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Abstract

We explore program transformations in the context of the Magnolia
programming language. We discuss research and implementations of
transformation techniques, scenarios to put them to use in Magnolia,
interfacing with transformations, and potential workflows and tooling
that this approach to programming enables.
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1

Introduction

We describe the goal and motivation for this thesis. Then we give an outline
of the thesis.

1.1 overview

This thesis explores ideas and concepts from the field of program transforma-
tions. The ideas are put in the context of the Magnolia programming lan-
guage, a general-purpose research language focused on specifications and the
domain of high-performance computing (HPC). Magnolia is a fruitful place to
explore program transformations. The reason for that is that it is purposefully
designed to be easy to analyze. Mainstream languages—like Java, C, C++—
have semantics that complicates analysis. Magnolia avoids this by—in simple
terms—restricting or avoiding certain features and capabilities.

Program transformations is a broad term for manipulation of programs.
Some of the uses of program transformations are:

1. Optimisation

2. Code generation

3. Reverse engineering

We will explore both the utility of program transformations in general, and
how Magnolia is amendable to transformations.

1.2 outline

The thesis is structured as follows:

1. Introduction to program transformations (chapter 2).

2. Introduction to the Magnolia programming language (chapter 3).

3. Explorations of two program transformation techniques (chapters 4 and
5).

1



1. Introduction

4. Two case studies in program transformations applied to Magnolia pro-
grams (chapters 6 and 7).

5. An interface for program transformation (chapter 8).

6. Workflow and tooling for working with program transformations (chapter
9).

We start by introducing and motivating program transformations. Since
program transformations is a big field, we explain our own approach within
the discipline, and contrast it with other approaches, as seen in programming
languages and the research literature. Then we give a short introduction to
Magnolia; its purpose and the important constructs that it offers. We only de-
scribe the things that set it apart from other languages; we do not go into the
details of syntax and semantics which are similar to other languages. Then
we drill down into two specific program transformation techniques; partial
evaluation and slicing. These techniques, among others, are then put to use
in two case studies of program transformations applied to Magnolia. First
we consider working with varying implementations of a Modulus Group. We
discuss and go into detail on how one can, given one implementation of this
concept, transform that implementation into different implementations. Sec-
ond we consider how transformations can be used to derive a data type from
another data type. Then we change gears and consider the bigger picture of
workflow and tooling in the context of program transformations. We explain
how the more structured approach that we propose for programming can be
leveraged to derive more structured artifacts of programming, using tools like
version control systems (VCSs). Finally, we discuss how the programmer can
interact with transformations. We envision many interfaces, but we focus on
an interface using directives.
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2

Program Transformation

We introduce and motivate program transformation as a general technique and
as it applies to Magnolia. We discuss the potential it has to support the craft
of programming and the process of software engineering.

2.1 introduction

The time is clearly ripe for program-manipulation systems (Donald
Knuth, 43 years ago[Knuth, 1974].)

What is meant by program transformation is straightforward. It is a trans-
formation between programs. We do not need to say more about this before
we get into specific kinds of transformations. In this chapter we will not care
about dry definitions. Here I will make the case for program transformations
and why you should care about them. Both in general and in the case of
Magnolia.

You might not trust me enough to take my word for it. But as it happens
I am not alone. I can make the first case for this technique right now, namely
that it is an old and unoriginal idea that neither me nor my supervisor came
up with. And we all know that all great ideas are not original.

2.2 examples

Manually renaming a variable at every point of use is an example of a program
transformation, specifically a refactoring. Automatically doing the same with
the help of an integrated development environment (IDE) is an example of
a program transformation. Extracting a procedure or a method from a sub-
block1 of statements—manually or with tool help—is another example. In
order to deal with some specific examples right away, we can consider some
semantics-preserving transformations that simplify expressions.2 The arrows
indicate the transformation steps.

1An example of a block is a for-loop.
2An expression is a combination of explicit values, variables, operators, and functions

that can be evaluated to a value. This is to be contrasted with a statement that is evaluated
for its side effect (like printing some text), and does not result in a value. Expressions may
or may not have side effects; in Magnolia they do not.
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2. Program Transformation

0+ a⇒ a

5+ 5+ a⇒ 10+ a

power(x, 3)⇒ x ∗ x ∗ x
x ∗ y == y ∗ x⇒ x ∗ y == x ∗ y⇒ true

These kinds of transformations essentially boil down to doing algebraic
manipulation on the program.

Your compiler transforming the program you wrote into efficient machine
code is yet another example of a program transformation. The rest of this
section goes into a concrete example of some techniques that a compiler might
use to optimize a program. As the description does not assume that the reader
is familiar with the theory, design and/or implementation of programming
languages, readers who are might want to skip ahead to the next section.

A compiler optimizes a program through many transformations, and the
transformations are typically done on some intermediate representation (IR)
and not the original source code. But you do not need to learn to slay dragons3
in order to understand the essential concepts. A compiler might be built to
do two kinds of transformations for the purpose of optimisation:

1. Simplifying the program (normalization).

2. Optimising the simplified program.

Point 1 consists of expressing certain constructs in the program using sim-
pler building blocks. It is like when you help your friend with a writing as-
signment, and you notice that he has become too good at English for his own
good. He has written about a simple and relatable everyday event, but using
complex and obscure synonyms in order to show off his talent for language.
If you help him simplify his style, his article can tell the same story but in a
clearer and simpler way. Now, this is not a perfect analogy. A programming
language does not have constructs that strictly speaking could be expressed
using simpler constructs just to be fanciful. Such constructs are meant to be a
convenience for the programmer. But for the compiler, it is easier to analyse
a simplified language. And a compiler does not have eyes that begin to glaze
over once it starts seeing the same basic constructs repeated over and over
again in a section of the code.

So simplifying a program consists of transforming a program into an equiv-
alent, simpler one. An example of a construct that can be simplified in Java4

are the increment operators ++. A statement i++; can be expressed using
3In reference to “the dragon book”, which might refer to both Aho et al. [1986] and Aho

and Ullman [1977]. Slaying the dragon is a metaphor for conquering complexity.
4Or most languages with a C-like syntax.
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2.2. Examples

the more general operator += as i += 1. That statement can in turn be
expressed using an even more general construct, the assignment operator =, as
i = i + 1;. So once your Java compiler has simplified your program to not
use the ++ and += operators,5 the next program transformations it will do will
be simpler to perform. This is because there are two less constructs to con-
sider. So the compiler will not have to worry about encountering statements
like this:
array[i++] = a++;

Which after simplification of the program would actually consist of multiple
statements, not just one.

Point 2, optimisation of the program, involves transforming the program
in such a way that it runs faster, uses less memory, and so on6. What is an
optimisation depends on the needs of the user, but since a compiler has to
serve all of its users it has to settle for these lowest common denominators of
being less slow and hogging less memory. As an example of an optimisation,
say you have a program that both finds the sum of an array and the maximum
value in it. A sort of multitasking program. You have coded this program in a
clean and elegant way, separating the two concerns of summing the array and
finding the maximum value into two methods. In Java:
public class Main {

public static void main(String[] args) {
int[] array = {1,2,3,4,5};
System.out.println(sum(array));
System.out.println(maximum(array));

}
private static int sum(int[] array) {

int s = 0;
for (int e: array) {

s += e;
}
return s;

}
private static int maximum(int[] array) {

int max = Integer.MIN_VALUE;
for (int e: array) {

if (e > max) { max = e; }
}
return max;

}
}

5In the case of Java such things might be done using Just in Time Compilation in the
virtual machine at runtime, but such distinctions are not important for our purposes.

6Using less memory and running faster might both be achieved, one of them achieved,
or one of them at the cost of the other. The last strategy is called a space-time tradeoff.
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2. Program Transformation

In the “real world” the array would not be given in the program but instead
given as an argument to the program, for example. But it is just a simplified
example. Now you would naturally be very pleased with this program, as
it perfectly implements your desired “multitasking” program. But for all its
elegance, it could probably be faster. The first observation we will make is
that we have defined two methods that are each only called once. From the
machine’s viewpoint, methods can help reduce the resulting size of the pro-
gram, since methods can be called from multiple places. Instead of having
to duplicate the code of the method in each place that it is called. But the
drawback of methods—again from the machine’s viewpoint—is that calling
methods induces call overhead. And in our example, since these functions are
only called once each, we get the drawbacks of using methods without getting
any of the benefits. To make up for this, the compiler can choose to inline the
code of the methods each place that it is called. This means to replace the
method call with the whole body of the method. After such a transformation
the code might look something like this:
public class Main {

public static void main(String[] args) {
int[] array = {1,2,3,4,5};
int s = 0;
for (int e: array) {

s += e;
}
int max = Integer.MIN_VALUE;
for (int e: array) {

if (e > max) { max = e; }
}
System.out.println(s);
System.out.println(max);

}
}

What we did to derive this program was to

1. move the calls sum(array) and maximum(array) into separate vari-
able declarations (extract variable);

2. replace the calls in those variable declarations with the bodies of the
methods (inline); and then

3. remove the two methods that are no longer needed.

There is something that might strike you with this new, transformed code.
It is ugly! But that is what compilers do. They transform your elegant, not-
quite-efficient code into ugly, more efficient code.
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2.2. Examples

There is another optimisation transformation that we can do, and it would
probably have more impact (hopefully for the better) than the first optimi-
sation. This transformation will be done on the inlined program. We make
the observation that both summing and finding the maximum of the array are
solved using the same strategy, namely by iterating over the array. We are
iterating over the array twice, even though we could get away with only doing
it once. Now instead of having two separate loops for looping over the array,
we can choose to truly “multitask” in only one loop by applying a technique
called loop fusion. The start of the loop is the same for both methods:
for (int e: array) ...

So that stays the same. The only thing we do is to 1. make sure that both
variables are declared before the loop, 2. add together the code from both
loops, and 3. make sure that the print statements come after the loop. The
resulting—even uglier—program looks like this:
public class Main {

public static void main(String[] args) {
int[] array = {1,2,3,4,5};
int s = 0;
int max = Integer.MIN_VALUE;
for (int e: array) {

s += e;
if (e > max) { max = e; }

}
System.out.println(s);
System.out.println(max);

}
}

You might think that if this program is faster than the previous one, then
it is because there is half as much overhead due to the looping itself. Although
this is true, it would probably not be the main motivation for doing this kind
of optimisation, at least these days. A bigger concern with regards to efficiency
is how the program accesses memory. By combining two loops7 which accesses
the same array in the same order, we try to play nice with the memory caching
in the machine. If we go through an array from beginning to end and only
once, we have done all that we can to make sure that data caching is on our
side8.

7This technique is called loop fusion. Yes, fusion technology is real.
8To complicate matters, most modern machines also have an instruction cache for the

instructions to the CPU. It might very well be that, by having more instructions in this
loop, we have been less nice to this cache. This is why programmers who are not hardware
experts, or who do not feel confident in their ability to simulate x86 machines in their heads,
should measure to see if an “optimisation” was really that for a given program.
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2. Program Transformation

2.3 motivation

We will further motivate the utility of program transformation by discussing
optimising compilers and interactivity.

Program transformation and optimising compilers

In the last section we went through examples of program transformations that
a compiler might do. They were:

1. Simplification of certain constructs.

2. Inlining of the example program.

3. Loop fusion on the inlined program.

You might have noticed that there were some ifs and buts that went along
with my description of the optimization in the previous examples. Indeed, an
optimisation is not always that, and can in certain cases actually make the
program slower. Now you might think that this weakens my case for moti-
vating program transformation techniques. But on the contrary, I would say
that it strengthens it. What it does show is a shallow glimpse of the limita-
tions of general purpose optimising compilers. Now, recall that this chapter
is about program transformations, and that compilers are just an example of
that. Optimising compilers are in widespread use today, and programmers
that use them do not need to learn how they work in order to get good code
back from them (most of the time). You simply feed it a high-level program,
and it churns out a fast executable. But what if your compiler cannot make
your specific program fast? What if you need to make a slight bug fix, and
an unintended consequence of that is that your program becomes slow to the
point of being useless?

At this point many readers will say, “But he should only write P,
and an optimizing compiler will produce Q”. To this I say, “No, the
optimizing compiler would have to be so complicated (much more
so than anything we have now) that it will in fact be unreliable.”
(Knuth [1974])

There are perhaps two primary ways that slow compiler-produced code is
dealt with:

1. Try to change the code to be more “compiler-friendly”, i.e. easier to opti-
mize. This might involve consulting some resource on how the compiler
optimizes the program, and looking at the target code (e.g. assembly).

2. Rewrite the code in a “faster” language (easier to write efficient code in).

8



2.3. Motivation

The downside with the first approach is that the programmer now has to
care about how the compiler works, specifically the optimizer. The point of an
optimising compiler is to, to the best of its ability, do the optimising on behalf
of the programmer. Another problem is that these changes might not work
between different compilers and compiler versions. There is a more insidious
problem associated with this, other than the obvious problem of not always
being able to do the job of optimisation to a satisfactory degree (we might for-
give the program for that). That problem has to do with the uncertainty that
always comes with adding a layer of abstraction. This is an uncertainty for
the programmer about whether the layer at which the programmer is working
can be trusted, or not. (And if he is too trusting, he might be in for a rude
awakening some day.) In this case he might for good reason trust the correct-
ness of the generated code. But he might not have enough reason to trust the
execution speed or memory use of the generated code. The insidious part is
that there are no automated alarm bells that go off when the optimizer fails
to do its job. Instead, the programmer has to pay a sort of price for using
this convenience of an optimising compiler. That price is constant vigilance
that the program might not be fast enough, or use only a reasonable amount
of memory. Contrast this with using a language that is easier to optimize.
This language will probably be lower level, and so will demand more work or
skill of the programmer. But what the programmer has to pay in the form of
extra implementation effort, he might in some cases more than make up for in
the form of having to be less vigilant of external tools failing to live up to his
expectations.

Note 1. This is one of the reasons for why some programmers prefer to work
in lower-level languages rather than higher level ones.

Note 2. Put another way: in some cases it might better to wrangle with the
intricacies of C code, than to wrangle with the intricacies of some Java Virtual
Machine. Perhaps especially if you only have to develop for one architecture.

The downside with the second approach—rewriting the code in another
language—is that you have to use another language in your project. This
is not only a learning- and knowledge-burden for the programmers on the
project, but also a burden on the project itself, since another language has to
be integrated to work with everything else. Moreover, you might have a fairly
limited range of languages to choose for your secondary lower-level language.
This has to do with integration as well, more specifically integrating with
running alongside or in concert with the higher-level language. This can be
harder to achieve than it might sound like, because you have to deal with the
following issues, among others:

• How to call functions written in the first language from the second lan-
guage, or the other way around.

9



2. Program Transformation

• If a garbage collector is involved, one must make sure that both lan-
guages let the garbage collector own and manage the memory that it is
responsible for, instead of for example freeing it prematurely.

• How one should deal with exceptional conditions that might happen
during the execution of one of the languages, especially if they have
different mechanisms for handling exceptional conditions.

In short, in order for a language to call code written in another language,
it needs some kind of foreign function interface (FFI). And given the problems
that an FFI needs to deal with, the range of languages provided for you might
be limited. A language that many other languages can call into is C.9 C might
be a good programming language to use for some cases and domains. But
if you are mostly writing your application in a high-level language, there are
several downsides with using C. One of them is that C has little in the way
of abstraction facilities, which might hurt ones productivity. Another problem
is that C is very error-prone, in the sense that it is easy for the programmer
to make mistakes in it compared to many other languages. Not only does
this cause bugs which cannot happen or are harder to cause in higher-level
languages, but it has security implications as well. If you are not careful, you
might leave your application open to security exploits because of for example
improperly handling memory. All of the above might be a steep price to pay
if you originally planned to just program in a very high level language, like for
example Python or some Lisp language.

To reiterate, the two answers to the problem are:

1. Make more compiler-friendly code.

2. Rewrite the code in another language.

The improvements that program transformations provide to the above are,
respectively:

1. Use program transformations directly, instead of indirectly through compiler-
friendly code.

2. Use program transformations for the same language, instead of a whole
new language.

And these two approaches provide directness and uniformity, respectively.
Directness means that you manipulate the code as you want it to end up
more directly. So instead of indirectly producing the code that you want by

9The reason for that is basically that C is the systems language of the widely-used Unix
family of operating systems, and implementations for it exists for a very wide range of
architectures. It has established itself as the lingua franca of the programming world, in the
sense that it is widely used and can be integrated and called from a lot of other programming
languages.

10



2.3. Motivation

trying to coax the compiler into producing the correct code, you deal with the
program transformations more directly yourself. After all, if you intend for
your high-level code to be optimized in a certain way by the compiler, you are
trying to force a certain optimisation transformation to happen. And if you
actively have to consider that transformation and make the compiler produce
it instead of delegating the whole task to the compiler, it might be better to
forego the compiler for that task and just deal with the transformation directly
yourself. Uniformity means that you just deal with one language, instead of
having to switch between a high-level and a low-level one. The relevant insight
here is that if you are switching to a lower-level language because the compiler
failed to do some optimisation transformation, then the problem is with the
compiler, not with the high-level language not being low-level enough. Thus
you can avoid the low-level complications of a language like C, which was
discussed above.

I’ve tried to study the various techniques that a hand-coder like
myself uses, and to fit them into some systematic and automatic
system. [. . .] We always found ourselves running up against the
same problem: the compiler needs to be in dialog with the program-
mer; it needs to know properties of the data, and whether certain
cases can arise, etc. And we couldn’t think of a good language in
which to have such a dialog.

