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Summary.

The unstable solution m(y,kg,c) contiguous to the neutral
one @S(y,kg,cs) phich may occur in shear flows in stratifiled,

incompressible and inviscid fluids, can be expressed as

oo} e}

» 1 7z LN 3
B il +-§:@l(c—cs) , where k° - k_ = }jkﬁ(c—cs) "
1=1 1=1
Here k 1s the wave-number and ¢ the wave-velocity
corresponding to the unstable solution, and ks and Cq

the wave-number and wave-velocity of the neutral solution.

Expressions for 9, and k, are glven.
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il Intredictaon:

In this paper we are corncerned with the unstabile
solutions contiguous to the neutral ones which may occur
in shear flows in stratified, incompressible and inviscid
fluids. In this connection we have to find solutions of

the equation:

(7.4 glt o {(UBg)Q i kg}cp =0

Here U(y) denotes the unperturbed flow velocity, and
B(y) = -p'(y)/p(y), where p(y) is the unperturbed den-
sity field. The prime denotes differentiation with re-
Bpaet te oy {1 Ulylitand: oly) wvary in the y-direstion
perpendicular to the flow direction, which is taken to
be the x-direction. This basic rebate is perturbed, and
the perturbation stream function is

¥(x,y,t) = Re{o(y) eik(X—Ct)]j where k is the wave-
number (real), and c = SR ici is the wave-velocity
(which may be complex, cy & 0. 'Re{;..} means the real
part of the guantity within the brackets. i L O R
the equation for the amplitude function ol | The fluid
is supposed to be confined between two milonidE ez ot 2l
planes st v = v, Shagl = Ve The boundary conditions

to be satisfied are therefore:

\
(1.2) i R ol T
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In this paper we assume that U(y) and B(y) are ana-
lytic Punetions er' "yl on"iie shtervel s T {y[y1 =0 =0
of the real axis. Then U(y) and g(y) are analytic

in somke regioniin the complex plame “@loBe $0 Thig inter-
val. Further it is assumed that U'(y) # 0 on I. Let

us take U' >0 on I. The case U' < 0 can be treated

in an analogous way.

Weleconeider 'thercase.when thelfludd d=lgtatically
stable. 1In this case there may exist singular neutral
solutions,"i.e. ‘8olutions whiech are locgted on the stabi-
1lity boundary in a wave number - Richardson number -
plane, see for instance [1]. The singular neutral solution
@S with the wave velocity Cs and the wave number ks
satisfies eq.(1.1) with c¢ = e, jand .k =k . and the
beundary conditions eg: (1.2).,.8inee Ul .£.0.. . For

MO [y1,y2], ® must be of the form, see [1]:

S

A0
(159} Yer (U-CS)2+FL Yo mme el (s [—%3%].

W= (% - R,)Z , where R_ = gf/(U’

N~

)2 is the Richardson

number at the critical layer defined by U(ys) i

Ys is anglytic on I since [If aad B 'ake sesumed Lo be
analytic there. We define arg(U—cS) in the following
manner: arg(U—cS) =0 when g oo R o arg(U—cS)= -
st SRR I arg(U—cs) is defined in this way,
we have shown in [2] that Py coincides almost everywhere
with the viscous solution within the 1limit of zero vis-

cosity. Also with this definition of arg(U—cs) Pg will
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o of the unstable solutionm.

be the 1limit when Sy 0
etk i bie Sih elle o NEll oW SRS nos S8 ?q given by the
eq. (1.8 18 analybic alone

Cs L Afgliile mede smell

enough.” (Note that

e ey
Fig.1
We also observe that an
unstable solution is analytic on I, and will therefore
also be analytic along L if p 1is made small enough.

We also see that -m = arg(U-c) = 0 when ¢; 0 both

ST ST o) ¢ S i T

HE S Pe nitllnb Gl ant e oltabhe Lne Uit railss ol ik iion:

We assume that there exists a neutral solution D
as defined in eq.(1.3). As mentioned this solution is
analytic along L if p 1is made snall enough. Let

lc-csf £ p,, where p, < p . Further let us define

arg(U-c) in the following manner: -7 - i arplia) < €4 5

where €1 2o (0) e suael e
will depend on p1. We see that if ci =010 .

