI(τ1, τ2)−K, 0} (3.6)

For for the purpose of illustration, we will specify a HAQI based option contract for the city of

Xi’an, China as an example. The contract size, which serves as a scaling factor for the payoff

received, is set to α = 100 USD. We consider the HAQI for February 2024, assuming an agreed

index strike value K = 200.

Contract type: Call option

Settlement index: HAQI

Location: Xi’an, China

Period: Jan-2024

Strike value: 200

Contract size: 100 USD

The holder of this contract will have the right, but not the obligation to exercise at maturity.

This would be attractive if the accumulated HAQI > 200 for the period 1. January 2024 to

31. January 2024. Given the contract parameters, the value of the option is a function of the

stochastic HAQI. What would be a fair price for this instrument?
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3.3 Approaches to pricing in incomplete markets

In a complete market, where there is an active market for the underlying asset, the value of a

derivative contract can be determined by evaluating the costs of forming a replicating portfolio

with an identical payoff structure, see [Bjork, 2009]. As an example, consider a call option on

an actively traded asset with price S(t). In the absence of arbitrage, the premium at time t

should be equal to the discounted value of the expected payoff at time of settlement T under

the risk neutral probability measure

Ct(τ1, τ2;K) = e−r(T−t)EQ

[
max{S(T )−K, 0} | Ft

]
(3.7)

In an incomplete market, however, this type of arbitrage argument cannot be used and alterna-

tive valuation strategies are necessary. Weather derivatives fall into this category, and several

methods have been proposed for their valuation. According to the literature review by [Schiller

et al., 2012], the methods for valuing temperature derivatives can be divided into three groups:

burn analysis, index modeling, and daily temperature modeling. [Benth and Saltyte Benth,

2012], add a fourth category: utility-based approaches. As these methods may also be appli-

cable for AQI-based derivatives, we will explore them further in the following. We will also

comment briefly on potential uses of climate models and machine learning techniques. In order

to identify alternative pricing strategies for derivatives written on the AQI, it is necessary to

consider a range of methods and techniques, and their strengths and weaknesses.

The historical pricing method, also known as burn analysis, is a simple actuarial technique that

uses past observations to determine the payoff of a specific contract. The price of the instrument

is obtained by taking the average of the discounted value of these payoffs, while also accounting

for a market risk premium [Jewson and Brix, 2005]. Using this approach, we would need to

collect historical AQI values, calculate the realized HAQI´s and evaluate contract payoffs for

a given strike value. The option premium is found by taking the average of the discounted

payoffs. This method requires access to a reasonably sized historical time series and relies on

the data being representative of future values. This can be problematic for air pollution data,

as many available time series are short, and the data generating process may change due to

efforts to reduce emissions or stricter regulations. Despite these limitations, historical pricing

is still a relevant benchmark, and it is straightforward to calculate.

Index value simulation is a second type of actuarial approach to pricing, which involves the use

of statistical models to simulate the underlying settlement reference for the derivative [Jewson

and Brix, 2005]. By generating a large number of scenarios for the index, the expected value

of the contract may be calculated, taking into account the distribution of possible outcomes

and the probabilities of each scenario occurring. This method is useful in cases where there
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is limited historical data available, as it allows the use of models to generate scenarios based

on current and expected conditions, and additional factors such as the effects policy change

may be incorporated. The large number of scenarios considered may also offer more stable

price estimates compared to the historical approach [Schiller et al., 2012]. Finding a suitable

distribution for the AQI to be used in the simulation method can be a challenge with limited

data. By considering alternative distributions and validating their accuracy, we will be able to

generate results that may be compared with competing approaches, to inform the pricing of

AQI-based derivatives contracts.

The method of daily temperature modelling involves constructing a model for the daily average

temperature and using it to simulate a large number of temperature series. These simulated

series can then be used to value weather derivative contracts. This approach offers the advan-

tage of pricing all contracts at a single location with a single model, ensuring consistency in

prices. The daily temperature modelling method has become a popular approach in the weather

derivatives market, with numerous studies and alternative model specifications proposed in the

literature. Some examples of these studies include work by [Benth and Saltyte Benth, 2012],

[Alaton et al., 2002] and [Dornier and Queruel, 2000]. In order to apply this approach for pollu-

tion derivatives, we will need to develop a stochastic model that describes the dynamics of the

daily AQI. An important point to underline in this regard is that the pollutant concentration is

a non-negative value, due to its physical properties. Hence, we should avoid using the common

model specifications for temperature, where the variable is allowed to take negative values. This

is particularly important if a falling trend is present in the reported AQI values. After fitting

the model, we sample a large number of realizations and calculate contract payoffs. The option

premium is found by taking the average discounted value from the process simulations. This

approach may also allow us to test alternative assumptions regarding potential pollution trends

due to government interventions and pollution reducing efforts. A potential downside of this

approach is the reliance on the quality of the model, and it may be perceived as complex and

difficult to implement by practitioners.

The utility-based approach to pricing weather derivatives relies on economic models that uses

the concept of utility theory to value weather-related risks. The method involves modeling

the relationship between weather events and the economic outcomes they generate in various

scenarios. In [Cao and Wei, 2004], temperature is included as a source of uncertainty in the

economic environment in an equilibrium pricing framework [Lucas, 1978], and the relationship

between weather and the overall economic output is evaluated. The analysis suggest that

the market price of risk for temperature derivatives is significant, indicating the importance of

considering weather-related risks in financial decision-making. However, it relies on a number of

assumptions and can be complex to implement. These methods require a good understanding of

the underlying economics and the relationship between weather and the economy. Associations
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between air pollution levels and economic activity have been subject to investigation in several

studies, but it would be complex and difficult to implement as a foundation for pricing in

practical applications. Other studies that may be placed in utility-based approach include

[Davis, 2001], [Platen and West, 2004] and [Brockett et al., 2006].