For some reason we all (especially me) had a mental block about
optimization, namely that we always regarded it as a behind-the-
scenes activity, to be done in the machine language, which the
programmer isn’t supposed to know. This veil was first lifted from
my eyes in the fall of 1973, when I ran across a remark by Hoare [42]
that, ideally, a language should be designed so that an optimising
compiler can describe its optimizations in the source language. Of
course! Why hadn’t I ever thought of it? (Knuth [1974])

Feedback

Program transformations provide more feedback when programming. In a way,
that is not very hard to do, since a lot of modern programming leaves a lot to
be desired on that front. This statement might be a bit controversial, so let’s
make an analogy with something else; text editors.

Some decades ago, computers weren’t very interactive, and feedback was
not instantaneous. This had to do with computer speed and limited peripher-
als; you can imagine that it is hard to interact with a computer if the output
has to be physically printed. Things that we now take for granted, like typing
stuff on a keyboard and immediately seeing them on the screen, were not a
reality to people who used teletypes. Ed (or stylized ed) was a text editor
for the first version of Unix. In fact, it is still installed on many Unix-like
systems to this day, probably to the delight of the most survivalist-inclined

11



2. Program Transformation

system administrators. Due to it being the standard editor for an old version
of Unix, it got the following tagline, which comes across as cheeky when read
in the modern day:

Ed is the standard text editor.

Ed is what you might call a command-driven editor. You issue commands in
order to view or change the file. Yes, that’s right; you have to issue commands
to view the file, separate from changing it. Recall the limited peripherals at
the time; being able to both view and manipulate a file was not really feasible.
When you open a file with Ed you are greeted with this view (the bar indicates
the cursor):
0
|

From here you give commands like move (m), delete (d), and append input
to file (a). If you fail to give a command that Ed understands, it will give you
this obtuse response:
?

My guess is that verbose error messages were not suited to the typical
output devices at the time.

In the mid-seventies, the text editor Vi (or stylized vi) was released. “Vi”
is an abbreviation for “visual”. Can you guess what it does compared to the
original version of Ed? Exactly; it allows you to view the text that you’re
editing (it’s a so-called screen-oriented editor).10

Nowadays, being able to edit files while you are also seeing them is a given.
Of course, there are always exceptions—maybe there are people who would
like to pursue some kind of sublime minimalism to the point that viewing the
rest of the file while writing the next paragraph becomes too distracting.11

But it wouldn’t be an exaggeration to say that interactive—i.e., with imme-
diate and whole-file feedback—editing is what the vast majority of us expect.
Now let’s compare this to how we interact with programming languages. Some
languages afford more feedback than others. Dynamically typed languages cer-
tainly provide a good level of interactivity, in that they don’t take that long to
compile (if they compile to some target code at all). Statically typed languages
tend to be more unwieldy, in that they often have a more involved compilation
pipeline, and often don’t have interactive tools like read eval print loop (REPL)
programs. The workflow that compiled languages often promote is sometimes
called edit-compile-run. This bears some similarity with the workflow that you

10Vi’s modern heritage is that it pioneered the still-popular style of modal editing, but
the visual aspect of it is more relevant to us here.

11The text editor Ghostwriter comes close to this with its focus mode. In that mode only
the current line, sentence, or paragraph is highlighted, which goes some of the way towards
(or back to) the style of Ed. It also has a Hemingway Mode where you cannot use the
backspace or delete keys; in case simulating teleprinters is too new-school and you would
like to simulate typewriters instead.
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can imagine Ed promoted. If we compare the editing code step to the step of
editing text in Ed, and the running code step to the display text step in Ed,
we can begin to see the relevant similarities. Although Ed was of course used
to edit code, if we for now just focus on the resulting text as the artifact that
one is after when using an editor, the artifact of the edit-compile-run workflow
is the (running) code. The problematic part is not the fact that you have to
compile the code. Rather, the problematic part is the gap between sending the
code to the compiler, and then running the code. Just like line-oriented editors
made the contents of the file kind of opaque to the the user, modern tooling
around compilers leaves something to be desired when it comes to figuring out
what it is doing.

The issue is not with peripherals, or with computer speed. A compilation
can take a fraction of a second and yet yield results that are opaque to the
programmer. Nor is it with slow iteration on code changes, per se. The issue is
the same as we have touched on before; a compiler is often used as a black box,
and might only be understood indirectly through things like documentation.

We have already discussed the black box -nature of the traditional compiler;
the program transformations that it does internally are completely opaque from
the perspective of the user, i.e. the programmer. This is similar to how Ed
makes the contents of the file opaque. But with Ed, you can at least ask it to
show you some of the file. With traditional compilers, there is no such mode of
interrogation. Instead, you have to reverse engineer what happened by looking
at the output target code of the compiler. This is certainly a form of feedback,
although it is an indirect kind of feedback. Worse, though, is when you have
to look up some reference and use your judgment to guess what the compiler
will produce. There is no feedback with the language tooling involved here;
only with your own mind. But you can of course recover some feedback by
trying to challenge your own guesses, by looking at a profile of the running
target code, or looking at the output target code.

Now let’s compare this approach to using program transformations more
directly. In one sense nothing change, since you are still dealing with trans-
formations just like the compiler. In another sense, this is a profound change.
Instead of having to guess what some opaque tool does, then second and third-
guess, you deal with what you are after directly; a series of transformations on
the code.

2.4 comparison with other approaches

Program transformation is an old subject. It goes back to the 1970s, at the
least. Already then, a lot of great ideas about this topic was being proposed.
In fact, even though we have faith in our own approach to this subject, we
will probably not manage to propose anything novel compared to this time
period12

12Recall what was said in the introduction: “we all know that all great ideas are not
original”.
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There is a certain range of goals and focus in these papers. Some focus
more on automated transformations while others focus on user-guided trans-
formations, for example. Based on our own needs we have come up with what
we need from a transformation system. We are going to contrast our own
needs with what some of these papers focused on. We will also look at trans-
formation concepts which are implemented in some programming languages,
and also compare these to our own needs.

Programming Languages

The premiere example of transformations implemented in programming lan-
guages are the Lisp family of languages. These languages use transforma-
tions in the form of macros, which are functions on code that effectively ex-
pand to regular code before the program is run. But it is not macros alone
that make Lisp languages into successful transformational languages. What is
most-widely credited for their usefulness on this front is homoiconicity. Ho-
moiconicity is a property of the concrete syntax of a language which makes the
code easy to transparently treat as data. In program transformations, what is
being transformed is code, and so code is treated as data. To the uninitiated,
Lisp just looks like a mass of parentheses (here Scheme):13

(define (factorial n)
(if (<= n 0)

1
(* n (factorial (- n 1)))))

But it is exactly this uniformity that makes it so suitable for transforma-
tions. Scheme’s concrete syntax is just a thin veneer over its abstract syntax.
Very briefly, a Scheme program conists of s-expressions, and s-expressions are
a notation for nested lists. Since nested lists can contain different types (Lisps
are typically dynamically typed), this nested list is a tree structure, which
among other things can store Lisp code itself.

Scheme and the wider Lisp family has a very different approach compared
to Magnolia. While Scheme is homoiconic, Magnolia has a syntax in the lineage
of C, and also the Pascal lineage. The approach to between these groups
of languages goes deeper than technical details. Lisp seems to be relatively
alone in its approach to uniformity of syntax. Some programmers coming
from other traditions and families might think that Lisp is too minimalistic
when it comes to syntax, and that it makes programs harder to read. So
there is a cultural element to these different programming worlds. Another
difference is that Scheme is dynamically typed, while Magnolia is statically
typed. Moreover, Magnolia goes further than many statically typed languages
and avoids features that makes the code harder to statically analyse, such as
higher-order functions and pointers. What these differences amount to is that

13Code is taken from Rosetta code [sch], licensed under GNU Free Documentation License
1.2.
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Scheme’s motto of code as data is inappropriate for Magnolia. We cannot be
as nimble as Scheme and intermingle regular code with transformation code
seamlessly. Instead, we will have to use interfaces and languages that are
separate from Magnolia to operate on Magnolia code; more on this in a later
chapter.

The research effort behind Magnolia has some background in C++, and it
is partly inspired by that language. C++ in turn came about as an extension
of C in 1980s. C has a very crude facility for program transformations in the
form of the C preprocessor. The C preprocessor is what is run first on the C
source code, and does things like inclusion of header files, macro expansion,
and conditional compilation. Macro expansion is in principle similar to how
Scheme’s macros work, but are much more primitive. They only operate on
text (strings) and not on the structure of C programs, so the output they give
can lead to errors in the resulting code if the programmer is not careful. An
example of a macro is defining constants:
#define PI 3.14159

All occurrences of the string PI in the program will be expanded to 3.14159 af-
ter preprocessing. Thus, these macros allow for the most basic form of constant
folding, in effect.

C++ also uses the C preprocessor. But C++ provides a more powerful
facility for program transformations in the form of template metaprogramming.
This is a style of programming which uses the template facility of the language
to write code that will be executed at compile-time. What makes this different
from preprocessor macros, and similar to Scheme’s macros, is that templates
operate on the structure of C++ programs. As previously stated, preprocessor
macros just operate on strings and know nothing about the semantics of C or
C++. What makes C++ templates different from Scheme macros is that the
template language inside C++ is very different14 from what you might call the
value language of C++ (code that is to be executed at runtime). While Scheme
code is simply manipulated using Scheme code, compile-time programming to
generate C++ code has to use the C++ subset of C++. Some claim that this
templating language is hard to use.Sheard and Jones [2002]

Automatic vs. Manual

The degree to which the program transformation is automated varies. Some
approaches strive to fully automate transformations. Other approaches use a
semi-automatic approach where regular, manual programming is interspersed
with automated program transformation. These automated program transfor-
mations might be what me might call deterministic transformations, in the
sense that the transformations are functions that give the same output when

14As noted in Robison [2001]: “The list above makes obvious to functional programmers
what the committee did not realize until later: templates are a functional language, evaluated
at compilation time.”
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given the same input. The use of macros in Lisp languages might be an example
of this. In contrast, non-deterministic transformations use internal heuristics
that are opaque from the point of the user, and so are not well-defined func-
tions. Our proposed program transformation system uses the semi-automatic
approach.

Specification and correctness

There is a lot of focus on specification and proving the correctness of code in
the programming language research literature. If we were to sum up the ideal
which was pursued:

Definition 1 (Correctness ideal). Software should be meticulously specified,
implemented, and then proven to be correct according to the specification.

Many of the program transformation papers from the 1970s dealt with spec-
ification and correctness in some way, or assumed it as a part of the software
engineering process. We choose to not emphasize correctness or verification
of transformations. This is an indirect consequence of the way we use trans-
formations, which is as a complement to manual programming. Transforma-
tions are intermingled with manual coding. And so if there are no obligations
on the programmer to prove or verify his manually programmed code, there
should be no additional obligations for transformations. Magnolia is in part
a specification language, so specification and verification is available to the
programmer—irrespective of whether he uses transformations or not.

In the introduction to Bauer [1976]:

More precisely: Programming as a process can be done in an or-
derly way, step by step, applying rules safely - under control of
intuition. This has been demonstrated by the discipleship [. . .] of
‘Proving program correctness’.

Bauer [1976] describes an “evolutionary” process of program construction;
start with a high-level, “mathematical” approach, and then work your way
towards an efficient implementation. This is a theme in many program trans-
formation papers. The paper doesn’t emphasize proofs of correctness as the
top priority, but it thinks it is of great value:

It is more important to be able to derive a correct program than to
prove its correctness, although the moral value of a direct correct-
ness proof should not be neglected.

Balzer et al. [1976] implicitly embraces specifications and proofs by stating
that their proposed system would deal with proofs of equivalence preserva-
tion15:

15If a transformation is equivalence-preserving it doesn’t change the semantics of the
code. An example of this is an optimization.

16



2.5. The flux of code

The TI [Transformation Implementation] approach would eliminate
the implementation proofs required in the Levels of Abstraction
approach, which are difficult to specify and construct. In TI, the
functional equivalence of each transformation would be proved once
and for all before it is entered in the catalog, and thus would be of
no concern to the programmers using the transformation.

Manna and Waldinger [1979] is about using program transformations in
the context of verification systems. They propose a way to develop program
and its correctness proof “hand in hand”. So this is another example of a paper
focusing on specification and correctness.

Feather [1982] makes note of “assisting program description and verifica-
tion” as a potential application of program transformations, in addition to the
application of assisting software development. The paper adopts Burstall and
Darlingtons’s transformation method [Burstall and Darlington, 1977]. Burstall
and Darlingtons’s transformation method was a semiautomatic program trans-
formation system for transforming first order recursion programs.

2.5 the flux of code

Everything is in a state of flux. It is obvious enough that night follows day. It
is obvious enough that spring follows winter. It can be less obvious that even
mountains are not permanent fixtures. That they too will disappear in time.
That something else will take their place. In the same way, code has a more
pliable or mouldable quality than might be obvious at first sight.

Any programming involves sending around values and variables. These
are the “flexible artifacts” that the programmer first encounters. Most every-
thing else feels like scaffolding, structure, bricklaying—carefully and tediously
erected fixtures. But if the programmer looks with a keen eye at the rest of
the code, he might eventually pierce through the illusion of the fixedness and
rigidness of code.

• Functions don’t have to be fixtures; they can be regular values. (Higher
order functions.)

• Types don’t have to be fixtures; they can be regular values. (Dependent
types.)

• A compiler doesn’t in principle have to be written manually; it can be de-
rived from an interpreter using partial evaluation. (The second Futamura
projection [Futamura, 1999].)

It is not just the data that code manipulates that is pliable. The code itself
is mouldable and pliable. As program transformation shows us.
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3

Magnolia

We give an introduction to the Magnolia programming language.

3.1 overview

Magnolia is a general-purpose research programming language. The quickest
way to describe it might be to compare it to most mainstream imperative
programming languages. First of all, specifications is important in Magnolia,
and has first-class support. Second of all, the semantics of the language is
designed to achieve two goals:

1. To be easy to analyse.

2. To not put restrictions on the underlying implementation or architecture.

One of the most important examples of the first point is that Magnolia
has no concept of a pointer or reference. This simplifies analysis, since the
possible presence of pointers in programs complicates analysis. To the second
point, although Magnolia is a general purpose programming language, it has
been put to most use on problems in the domain of HPC. Unlike domains
like Web programming or mobile development, in HPC a lot of different hard-
ware and architectures are used in order to solve computationally demanding
problems. As an example, the array data structure can often be assumed
to be represented as a contiguous chunk in memory when doing most pro-
gramming tasks. But in HPC, the array might in fact be distributed among
several memory representations, and be physically separated from each other
to the point that a computation across the array can be called a distributed
computing. We can contrast this approach to the C programming language.
The C specification under-specifies a lot of behavior in order to allow compiler
writers flexibility, and allow C to be implemented on a wide range of architec-
tures.1 Despite that, contemporary implementations of C have converged on
a memory model similar to PDP-11 [Chisnall et al., 2015, p. 1], which was the
original target architecture for C. The assumptions and limitations of C—and

1This is done by explicitly labelling certain cases as undefined behavior. The unpre-
dictability born out of that has lead to a lot of surprises for C and C++ programmers.
Magnolia does not use the concept of undefined behavior in its semantics.
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also C++—makes it sub-par for the domain of HPC. In order to target differ-
ent architectures, one should be able to express code that can translate well
to those different architectures, and not just machines that behave similarily
to the C abstract machine. If you cannot do that, you might be forced to
implement things directly for each architecture.

Another limitation of languages like C and C++ is their imperative nature.
Although imperative programming is often viewed as the paradigm that leads
to more efficient programs very reliably, this is too simplistic. First of all,
even if imperative programming might lead to more efficient programs given
enough time, time is always limited. In some cases, using a different paradigm
to solve a programming problem might lead to code that is more maintain-
able and amendable to change, which might in turn mean that the code can
be more easily optimized than would be the imperative solution to the same
problem. Second of all, an imperative program is simply not a universally effi-
cient implementation for all execution environments. Imperative programming
lends itself well to serial problems, but less so to parallel problems. Moreover,
an imperative solution to a problem might easily over-specify the solution to
the problem. What this means is that the implementation is too specific, in
the sense that it leaves too little room for things like architecture-specific opti-
mizations. For example, the problem of transforming a one-dimensional matrix
by adding some number to each element can be solved iteratively by looping
through an array that represents the matrix and for each element adding the
given number. The potential problem with this is that it over-specifies the
order of iteration. It demands that the addition operation is to be done on
each element in turn. But such operations can often be done more fruitfully
in parallel. This might not seem like too much of a problem for one mapping
over a matrix, but for a large composition of mappings and on sufficiently
large matrices, it can definitely be a problem. Unlike C—but similar to mod-
ern versions of C++—Magnolia is designed to accomodate both imperative a
declarative programming [Bagge and Haveraaen, 2010].