Another approach to consider for pricing temperature derivatives is based on physical temper-

ature models and weather forecasts, which utilizes expert knowledge and atmospheric models

to estimate the impact of weather events on temperature, see Jewson and Brix [2005]. This

approach has the advantage of incorporating a more detailed understanding of the physical

processes that drive temperature patterns, but may be more complex and resource-intensive

than other methods. There are also several projects focusing on ambient air quality that may

serve useful, see for example the Community Multiscale Air Quality (CMAQ) modelling system,

[Appel et al., 2017], [Byun and Schere, 2006]. For an overview of approaches to air pollution

modelling, the reader is referred to [Zannetti, 2013] and [Daly and Zannetti, 2007]. Machine

learning techniques can also be applied for pricing. By training models on historical weather

data, they may be utilized to make predictions that can be used to calculated the expected

contract payoffs to be discounted in order to find the derivative value.

In the following we will focus on the historical approach, index simulation and stochastic mod-

elling. By comparing the results of these three methods, the analysis will provide insights into

the strengths and limitations of each approach and inform the further development of pricing

models for AQI-based derivatives contracts.

3.4 Stochastic Air Quality Index model

Empirically, the AQI share many traits with meteorological time series, such as temperature.

However, the pollutant concentrations and their corresponding AQI values will by their physical

properties always be non-negative. For this reason, we will not adopt the commonly used

approach in temperature markets and model the series directly, [Alaton et al., 2002], but rather

opt for the following specification for the AQI:

AQI(t) = eΛ(t)+X1(t) (3.8)

Here, AQI(t) is the daily air quality index, Λ(t) is a deterministic function describing the trend

and seasonality, and X1(t) is a stochastic process modeling the AQI dynamics. Similar models

have been used for wind speed [Benth and Saltyte Benth, 2009] and electricity prices Benth

et al. [2008]. This geometric specification is particularly relevant, given the fact that urban air

pollution is directly impacted by human behaviour, and countries struggeling with high levels
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actively attempt to reduce pollution. Models that may allow a falling trend in the AQI to

produce negative index values should be avoided. We will focus on the log-transformed index

P (t) = Λ(t) +X1(t) (3.9)

and model the seasonality for P (t) with the truncated Fourier series

Λ(t) = a0 + a1t+

I1∑

i=1

bi cos(
2iπt

365
) +

J1∑

j=1

cj sin(
2jπt

365
) (3.10)

where a potential trend may be reflected in the parameter a1. Seasonal effects on yearly,

half-yearly, or higher scales may be identified by increasing I1 and J1 and evaluating model

fit. Similarly to [Benth et al., 2007], [Benth and Saltyte Benth, 2009] and others, we use a

continuous-time autoregressive (CAR) model for the stochastic component. Let X(t) be a

stochastic process in IRp for p ≥ 1 defined by the vectorial Ornstein-Uhlenbeck equation

dX(t) = AX(t)dt+ epσ(t)dL(t) (3.11)

where L(t) is a Lévy process, ek is the kth unit vector in IRp, k = 1, ..., p and σ(t) > 0 is a

real-valued and square integrable function. A is the p× p matrix

A =




0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

...
...

0 0 0 0 1

−αp −αp−1 −αp−2 . . . −α1




(3.12)

where αk, k = 1, ..., p are constants. In order to represent X(t) explicitly, the multi-dimensional

Ito’s Lemma is applied to (3.11), and we get:

X(s) = exp(A(s− t))X(t) +

∫ s

t
exp(A(s− u))epσ(u)dL(u) (3.13)

for s ≥ t ≥ 0 and X(t) ∈ IRp. Then, the model for the log-transformed daily air quality index

dynamics can be specified as

P (t) = Λ(t) +X1(t) (3.14)

X1(t) = e1
TX(t) (3.15)

where e1
T denote the transpose of e1, Λ(t) is the seasonal function in (3.10) and Xq is the
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qth coordinate of the vector X, q = 1, ..., p. Here, X1(t) is a continous autoregressive model of

order p, denoted CAR(p), and the special case of p = 1 corresponds to an Ornstein-Uhlenbeck

process. In Benth [Benth et al., 2008] it is demonstrated that X1(t) can be approximately

represented by an AR(p)-dynamics by utilizing a Euler discretization scheme. Considering the

example where p = 3, they present the connection between the parameters of the CAR(3) and

AR(3) models

3− α1 = β1 (3.16)

2α1 − α2 − 3 = β2 (3.17)

α2 + 1− (α1 + α3) = β3 (3.18)

where β1, β2, β3 are the paramters of the discrete model. This relationship allows us to compute

the parameters α1, α2, α3 for the CAR(3) model from the fitted AR(3) model. Generally, a

CAR(p) process is stationary if the eigenvalues of the matrix A all have negative real parts,

[Benth et al., 2008]. Finally, to account for potential seasonal variation in volatility, a truncated

Fourier series is fitted for the squared model residuals

σ2(t) = a0 +

I2∑

i=1

bi cos(
2iπt

365
) +

J2∑

j=1

cj sin(
2jπt

365
) (3.19)

Following the principles in [Benth et al., 2007], [Benth and Saltyte Benth, 2009] we estimate

the model for AQI(t) in a step-wise fashion. First, the seasonal function in (3.10) is fitted on

the log-transformed data via least squares and used to deseasonalize P (t). Second, we fit an

AR(p)-model to the deseasonalized series P (t) − Λ(t), calculate the CAR(p) parameters and

check for stationarity. Finally, σ(t) is fitted for the residuals, in order to capture any seasonal

volatility in the air pollution dynamics.