3.2 interface declarations

What is in the literature is called interfaces or signatures is at the core of
Magnolia. A signature is a collection of operations (function, procedure, and
predicate declarations), along with a collection of types. Magnolia has con-
cepts, which are signatures extended with axioms. Concepts are similar to
things like Java’s interfaces and Haskell’s typeclasses. Axioms are a distin-
guishing feature, which allows the programmer to declare invariants. Axioms
consist of assertions which have to hold for any implementation of the con-
cept. Axioms act like declarations of algebraic properties. More relatable to
most programming practice might be to regard them as parameterised unit
tests; unit tests that have to hold for any instantiation of the input. In any
case, axioms is a specification mechanism for Magnolia, and is used to test
implementations of concepts.
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As an example, this concept describes a linear abstract data type:
package Collections.Linear;

concept Linear = {
type Data;
type Linear;

function peek ( l:Linear ) : Data;
function pop ( l:Linear ) : Linear;
function push ( l:Linear, d:Data ) : Linear;
function clear () : Linear;
predicate isEmpty ( l:Linear );
predicate isFull ( l:Linear );

axiom pushNotIsEmpty ( l:Linear, d:Data ) {
assert !isEmpty(push(l,d));

};
axiom clearIsEmpty () {
assert isEmpty(clear());

};
axiom clearPushPeek ( d:Data ) {
assert peek(push(clear(),d)) == d;

};
axiom clearPushPop ( d:Data ) {
assert pop(push(clear(),d)) == clear();

};
};

The functions provide ways to add (push(...)), remove (pop(...)),
examine (peek(...)), and clear (clear(...)) the data structure. Based
solely on the names, parameters, and return types of the operations, it should
be fairly easy for a programmer to make a guess about how this abstract
data type should behave. But for the compiler, given just the types and
operations of a concept, the compiler can only catch relatively simple mistakes
like returning or passing in a value of the wrong type. This is where axioms
enter.

The four axioms for the Linear concept goes a long way to capture the
requirements that a programmer might have already guessed. If an element is
added (pushed) to the data structure, it should not be empty:
...
axiom pushNotIsEmpty ( l:Linear, d:Data ) {
assert !isEmpty(push(l,d));

};
...

If the collection has been cleared, it should then be empty:
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...
axiom clearIsEmpty () {
assert isEmpty(clear());

};
...

If a cleared collection has then had an element added to it, peek(...)
should return that element:
...
axiom clearPushPeek ( d:Data ) {
assert peek(push(clear(),d)) == d;

};
...

Clearing, then pushing, then popping a collection, is the same as just clear-
ing:
...
axiom clearPushPop ( d:Data ) {
assert pop(push(clear(),d)) == clear();

};
...

None of the axioms for Linear specifies the order in which elements are
extracted. It could be first in last out (FIFO) or last in first out (LIFO); both
would be equally valid implementations. We can use Linear to make a queue
(FIFO) and to make a stack (LIFO). This is how a stack could be defined:
concept Stack = {
use Linear[ Linear => Stack ];

axiom pushPop( l:Stack, d:Data ) {
assert pop(push(l,d)) == l;

};

axiom pushPeek( l:Stack, d:Data ) {
assert peek(push(l,d)) == d;

};

};

The axioms pushPop(...) and pushPeek(...) specifies the desired
LIFO behavior. Notice the renaming of the type Linear to Stack. This is
how a queue could be defined:
concept Queue = {
use Linear[ Linear => Queue ];

axiom pushPop( l:Queue, d:Data ) {
assert isEmpty(l) => pop(push(l,d)) == l;
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assert !isEmpty(l) => pop(push(l,d)) == push(pop(l),d);
};

axiom pushPeek( l:Queue, d:Data ) {
assert isEmpty(l) => peek(push(l,d)) == d;
assert !isEmpty(l) => peek(push(l,d)) == peek(l);

};

};

Like for Stack, the axioms define the extraction behavior.

3.3 magnolia operations

Magnolia uses three kinds of operations to implement code; procedures, func-
tions, and predicates. Procedures are subroutines which pass both input and
output through its parameters. Parameters are distinguished through three
different modes, according to their purpose and limitations:

1. out, which passes output. Cannot be read from inside the procedure.

2. obs, which passes read-only input.

3. upd, which can pass in data as well as be updated in the procedure,
which affects the calling code.

Magnolia functions are pure, so they do not have side-effects. Together,
procedures and functions allow for both imperative as well as functional-style
programming. Recall that both imperative and expression-oriented (func-
tional) styles are useful for the domain of HPC, since one needs to be able
to use different levels of abstraction.

Magnolia predicates are functions that either return a boolean value. But
due to the underlying theory of the language and the role of predicates in it,
predicates have a special status in the language.
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Partial Evaluation

We describe what the transformation technique partial evaluation is and how
it works.

4.1 introduction

Partial evaluation is a source-to-source program transformation technique for
specializing programs with respect to parts of their input [Consel and Danvy,
1993, p. 1]. It is based on and leverages the fact that programs some times
have input arguments whose values are known before executing the program.
In other words, parts of the input to the program are statically known. The
simplest case is when a program, or a program-fragment, only has static in-
put and the program is side-effect free; an example of this is an arithmetic
expression involving only constants. In that case, the whole program can be
evaluated statically, i.e., at compile-time. This special case of partial evalu-
ation is known as constant folding, and the output is whatever the program
evaluates to, such as a number in the case of an arithmetic expression. When
only parts of the input to the program are statically known, the output of
partial evaluation is a specialized program, hence why partial evaluation is
considered a form of program specialization [Jones et al., 1993, p. 2]. The mo-
tivation behind partial evaluation is program optimization [Jones et al., 1993,
p. 5].

The term program specialization is by some authors used interchangeably
with “partial evaluation”1 [Jones et al., 1993, p. 1]. According to Jones et al.
[1993, p. 367], Andrei Ershov introduced the term mixed computation to mean
roughly the same as partial evaluation [Ershov, 1977]. Also according to Jones
et al. [1993, p. 369], Komorowski suggested the term partial deduction for
partial evaluation of pure logic programming languages [Komorowski, 1989].

1Though using these two terms as synonyms in a wider context might be unwar-
ranted. Reps and Turnidge [1996] shows that the program specialization done by program
slicing can in some cases not be achieved by partial evaluation or other techniques.
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What

Consider a program p and its input in, which might consist of one or more
variables. Evaluating p applied to in yields an output out, which we might
denote as:

JpKin = out

Note that, since program specialization involves treating programs as both
programs and data, we adopt the convention from Jones et al. [1993] of denot-
ing the execution of programs by J_K.

It might be the case that parts of in are statically known, which means
that we know their values ahead of executing p. The rest of in is considered
dynamic. Call the static part of in s and the dynamic part d. Given that we
have a partial evaluator—which we will call mix—we can partially evaluate
p with s as its static input:

JmixK[p, s] = p′

p′ is a program, and in particular a residual program [Jones et al., 1993,
p. 71]. Evaluating p′ applied to d—the remaining inputs—yields out, i.e.,
Jp′Kd = out. In other words, evaluating p by first partially evaluating it with
the static input, and then evaluating the resulting residual program with the
rest of the input gives the same output as evaluating p directly.

out = JpKin (4.1)
= JpK(s ∪ d) (4.2)
= JJmixK[p, s]Kd (4.3)

Notice that evaluating p via partial evaluation involved two stages, namely
first partially evaluating p and then evaluating p′. This is in contrast to eval-
uating p directly, which only consists of one stage of computation. This is
called multi-stage programming [Taha and Sheard, 1997] or multi-stage com-
putation [Jones et al., 1993, p. 7]. With that in mind, we might more succintly
refer to evaluating p via mix and p′ as two-stage evaluation of p via partial
evaluation.

Examples

The following example is adapted from Jones et al. [1993, p. 3].
Below is an implementation of the power function.

f(x,n) = if n == 0 then 0
else if even(n) then f(x,n/2)^2
else x * f(x,n-1)
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We might have some code in which one or more of the arguments are static.
Let us first consider the case in which the exponent is statically known, say
like f(x,5). The first observation we will make is that all conditionals in the
definition of the function only depend on knowing the value of n. In particular,
we have if n == 0, and if even(n). This is what we get if we substitute
all occurrences of n with 5:
f(x,5) = if 5 == 0 then 0

else if even(5) then f(x,5/2)^2
else x * f(x,5-1)

As we can see, the two conditionals get specialised to if 5 == 0 and
if even(5), both statically computable. The second observation is that
we can use our first observation to eliminate all of the recursive calls in the
function definition. This can be achieved by applying techniques like symbolic
computation on the conditional expressions, and unfolding the functional calls
f(x,n/2), and f(x,n-1). What we end up with is a specialized function
of arity one, which we will call f5(x):
f5(x) = x * ((x^2)^2)

Now that we have considered the case in which the exponent is the stat-
ically known value, we will next consider the case in which the exponent is
dynamically known while the base is statically known. As an example we will
use the function call f(3,n). Unfortunately, there are less opportunities for
partial evaluation in this case. There are few operations on x which can be
done by the partial evaluator, since all expressions involving x also depend on
knowing what the value of n is. It seems the best and only thing we can do
in this case is to inline the value of x into the function definition and remove
the x parameter:
f_base_3(n) = if n == 0 then 0

else if even(n) then f(3,n/2)^2
else 3 * f(3,n-1)

But now we can not seem to specialise the code any further. This is an
example of how just knowing some static parameters might not be enough to
get any meaningful optimization out of partial evaluation techniques. In fact,
programs might need to be written or structured in certain ways in order to
be able to be easily specialized [Jones et al., 1993, p. 16].

The next example is adapted from Consel and Danvy [1993, p. 1].
Many programming languages have functions for producing formatted text.

Examples include format in Lisp, and printf in C. The parameters of
such formatting function consists of a control string and a varying number of
values. The function outputs text by interpreting the control string in order to
determine how to format the list of values. What makes this suitable for partial
evaluation is that the value of the control string is, in most cases, statically
known. This means that we can try to eliminate the interpretive overhead of
reading the control string at runtime.
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Let us consider a formatting function in Scheme This function only handles
three formatting directives: ~N, ~S and ~%. The first two directives specify
that the corresponding element in the list of values must be printed as a value
or as a string, respectively. The last directive is to be interpreted as an end-
of-line character.
;; vs is a list containing two values
(format.1 vs) = (format "~N is not ~S~%" vs)

;; vs is a list containing two values
(define format.1
(lambda (values)
(write-newline
(write-string
(write-string
(write-number-port (car values))
" is not ")

(car (cdr values))))))

Above is some Scheme code that uses the format function, and a spe-
cialization of the invocation of the format function. In this case, all the
operations manipulating the control string have been performed at compile-
time. No references to the control string are left in the residual program. The
specialized function only consists of operations manipulating the run-time ar-
gument, namely the list of values to be formatted.

How

Conceptually, partial evaluation encompasses both compilation and interpre-
tation of the target program; partially evaluating a program with respect to
all of its inputs amounts to running this program and producing a constant
residual program. This means that a partial evaluator must include a inter-
preter to construct that residual program. And partially evaluating a program
with respect to none of its input amounts to producing a (possibly simplified)
version of this program. So a partial evaluator must also include a compiler
to construct the residual program [Consel and Danvy, 1993, p. 3].

We can describe how a partial evaluator works by listing how it deals with
different kinds of levels of dynamicness, so to speak [Consel and Danvy, 1993,
p. 3]:

• Expressions only depending on static data: evaluate the expression (con-
stant folding).

• Propagate constant values, including the ones that the partial evaluator
manages to generate.

• Function calls (that can’t be fully evaluated statically): specialize func-
tion definition for that input. A monovariant specializer produces at
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most one specialized function for every source function. A polyvariant
specializer can produce many specialized versions of a source function.
The specializer may choose to unfold—i.e. inline—specialized function
definitions.

There are two categories, or approaches, to making partial evaluators: on-
line and offline partial evaluators [Consel and Danvy, 1993, p. 3]. Both have
been actively researched, and each of them provide their own benefits and
downsides.

An online partial evaluator can be viewed as a one-stage, or one-pass,
partial evaluator, since the treatment of each expression is determined on the
fly. Online partial evaluators are in general very accurate, but they tend to
have a considerable interpretive overhead [Consel and Danvy, 1993, p. 3].

In contrast to the one-stage partial evaluators, an offline partial evalua-
tor is multi-staged in the sense that it does its work through several distinct
stages. An offline partial evaluator can be divided into two stages, namely a
preprocessing stage and a processing stage.

The preprocessing stage often includes a binding-time analysis (BTA). BTA
consists of analyzing which parts of the program can be evaluated statically,
and which parts that have to be evaluated dynamically [Consel and Danvy,
1993, p. 3]. It starts by looking at which parts of the input to the program are
statically known, and then uses that information to propagate this informa-
tion through the program, determining for each expression whether it can be
deduced that it can be evaluated statically or not. The processing stage then
uses the information gathered from the preprocessing stage, like the BTA, to
guide it in performing the specialization of the program.

We can think of BTA as annotating every expression in the program with
one of two values; S if the BTA can determine that the expression can be
evaluated statically, D otherwise. For example, in the expression x+ y, if x is
annotated as D and y is annotated as S, we will have to annotate the whole
expression as being D.

We have mentioned that monovariant specializers produce at most one
specialized function for every source function, while a polyvariant specializer
can produce many specialized versions of a source function. As an example,
recall the specialization of the power function f; we created a new specialized
function definition called f5. We can imagine that we had a program with
multiple calls to the f function, each one with a distinct and static power-
argument. Then we might end up with a specialized program for each of
these function calls, for example called f6 (specialization of f(x, 6)), f9,
f13, and so on. This is an example of polyvariant specialization. In contrast,
a monovariant specializer only creates one specialized function definition for
each function definition in the source program. Of course, a partial evaluator
can choose to use both mono- and polyvariant specialization for different parts
of the program [Hatcliff et al., 1998, p. 3].
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Polyvariant specialization is conceptually similar tomonomorphisation from
generic programming. Monomorphisation is a technique for implementing
generic functions. If a function g takes as argument a generic type T, then a
compiler which uses monomorphisation will generate a specialized function for
each invocation of g with a distinct type T in the source program. For exam-
ple, if we have a function head which extracts the first element of a list, then
we can make it polymorphic in the type T of the elements of the list. Then
if we have a source program which uses this function with lists of type Int,
String, and Float, the compiler will make three functions specialized for
each of these types. This implementation of generic functions can be viewed
as a special case of partial evaluation; consider the input type parameter of
a generic function as arguments to the function that are guaranteed to be
statically known.

Online and offline partial evaluation can be combined. For instance, when-
ever the exact binding-time property of an expression can be determined, of-
fline partial evaluation is used. Otherwise, the treatment for this expression is
postponed until specialization-time, when concrete values are available [Consel
and Danvy, 1993, p. 3].

4.2 background

A mathematical one-argument function can be obtained from one with two
arguments by specialization, i.e., by setting one input to a fixed value [Jones
et al., 1993, p. 1]. In mathematical analysis this is called “restriction” or “pro-
jection”, and in mathematical logic it is called “currying”. Closer to computer
science, partial evaluation was shown to be computable by Stephen C. Kleene
in 1943, through the smn theorem [Jones et al., 1993, p. 1] [Kleene et al., 1952].
However, Kleene’s results are not directly useful for applying partial evalua-
tion for program optimization, since Kleene was not concerned with program
efficiency. Indeed, his construction gave specialized programs that were slower
than the original program [Jones et al., 1993, p. 1].

Yoshihiko Futamura investigated the relationship between interpreters and
compilers in the context of partial evaluation in 1971 [Futamura, 1999]. He
found that partial evaluation can in principle be used to generate target pro-
grams,2 compilers and even compiler generators. Generation of compilers in-
volved self-application of the partial evaluator, while generation of compiler
generators involved double self-application. These results have later become
known as the Futamura projections [Jones et al., 1993, p. 13].

Ershov independently discovered the principle of compiler generation via
self-application later in the 70s [Ershov, 1977]. Ershov also gave two compre-
hensive overviews of the activities in the field of partial evaluation and mixed
computation, including overviews of the literature up until that time [Jones
et al., 1993, p. 367] [Ershov, 1978] [Ershov, 1982]. Futamura gave another
overview of the literature [Jones et al., 1993, p. 367] [Futamura, 1983].

2In a broad sense; not just programs written in machine code or other low-level code.
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As has been mentioned, it was discovered in the 70s that partial evaluators
could in principle be applied to themselves. However, it was not until 1984
when the the first self-applicable partial evaluator was implemented. It was
written in a language of first-order recursion equations (or first-order statically
scoped pure Lisp), and was used to generate toy compilers and compiler gener-
ators [Jones et al., 1993, p. 367] [Jones et al., 1985] [Jones et al., 1989] [Sestoft,
1986]. Due to an increased interest in partial evaluation at the time, the first
Workshop on Partial Evaluation and Mixed Computation (PEMC) was held
on October 1987 in Denmark. The workshop was the first event to bring to-
gether a substantial number of partial evaluation researchers from all over the
world [Jones et al., 1993, p. 367].
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5

Slicing

We describe what the transformation technique slicing is and how it works.

5.1 introduction

Program slicing is a program transformation technique that tries to eliminate
(slice) irrelevant code from a program. Slicing was first presented by Mark
Weiser in Weiser [1981]. The technique as he presented it was a formalization
of how he observed students approached debugging [Weiser, 1981, p. 439]. The
original slicing technique dealt with imperative programs, and so slicing was
implemented by deleting those statements that were found to not be needed
according to some criterion. Since Weiser’s original paper, a large number of
papers have been published on different forms of program slicing, algorithms
to compute them, and applications to software engineering [De Lucia, 2001,
p. 144].

Weiser classified the technique as being useful in maintenance rather than
design, since the technique is applied after the program is written. Keep in
mind that slicing as originally presented by Weiser dealt with executable pro-
grams, and moreover it was demanded that a successful slicing produces an
executable program as well. But later formulations and implementations for
slicing have since been proposed that relax the executable criteria [De Lucia,
2001, p. 145]. In particular, definitions of slicing that allow slicing of subsets
of the program that might not themselves be executable. An example of this
might be a procedure in the program that is not the designated main proce-
dure of the program. This more general view of this program transformation
technique might allow this technique to be used in program design as well as
in the originally envisioned maintenance phase of the software life-cycle.

As mentioned, the original motivation for slicing was debugging. Since
then, a number of other applications have been proposed; parallelization, pro-
gram differencing and integration, software maintenance, testing, reverse en-
gineering, and compiler tuning [Tip, 1995, p. 124].
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5.2 what

A program slice consists of the parts of a program that potentially 1 affect the
values computed at some point of interest [Tip, 1995, p. 121]. The point of
interest is typically specified by a pair; a program point, and a set of variables.
The parts of a program that have a direct or indirect effect on the values
computed at slicing criterion C constitute the program slice with respect to
criterion C [Tip, 1995, p. 121].

Note that the pair (program point, set of variables) is static data, i.e., we do
not need to know anything about the dynamic behavior of the program to slice
the program. Consequently, this definition is called static slicing when it needs
to be differentiated with or contrasted with dynamic slicing. Dynamic slicing
extends the pair from static slicing with another point of interest, namely some
kind of dynamic information about the program. A dynamic slicing criterion
is typically a triple (input, occurrence of a statement, variable) [Tip, 1995,
p. 124]. So the difference between static and dynamic slicing is that static
slicing assumes nothing about the input, while dynamic slicing assumes some
fixed input. There have been developed hybrids of these two slicing techniques,
among them a technique called quasi static slicing [De Lucia, 2001, p. 146].
The motivation behind such hybrids techniques are applications in which some
input variables are static while the behavior of the program must be analyzed
when other input values vary. The concept of quasi static slicing is closely
related to the partial evaluation program transformation technique [De Lucia,
2001, p. 146]. From the standpoint of applying program transformation tech-
niques for the purpose of program comprehension, combining partial evaluation
with program slicing allows to restrict the focus of the specialized program with
respect to a subset of program variables and a program point [De Lucia, 2001,
p. 146].

Example

We present the canonical static slicing example, first introduced by Weiser in
his original paper.2 The program takes a number n from the user and computes
the sum of the numbers 1 to n, the factorial of n, and outputs these numbers
to the user.
read(n)
i = 1
sum = 0
product := 1
while <= n:

1As argued by Weiser in his original paper, the problem of finding a minimal slice is
undecidable.

2You might recognize this as a slight variation on the example from the Program Trans-
formation chapter (2.2). This time we use pseudo code, and we find the sum and the product
instead of the sum and the maximum value.
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sum = sum + i
product = product * i
i = i + 1

write(sum)
write(product)

read(n)
i = 1

product := 1
while <= n:

product = product * i
i = i + 1

write(product)

The next program shows a slice of the first program with respect to the slic-
ing criterion (10, product), where 10 is the line containing the statement
write(product). All statements which are not relevant to the variable
product have been sliced away. In particular, note that none of the state-
ments which referenced or updated the sum variable could affect the value of
the product variable. So none of those statements were relevant with regards
to this slicing criterion.

How

There are three major approaches to program slicing; dataflow equations,
information-flow relations and dependence graphs [Xu et al., 2005, p. 2].

dataflow equations Weiser’s approach used iteration of dataflow equa-
tions. More concretely, his approach found static slices by computing consecu-
tive sets of transitively relevant statements, according to data flow and control
flow dependences [Tip, 1995, p. 122]. A data dependence is in this case a par-
ticular kind of relationship between two statements. In particular, a statement
j is dependent on another statement i if a value computed at i is used at j
in some program execution [Tip, 1995, p. 126]. Control dependence is more
involved, but an example of control dependence are the statements inside the
branches of an if or while statement; those statements are control depen-
dent on the control predicate of the if or while statement. With a basic
understanding of what data and control dependences are in mind, we can de-
scribe the iterative algorithm for program slicing introduced by Weiser. This
algorithm uses two distinct “layers” of iteration, which can be characterized as
follows [Tip, 1995, p. 128]:

1. Tracing transitive data dependences. This requires iteration in the pres-
ence of loops.
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2. Tracing control dependences, causing the inclusion in the slice of certain
control predicates. For each such predicate, step 1 is repeated to include
the statements it is dependent upon.

information-flow relations Another approach to slicing is the use of
information-flow relations. In this approach, several types of relations are
defined and computed in a syntax-oriented, bottom-up manner [Xu et al.,
2005, p. 2]. Slices can then be easily obtained by relational calculus. As an
example, let S be a statement, which itself might be a sequence of statements.
Let v and v′ be variables, and (v, v′) ∈ ρS iff the value of v on entry to S may
affect the value of v′ on exit from S.

dependence graphs Yet another approach to slicing uses dependence graphs.
In this approach, slicing is solved in two steps; constructing a suitable depen-
dence graph, and then doing the slicing by performing reachability analysis on
the graph. The simplest dependence graph is a Program Dependence Graph
(PDG). A PDG is a program representation where the nodes of the graph
represent statements and predicates, while edges carry information about con-
trol and data dependences [De Lucia, 2001, p. 144]. According to Tip [1995,
p. 131], Ottenstein and Ottenstein [1984] found that PDGs can be used for
slicing of single-procedure programs.

For slicing of multi-procedure programs, Horwitz et al. [1988] introduced
the System Dependence Graph (SDG). An SDG is an extension of a PDG. The
problem that the SDG solves is to represent the new dependences that occur
in an interprocedural setting. For example, to slice a procedure main(...) , one
needs to determine the dependences that variables defined in main(...) have
across procedure calls. If there is a statement call p(a, b); in main(...) ,
p(upd a: Integer, upd b: Integer) needs to be analyzed to determine any
dependences that might be between a and b . a and b might not
affect each other directly in main(...) , but one of them might affect the other
through the call to p(...) .

An SDG consists of [Horwitz et al., 1988, p. 3]:

1. A PDG, representing the program’s main procedure.

2. Procedure dependence graphs, representing the rest of the program’s pro-
cedures.

3. Some additional edges of two sorts: a) edges that represent direct depen-
dencies between a call site and the called procedure, and b) edges that
represent transitive dependencies due to calls.

Horwitz et al. claimed that the chief difficulty in interprocedural slicing
is correctly accounting for the calling context of a called procedure. Weiser’s
original paper on slicing did provide a way to deal with interprocedural slices,
but this approach suffered from what Horwitz et al. call the calling context
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problem. This problem is due to the fact that Weiser’s algorithm, after having
descended into a called procedure, ascends to all calls of that procedure—
instead of only ascending to the call-site at which it descended.

And due to considering procedure calls that might be irrelevant to a given
slice, this means that Weiser’s algorithm produces larger slices than necessary;
using the phrasing of Horwitz et al., Weiser’s slices are less precise.

5.3 magnolia

In this section we discuss how approaches to slicing in the literature can be
applied to Magnolia, and what accommodations need to be made for our needs.

Weiser [1981] considered statement-level slicing on imperative programs
with simple types,3 structured control flow, loops and recursion. They call
the parameter passing mechanism for value-result ; the arguments are both
copied on entry to the procedure, as well as copied back on exit from the
procedure. Horwitz et al. [1988] used a similarly simple language with simple
types. Although their slicing criterion is less general than Weiser’s, they argue
that his slicing criterion is more general than what is often needed [Horwitz
et al., 1988, p. 1]. The survey paper Tip [1995] is mostly—if not wholly—
about slicing of imperative programs.

Magnolia has structured control flow, no looping nor recursion, and no
pointers nor references. Having structured control flow simplifies the flow
analysis of the programs. The absence of pointers simplifies analysis, since
aliasing is not a concern; aliases make determining flow dependences very hard,
even in the limited case of intraprocedural slicing [Tip, 1995, p. 23]. Magnolia
has three modes for procedure parameters: obs, for parameters that can only
be read (observed); out, for parameters that can only be written to; and upd,
for parameters that can both be read and written to, and that will have its
value copied back on exit from the procedure. upd corresponds to the value-
result parameter passing mechanism in Horwitz et al. [1988]. We are interested
in slicing composite types and arrays, and so considerations need to be made
that go beyond the case of simple types [Tip, 1995, p. 23].

Although we are interested in slicing imperative programs, this by itself
is too limited for our purposes. Papers like Weiser [1981] and Horwitz et al.
[1988] consider non-abstract code—code that leaves no generic parameters to
fill in, such as e.g. types. In contrast, one of the strengths of Magnolia is the
facilities it has for code abstraction. In addition to imperative code, we need
to be able to slice concepts and other abstraction facilities. For example, one
might want to slice away one of the types of a concept. Clearly, statement-
level slicing is not what you want in this case. Slicing things like concepts
can also involve slicing other declarations like requirements and uses. And
since requirements and uses can come from other concepts, one needs to slice

3I.e., types that are not composite (not made up of other types) and are not references.
Papers like Tip [1995] call this “scalar variables”.
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and rewrite across concepts; borrowing the terminology from interprocedural
slicing, one might call this inter-module slicing.
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6

Modulus Group Implementations and
Transformations

We go through a hypothetical workflow of applying program transformations in
order to derive different implementations of Modulus Group.

6.1 introduction

We discuss the Magnolia source file ModulusGroupCxx.mg; see Appendix
A.

We have three different implementations—mgArgument, mgConstant, mg7—
that implement Modulus Group. The Modulus Group implementations pro-
vide the type MG to do modular arithmetic upon, and functions for correctly
performing modular arithmetic. When talking about the base number asso-
ciated with in the abstract—as opposed to as a concrete type or variable in
the implementations—we will refer to it as base. The differences between the
implementations are:

• mgArgument takes the base number as a dynamic argument to construct
the type MG. Thus one can do arithmetic modulo base for any positive
value of base with this implementation.

• In mgConstant, base is a constant. This means that that any program
that builds on this implementation needs to fix base to a certain value,
and cannot do any other arithmetic except modulo this base.

• mg7 fixes base = 7.

We are interested in how to translate automatically between these three
different implementations of Modulus Group.

Preliminaries

Modulus Group is an algebra which describes modular arithmetic. Modular
arithmetic is a system of arithmetic on integers where numbers “wrap around”
upon reaching a certain value; the modulus. An example of modular arithmetic
is the 12-hour clock, the convention for time which divides the 24 hours of a
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day into two 12 hour segments. Since the number of the hour does not exceed
12, the time “wraps around” to 1 after 12. For example, 8 hours after 6 in the
morning would be 2 in the afternoon. This is called arithmetic modulo 12.

Let MG consist of the following:

base ∈ N− {0} (6.1)
S = {0, . . . , base− 1} ⊂ N (6.2)
plus : S × S → S (6.3)
uminus : S → S (6.4)

Note 3. “uminus” stands for “unary minus”.

And let plus and uminus be defined as:

plus(x, y) = (x+ y) mod base (6.5)

uminus(x) =

{
0 if x = 0

base− x otherwise
(6.6)

Where mod : N×N→ N is an infix operator that returns the remainder
of dividing the first operand with the second operand.

Motivation

We will here describe a workflow which leverages being able to automatically
translate between the three different Modulus Group implementations.

We have a programmer that wants to implement this algebra. He chooses
to implement the equivalent of mgConstant. But after having done that, he
realizes that he needs to be able to use several different Modulus Groups,
i.e., Modulus Groups with different base numbers. But mgConstant does not
permit this, since base is implemented as the constant function bn(). On the
other hand, mgArgument takes base as a dynamic variable, so it would permit
having several Modulus Groups. Now, since we assume that it is possible to
automatically translate between the three different implementations that we
have introduced here, he chooses to translate his mgConstant implementation
to the mgArgument implementation. Now he is able to use many different
Modulus Groups.

Later, he finds out that he wants to use his Modulus Group in the context of
some other code. Say that he wants to interface his implementation with some
algebraic concept. But this concept cannot accomodate the mgArgument im-
plementation, since the dynamic base number does not fit into it. It effectively
requires base to be abstracted away, or to at least not be exposed like it is in
mgArgument, namely as a dynamic argument to all of the relevant functions.
The solution to this is to, for all values of base that the programmer cares
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about, specialise mgArgument to an implementation with base specialised to
that constant number. The mg7 implementation is one example, but of course
the constant number could be any positive number that the programmer is
interested in.

To sum up the workflow:

1. Implement mgConstant manually.

2. Automatically transform mgConstant to mgArgument.

3. For each desired base, specialise mgArgument to an implementation with
this specific and constant base, like mg7.

6.2 specialisation of functions

The implementation mgArgument takes base as an argument to the various
functions, while mgConstant has base defined as a constant in the code. In
order to derive mgConstant from mgArgument, we need to specialise the ar-
guments corresponding to base. This is an application of partial evaluation.

More concretely, we are interested in fixing one value bn which is a pa-
rameter to all the functions of implementations as a member of the MG type.
Since we are fixing one value to a static value, this requires a monovariant
specialisation.1

The bn value is embedded in the MG type. Let’s assume that we are able
to divide MG into the types MG_1 and MG_2. Once this has happened, we have
a type MG_2 with a single member bn that is sent into each function in the
implementation (we also assume that duplicates of bn has been removed from
the parameter list). We can simplify this so that each function has a parameter
bn: Integer. Now we can mark all these parameters to signify that each
bn: Integer parameter is statically known, and that they have the same
value. Now the resulting program does not need to have a parameter bn and
can instead incorporate it as a constant in the function. Furthermore, since
it known that all these bn constants are the same value across the different
functions, its value can be stored in a mutually callable place; like how the
constant value is stored and called from the bn() function in the mgConstant
implementation.

Note 4 (Constant functions). Magnolia functions are referentially transparent.
As a consequence constant functions—functions with arity zero—must nec-
essarily return the same value each time they are called. In turn this means
that constant functions can be used to represent constant values.

1Monovariant specialisation was discussed in section 4.1.
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6.3 lifting and lowering

We here introduce the notions of lifting and lowering,2 which will be useful
when discussing the differences between the different Modulus Group imple-
mentations.

Lowering is a general term which we will use to refer to making some item
available sooner. Lifting is then, in contrast, the opposite of lowering. “Item”
here is a loose collection of whatever we find relevant in the program, and for
which the term makes sense. The word “sooner” refers collectively to some
“time” occurring either at the stage of writing the program, during what one
might call the compilation pipeline, or during execution of the program. So
“time” in this sense refers to some discrete point in the stage of writing the
program, compiling the program, or running the program.

We will get into the details of exactly what these terms mean for some
different kinds of constructs. But let us first give some concrete examples
of things for which lifting and lowering mean. The first example is program
expressions; an expression is lifted if it is taken into a more dynamic context.
An expression is lowered if it is taken into a more static context. The second
example is requirements and programs; a program is lifted if it is stripped
of its implementation, yielding only its signature. This can be achieved with
constructs like signature(_). In contrast, a requirement is lowered if an
implementation—for e.g. the type, function, etc. as appropriate—is supplied.

To elaborate on program expressions, consider the application of techniques
like partial evaluation. In partial evaluation, whether an expression is stati-
cally computable is important. If it is statically computable, the result of the
expression is in principle available at compile time. In general, the results of
expressions are only available at runtime. So the result of a static expression
is available earlier—in our conception of “time”—than a dynamic expression.
Applying the term “lowering” to static and dynamic expressions, lowering an
expression then means to transform the program in such a way that the expres-
sion is part of some construct which is guaranteed to be available statically.
Lifting an expression then means the opposite, namely to take an expression
out of some construct that is guaranteed to be statically available, and putting
it in a context which might only be dynamically available. Note that lowering
an expression is meant to be a simple transformation that does not change the
expression itself. So lowering is not supposed to include heavy-duty program
transformation techniques like partial evaluation, which attempts to evaluate
as much of a program statically as it can; lowering uses the expressions as-is
but simply moves them around, loosely speaking. Also note that in order to
lower an expression, the expression must already be able to be lowered—it
needs to be statically computable. There is no restriction on lifting an expres-
sion; an expression, or any other item, can always be put in a context which

2Which are terms of our own making. But which aims to usefully categorise (and perhaps
unify) already established concepts in the literature.
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effectively makes it available later.
Let us consider how this might look like in a programming language. The

running example is an expression that can in principle be computed statically,
but is in such a context that does not guarantee that the expression will be
computed statically. In the case of Magnolia, we have already seen that static
expressions can be represented as constant functions. So lowering here would
involve taking the expression out of a construct or context which is in prin-
ciple dynamic—like a variable—and into a static construct, like a (constant)
function.3 Consider the C preprocessor as another example, which we dis-
cussed in section 2.4. In the case of a value like an integer, we can represent
this value as a string-based macro. Now we are guaranteed that the value
itself—as opposed to some indirect access to it—will be inlined at every place
which the macro is written, effectively making it a static value. As another
example, consider C++11 and its constant expressions. Constant expressions
are guaranteed to be evaluated statically. Thus lowering an expression can in
C++ be achieved by moving the expression out of a variable or function into
a constant expression. Yet another example is Lisp macros. If the expression
which is in principle dynamic is represented as a function, then we can instead
define it as a macro. Thus we are guaranteed static evaluation.