4 Stochastic modelling of the daily Air Quality Index

In the following we conduct an empirical analysis of daily AQI observations from three severely

polluted cities in China: Anyang, Shijiazhuang and Xi’an. The analysis of data from three

different locations provides several benefits in understanding the dynamics of air pollution and

developing models to price AQI derivatives, as different cities may have individual sources and

intensities of pollution. AQI dynamics may vary based on factors such as population density,

geography, industrial activity, and transportation patterns. After a brief descriptive analysis

evaluating summary statistics and distributions for pollution levels, we fit the model presented

in previous section in a step-wise fashion.
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Figure 1: Location of the selected cities

4.1 Description of data

The data used in this analysis is collected from a pool of metering stations located in Anyang,

Shijiazhuang and Xi’an. The observations consists of daily average AQI values for each of the

five index constituents during the period 1. January 2014 to 15. January 2023. The dominant

pollutant on a specific day is selected as the city AQI, leaving us with three time series covering

3275 days for further analysis. Missing observations (approximately 0.3%) are imputed using

linear interpolation, and the AQI values are reported in the 0 − 500 range, in accordance with

the US Environmental Protection Agency guidelines, [EPA, 2009], [EPA, 2021]. An overview of

the data sources can be found in Table 8 in the Appendix.

The descriptive statistics of the daily average AQI values in our analysis reveal several concerning

trends. The mean values for Anyang, Shijiazhuang, and Xi’an are 161.2, 168.4, and 141.8,

respectively. These values are all well above the recommended levels according to the US EPA

AQI guidelines, which set a maximum AQI value of 100 as the threshold for good air quality.

This suggests that the air quality in these cities is consistently poor, with high levels of pollutants

that can have significant impacts on public health and well-being. The standard deviations for

the three cities are 68.6, 80.3, and 63.9, respectively. These values indicate that there is a

considerable amount of variability in the daily AQI values across each location. The skewness

values also reflect that the distributions have longer upper tails, and the reported third quartile

values are all above the Unhealthy 150 level of the US EPA AQI. For two of the cities, this is

also the case for both mean and median values.
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Table 2: Descriptive statistics for AQI(t) and P (t) per city

Anyang Shijiazhuang Xi’an ln(Anyang) ln(Shijiazhuang) ln(Xi’an)

Obs. 3, 302 3, 302 3, 302 3, 302 3, 302 3, 302
Mean 161.2 168.4 141.8 5 5 4.9
Std.dev. 68.6 80.3 63.9 0.4 0.4 0.4
Skewness 1.8 2 1.7 0.1 0.5 0
Excess kurtosis 5 4.8 5.2 1 0.6 0.6
Min 23 36 16 3.1 3.6 2.8
1 Quartile 118 118 98 4.8 4.8 4.6
Median 151 153 132 5 5 4.9
3 Quartile 184 189 167 5.2 5.2 5.1
Max 500 500 500 6.2 6.2 6.2

Figure 2 presents the pollution distribution plots for the three cities. Reported AQI values

have a long upper tails, and there are multiple observations above the Hazardous 300 level.

The log-transformation produces fairly symmetric distributions. We also evaluate the Box-Cox

transform

y(λ) =




(yλ − 1)/λ if λ ̸= 0

ln y if λ = 0
(4.1)

where y(λ) is the transformed variable and the optimal λ is found via maximum likelihood

estimation. ln(y) is a special case for λ = 0.

ln(Anyang) ln(Shijiazhuang) ln(Xi'an)

Anyang Shijiazhuang Xi'an

3 4 5 6 3.5 4.0 4.5 5.0 5.5 6.0 3 4 5 6
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Figure 2: Histograms for AQI(t) and P (t) per city
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This technique was used by [Benth and Saltyte Benth, 2009] when analyzing time series for

daily average wind speeds for the purpose of pricing wind futures contracts. Their data share

several of the properties also seen in AQI measurements, such as seasonality and non-negativity.

By applying the Box-Cox transformation, we are effectively considering an extended version of

the model described in Equation (3.8)

AQI(t) =




[λ(Λ(t) +X1(t)) + 1]1/λ if λ ̸= 0

eΛ(t)+X1(t) if λ = 0
(4.2)

We estimate the optimal λ to be 0.003, −0.223 and −0.051 for Anyang, Shijiazhuang and Xi’an,

respectively. The two parameters with smallest absolute values cannot said to be significantly

different from zero, hence the log-transform is applied. With Equation (4.2), the AQI(t) cannot

be guaranteed be positive, unless 1/λ is an even number [Benth and Saltyte Benth, 2009]. A

pragmatic solution for the city of Shijiazhuang could be to set λ to the closest value producing

an even number, which is λ = −0.25. This does not produce significant changes in symmetry of

the distribution, and we decide to stay consistent and use the log-transformation for all cities.

In order to implement the index simulation strategy for derivatives pricing in Section 5.1, we

need to explore possible distributions for the AQI. The Gamma, Log-normal and Weibull dis-

tributions are commonly used in finance and other fields to model phenomena that exhibit long

tails or skewness. Capturing seasonal effects in AQI data is an important consideration when

developing pricing models for derivatives contracts, and it may be sensible to fit distributions

for each month individually. This will be explored further in Section 5.1.

4.2 Trend and seasonality

The daily AQI values in Figure 3 show a strong seasonal pattern, where both the level of

pollution, and the variance appear higher during the winter season, which is similar to the

findings for temperature [Benth and Saltyte Benth, 2007] [Alaton et al., 2002] and wind [Benth

and Saltyte Benth, 2009]. This is not surprising, since fuel burning for heating during winter

is one of the causes of air pollution, and the fact that meteorology plays an important role

in the concentration, distribution, and transport of pollutants in the atmosphere [Guttikunda

and Gurjar, 2012]. In order to model the seasonality and potential trends in the ambient air

pollution, we estimate the parameters of (3.10) on the log-transformed series P (t). The mean

functions are fitted with least squares minimization using I1 = J1 = 4. Simpler models have

been evaluated, but they produced a weaker description of the seasonality for some cities, and

we keep the same number of terms for all. The parameter estimates are reported in Table 3.
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Figure 3: Daily AQI and fitted seasonal function per city

All of the estimated seasonal functions have a statistically significant negative trend parameter,

suggesting that efforts made to reduce pollution may have led to improvements during the

period. COVID-19 lockdowns might also played a role for the cities affected [He et al., 2020],

[Xu et al., 2021]. When constructing a model to capture the seasonality of the AQI, it is essential

to consider the fundamental physical properties of pollutant concentrations. Any model that

allows the predicted AQI to take negative values over time would be in conflict with these

physical properties, see for example [Liu et al., 2019]. There, the estimated seasonal variations

were also not well-described, requiring the authors to add a more complex AR-GARCH term

for the stochastic component.

As pollution levels are influenced by a range of social factors, including human behavior and

activity patterns, a further extension of Equation 3.10 could be to include calendar effects in the

seasonal function, to capture potential variation due to weekends and holidays. We have fitted

models with indicator variables for weekends, but the estimated parameters were not found to

be significant, and further exploration of calendar effects is left for future studies.
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Table 3: Parameter estimates for the seasonal function Λ(t)

Anyang Shijiazhuang Xi’an

(a0) Constant 5.281 ∗∗∗ 5.347 ∗∗∗ 5.062 ∗∗∗

(a1) Trend −0.0002∗∗∗ −0.0002∗∗∗ −0.0001∗∗∗

(b1) cos(2πt/365) 0.253 ∗∗∗ 0.204 ∗∗∗ 0.306 ∗∗∗

(c1) sin(2πt/365) 0.080 ∗∗∗ 0.059 ∗∗∗ 0.120 ∗∗∗

(b2) cos(4πt/365) 0.062 ∗∗∗ 0.074 ∗∗∗ 0.066 ∗∗∗

(c2) sin(4πt/365) −0.028 ∗∗∗ −0.023 ∗∗∗ −0.011
(b3) cos(6πt/365) −0.003 −0.020 ∗∗ −0.004
(c3) sin(6πt/365) −0.00005 −0.006 −0.025 ∗∗∗

(b4) cos(8πt/365) 0.006 0.030 ∗∗∗ −0.002
(c4) sin(8πt/365) −0.004 0.032 ∗∗∗ 0.018 ∗∗

R2 0.418 0.357 0.405
Adjusted R2 0.417 0.356 0.403
Residual Std. Error (df = 3292) 0.298 0.328 0.323
F Statistic (df = 9; 3292) 263.114 ∗∗∗ 203.420 ∗∗∗ 248.521 ∗∗∗

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

4.3 Stochastic component

The seasonality of the data is described by the proposed deterministic function. In the subse-

quent step, our focus shifts towards modeling the stochastic component. To achieve this, we

begin by removing the linear trend and the seasonal element from the data.

X(t) = P (t)− Λ(t) (4.3)

In order to analyze the variability of X(t), we plot the autocorrelation function (ACF) and the

partial autocorrelation function (PACF) of the deseasonalized data, as shown in Figure 4. The

elimination of the seasonality features from the data is evident, leaving behind an autoregressive

structure for further analysis. Proceeding with the methodology outlined in Section 3.4, we

estimate models to characterize the dynamics of X(t).

The PACF plot indicate that an AR(2) process would sufficiently capture the autoregressive

structure of the Shijiazhuang and Xi’an series. However, the Anyang data seem to require an ad-

ditional lag. Similarly to [Benth and Saltyte Benth, 2009], we consider alternative ARMA(p, q)

specifications for p ≤ 5, q ≤ 5, and evaluate the Akaike’s Information Criterion (AIC). Several

of the candidates have similar AIC, and we fit models both with and without a moving average

term, see Table 11 in the Appendix for AQI simulations using ARMA(3,1). Results are not

materially impacted , and we select the more parsimonious AR-structure for the remainder of
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the analysis. To maintain consistency, we employ an AR(3) process for all three cities.
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Figure 4: ACF (left) and PACF (right) for the deseasonlized X(t)

From here, we assume the dynamics of the deseasonalized data is described by

X(t) = β1X(t− 1) + β2X(t− 2) + β3X(t− 3) + σ(t)ϵ(t) (4.4)

where β1, β2, β3 are constants, ϵ(t) are i.i.d standardized random variables and σ(t) is defined

by Equation (3.19). We fit the AR(3) models using the R programming language, and calculate

the CAR(3) parameters according to the Euler scheme described in Section 3.4. Estimation

results are presented in Table 4.

Table 4: Parameter estimates for AR(3) and CAR(3) models.

AR(3) CAR(3)

β1 β2 β3 α1 α2 α3

Anyang 0.641∗∗∗ -0.153∗∗∗ 0.063∗∗∗ 2.359 1.871 0.449
Shijiazhuang 0.708∗∗∗ -0.158∗∗∗ 0.029 ∗ 2.292 1.742 0.432
Xi’an 0.652∗∗∗ -0.107∗∗∗ 0.018 2.348 1.803 0.437

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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All of the estimated parameters are significant at the level of 1% for the city of Anyang. This

is also the case for the two first lags for the remaining cities. The third term is significant at

the 10% level for Shijiazhuang, while for Xi’an it is not found to be significant.