Static Granularity

One might often regard a program solely in terms of its dynamic semantics.
That might be the only part in which something of interest happens, while
the static semantics like type checking is just viewed as necessary scaffolding.
Compile-time metaprogramming shows that it is sometimes fruitful to not
only consider the runtime of the program as something “executable”, but also
a stage prior to running the program as an executable; what we call “static”
or “compile-time”. But there is also runtime metaprogramming, such as in
the form of programs being modifiable at runtime. In that case, we do not
view the dynamic semantics as as one monolithic execution, but rather as
many different executions. And in the same way, it might be fruitful to regard
the static semantics of a program in a more fine-grained manner. And not
necessarily in the sense of explicit metaprogramming, but in terms of lifting
and lowering.

As an example, consider signed or unsigned integers. In case that the
integer is word sized—i.e., processor dependent—we cannot say what the size
in bytes the integer will be, at the time of writing the program. In C, the
type int was historically likely to be 2 bytes in size. On modern computers
it is more likely to be 4 or 8 bytes in size. Still, the size of a type such as
int is nonetheless statically known. So we have an example of a type whose
size is statically known, but which we do not know at the time of writing

3Note that Magnolia does not have higher-order functions, so all functions are statically
available.
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the program. Viewing this through the lens of lifting and lowering, we could
regard a generic integer type Int as a lifted version of a concrete integer type,
such as for example a 4 byte integer. A 4 byte integer type would be a lowered
version of Int. Hence we have an example of lifting and lowering between
items which are statically known, though still conceptually “concretised” at
different times. Magnolia allows the programmer to under-specify the size of
an integer type, and then to define its size at a later point. The size may of
course have no relation to the word size of the underlying machine, but might
for example instead be chosen based on the guaranteed upper bound which
values of the type will have.

Not all programming languages have integers or similar constructs of un-
determined size. But nonetheless there are plenty of examples to be found of
things to view through the lifting/lowering lens. The facilities that a language
provides for abstractions is a category to draw examples from.

Definition 2 (Abstraction). A representation of something with some de-
tails of the original thing removed. Alternatively, a conceptual interface that
simplifies another, so-called underlying, interface.

Note 5 (Expressiveness). A more abstract interface is less expressive than the
interface that it abstracts over, as a consequence of being simpler than it.

In the context of Magnolia, a central abstraction facility is concepts. A con-
cept is more abstract than whatever implementation or program implements it,
since it lacks any code for implementing the function signatures and types. A
program on the other hand has the function signatures, types and in addition
to that implementations for the types and functions. The only thing it lacks
compared to the implementation is the axioms. But this is not relevant for the
purposes of concrete executable code, since the axioms are not supposed to be
part of any final, executable program. So a program is definitely less abstract
than the concept that it models. As an example, consider the Stack abstract
data type.
concept Stack = {
type Data;
type Stack;

function peek ( l:Stack ) : Data;
function pop ( l:Stack ) : Stack;
function push ( l:Stack, d:Data ) : Stack;
function clear () : Stack;

predicate isEmpty ( l:Stack );
predicate isFull ( l:Stack );

};
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This concept only tells us the types and functions that a program that
models this concept should have.4 But there are different ways of implementing
this concept; we could use a continuous array as a backing storage, a linked
list, and so on. So the more abstract notion of a concept both frees us from
having to care about certain details, and disallows us from controlling them
even if we may want to—these are simply two sides of the same coin.

Let us see how abstractions relate to the lifting and lowering notions.
Though there might often be subtle ways to make things more abstract, the
other end of the extreme can be demarcated as something that is not abstract
at all, or alternatively something which is fully concrete. In the context of
programming, this would be executable code. For a language whose imple-
mentation is a compiler with native code as its target, this would be machine
code. One might also want to consider the finished program as a fully concrete
program, since it is the code that will be fed to the compiler. But there might
be some abstractions left in the finished program, which will be absent in the
executable. We have already seen an example of this in the form of the Word
pointer type.

There is also another factor which can be considered when it comes to
demarcating a lower bound for lowering. Even code that is fully concrete
from the perspective of the programmer, might still be subject to further
transformations. And in that sense it is not fully lowered, since it is not
the final program. To reiterate, in the context of lifting and lowering we
consider the final program as being fully lowered, so to speak. Perhaps the most
prominent example of code that is subject to further transformations is non-
optimized code. Non-optimized code might be fully concrete at the source code
level, in the sense that there are no further abstractions at this representation
level. But this code might be written naively when it comes to efficiency,
requiring optimisation transformations in order to derive an acceptable final
program. Optimisations in the form of those made by compiler are vital;
any contemporary, practical compiled language needs to have an optimising
compiler. Not merely a compiler that transforms the source code to target
code verbatim. In light of this we will not consider the finished program as
the most concrete program.

Invariant Lifting and Lowering

When lifting or lowering an item, we have to mindful to maintain any invariants
associated with it. If we do not, we risk changing the semantics of the program.
In particular, we do not wish to lose any checks of correctness. In order to
achieve this, we might have to add guards and assertions at certain places in
order to preserve the same invariants as before.

4We could have also included invariants in the form of axioms, but omitted such things
for brevity.
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As an example, consider lifting a constant value c: Integer to a variable.
This constant is also associated with a type, which we represent as a wrapper
type over Integer.

Definition 3 (Wrapper type). A composite type that only consists of a single
type. In Magnolia, this is a struct consisting of only one member.

type MG = struct{ var v:Integer; };

c is associated with MG in the sense that all values of type MG will be
associated with the same value, as opposed to each being associated with an
arbitrary value of the same type. For example, c might be part of an invariant
on MG.

Now when we lift this constant to a variable, the value becomes a dynamic,
variable value at each use-site. This might manifest itself as it being added
as a parameter to each function in which it is used. So if the constant c was
used in three different functions, it would be added as a parameter to each of
these functions. But now that this value is a variable—in fact, three different
variables in our example—we are no longer guaranteed the same value across
the program. This in turn means that we cannot rely on all values of type
MG to be associated with the same value, because the associated value is a
variable and not a constant. At any point in which we have two values x and
y of type MG, we need to dynamically ensure that they are associated with the
same value. This is in order to preserve an invariant that was inherent in the
original program, where the associated value was a constant. This means that
we need to add guards or assertions at each interface boundary for values of
type MG. An interface boundary is a junction of programming interfaces, such
as functions or modules. For example, a function provides the interface of its
parameters (input) and return value (output). A function call serves as the
interface boundary between the calling code and the body of the function.

So if there are two variables of type MG in a scope, they might each be
associated with their own variable. If this scope is a function, then we might
guard the function:
guard v1 == v2;

Where v1 and v2 are the associated values.
In general, invariant lifting involves adding guards and assertions at appro-

priate interface boundaries to replace more static checks that would otherwise
be lost in the process of lifting.

While we must be mindful to maintain invariants when lifting, we should
try and remove redundant invariant checks when lowering. For the purposes of
maintaining invariants, we can choose to do nothing to any assertions or guards
when lowering. This is because these checks are just redundant; their presence
does not make the program less correct. But for concerns of runtime efficiency
and maintainability, one should ideally remove all redundant dynamic checks
in the process of lowering some item. This aids maintainability in the case of a
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lowering if we assume that the resulting code is going to be read and possibly
altered by a programmer. Things like redundant dynamic checks are simply
noise, which one should avoid leaving around in a code base. So while the
concern of invariant lifting is maintaining correctness, the concern of invariant
lowering is removing redundant correctness checks.

6.4 translation from mgargument to mgconstant

The implementation mgConstant can be regarded as a specialisation of mgAr-
gument. mgConstant has a constant function bn() while mgArgument takes
the corresponding value as an argument to the constructor for its type MG.
Specialising code to more concrete values can be accomplished through partial
evaluation. So we inline values corresponding to base, if we are looking at
the problem through the lens of the partial evaluation technique. What if we
assume that we choose to use MG.bn as a constant in mgArgument? First
consider MG in mgArgument.
type MG = struct{ var v:Integer; var bn:Integer; };

Even if we assume that MG.bn is static, MG is still dynamic since the whole
structure is not static. This is a so-called “partially static data structure” [Jones
et al., 1993, p. 223]. But if we decompose the structure we get a dynamic and
a static data type:
type MG_1 = struct{ var v:Integer; }; //dynamic
type MG_2 = struct{ var bn:Integer; }; //static

This technique is called arity raising [Jones et al., 1993, p. 371]. As we
will see, this technique might raise the arity of the functions it is applied to,
whence the name.

The next obvious step is to change the function signatures to use these
two types instead of the composite MG type. This is straightforward for the
parameters, but return values are harder since a function can only return a
single value.

We can try to solve this by duplicating the function implementations, with
the only difference being that we only return the relevant value. So in the case
of plus(...) from mgArgument we get two signatures:
function plus_1 (

a_1: MG_1, a_2: MG_2, b_1: MG_1, MG_2: b_2
): MG_1

function plus_2 (
a_1: MG_1, a_2: MG_2, b_1: MG_1, MG_2: b_2
): MG_2

The next step is to try to specialise these functions such that we end up
with these signatures:
function plus_1( a_1: MG_1, MG_1: b_1 ): MG_1
function plus_2( a_2: MG_2, MG_2: b_2 ): MG_2
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With these changes, the implementation for plus_1(...) ends up look-
ing like this:
function plus_1 (

a_1: MG_1, a_2: MG_2, b_1: MG_1, MG_2: b_2
): MG_1 guard a_2.bn == b_2.bn =

MG_1{ v = ( a_1.v + b_1.v ) % a_2.bn };

Notice that we have removed the expression bn = a.bn in the return
position since MG_1 does not have a bn member.

The first thing to note is that in the original program, the function requires
the bn member of both a_2 and b_2 to be equal. This is expressed in the
guard of the function. Recall our discussion in section 6.3 of why this guarding
is necessary. In the new signature that uses MG_1 and MG_2, we are forced
to pass in two variables that are required to be equal. The first problem with
this is that sending in two equal variables is a clear redundancy. The second
problem is that the guard becomes obsolete when we are ultimately only going
to send in one, static value. So while moving from mgConstant to mgArgument
would require an invariant lift of the bn value associated with MG, we now want
to reverse this operation in order to avoid redundant dynamic checks.

To deal with this we observe the immutable property of function arguments
in Magnolia; arguments to functions are not allowed to be changed in the
body of the function. This means that any two arguments that are equal are
interchangeable at any point in the function.

Property 1 (Substitution of equal arguments). Arguments to a function that
are equal may be substituted for each other freely.

So if we assume that we are going to assign the arguments a_2.bn and
b_2.bn to the same value, we can replace all occurrences of b_2.bn with
a_2.bn in the body of the function:
function plus_1 (

a_1: MG_1, a_2: MG_2,
b_1: MG_1, MG_2: b_2
): MG_1 guard a_2.bn == a_2.bn =

MG_1{ v = ( a_1.v + b_1.v ) % a_2.bn };

The first thing to note is that, since we no longer make use of a_2.bn, we
can remove it as a parameter from the signature:
function plus_1 (

a_1: MG_1, a_2: MG_2, b_1: MG_1
): MG_1

Property 2 (Elimination of unused parameters). A parameter to a function
that does not occur in the body of the function may be removed. This is due
to the fact that functions are referentially transparent, so evaluating the argu-
ments to a function has no side effects. These parameters are thus guaranteed
to have no effect on the program.
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Specialisation 1 (Elimination of parameters with corresponding equal argu-
ments). In the case of equal arguments, one may replace all occurrences of
these variables with only one of them by property 1. Then one can remove all
the corresponding parameters except for the variable that is used in the body
of the function, by property 2.

The second thing to note is that the guard of the function now trivially
holds:
guard a_2.bn == a_2.bn

The predicate a_2.bn == a_2.bn is a straightforward tautology in Mag-
nolia. Rules to eliminate such obviously redundant guards are simple to make,
and do not require any actual computation of static values such as constant
folding. So we assume that this guard gets eliminated, leaving us with this
function:
function plus_1 (

a_1: MG_1, a_2: MG_2, b_1: MG_1
): MG_1 =

MG_1{ v = ( a_1.v + b_1.v ) % a_2.bn };

6.5 translation from mgconstant to mgargument

As in the translation from mgArgument to mgConstant, we will use the plus()
function as a running example. Other functions will be brought up in so far
as they present new challenges for the translation.

The first thing we need to do is to parameterise bn(). This means to
replace all occurrences of bn() with a locally defined variable. We do this by
introducing a fresh parameter, which we will call bn_new for reference.

Definition 4 (Fresh variable). A fresh variable is a variable that is introduced
into a scope which does not conflict with or shadow any of the already-defined
variables in that scope.

bn_new is of type Integer, like bn(). We then replace all occurrences
of the function call bn() with bn_new. This is the resulting function:
function plus ( a:MG, b:MG, bn_new: Integer ) : MG =

MG{ v = ( a.v + b.v ) % bn_new };

Generalisation 1 (Parameterising constant values). For a named constant
c : T in a function f(. . .), introduce a fresh parameter x : T and replace all
occurrences of c with x in f(. . .).

This transformation works in the same way for all functions that call bn(),
which is all functions except bn() and zeroMG().

As discussed in section 6.2, when specialising many different variables
across an implementation that serve the same purpose, it is important to
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remember that they indeed are placeholders for the same thing. In the case
of specialising mgArgument to mgConstant, this meant that we were able to
factor the constant bn into a function bn() callable by the whole implemen-
tation. In this case we encounter the same problem, but the other way around.
During the overall translation between these two implementations, we want to
keep in mind that all these new parameters serve the same purpose. This will
be important in order to treat the bn values uniformly. This is an interface
issue when it comes to program transformation.

Note that plus(...) belonging to mgArgument is guarded from being
given two arguments with different base values. We have already discussed
this scenario in section 6.3; if we consider mgArgument as a lifted version of
mgConstant, the guard is a result of the resulting invariant lift of base being
associated with MG. One difference from the discussion in the aforementioned
section is that none of the functions have parameters corresponding to base.
This is because base is embedded in the type MG, so it is given indirectly
as an parameter through this type. To reiterate, mgConstant does not have
to concern itself with the possibility that numbers associated with different
base values can be added together; since there is only one base, all numbers
constructed from mgConstant’s MG type can be operated on freely. But since
each MG takes base as a dynamic argument, we need to guard from mixing the
wrong numbers together. We will now discuss how to embed base in MG, and
then how to do the invariant lift.

We want to embed base in MG, and to remove the parameters representing
base from the parameter lists. We do this by extending MG with an extra
member with a fresh name, which we for reference will call bn. Then we need
to replace all occurrences of variables representing base with this member of
MG. In this implementation, all MG and base variables come from the
parameters of the functions. Thus we only have to concern ourselves with
changing the parameter declaration of variables, and their occurrences in the
bodies of the functions.

So we do these transformations on the implementation:

1. For each function containing a parameter base: Integer representing
base,5 replace all occurrences in the body of the function with a.bn,
where a: MG is a parameter. If there is no parameter of type MG, this
transformation does not work.

2. In the case of multiple parameters of type MG, add a guard to the func-
tion which makes sure that all values of a.bn are equal to each other.
Do this by first choosing the first parameter of type MG, which we will
call a. Then for each additional parameter of type MG, make an ex-
pression a.bn == b.bn, where b is a parameter of type MG distinct

5Recall how we have previously stated that it is important to keep track of which vari-
ables in the program represent base as we do consecutive transformations. We take it as a
given that we know which variables represent base for this transformation.
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from a. Finally, join all of these boolean expressions into one by apply-
ing the boolean operator && in between them, resulting in the expression
a.bn == b.bn && ... && a.bn == k.bn, where k is the last pa-
rameter of type MG in the parameter list.

3. replace all occurrences of base in the body of the function with a.bn.

4. Finally, remove the base parameter, since it no longer occurs in the
body of the function.

Item 2 is exemplified in the plus(...) function of mgArgument. This
function is guarded by the expression a.bn == b.bn to make sure that two
invalid numbers are not added together.

Member projection

The next thing to do is to consider functions that return MG. Since MG in
mgArgument contains one more member (named bn) than MG in mgConstant,
we need to make sure that this extra member gets initialized in the construc-
tor of MG. A problem with this is that we need to insert a default value for
bn. Other than relying on predefined values for types like Integer, there
is no way for a program to know what such a value such be. But in this
case, we should use mgArgument as a guide for how to derive such a default
value. In mgArgument, functions with return type MG assign the same value
to the member bn as one of the parameters of type MG. In the case of multiple
parameters of type MG, we choose the first parameter of this type in the param-
eter list. Though all such functions are guarded from these parameters having
different values for member bn, so this choice is immaterial. This choice of
value for bn makes sense when we consider the previous discussion about how
only numbers associated with the same base should be combined; The function
plus(...), for example, adds two such numbers which have the same base.
It is only natural that it returns a number associated with the same base.

Definition 5 (Member projection6). For a composite type T , a member pro-
jection for member k belonging to this type is a mapping over T that preserves
the value of k.

In the plus(...) function, we construct the bn member by assigning to
it directly from a: MG, the first parameter of this type. This is a member
projection on MG, with a.bn serving as the value for member bn.
function plus ( a:MG, b:MG ) : MG guard a.bn == b.bn =

MG{ v = ( a.v + b.v ) % a.bn, bn = a.bn };

6Projection is a borrowed term from the mathematical concept of a projection mapping.