For the CAR(3) model, the stationarity condition specifies that the eigenvalues of the matrix A

should all have negative real parts, [Benth and Saltyte Benth, 2009], [Ichihara and Kunita, 1974].

This condition is fulfilled for the three models, and we conclude that they are all stationary.

4.4 Residuals

We now move on to analyze the residuals σ(t)ϵ(t) from the model in Equation (4.4). By eval-

uating the ACF plot of squared residuals presented in Figure 5, the seasonality of volatility in

the residual process is revealed. Similar patterns have also been described for temperature and

wind data [Benth et al., 2007], [Benth and Saltyte Benth, 2009]. In order to capture this, we

estimate σ2(t) as described in in Equation (3.19) above.
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Figure 5: ACF for squared residuals (left) and empirical variance with fitted σ2(t) (right).
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We calculate the empirical daily variance by computing the variance of the residuals for each

day d = 1, . . . , 365 across the year, disregarding leap years. This involves using 9 residual

observations for each day of the year, corresponding to one observation for each year in the

dataset. The lack of historical data is undoubtedly a limiting factor when performing such

analysis, and the results should be interpreted with this in mind. We evaluate alternative

numbers of terms in the Fourier series in Equation (3.19), and select a model with I1 = J2= 2.

The estimated parameters can be found in Table 5 .

Table 5: Parameter estimates for the seasonal volatility σ2(t)

Anyang Shijiazhuang Xi’an

Constant 0.059∗∗∗ 0.065∗∗∗ 0.067∗∗∗

cos(2πd/365) 0.024∗∗∗ 0.024∗∗∗ 0.013∗∗∗

sin(2πt/365) −0.001 0.006 ∗∗ −0.006 ∗

cos(4πd/365) −0.007 ∗∗ −0.006 ∗∗ −0.006 ∗

sin(4πd/365) −0.002 0.006 ∗ −0.002

R2 0.151 0.166 0.056
Adjusted R2 0.141 0.156 0.045
Residual Std. Error (df = 360) 0.042 0.042 0.045
F Statistic (df = 4; 360) 15.988∗∗∗ 17.882∗∗∗ 5.319∗∗∗

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

The results indicate that there is a difference in the magnitude of fluctuations between the cold

and warm seasons, see also Figure 5. Similar to the investigation of temperature in [Benth et al.,

2007], we find that the variability during the cold season is noticeably higher than during the

warm season, which may be due to the increased burning of fuel for heating and meteorological

factors. This effect seem to be present for all cities, but less pronounced for Xi’an.

We obtain the standardized residuals ϵ(t) by dividing out the estimated volatility function in the

initial residual process σ(t)ϵ(t) and evaluate the distribution based on the summary presented in

Table 6 . Standardized residuals have zero mean and unit standard deviation, but the moderate

Table 6: Evaluation of standardized residuals ϵ(t)

Anyang Shijiazhuang Xi’an

Mean -0.0002 -0.0003 -0.0004
Std.dev 1.000 1.000 1.000
Max 5.770 6.934 6.454
Min -5.538 -4.891 -4.757
Skewness -0.432 -0.296 -0.345
Excess kurtosis 2.887 1.896 2.288
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left skew and fat tails indicate that the standard normal may not be the ideal distribution

for driving the dynamics in Equation (3.11), i.e. the Lévy process may not be a Brownian

motion. In our simulation experiments, we utilized both the standard normal distribution and

the normal inverse Gaussian distribution, without observing significant differences in results.

Consequently, we chose to proceed with the former. Figure 6 displays an example realization

from the Monte Carlo simulation, utilizing standard normal innovations.
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Figure 6: Daily AQI simulation with N(0,1) innovations and seasonal function per city

5 Financial pollution risk management

With three different approaches available for pricing air pollution derivatives, we are equipped

to estimate the prices of options on the HAQI index. Our analysis will involve implementing

historical pricing (burn analysis), index modelling and daily AQI simulation utilizing the model

developed in the previous section. We evaluate and compare the results obtained by applying

these methods on data from all three cities included in the study. Finally, we examine a practical

use case by providing an example of how air pollution derivatives may be used to hedge against

financial risk due to pollution incidents.
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5.1 Pricing air pollution derivatives

Similar to weather derivatives, the underlying settlement reference for the contracts being in-

troduced in this context is not traded. Nor have there been any transactions in the instruments

themselves. A common approach when pricing contracts in weather markets is to consider the

market price of risk (MPR), and represent the derivative price as the discounted expected value

under the martingale measure Q characterized by the MPR, utilizing Girsanov or Esscher trans-

formations, see for example [Alaton et al., 2002]. A simplifying assumption often used is setting

P = Q, presuming risk neutrality. This approach will be applied here, and we keep in mind

that this choice may underestimate prices. In [Benth et al., 2011], a study exploring pricing

of Asian temperature risk is performed. They find that the MPR for temperature derivatives

exhibits a seasonal structure, which arises from the seasonal variation in temperature volatility.

By having knowledge of the relationship between MPR and seasonal variations, they compute

prices for locations where there are no listed instruments available for trading in the market. An

extension of the present study could be to explore similar strategies, utilizing common patterns

in the seasonality of volatility in the AQI and temperature for each location. In the following,

we present the findings from our analysis of contract pricing. Results are summarized in tables

per pricing strategy, using the notation Ccity for the option premium per location, assuming a

HAQI strike value K = 200 and contract size normalized to α = 1 for monthly contracts.