51



6. Modulus Group Implementations and Transformations

6.6 the other translations

The other translations between the three implementations follow similar pat-
terns as we have already discussed.

Let us consider the translation from mgConstant to mg7. mg7 can be
viewed as a specialisation of mgConstant since mgConstant requires a con-
stant function bn(): Integer, while mg7 provides such a concrete function
in the form of seven(): Integer. Since this is the only difference between
these two implementations, one can translate from mgConstant to mg7 sim-
ply by replacing bn() with seven() in mgConstant. This is a lowering of
this value, since we replace a requirement for a constant function with an im-
plementation of a constant function. We are guaranteed a specific, constant
number, instead of just being guaranteed an arbitrary constant number.

6.7 summary

We have gone through a hypothetical implementation of three different Mod-
ulus Group implementations. We have considered how one can move between
these implementations by first writing an initial implementation, and then us-
ing program transformation to move between them as needed. We have seen
how partial evaluation can be applied to this problem, specifically when going
from a more dynamic implementation to a more static one. We have intro-
duced and discussed concepts like lifting and lowering which have allowed us
to discuss the different aspects of the transformations.
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7

Deriving Set from Dictionary

We discuss how a Dictionary concept and implementations can be used to de-
rive a Set concept and implementations through program transformations.

7.1 introduction

We will discuss Dictionary.mg and related files; see Appendix B.
Consider an abstract data type Dictionary which represents a collection of

(key, value) pairs, such that each distinct key occurs only once in the collection.
This abstract data type is also known as Associative Array, Map, and Symbol
Table, somewhat depending on what the intended use for it is. We will only
refer to it as a Dictionary. Further consider a Set abstract data type, taken
from set theory. A Set consists of only unique values—no duplicates. The
similarity between these two collection types is the uniqueness property. While
a Set consists of only unique values, a Dictionary also consists of unique values
(keys), but also of values of possibly another type that are associated with
each key. (Hereinafter we will refer to the unique values of the Dictionary as
keys and the values associated with the keys as values, or associated values
when it could be confused for the generic word value.)

Thus a Set can be seen as a degenerative case of a Dictionary where we do
not care about the values associated with the keys, only the keys. So one way
to effectively derive a Set from a Dictionary is to just insert dummy data in
place for the values of the Dictionary, and not expose the interface to insert
or inspect these dummy values to the programmer who uses the Set. But
of course this leads to needless overhead in the form of inserting and storing
dummy data, not to mention keeping around the code to manage this now
useless data. So we should rather aspire to eliminate all code associated with
the values of the Dictionary. We will discuss how this can be achieved by using
program transformations, specifically program slicing.

This problem can be solved through slicing since we are after a subset
of the behavior of Dictionary. In particular, we want to remove the Data
type—the type that represents the associated values—and all other items
that this removal would entail. Some items are removed by necessity, such
as parameters of type Data and functions which return type is Data. Other
items that we should remove might not be so obvious, such as functions which
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become noops after the removal of Data. Another example are axioms that
test some invariant related to this type.

7.2 slicing the dictionary concept

We will go through some of the function signatures and axioms that we get
when we slice Dictionary on this criterion:
slice -on Dictionary -remove Data

Note 6. We use a custom language for expressing the transformation; we will
discuss this in chapter 8.

That is, we want the Dictionary concept except the type Data.
The sliced code will be commented out.
When slicing away Data, we of course have to slice away this parameter

from any function signatures; such as in insertNew(...) and replaceData(...).
function insertNew( d:Dictionary, k:Key /*, e:Data*/ )
: Dictionary;

function replaceData ( d:Dictionary, k:Key /*, e:Data*/ )
: Dictionary;

The slice of insertNew(...) makes sense for the purposes of a Set.
replaceData(...), however, does not make sense for a Set. There is no
associated value to replace, so the function itself should ideally be sliced away
entirely. As it is we will probably be left with a function that simply returns
the same Dictionary as it got as its input.

We remove the functions which return type is the sliced type.
// function find ( d:Dictionary, k:Key ) : Data;

In this concept, slicing the axioms just consists of eliminating any _: Data
parameters and removing any statements which contain a function call to a
function that has been removed.

Lastly, we have to deal with a satisfaction. In Dictionary, the satisfaction
states that Dictionary models PartialIndexable. But in the slice SetSlice,
this satisfaction does not work. We have to slice PartialIndexable.
satisfaction Dictionary_models_PartialIndexableSlice =
SetSlice models
PartialIndexableSlice[ A => Dictionary, I => Key,
// E => Data, get => find,
accessible => isPresent ];

It turns out that this slice is useless; the resulting PartialIndexableSlice
concept contains no functions or procedures. This is not surprising when we
consider that the original satisfaction was about accessing the associated values
with the keys used as indices. So we would not expect such a satisfaction to
be useful in the derived SetSlice.
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Axioms in SetSlice

We will start with the axioms that are not affected by the slicing, i.e., that do
not contain any _:Data parameers. These axioms turn out to still be useful
to this Set concept. createEmptyNotPresent tests that the empty value
constructor empty() does indeed create an empty Set. This is still meaningful
and useful in SetSlice. removeNotPresent also tests something useful
for Set, namely that after removing an element from a Set with remove(...)
the element is not present any more. removeOtherPresent tests that re-
moving an element does not also remove an unrelated element. This is also
useful in SetSlice.

7.3 another approach

The Rust programming language has an interesting approach to the problem
of deriving a Set implementation from a Dictionary. Rust has zero-sized types,
which are types which values do not occupy any space. They are defined as
empty structures:
struct Empty;

Rust has a built-in type () which is isomorphic to the above struct. It can
contain only one value, and as a consequence it can store no information.

Note 7. () corresponds to the unit type in type theory.

Recall that one way to easily implement Set from Dictionary is to set the
type Data to something useless. But this incurs overhead since the Dictionary
still has to load the useless associated value each time. But the Rust compiler
knows how to take advantage of zero-sized types. In order to get a Set it is
sufficient to set the parameterised type Data to Empty:
Set<Key> = Map<Key, Empty>

Where Map is a hash map and Set becomes a customized hash set imple-
mentation, due to monomorphisation.

Rust uses algebraic data types. For such data structures, concepts like the
sum of types and the product of types is natural to express. In turn, singleton
value types like () are also treated naturally; when () is added to a struct, it
does not increase the size that the struct takes. This is because a struct is a
product type, () is isomorphic to the value 1 in the algebra of numbers, and
x× 1 = x. Using algebraic data types to easily implement Set works great for
Rust, but it is not suitable to Magnolia. The reason for that is that Magnolia
treats type as opaque, abstract types. This allows for more freedom on the
implementation side, as Magnolia cannot impose any restrictions on how data
is to be structured; all it cares about is the behavior as reflected through the
operations on the data. As a result, Magnolia can use code that is made for
many different types of memory architectures, without imposing restrictions
on things like the layout of memory.
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8

Interfacing Transformations

We discuss ways to interface with a program transformation system. We con-
sider directives as one of the ways to interface with the system.

8.1 introduction

How the programmer is to interface with transformations is where the rubber
hits the road for a transformation system. It does not matter how good it is
under the hood if the programmer cannot easily drive it, so to speak. More
structured forms of programming using program transformation systems have
not taken hold in any programming communities, perhaps except for the Lisp
communities. This might partly be because of interface problems. After all,
the field of programming has made many tools centered around text-based
interfaces and artifacts. But interfacing with tree-like structures, like abstract
syntax trees, seems to remain largely unsolved; consider for example how struc-
tured editors have failed to make an inroad into programmer’s editing habits.

We propose that there are two primary aspects to the task of interfacing
with a program transformation system:

1. selecting the part of the program to work on; and

2. expressing the transformation.

We will mostly focus on point 2, by considering the necessary features for
a domain-specific language (DSL) for program transformations.

8.2 motivation

Creating any kind of programming language is an undertaking. In principle,
any interface can be expressed as a custom DSL, optimized for that specific
purpose. But this would take a lot of work, and there is an opportunity cost
to having to learn a DSL for every application that one would use. If you
only use something once in a while, it is not worth it to learn a very peculiar
interface, perhaps least of all a DSL.

Note 8. We will only consider textual DSLs, like the vast majority of program-
ming languages.
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But it seems fruitful to make a DSL for a transformation system. First
of all, we will restrict the domain of expressing the transformations to such
a point that the language ends up being relatively easy to implement and
to use. Second of all, the DSL will not be the only way to interface with
the system, so all users of the system will not necessarily have to learn the
DSL. Third of all, having a transformation language allows the programmer
to make her own transformation scripts, and to use tools like a VCS to manage
the transformations (we will explore this in chapter 9). Moreover, the DSL
will have the potential to complement and support alternative interfaces. The
reason for that is that a menu-based graphical interface, say, can be made
to also output the equivalent transformation commands in the DSL. This has
been implemented before in graphical interfaces for languages, such as the
statistics language R.1

Having a DSL for a transformation system also allows us to make interfaces
and ways to develop Magnolia code that is not possible without such a custom
language. Later in this chapter we will explore one such possibility in the form
of using the DSL in directives. This allows us to interpolate transformation
commands and expressions with Magnolia code.

We mentioned old editors like Ed in section 2.3. The limited peripherals
of the time made interactive editing of text quite limited. Instead, you had to
think up the edits that you wanted to do to the text, execute them, and then
view the results. But necessity is the mother of all invention; the computer-
limitations of the time forced the developers of such editors to make languages
for editing text: command languages. These languages allow the user to pro-
grammatically edit and extract text. This meant that when Vi was invented,
which is a visual, full-screen editor, one could leverage the underlying com-
mand language Ex to drive the editor. And today users of editors like Vim
(one of the modern implementations of Vi) can easily program text editing
through things like macros. Although we do not seem to have much in the
way of limited computer capabilities these days, we believe that such a scheme
can be fruitfully be applied to more domains than text editing—including
program transformations.

8.3 needs of the interface

When designing a language we need to know what it needs to express, and in
turn the features that it requires. We will limit the needs put on this language,
and in turn make something that should be relatively easy to implement and
to learn for users.

We consider for our purposes transformations to be functions on programs.
Each of these functions is a transformation in a global catalog that the pro-
grammer can choose from. Each transformation takes some input and returns

1See for example the program R Commander [rco] which returns the R code for menu
selections.
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a single output in the form of a program fragment. What we mean by program
fragment is a part of a program that might not compile on its own, but should
be put in such a context that it makes for a program that does. The inputs
are also program fragments. This is a non-exhaustive list of the values that
the transformation system should be able to handle as input and output:

• Variables

• Operations

• Concepts

• Implementations

• Axioms

In short, anything that can be named in Magnolia should be able to be
handled by this language.

We make a separation between the implementation of transformations and
the use of them—we do not intend to be able to implement fundamental
transformations in the language. Complex transformations that involve intri-
cate knowledge and manipulation of the program are to be implemented in the
compiler, and also through some extension mechanism in case there is a need
for third-party transformations. Still, it might be practical to allow for some
limited composition of existing transformations. If the user is to be able to
use this language to script transformations, she should be able to store trans-
formation sequences as transformation procedures and call them from other
procedures. Not having any form of modularisation would probably be too
limiting. Further, there could be a need for basic composition of transforma-
tions, as opposed to just being able to express sequences of transformations.
We will address this later.

8.4 the transformation language

The primary element of this language are commands. A command is a trans-
formation function, which is either one of the transformations in the global
transformation catalog, or a user-defined command. The syntax is similar to
Haskell’s function call syntax, or shells like Bash’ command syntax.

As a running example we will use renaming, a transformation that takes
a module item and a list of renamings as input and outputs a module item
with the relevant renamings. This is an existing, built-in transformation in
Magnolia. Our transformation renaming will be slightly different from the
built-in renaming, but will be functionally the same. The following renam-
ing renames the functions of a dequeue (double-ended queue)to more domain-
appropriate names for a stack:
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renaming dequeue_as_frontStack = [
Dequeue => Stack,
pushFront => push,
peekFront => peek,
popFront => pop

];

The motivation for this renaming is that the operations of a dequeue sub-
sumes the operations of a stack; the front or back of the dequeue can be
operated like a stack. In our case, we use the front operations.

renaming is a function that needs to take the following arguments as
input:

1. A module-level Magnolia item to be renamed.

2. The renamings.

3. The name of the new module with the renamings.

We will use named parameters. The motivation for this is that we think it
will be easier to deal with for the domain of transformations than having to
remember the position of parameters Another reason is that transformation
expressions will probably in practice be less nested than normal expressions,
which mitigates the downside of named parameters being more verbose than
unnamed parameters. The named parameters are, respectively:

1. -module

2. -renamings

3. -name

We indicate the named parameters by the sigil hyphen (-). The values for
each parameter follows directly after the name, like how many command line
programs are parsed. Thus the renaming ends up looking like this:
renaming -name dequeue_as_frontStack

-module Dequeue
-renamings [
Dequeue => Stack,
pushFront => push,
peekFront => peek,
popFront => pop

];

The language uses these data types:

1. Names, e.g. concept names, function names.

2. Pair of names.
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3. List of names or pairs.

Note 9. The pair syntax is taken from Magnolia’s current renaming con-
struct.

In the renaming above -module and -name are names while -renamings
is a list of pairs.

The renaming transformation above is a command. Commands are ter-
minated with a semicolon. Commands have the effect that they affect existing
Magnolia code or add new code. This code can be thought to exist right after
the command has been evaluated. The effect of the renaming above is that
a new concept dequeue_as_frontStack is added:
concept dequeue_as_frontStack = {
...

}

Commands that follow the renaming are able to use Magnolia items that
preceding commands have produced. In a wider sense, commands operate
on the state of the Magnolia code that it is implicitly operating on, whether
that may be just one module or several modules. Thus, this language can
be considered an imperative language which implicit state is the code it is
operating on.
Note 10. Recall from section 8.1 that we mostly concern ourselves with the
task of expressing transformations, and not so much with the task of selecting
the part of the program to work on; and. This is why we do not concern
ourselves that much with the question of what kind of selection of the code
base the transformation commands are operating on.

The renaming transformation above is a command. More specifically, it
is a command consisting of a transformation expression. Transformation ex-
pressions have in our discussion have just consisted of transformation function
calls. It might be useful to have some primitive operations that operate on
transformation expressions. One example might be an infix combinator | that
passes the output of one transformation expression to the next transformation
expression:
renaming ... | slice ...

It might also be useful to have some primitives that operate on data types
like names and lists. An example might be an infix ++ operator which appends
lists.

As mentioned previously, it is most probably necessary to have some facility
to define some kind of procedure in order to modularise code. But as we will not
be needing such things in our discussion and examples, we omit this discussion.

8.5 transformation languages as glue languages

A transformation language like we have described can be regarded as a high-
level language for transforming Magnolia programs. Such a language might
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have some similarities with glue languages, in the sense that it is meant to
be a high-level language for combining transformations (although less so in
the sense of connecting different heterogeneous components, since we just deal
with Magnolia code). There have been many languages that might have some
point been intended to serve as glue languages:

• Shell languages (Bourne shell, Bash, Zsh, Fish, and more)

• Tcl (originally intended as an extension language)

• Perl (also a general-purpose language)

Shell languages are often used to glue different programs together in order
to make new functionality or programs. The following script takes a number
n as input, and lists the n most used words sorted by their frequencies:2

tr -cs A-Za-z ’\n’ |
tr A-Z a-z |
sort |
uniq -c |
sort -rn |
sed ${1}q

Such pipelines (using |) can solve certain tasks succinctly.
The long history of glue and scripting languages should provide lessons

when designing a DSL for transformations. We propose that a DSL should be
fit-for-task in that it sticks to being good for solving problems in its domain,
and does not try to overextend its role. Some glue languages have arguably
overextended themselves by incorporating more features, perhaps particularly
features intended for more general-purpose programming. For example, Bash
has a peculiar syntax compared to non-shell scripting languages, which makes
it so that even basic things like conditionals and properly looping over values
can be hard to master or remember if you do not use it that regularly.

Not all languages have to use separate meta-languages or scripting lan-
guages in order to achieve things like combining transformations. Lisps are
homoiconic and built for metaprogramming, and in turn it is more natural to
metaprogram a Lisp program in Lisp than to interface with a separate language
for metaprogramming. In contrast, Magnolia is designed to be a programming
language which is easy to analyse, and so in turn it does not have any mecha-
nisms for runtime or compile-time reflection or metaprogramming. And as we
discussed in section 2.4, a language designed like Magnolia—including those in
its lineage—are hard to metaprogram in itself, and in turn what is essentially
separate languages in style and use are used (like C++’ templates). Given the
design goals of Magnolia compared to more dynamic and metaprogrammable
languages like Lisps, having a separate language for metaprogramming seems
appropriate.

2This script was written in 1986 by Douglas McIlroy in response to a program written
by Donald Knuth to solve the same task [Bentley et al., 1986].
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8.6 directives

We will now discuss directives and how our transformation language can be
used in this role.

A directive is a language construct that operates somewhat separately from
the rest of the language. In fact, it might not be part of the language’s gram-
mar—we discussed the C Preprocessor in section 2.4, and they are expanded
before the language is processed further. Directives can be used for things like
specifying or giving hints to the compiler. For example, the C Preprocessor
has directives which can be used to specify which parts of a program should be
compiled based on some criteria; this is called conditional compilation. We will
use discuss directives as a front-end to transformations which the programmer
can use to interpolate transformations with Magnolia code.

Motivation

In our view, directives serve to solve problems that have to do with cross-
cutting concerns when dealing with code and crucial language tooling like
compilers. A compiler for a language might be invoked by some commands
that take parameters that let you configure things like optimisation levels.
The compiler program has no way to communicate with the language, and
vice versa. This separation of concerns is often proper and sufficient, but it is
too restrictive in some cases. The crux of the issue is that the writer of the code
has no way to communicate certain concerns and intents behind parts of the
code. This is because the language probably is not expressive enough, or have
the mechanisms to express, things like inline this code, pack this structure,
do not compile this code for that architecture, and so on. Directives allow
instructions to third-party tools like compilers to live side-by-side with code,
without the language necessarily having to understand them.

Design Considerations

We propose that it is important for directives to not interfere with the lan-
guage. Some languages don’t have a facility for directives per se but instead
introduce them through some more informal means. An example of this can
be seen in the Go programming language. Go version 1.4 [go1] introduced
the go generate tool which uses comments starting with go: to generate
code. One can use these comments as directives to invoke external programs
like Yacc. The problem with this more informal approach is that now all read-
ers of the code have to be vigilant of whether any given comment has some
program-affecting meaning or not. Another example is the string +build ,
which a library called Build uses to declare constraints on whether the file
should be included in a package. For example:
// +build linux,386 darwin,!cgo
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This isn’t only a problem for semantic comments, but also for comments
that look like they should be semantic but are not. All it takes is a simple
typo in what was intended to be the introduction of the directive (misspelling
buil):
// +buil linux,386 darwin,!cgo

And now that comment is just a comment, not a directive. Of course one
could make error messages for such cases. But as you provide more and more
error-checking, you intrude more and more on what was supposed to be the
domain of free-form data for human consumption; not commands for external
tools.

Magnolia Plus Directives

We will now discuss directives in Magnolia as an extension of the language.
This does not mean that Magnolia itself has knowledge of the language, but
rather that it allows for directives to occur in Magnolia code. All an implemen-
tation of this language needs to do is to ignore at parse-time the parts of the
program that are marked as directives. Directives are lexically distinguished
from Magnolia by two sigils: # and @. These are to be immediately followed
by a set of parentheses that contain the directives:
@(...)
...
#(...)

It is useful to explicitly name this new language, since we will sometimes
want to refer to “Magnolia with directives”, and also “Magnolia without di-
rectives”. We will name this new language Magnolia PD, which stands for
Magnolia plus directives. Note that we consider this a separate language from
Magnolia. The purpose of this layering of languages is to maintain a clear
separation between directives-extended Magnolia PD and plain Magnolia. We
propose that this separation will make it easier for tooling to deal with Mag-
nolia code, as they can choose to concern themselves with Magnolia instead of
Magnolia PD if that is more appropriate. Thus we should avoid the problem
that languages like C has with the C Preprocessor complicating the analysis
of the language (although our directives should be much less invasive than C’s
macros).

Magnolia PD has two different kinds of directives; block directives and
inline directives. These differ in where they can occur. Block directives are
associated with items like functions and concepts, so they are put next to
them, specifically right before them. Thus they are similar in style to Java’s
annotations, Rust’s attributes, and others. Inline directives occur in positions
where Magnolia constructs are expected. So the aforementioned Magnolia
renaming:
renaming dequeue_as_frontStack = [
Dequeue => Stack,
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pushFront => push,
peekFront => peek,
popFront => pop

];

Could be replaced with an inline directive expression like this:
@(renaming -name dequeue_as_frontStack

-module Dequeue
-renamings [
Dequeue => Stack,
pushFront => push,
peekFront => peek,
popFront => pop

]);

Here we have taken the previously described transformation command
renaming and put the transformation command inside in an inline direc-
tive @(_). The semantics of directives is that they are reduced to Magnolia
code before compilation, and thus directives impose a preprocessing phase. In
turn, Magnolia PD can be regarded as an extension of Magnolia that adds a
new phase to the compilation pipeline.
Note 11. We use the term reduce; it might be more familiar to think of the
directive as expanding to an appropriate construct (renaming in this case).
We use the term reduce in order to stay consistent with how we talk about
evaluating code.

Expansion and User Interaction

It should be possible to inline directives in the code. We will call this inline
reduction, or inline expansion. There are two uses for this:

1. Allow the programmer to see what the directives will reduce to; providing
a different view of the code.

2. Use a directive to generate code, and then to manually change that code.

Note 12. Point № 2 is unidirectional; we do not consider mechanisms for col-
lapsing Magnolia code to a directive, in order to avoid complications that
bidirectional transformations bring.

This is another example of how our transformation language can be used
to provide the programmer with different interfaces to the code.

8.7 summary

We have discussed some aspects of interfacing with a transformation system.
We have considered this topic through the lens of a textual language—a DSL
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for transformations. We have argued that such a language is worth the effort
to implement and to learn, since its domain of use can be sufficiently restricted,
and because it can be used to complement and support other ways of inter-
facing with the transformation system. Finally we applied our transformation
language to directives in an extension of Magnolia; Magnolia PD. Transforma-
tions can be used through this mechanism to intermingle Magnolia code and
transformation code, something that we think would be an asset to Magnolia
programmers.
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Bookkeeping

We discuss how a bookkeeping system can be used in order to complement a
workflow which is in part based around program transformations.

9.1 introduction

The transformation approach to programming is a more structured way of
programming. A more structured process allows for more structured infor-
mation to be gleaned from the process. As a consequence there is potential
for capturing that information in some kind of bookkeeping system, for later
review and maybe even for manipulation. We will discuss how a potential
bookkeeping system could be designed to assist a more transformation-driven
approach to programming. This bookkeeping system would capture each step
in the process of development, which could then be reviewed and manipulated.

For a discussion about bookkeeping systems in early program transforma-
tion systems, see Partsch and Steinbrüggen [1983, p. 3].

Terminology

In our discussion, we will need two to use these two terms:

• A transformation session is a user-initiated and user-stopped period of
time where the user works on the programs, using both transformations
and manual coding, or hand-coding.

• A step consists of either a transformation, or normal coding (hand-
coding). Conceptually one can consider a transformation step to be
stored as the sequence of transformation commands that were done in
that step, while a coding step can be stored as a set of patches.

9.2 version control integration

Managing the change of code over time is the domain of VCSs. A transforma-
tion system could fruitfully use Git as a backend for its bookkeeping system.
In such a system, each step in a session corresponds to a commit. Since Git
has very low-level semantics we do not think it is fruitful to use Git directly
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(specifically the Git(1) command line interface). Instead, it should be more
practical to use a higher-level tool such as Stacked Git (StGit), a system for
managing a stack of patches stored in Git. This because it provides higher-level
features like undo, redo, and more.

As mentioned, there are two different steps to store. A hand-coding step
is simple to store, since it is just a regular commit without any additional
meta-data. For a transformation step meta-data should be stored in addition,
namely the sequence of transformations that produced the change to the code.
Since Git has poor built-in support for adding meta-data to a commit,1 meta-
data could be stored in a dedicated directory at the root of the directory
tree, like how Git uses the .git directory. When a session is committed, the
commits would be rebased and the meta-data for each commit put in a Git
note instead.

The integration with StGit would abstract over the commands for Stg(1),
which is the CLI for StGit. This is in order to be sure that the history, from
the bookkeeping system’s viewpoint, is not ruined by manual intervention from
the user. So this integration demands that the user goes through our limited
interface when it comes to her version control needs, for the duration of a ses-
sion. The bookkeeping system could provide some commands for manipulating
the history, such as combining steps into one step. Moreover, the final history
can be changed in Git once a session has been committed; to commit a session
means to yield control to Git. What this means is that Git(1) commands can
be run inside the directory tree of the project. In order to abstract over Git,
we would need to disable it, somehow. This can be achieved by renaming the
Git directory .git to something like .transformation. So when a session
is committed, .transformation is renamed back to .git.

9.3 demands of the user

The process of programming is iterative and not at all straightforward. And
just like VCSs demand some discipline from the workflow of the programmer,
as does this bookkeeping system. First of all, the user needs to decide when
to start and end each session. She also needs to not use the underlying VCS
while doing a session, as stated in the previous section.

Are these demands worth it? One of the goals behind the ideas in this
thesis is to find out more about more structured approaches to programming.
A bookkeeping system would provide rich information about user experiences
with such approaches. In turn, we think that one would learn more about
what works and what does not work in practice. In this light, we propose that
such a bookkeeping system would not slow down or hinder the programming
process, but would on the contrary improve the pragmatics of the system in
the long run.

1Git-notes(1) could have been used, if not for the fact that StGit does not handle them
correctly; the notes are not carried over on so-called rewrites of commits.
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9.4 representational levels

In proposing an approach to program in a structured way and using Git as
a VCS backend, one might think that we have set ourselves up for a contra-
diction. If we want to manipulate code in a more structured way, why would
we want to use a tool that stores source code as unstructured plain text. Fur-
thermore, even when it comes to source code management tools, there are
more intelligent tools to choose than Git.2 This might seem like a sub-par
arrangement, but focusing on a snapshot-based VCS is very much a deliber-
ate choice. We deliberately choose to take advantage of multiple conceptual
representational levels.

A representational level can be thought of as how an item is represented
at a certain level, often a conceptual one. For instance, a wooden table can
be thought of as a collection of atoms, as that is one representational level.
But in everyday settings it is more useful to regard it as a table that is made
from wood. Programming languages often have a text-based grammar, in the
sense that all valid programs are strings. A program as a collection of text is
one representational level. One can also regard a valid program as an abstract
syntax tree, and that is a more useful representation in certain circumstances.
Another representational level could be to regard the program as a flowchart.
Note that it is not important whether the programmer can transform the
program into a flowchart; if she can merely conceptualizes the program as
such, then it can be thought of as a representational level.

The version control format is a representational level. For versioning source
code, there are several factors that may important:

• How fast two histories can be merged together.

• How fast to check out a point in history.

• Whether a repository can be partially checked out, or the whole history
needs to be checked out

• How fast to clone a repository

• How fast to bisect3 the history.

All of these concerns are unrelated to our high-level goal of more structured
programming. If we were to add the constraint that the version control should
operate on more structured data, it might interfere with factors like the ones
listed above. Moreover, one might have to solve those problems all over again,

2See for example Mimram and Di Giusto [2013] which describes a categorical theory of
patches, which is clearly a more involved approach than Git’s snapshot-based model.

3Bisect is a term from Git which means to use binary search to search backwards through
the history of a branch in order to find some point of interest. Often the point of interest is
the commit in which some bug was introduced.
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instead of relying on the work put into existing tools. VCSs have centered
around plaintext files for decades, and there a lot of tools to deal with such
systems.

Higher levels

So we have established that there is value in leaning on the work done on
plaintext VCSs. But how are we going to have structure at a higher level?
The answer is to represent that on a higher representational level. The first
step is to store higher-level data. We have already touched on this, namely
when we discussed that we store transformation-specific data in the VCS for
each step. Let’s say that this transformation-specific data is in the form of a
sequence of transformation commands. By itself, it’s just a representation of
how to get from the previous step to the current step, which should give the
same code as output as a unified diff to represent the change as line changes.

Cohesion between levels

We can take advantage of the aforementioned definition of sequences of trans-
formation commands:

Invariant 1. The transformation commands for a step should result in the
same code as the code stored in the commit for that step.

The key to complete this higher-level representational level is to provide
mechanisms to enforce these invariants. This is how we enforce cohesion be-
tween representational levels. So if we for example have completed six trans-
formational steps, this mechanism should check that for each step the afore-
mentioned invariant holds.

Another way to look at this is to consider the storage at each level as simple
data at rest. Other than trusting the processes that generate the data, we have
no guarantees that they are cohesive. But if we add dynamic checks on the
passive data, we can enforce that invariants like the one above are maintained.
So dynamically-checked invariants on data at rest enforce cohesion between
representational levels. This means that, when dealing with these levels, there
should be automated dynamic checks which regularly check for cohesion. One
could for example run these checks for each step that is done, undone, redone,
etc. This in turn means that our approach requires more than simple data
storage, but also continuous dynamic checks on the data.

9.5 breadcrumbs

When you may want to retrace your steps, it can be useful to leave behind clues
about where you’ve been. Version control allows you to do that, by allowing
you to take snapshots of points in the history of the directory tree. Another
example of leaving behind breadcrumbs is the undo history of an editor. This
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undo history might even record branch points in the undo history, similar
to how you can branch off in non-linear VCSs. These different mechanisms
provide different breadcrumbs which traces your steps from A to B. While
these mechanisms can work independent of each other, they can also work in
parallel, which here means that they record different kinds of breadcrumbs at
the same points. We have already discussed two such alternatives. Using Git
as a VCS backend, we store snapshots of the code for each commit, which in
our case is a single step in the transformation workflow. But for transformation
steps we in addition also store meta-data about the transformation that we
performed. In this way, we record a breadcrumb about the transformation,
which is parallel to the code snapshot.

What point does having multiple breadcrumbs serve? Having different
breadcrumbs allows the user to trawl or trace through history in different
ways. If the programmer has made an editing mistake, it might be convenient
to use the undo history to go back to a good point. If the programmer gets an
incomprehensible error due to recent changes, it might be more convenient to
use the VCS to go back to the last commit.

What point does having multiple parallel breadcrumbs serve? The primary
benefit is that they are recorded at the same time. In the case of the trans-
formation workflow, they are recorded at a user-chosen step. Contrast this
with having two independent points for code snapshotting and for recording
the transformation, which the programmer has to choose. Then she has the
overhead of having to choose another point. But if we make these two bread-
crumbs parallel, she still only has to manually choose steps, and get both a
code snapshot and a recording of the transformation sequence.

Inspiration for breadcrumbs

What we call breadcrumbs is inspired by Vim’s registers and journalling and
logging in databases and file systems. Vim maintains many registers which
contain the last text of some sort. Some of these registers are:

• Numbers 0–9: last yanked4 text, newest to oldest.

• The last searched text.

• The path of the opened file.

• The last executed command (using the Ex command language).

• The last inserted text (inserted in insert mode).

These automatically managed registers allow for things like not repeating
the same text input for different input fields (search, commands, and so on).
They can be regarded as breadcrumbs that Vim leaves behind for the user as

4“Yank” is Vim’s term for copied or deleted text, basically.
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she uses the editor. And if these are expanded to be lists of the last inserted
texts, executed commands, and so on, then the editor can keep track of the
whole history of the editing session for the user. And, crucially, it is many
aspects of the editing section, not simply one aspect like the undo list or tree.

As mentioned, what we call breadcrumbs is also inspired by journalling and
logging in databases and filesystems. Journalling is a technique for committing
changes to a filesystems in a more fault-tolerant way. Updating filesystems can
take many separate write operations, and so a system crash or power failure can
easily leave the filesystems’ data structures in a corrupted state. To mitigate
this, a journalling filesystem first record what is to be done to the filesystem
in a journal or intent log. Since these data structures are faster to update
than the write operations to be committed, there is a greater probability that
the relevant operations can be redone or undone in case of some failure. Al-
though the purpose for filesystems and databases is to maintain data integrity,
it seems that such automated audit trails could enhance practices like program-
ming. And in case maintaining such breadcrumbs is too costly, the journalling
technique can probably be applied to postpone committing full updates until
opportune times, or commit writes to disk in batches.

Something related to such filesystem and database techniques is event
sourcing [Fowler, 2005]. Event sourcing is an application technique that stores
all changes to the state of an application as a sequence of events. With this
particular kind of log you can not only query the current state of the appli-
cation and a record of other states that application has been in, but you can
reconstruct these pasts. Thus the log functions as a time machine, complete
with the power to time travel and in turn make alternate histories of the ap-
plication’s state. For example, instead of storing the current value of some
account and a log of the transactions, each transaction would be stored in the
event log and can thus be replayed.
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Conclusion

We conclude this trip through the world of metaprogramming.
We have explored program transformations in the context of the Magno-

lia programming language. We have argued that program transformations is
useful to the craft and process of software engineering. We have explained
how program transformations should be applied to Magnolia, given the design
of Magnolia and its intended uses. We have contrasted with other languages’
approach to metaprogramming, like Scheme and C. We have looked more in
depth at two program transformation techniques, partial evaluation and slic-
ing. We have also considered two cases for applying program transformation
to Magnolia code: Modulus Group and deriving Set from Dictionary. We
have also considered usability, tooling, and workflows that a more structured
approach to programming can enable, by discussing how to interface with a
transformation system and how a bookkeeping system can aid the program-
mer. We believe that a transformation system does not live in a vacuum, and
that languages and tooling should help to both complement the strengths of
such a system, and to help with any weaknesses.

The author hopes that he has managed to make the case for this style of
programming—a more interactive and feedback-driven form of programming,
using high-level tools to inform and assist the process. The time will probably
never come for the sufficiently smart compiler that manages to delegate all
optimization task, but we can do better than have to either blindly trust a
black-box compiler or to do it all ourselves. And program transformations go
beyond optimizations, of course—just like we can make arbitrary programs, we
can make arbitrary metaprograms. Just like we can use computers to crunch
numbers, we can use them to crunch programs represented as text, as trees,
and automate at ever-higher levels.