In the historical burn analysis, we use past observations from the three cities to calculate the

daily HAQI index, and report mean AQI and realized contract payoffs. Results based on data

from the entire period 1. January 2014 to 31. December 2022 are presented in Table 7. Due to

the relatively short history available, the estimated premiums have high variability. Given the

fact that the index is aiming to catch an upper tail event (daily breach of 300 AQI level) and

that the trend in the AQI is falling, this is not unexpected. When only calculating on data from

most recent years, both the average AQI, HAQI and expected option payoffs are considerably

lower, but based on few observations. To address this limitation, alternative strategies such as

index simulation and daily AQI simulation using the stochastic model are also evaluated.

In the index simulation study, we explore the use of three different distributions, namely gamma,

weibull, and lognormal, for generating daily AQI values for each month separately, to capture the

seasonal variation. By fitting these distributions to the historical AQI data, we create scenarios

of possible AQI values and use them for pricing the options. An alternative strategy could be to

simulate the settlement index directly, but such distributions would need to be fitted on a low

number of observations. Our approach involves estimating 3×3×12 = 108 distributions for the

Monte Carlo experiments, and generating daily AQI samples for each month and calculating

HAQI and contract payoffs.
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Table 7: Historical average monthly AQI and option premiums using strike value 200 HAQI.

Month AQIAnyang AQIShijiazhuang AQIXian CAnyang CShijiazhuang CXian

1 227.68 240.04 207.54 222.11 620.00 154.56
2 196.65 196.89 180.68 64.89 320.44 50.89
3 172.52 180.36 165.22 51.89 137.33 50.78
4 155.05 158.21 133.56 0 0 0
5 139.35 145.76 121.96 14.56 26.89 2.44
6 136.47 141.91 106.79 0 0 0
7 122.78 146.38 103.46 0 66.67 0
8 118.59 125.67 101.45 0 0 0
9 130.99 132.82 106.63 0 0 0
10 146.33 163.50 125.69 0 123.22 0
11 183.18 185.81 163.74 58.89 171.44 12.00
12 205.32 204.27 181.72 288.56 452.44 59.89

Similarly to the historical pricing method, the results obtained from index simulation will be

sensitive to which part of the available history that is used for fitting the distributions, due

to the falling trend in the air pollution series. Simulation results from distributions based on

the entire sample can be found in Table 9 in the Appendix, where average AQI and estimated

option premiums are reported. The produced output exhibit a consistent trend, with the option

contracts generating payoffs predominantly during the winter season, which includes the first

and last three months of the year. Although all of them yield average AQI values that are com-

parable to the historical data, their tail behaviors differ. Specifically, during the winter months,

the lognormal distribution generates higher option premiums than the other two distributions

for most of the months. It is also the only distribution generating a small option premium

greater than zero outside winter season, which also can be found in the historical data.
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Figure 7: Fitted gamma (red), weibull (green) and lognormal (blue) for the month of January

However, the lognormal still yields significantly lower premiums than the burn approach. This

may be attributed to the limited history used by the latter, where extreme values are more
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prevalent in the initial years of the sample. To illustrate the differences between the three

alternatives, the empirical and fitted distributions for the month of January are presented in

Figure 7. Among the distributions examined, the lognormal appears to offer the best fit, while

the weibull distribution exhibits difficulties in accurately describing the data, in contrast to the

findings in [Alexandridis and Zapranis, 2013], where wind data is studied. All of them seem to

underestimate the mass in the upper tail for the city of Shijiazhuang during the winter season.

Using a stochastic model for daily AQI simulation has several advantages for pricing AQI-based

derivatives. With this approach, temporal information, such as the observed falling trends,

can easily be accounted for when pricing contracts out-of-sample. The method also serve as a

convenient instrument for presenting spatial variation, as the estimated trend, seasonality and

volatility may be compared across different locations by evaluating the fitted models. Such

comparisons would require more effort, and may be perceived as somewhat ad-hoc when using

the other methods. Daily AQI simulations also enable the analyst to price contracts of arbitrary

lengths with a single tool, without having to model these specifically. The burn analysis suffers

under the limited availability of historical data, and the index simulation approach may require

the user to make difficult choices regarding which distribution to utilize and how to make best

use of scarce data.

The choice of model for the stochastic component in the daily simulation strategy remains

an active area of research, however. Ornstein-Uhlenbeck type models with both normal and

non-normal innovations have been extensively used in weather markets, [Alaton et al., 2002],

[Benth and Saltyte Benth, 2007]. Other methods employed include autoregressive structures

and GARCH for the residual process. In Table 10 and Table 11 in the Appendix, we provide a

summary of the simulation results from the stochastic model using both AR(3) and ARMA(3,1)

for the stochastic component. The upper panels present monthly results when all years are

included in the calculation of monthly average AQI and option premiums. The middle panel

displays comparable findings based on the first four years of the simulated sample, while the

bottom panel depicts the output when focusing on the last four years. Both models generate

small positive premiums outside the winter season for all sub samples, as seen in the burn

analysis, but estimated option prices does not differ greatly between the two.

Since the decreasing trend in hazardous air quality events is prominent across all cities examined,

the simulation outcomes for the most recent period reflect lower prices for options written on the

HAQI. While this trend may be used to support future predictions and form price expectations

based on the lower panels of Table 10 and Table 11, it should be noted that this period coincides

with the COVID-19 pandemic, and caution is required when interpreting results. In Figure 8, we

present results from the Monte Carlo simulations using the stochastic model driven by normally

distributed innovations. We calculate a confidence interval based on the 1% and 99% percentiles
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for the monthly AQI, and add historical observations, for the city of Xi’an. Such analysis may

be informative when evaluating the development over time, and related uncertainty.
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Figure 8: Monthly AQI (points) and simulated confidence intervals for the city of Xi’an.