But I also hope that I have managed to make the case that program trans-
formations can be utilized as a modest extension to the typical modern soft-
ware development. Program transformations do not call for perfect rigor, or for
expressing all changes to code through semantics-preserving transformations.
The approach I have proposed is a middle way of allowing for interleaving
regular programming and program transformations. Donald Knuth wrote in
1974 (via Tony Hoare) that an ideal language should be designed so that an
optimizing compiler can describe its optimizations in the source language. I
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think such ideas are as relevant as they ever were, and hope that they take
more foothold in the present day.
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Glossary

abstraction A representation of something with some details of the origi-
nal thing removed. Alternatively, a conceptual interface that simplifies
another, so-called underlying, interface. 23, 44, 45

associated value A value that is associated with something, like a key. For
example, a Dictionary is a data structure that stores keys that are used
to look up associated values. 53–55, 79

Associative Array See: Dictionary. 53

axiom A function which consists of a sequence of statements. It holds if none
of the assertions fail. Axioms are used in concepts to declare invariants.
20, 21, 79

block In the context of imperative programs, a sequence of statements. 3

BTA A program analysis which aims to find out which values can be evaluated
at compile-time. Used in partial evaluation.. 29

code as data A slogan and insight associated with people who like the Lisp
family of languages. To treat code as data means to make programs that
take code as input and give code as output; i.e., the data that is being
manipulated is code. Program transformations in general treat code as
data. 15, 80

cohesion In the context of bookkeeping, consistency between representational
levels. This means that all representational levels should agree on the
same change to the code. 70

compile-time At the time of compiling the program. Contrast with runtime,
i.e., at the time of running the program. 15, 25, 28, 43, 62, 79, 82

concept An interface extended with axioms. 20, 21

constant folding A compiler optimisation that evaluates constant expres-
sions at compile-time instead of leaving them unevaluated until runtime.
15, 25, 28, 49
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Glossary

data at rest A term for inactive data in IT, in contrast to data in use and
data in transit. But for our purposes we use this to refer to simple
storage of data without any dynamic checks to maintain consistency or
other properties. 70

deterministic transformation A transformation that is a well-defined func-
tion which gives the same output when given the same input. Contrast
with non-deterministic transformation. 15, 81

Dictionary An abstract data type which exposes operations to store, remove,
and look up key–value pairs. 53–55, 73, 79, 81, 82

DSL A programming language specialised to some particular domain or ap-
plication. Contrast with general-purpose languages.. 57, 58, 62, 65

first-class In the context of programming language features or capabilities,
something which is supported directly by the language. For example,
in a programming language with structured control flow, the if-then-else
construct tends to be a first-class feature. In a programming language
with only goto statements it would be implemented as a sort of goto
pattern. 19, 80

fresh parameter See: fresh variable. 49

fresh variable A fresh variable is a variable that is introduced into a scope
which does not conflict with or shadow any of the already-defined vari-
ables in that scope. Introducing a fresh veriable can be useful when
lifting a constant value to a variable value. 49, 80

Git note A piece of metadata that can be associated with a Git commit, and
indeed more generally to any Git object. The intended use-case is to
be able to save and update information and metadata about a commit.
Perhaps the biggest advantage compared to storing the same data in a
commit message is that a Git note is mutable, while changing a commit
message changes the hash of a commit. 68

glue language A programming language used to glue different components
together, where the different components might have no connection or
knowledge of each other. For example, a shell language can be used
to combine different programs which might be written in different lan-
guages. Glue languages have historically mostly been scripting lan-
guages. 62

homoiconicity A concrete syntax that is close to the abstract syntax of the
language. Having this feature makes treating code as data much easier.
14
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HPC Applications of computing which puts a high demand on the resources
used for the computations, for example by having to process a lot of
data in a reasonable time. The high demands means that things like
supercomputers and paralell processing between clusters of computers
are put to use, instead of regular servers or desktops. Put to use in
domains like simulation of physical phenomena.. 1, 19, 20, 23

IDE A fleshed-out environment for programming. Normally consists of a code
editor, build automation tools, and a debugger. It is integrated in the
sense that many tools come in the same package; contrast with using a
loose collection of different tools for things like code editing, building,
debugging, etc.. 3

inline To replace a function call with the body of the function at the call site.
6, 29, 65, 82

interface A collection of abstract types and operations on those types. A
feature of many programming languages that allows things like several
implementations for the same abstract behaviours. 79

IR A representation of the input code (source code) that the compiler uses
internally, i.e. during compilation.. 4

Magnolia item Anything that can be declared. I.e., functions, types, con-
cepts, programs. 60, 61

Magnolia PD “Magnolia Plus Directives”. A superset of Magnolia extended
with directives. 64–66

Map See: Dictionary. 53

named parameter A parameter to a function that is named, and associated
with the argument at the call site by putting it next to the argument.
This allows for more descriptive function calls. 60

non-deterministic transformation A transformation that relies on opaque
heuristics, and so cannot be relied on to produce the same output given
the same input. Contrast with deterministic transformation. 16, 80

operation In the context of Magnolia, either a function, predicate, or proce-
dure. 20, 21, 23, 55, 59, 81

over-specify To implement a program which solves a problem in a too rigid
way, which makes it so that there is less room for things like compiler
optimisation. An example is to implement a transformation over an
array in an imperative way, which can preclude optimisations that take
advantage of things like parallelism since data dependencies are obscured.
20
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partial evaluation A source-to-source program transformation technique for
specializing programs with respect to parts of their input [Consel and
Danvy, 1993, p. 1]. 2, 25–28, 30, 31, 34, 41, 42, 47, 52, 73, 79

runtime At the time of running the program. Contrast with compile-time,
i.e., at the time of compiling the programming. 79

Set In the context of programming, an abstract datatype that has the same
behavior as Sets in set theory. This is a collection of values where no value
occurs twice (no duplicates). Depending on the programming language
that it is implemented in, there might be other constraints not found in
set theory. For example, in a statically typed programming language, it
might be demanded that the values in the set all have the same type,
which is not a requirement in set theory. 53–55, 73

sigil In computer programming in general, a symbol attached to a variable
name, usually prefix. For our purposes, it is a symbol prefixed to any
alphanumeric name. 60

step In the context of a transformation session, a discrete point which consists
of either a transformation, or normal coding (hand-coding). Conceptu-
ally one can consider a transformation step to be stored as the sequence
of transformation commands that were done in that step, while a coding
step can be stored as a set of patches. 67, 70, 71

Symbol Table See: Dictionary. 53

transformation session a user-initiated and user-stopped period of time
where the user works on the programs, using both transformations and
manual coding, or hand-coding . 67, 82

undefined behavior In the context of programming language semantics, be-
havior that is explicitly left undefined in order to lend flexibility to imple-
mentors of the language. This in principle means that the program can
do “whatever it wants” once undefined behavior is encountered while ex-
ecuting the program. An example of undefined behavior is the behavior
(result) of addition on a fixed-width integer in the case when the result
is too large for the integer to contain; although on modern computers
the behavior is often wrap around, this is undefined behavior in the C
specification. 19

unfold See: inline. 29

unified diff A patch format. Widely used in software development for ex-
changing changes between files. See the patch(1) and diff(1) utilities.
70
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VCS A system for managing different versions of digital artifacts, where each
version might be the state of the artifacts at some point in time. Often
used to manage source code.. 2, 58, 67–71

wrapper type A composite type that only consists of a single type. In Mag-
nolia, this is a struct consisting of only one member. 46

83





A

Modulus Group

/**
* Three different designs for a modulus group.

*
* Can we automatically transform between

* these using inlining/partial evaluation?

* - or some other set of rules?

* Which one of these is the best starting point?

*
* @author Magne Haveraaen

* @since 2015-08-17

*/
package BasicGeneral.ModulusGroupCxx
imports
Basic.FiniteInteger,
BasicCxx.IntegerCxx,
Mathematics.Group;

/** Modulus group on constant {@link bn}. */
implementation mgConstant = {
require signature(BoundedInteger);

/** Base number for the modulus group. */
require function bn() : Integer;

type MG = struct{ var v:Integer; };
predicate datainvariant ( x:MG ) = zero() <= x.v && x.v < bn();

function plus ( a:MG, b:MG ) : MG =
MG{ v = ( a.v + b.v ) % bn() };

function uminus ( a:MG ) : MG =
MG{
v = if a.v == zero()
then zero()
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else bn() - a.v
end

};
function zeroMG () : MG =
MG{ v = zero() };

};
satisfaction mgConstant_is_Group = {
use BoundedInteger;

function bn() : Integer;
axiom positiveBnAxiom () {
assert zero() < bn();

};
} with mgConstant models {
use Group[ T => MG, zero => zeroMG ];

axiom preserveDatainvariantNullary () {
assert datainvariant(zeroMG());

};
axiom preserveDatainvariantUnary ( x:MG ) {
assert datainvariant(x)
=> datainvariant(uminus(x));

};
axiom preserveDatainvariantBinary ( x:MG, y:MG ) {
assert datainvariant(x)
&& datainvariant(y)
=> datainvariant(plus(x,y));

};
};
program mgConstant7Cxx = {
use boundedInteger8bitCxx;
function bn() : Integer
= one() + one() + one()
+ one() + one() + one() + one();

use mgConstant_is_Group;
};

/**
* Modulus group where the base number is given

* by an argument {@code bn} to the constructors.

*/
implementation mgArgument = {
require signature(BoundedInteger);
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type MG = struct{ var v:Integer; var bn:Integer; };
predicate datainvariant ( x:MG ) = zero() <= x.v && x.v < x.bn;

/** Both arguments must belong to the same

* modulus group, i.e., have the same base

* number {@code bn}.

*/
function plus ( a:MG, b:MG ) : MG guard a.bn == b.bn =
MG{
v = ( a.v + b.v )
% a.bn, bn = a.bn

};
function uminus ( a:MG ) : MG =
MG{
v = if a.v == zero()
then zero()
else a.bn - a.v end, bn = a.bn

};
function zeroMG ( bn:Integer ) : MG

guard
zero() < bn = // && gplus(bn-one(),bn-one()) =

MG{
v = zero(), bn=bn

};
};
satisfaction mgArgument_is_Group = {
use BoundedInteger;

function bn() : Integer;
axiom positiveBnAxiom () {
assert zero() < bn();

};
} with {
use mgArgument;
function zeroMG(): MG = zeroMG(bn);

} models {
use Group[ T => MG, zero => zeroMG ];

axiom preserveDatainvariantNullary ( bn:Integer ) {
assert datainvariant(zeroMG(bn));

};
axiom preserveDatainvariantUnary ( x:MG ) {
assert datainvariant(x)
=> datainvariant(uminus(x));
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};
axiom preserveDatainvariantBinary ( x:MG, y:MG ) {
assert datainvariant(x)
&& datainvariant(y)
=> datainvariant(plus(x,y));

};
};
program mgArgumentCxx = {
use boundedInteger8bitCxx;
function bn() : Integer
= one() + one() + one() + one()
+ one() + one() + one();

use mgArgument_is_Group;
};

/** Modulus group on constant {@link bn}. */
implementation mg7 = {
require signature(BoundedInteger);

/** Base number for the modulus group. */
function seven() : Integer
= one() + one() + one() + one()
+ one() + one() + one();

type MG = struct{ var v:Integer; };
predicate datainvariant ( x:MG )
= zero() <= x.v && x.v < seven();

function plus ( a:MG, b:MG ) : MG =
MG{ v = ( a.v + b.v ) % seven() };

function uminus ( a:MG ) : MG =
MG{
v = if a.v == zero()
then zero()
else seven() - a.v end

};
function zeroMG () : MG =
MG{ v = zero() };

};
satisfaction mg7_is_Group = {
use BoundedInteger;

} with mg7 models {
use Group[ T => MG, zero => zeroMG ];
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axiom preserveDatainvariantNullary () {
assert datainvariant(zeroMG());

};
axiom preserveDatainvariantUnary ( x:MG ) {
assert datainvariant(x)
=> datainvariant(uminus(x));

};
axiom preserveDatainvariantBinary ( x:MG, y:MG ) {
assert datainvariant(x)
&& datainvariant(y)
=> datainvariant(plus(x,y));

};
};
program mg7Cxx = {
use boundedInteger8bitCxx;
use mg7_is_Group;

};
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Dictionary and Set

* Basic specifications of a dictionary abstraction.

* @author Magne Haveraaen

* @since 2014-04-12

*/
package Collections.Dictionary
imports Indexable.Indexable;

/**
* A dictionary are indexable structures indexed by

* keys with data elements. The terminology is more

* related to data bases than to arrays.

*/
concept Dictionary = {
type Key;
type Data;
type Dictionary;

function createEmpty () : Dictionary;
function insertNew ( d:Dictionary, k:Key, e:Data )

: Dictionary;
function replaceData ( d:Dictionary, k:Key, e:Data )
: Dictionary;

predicate isPresent ( d:Dictionary, k:Key );
function find ( d:Dictionary, k:Key ) : Data;
function remove ( d:Dictionary, k:Key )
: Dictionary;

axiom createEmptyNotPresent ( k:Key ) {
assert ! isPresent ( createEmpty(), k );

};
axiom removeNotPresent ( d:Dictionary, k:Key ) {
assert ! isPresent ( remove(d,k), k );

};
axiom changeIsPresent (
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d:Dictionary, k:Key, e:Data
) {
assert isPresent(
insertNew(d,k,e), k

);
assert find(
insertNew(d,k,e), k
) == e;

assert isPresent(
replaceData(d,k,e), k
);

assert find(
replaceData(d,k,e), k
) == e;

};
axiom removeOtherPresent (
d:Dictionary,
k:Key,
k2:Key
) guard k != k2 {
assert isPresent (
remove(d,k), k2
) <=> isPresent(d,k2);

};
axiom changeIsPresent (
d:Dictionary, k:Key, e:Data, k2:Key
) guard k != k2 {
assert isPresent(
insertNew(d,k,e), k2
) <=> isPresent(d,k2);

assert find(
insertNew(d,k,e), k2
) == find(d,k2);

assert isPresent(
replaceData(d,k,e), k
) <=> isPresent(d,k2);

assert find(
replaceData(d,k,e), k2
) == find(d,k2);

};

};

satisfaction Dictionary_models_PartialIndexable =
Dictionary models
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PartialIndexable[
A => Dictionary,
I => Key,
E => Data,
get => find,
accessible => isPresent

];

/*
* Manual slice of Dictionary in order to obtain a Set

* concept.

*/

package Collections.SetSlice

imports
Collections.Indexable;

/**
* Set concept

*/
concept SetSlice = {
type Key;
// Sliced
// type Data;
type Dictionary;

function createEmpty () : Dictionary;
// Sliced
function insertNew ( d:Dictionary, k:Key /*, e:Data*/)
: Dictionary;

function replaceData ( d:Dictionary, k:Key /*, e:Data*/ )
: Dictionary;

predicate isPresent ( d:Dictionary, k:Key );
// Sliced
// function find ( d:Dictionary, k:Key ) : Data;

function remove ( d:Dictionary, k:Key )
: Dictionary;

axiom createEmptyNotPresent ( k:Key ) {
assert ! isPresent ( createEmpty(), k );

};
axiom removeNotPresent ( d:Dictionary, k:Key ) {
assert ! isPresent ( remove(d,k), k );
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};
axiom changeIsPresent (
d:Dictionary, k:Key /*, e:Data*/
) {
assert isPresent( insertNew(d,k), k);
// Sliced
// assert find( insertNew(d,k,e), k) == e;
assert isPresent(
replaceData(d,k /*,e*/ ), k

);
// Sliced
// assert find( replaceData(d,k,e), k) == e;

};
axiom removeOtherPresent (
d:Dictionary, k:Key, k2:Key
) guard k != k2 {
assert isPresent (
remove(d,k), k2
) <=> isPresent(d,k2);

};
axiom changeIsPresent (
d:Dictionary, k:Key /*, e:Data*/, k2:Key
) guard k != k2 {
assert isPresent( insertNew(d,k), k2) <=> isPresent(d,k2);
// Sliced
// assert find( insertNew(d,k,e), k2) == find(d,k2);
// Sliced
assert isPresent(
replaceData(d,k /*, e*/), k
) <=> isPresent(d,k2);

// assert find(
// replaceData(d,k,e), k2
// ) == find(d,k2);

};

};

// Slicing: PartialIndexable to PartialIndexableSlice
// See: manually sliced file Indexable.mg.
satisfaction Dictionary_models_PartialIndexableSlice =
SetSlice models
PartialIndexableSlice[ A => Dictionary, I => Key,
// Sliced
// E => Data, get => find,
accessible => isPresent ];
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// Taken from src/Indexable/Indexable.mg
// Manual slice of PartialIndexable, due to a satisfaction in the original
// Dictionary.mg which was sliced to SetSlice.mg.
package Collections.Indexable;

/**
* The indexable specification, <code>get</code> is the

* indexing operation. The (implicit) guard may limit

* the actual indices to some subset of the type.

*/
concept Indexable = {
/** the indexable (array) type */
type A;
/** the index type */
type I;
/** the element type*/
// Sliced
// type E;

/** The indexing function. */
// Sliced
// function get (a:A, i:I) : E;

};

/**
* The partial indexable specification, which guards the

* {@code get} by an accessiblity predicate.

*/
concept PartialIndexableSlice = {
/**
* An indexable: types {@code A}, {@code I},

* {@code E} and {@code get} operation.

*/
use Indexable;

/**
* Checking if an index is accessible for getting

* elements from the indexable.

*/
predicate accessible ( a:A, i:I ) ;

/** Guarding the get function. */
// Sliced
// protect function get (a:A, i:I) : E guard accessible(a,i);
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};
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