Based on our analysis, the level of ambient air pollution as reported by the AQI appears to

have followed a falling trend, but with large fluctuations. It is important to keep in mind

that the study has been performed using a rather limited set of historical data, and the most

recent years include the COVID-19 pandemic, which may not be representative of typical future

conditions. Given these uncertainties, it can be challenging to predict what the future will bring,

but pollution levels are likely to stay well above recommended levels for the cities in this study,

in particular during the winter season.

5.2 Hedging against air pollution risk

In the following, we will provide a practical example of how air pollution derivatives may be

used to protect against financial losses due to pollution events. Consider an organizer of a major

sports event. The organizer fears unusually high air pollution levels may affect ticket sales and

revenue. It decides to procure a HAQI call option for the month of January, the time the event

is taking place. The details of the contract are

Contract type: Call option

Settlement index: HAQI

Location: Xi’an, China

Period: Jan-2024

Strike value: 200 HAQI

Contract size: 100 USD

In the event that the pollution level gets so severe that this level is breached, the organizer
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expects fewer tickets to be sold, or even a cancellation of the games, but the call option will

generate a payout. Assume the index ends up at 400 HAQI, and that the option premium paid

was 4.500 USD. The net financial profit for the organizer would then be

Profit = Contract size×Max(HAQI− Strike value, 0)− Premium

= 100×Max(400− 200, 0)− 4.500

= 15.500 USD

Based on an assessment of the financial exposure and potential loss, the organizer can calculate

the number of contracts to purchase for risk mitigation. From the option premium and agreed

strike value, we can also calculate a break-even level for the HAQI index:

100× (HAQI∗ − 200)− 4.500 = 0

HAQI∗ = (4.500/100 + 200) = 245

This HAQI index level can be breached in several ways, for example with five days at 350 AQI

during a pollution incident. AQI above this level has been observed 49 days in our data set

for Xi’an. Now, consider some alternative outcomes. In situations where the HAQ index ends

above the calculated break even level, the option contract holder receives a net positive payoff

from the transaction, as illustrated above. In the event that the index falls between the strike

and the break-even value, the contract will still be exercised, but the premium paid will not be

fully covered by the payout. Finally, if the risk the organizer insures against does not materialize

and HAQ < 200, the option contract expires worthless.

6 Summary and conclusion

In this study, we explore the financial impact of air pollution and the potential for establishing

a market for derivatives contracts based on publicly available air pollution data for risk miti-

gation. We emphasize the importance of a reliable and trustworthy settlement reference based

on internationally accepted standards, such as the US Environmental Protection Agency’s Air

Quality Index (AQI), and recommend implementing indices similar to those used in existing

weather markets. Our findings suggest that established methods for pricing weather derivatives

can also be applied for pricing contingent claims based on the AQI. We demonstrate that the

proposed model, which combines a seasonal AQI function and stochastic component described

by a CAR(3) process with seasonal volatility, is suited for describing the daily AQI dynamics.

The model is used for pricing option contracts via Monte Carlo methods, and compared to

historical analysis and index simulation. These pricing strategies are concluded to be more
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vulnerable to the scarce data available in this area, and further exploration of the stochastic

modelling approach for pollution derivatives pricing is recommended.
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Appendix

Table 8: AQI data providers

City Source

Anyang Henan Environmental Protection Agency
Shijiazhuang Hebei Province Environment Protection Agency
Xi’an Shaanxi Provincial Environmental Protection Office

Xi’an Environmental Protection Agency

Source: https://aqicn.org/data-platform
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Table 9: Simulated average monthly AQI and option premiums using gamma (top), weibull
(middle) and lognormal (bottom) and strike value 200 HAQI, N = 1000 random draws.

Month AQIAnyang AQIShijiazhuang AQIXian CAnyang CShijiazhuang CXian

1 226.26 235.26 209.07 111.72 330.83 50.84
2 196.88 196.56 180.78 13.02 69.85 0.99
3 172.89 179.88 165.46 0.40 9.50 0.09
4 155.09 157.56 133.67 0 0 0
5 138.94 145.78 121.98 0 0 0
6 136.54 142.20 106.66 0 0 0
7 122.76 146.71 103.61 0 0 0
8 118.74 125.61 101.61 0 0 0
9 130.89 133.08 106.39 0 0 0
10 146.09 163.24 125.91 0 2.16 0
11 183.23 185.68 163.41 4.39 15.73 0.19
12 205.72 204.50 181.47 83.25 149.63 3.83

1 226.35 235.95 208.61 109.74 383.50 45.35
2 197.22 197.42 180.86 8.73 100.17 0.57
3 171.08 180.69 164.60 0.25 10.19 0.11
4 153.55 157.37 132.84 0 0 0
5 138.14 144.81 121.67 0 0 0
6 134.77 141.67 106.46 0 0 0
7 122.32 145.81 103.01 0 0 0
8 118.81 125.89 101.12 0 0 0
9 130.35 132.49 106.78 0 0 0
10 145.63 164.30 125.64 0 3.49 0
11 183.05 185.44 163.49 2.33 20.30 0
12 204.73 204.21 181.97 103.43 183.30 2.44

1 225.69 233.41 208.07 146.72 348.33 78.81
2 196.19 194.76 180.45 27.45 94.35 5.49
3 171.82 180.48 164.28 3.53 22.39 0.39
4 155.01 158.46 133.38 0 0.20 0
5 138.88 145.20 120.94 0 0 0
6 136.51 141.94 106.96 0 0 0
7 123.04 145.84 103.44 0 0.14 0
8 118.91 125.63 101.24 0 0 0
9 131.17 133.19 107.40 0 0 0
10 148.06 162.99 126.89 0.80 9.51 0.20
11 183.82 184.76 164.04 19.57 34.28 3.29
12 204.45 200.99 180.93 111.96 176.31 11.14
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Table 10: Average monthly AQI and option premiums simulated from daily AQI model. Cal-
culations are based on all data (top), the period 2014-2018 (middle) and the period 2019-2023
(bottom) and strike value 200 HAQI, N = 1000 random draws using AR(3) for X(t).

Month AQIAnyang AQIShijiazhuang AQIXian CAnyang CShijiazhuang CXian

1 213.25 219.21 198.28 160.42 270.36 71.86
2 199.55 199.16 184.05 75.01 146.02 21.92
3 176.42 179.14 159.67 25.11 71.55 3.62
4 155.50 163.96 140.55 2.78 14.08 0.48
5 142.14 144.75 119.89 0.08 0.30 0.03
6 133.75 145.25 107.99 0 0.18 0
7 123.26 144.76 105.88 0 0.39 0
8 118.25 126.55 101.78 0 0.08 0
9 127.53 131.86 103.66 0.12 0.47 0.01
10 150.73 161.76 127.20 4.26 15.09 0.60
11 182.09 182.55 161.82 42.62 56.40 8.59
12 207.81 203.65 188.41 125.47 140.97 44.43

1 252.57 263.01 223.79 359.61 576.99 152.02
2 230.35 233.49 204.70 156.15 290.55 43.62
3 203.90 210.00 177.57 54.25 148.16 7.53
4 179.74 192.24 156.31 6.24 30.40 1.06
5 164.37 170.13 133.09 0.17 0.68 0.07
6 154.49 170.33 120.04 0 0.40 0
7 142.40 170.10 117.58 0 0.89 0
8 136.33 148.56 112.84 0 0.18 0
9 146.68 154.17 114.67 0.26 1.05 0.02
10 173.38 188.90 140.53 9.28 32.39 1.27
11 209.80 213.87 178.87 89.91 118.33 17.15
12 239.10 237.79 208.73 256.05 287.60 86.37

1 181.04 183.53 177.21 15.76 43.62 12.97
2 169.10 165.46 163.69 5.98 19.82 2.93
3 149.50 149.06 142.10 0.76 6.63 0.27
4 131.73 136.32 124.86 0.01 0.42 0.02
5 120.44 119.89 106.88 0 0 0
6 113.33 120.69 96.20 0 0 0
7 104.60 119.97 94.34 0 0 0
8 100.53 105.06 90.78 0 0 0
9 108.79 110.23 92.78 0 0 0
10 128.69 135.38 114.03 0.14 0.65 0.04
11 155.02 151.95 145.30 2.83 3.56 1.49
12 177.03 170.00 168.33 12.55 13.17 7.30
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Table 11: Average monthly AQI and option premiums simulated from daily AQI model. Cal-
culations are based on all data (top), the period 2014-2018 (middle) and the period 2019-2023
(bottom) and strike value 200 HAQI, N = 1000 random draws using ARMA(3,1) for X(t).

Month AQIAnyang AQIShijiazhuang AQIXian CAnyang CShijiazhuang CXian

1 214.15 218.94 199.82 168.28 263.86 86.02
2 199.70 198.77 184.87 79.72 144.71 26.93
3 176.39 178.84 160.43 26.60 72.13 4.72
4 155.61 163.89 140.73 2.83 17.24 0.74
5 142.03 144.75 120.39 0.05 0.48 0.03
6 133.68 145.21 108.10 0 0.22 0
7 123.28 145.06 106.07 0 0.44 0
8 118.30 126.76 101.63 0 0.08 0
9 127.71 131.99 103.67 0.10 0.44 0.00
10 150.74 161.29 127.37 4.87 17.00 0.48
11 181.98 182.80 161.92 44.71 57.60 9.37
12 207.20 203.90 187.88 123.83 141.58 45.36

1 253.87 261.86 227.79 378.46 554.91 183.15
2 230.96 232.08 206.53 167.32 283.92 54.28
3 204.02 208.76 179.05 57.07 147.43 10.12
4 180.28 192.14 156.80 6.33 37.46 1.56
5 164.06 169.58 134.23 0.09 1.08 0.07
6 154.30 169.94 120.23 0 0.50 0
7 142.36 170.41 118.00 0 0.99 0
8 136.30 148.85 113.00 0 0.18 0
9 146.86 154.44 115.13 0.21 0.93 0.01
10 173.18 188.40 140.45 10.40 36.90 1.02
11 209.01 213.83 179.23 92.87 122.35 18.75
12 238.53 237.92 207.88 251.97 286.98 86.86

1 181.69 183.77 177.09 16.17 45.79 14.97
2 169.17 165.95 163.77 6.31 22.39 3.15
3 149.38 149.25 142.06 1.11 6.82 0.35
4 131.54 136.21 124.77 0.01 0.53 0.07
5 120.29 120.21 106.68 0 0.01 0
6 113.47 120.85 96.19 0 0 0
7 104.54 120.29 94.30 0 0 0
8 100.66 105.17 90.44 0 0 0
9 108.91 110.05 92.51 0 0.00 0
10 128.72 134.70 114.39 0.14 0.63 0.05
11 155.39 152.72 144.80 3.41 3.71 1.31
12 176.54 170.39 168.10 12.18 15.50 8.16
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