-m = arg(U-c) £ 0 ; and if S e arg(U-c) < e

o SR O e laronlieiE ) o €, and €5

o
A solution ¢ of eq.(1.1) is an analytic function of

WAES L, P als {c

defined as above. This solution can therefore be

lc—csl < p1} and k- , with arg(U-c)

expanded in a series:

ok

Lty LR TR <g%> (c-cs) + a®2> (k2 - kg) RN

S



\Ir

s(Ihwa,w} £S Q~~%ﬁ? .

s Faskt we;mdn 088 w

daed 048, ,,s a&s&nm o a» {:Mﬁima B m% soa umnﬁn
d ,iw\a pae Ismm
i &t

2 nwi@wi&& &kﬁ hammﬂ@mﬁm,aﬁ 4
el ﬂ@u@mw LA TS @Qﬁm ako &I -3 aﬂol& oL#%ﬁ!ﬁh

oo}

e

mwfwam i FoL, e g 9 ﬁxaﬂw Q@ ‘a

o (rf:ujggmz; g swscan Rtwo [Io% end at mu)g-m

7

'»:f"“ o ﬁrtsqab; L.wa

_glmv,@ww_ rs o watmﬂm ﬂuﬁ ';O,ﬁ «d Bpe 0.5 aﬁnﬁw

Tf*@kﬁ ,:

ﬁ {..:,s«,_-U)ms L




where (..,)S means that the quantity within the brackets
is ecalculgted at ¢ = Cgq and k2 = ksz.

Assume that there exists a solution ¢ of eq.(1.1),

yialelal 2 el SalE R Cs and a k2 near ksg, that satisfies
the boundary conditions eq.(1.2). By introducing eq.(2.1)
into eq.(1.1) and eq.(1.2) we get within the limit when

@ = @ and kgﬁ k . :
S] S

O and @O =N

—_—
no
no

28]

o -—
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¥ o g
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oo
02
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1
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1
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n N
\‘Y_/
S
o
I

TR0 = Hindot

Wee see that Pq must satisfy the same equations as Dy
and we get that @o = AO@S, where AO i8 & constant.

By using the equations which govern ¢ and Py > WE BRI

. U-c
11
_<Bg2 U -ks>]<P<Pde=O
(U—CS) =g
n
Let us denote by E the expression Bg - = - k2 :
(-3 U-c

and by ES the same expression with Cq and k52 instead

of ¢ and k°. By introducing eq.(2.1) into (2.3) we get:
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24 2

(k o L/\[——~1(E B @f] P, dy +

(258k) off <C'Cs>¥/\[§€{<E'E3)?}J o, 4y + ...
L

S

‘“l

where [...]S means that the expression within the

brackebsnicueal culated atuy = cS and kazksz. The

integrals in eq.(2.4) will exist because ¢® 1s an ana-
Lyeale e nilo ol Iy,

We assume that the coefficient of (kg—ksg) in eq.(2.4),

% B
1.e. k/\ é—g (E- E, _}J o dy = -\/\@ 2dy , is not egual to
Lok N .
L L

zero. Then if eq.(2.4) is to be satisfied within the

limit when c —>CS, we must have that:

(2.5) Eisk. o5 ki(C-CS) kikylene L) kl(c-cs)l L

S

where kl’ Loz dade ., | Bre conptants.

When U 1is an odd and B is an even function of y ,

¥ B Voo and Py is a singular neutral solution with

wave,velocity e.1=:0., the coeffieient of (kg—ksg)

in
S

] 2
(e S P i Ysgdy , Where

0
it has been assumed that U' > 0 . This Expres SHion s

eq.(2.4) is equal to

not equal to zero when [u| e (0,2] . In section IIT we have

considered an example of this type.

When p =0, i.e. R_ = % , the coefficient of (kg—ksg)

f{(c o .5_ G 2 0 }¥{ (E-E_ ] Shdn ...
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is zero. However, to find the unstable solution close
to the neutral one on this point of the stability boundary,

we should expand ¢ and (c—cs) in a series in (R—RS)

keeping ke = k52 Tixed, rachier than expandling ¢ and

(kg—ksg) in a series in (c-cs) keeping R = R, fixed,

as is done in this paper. In [1] we have found the

Rermuliasfion (%%Z ,yi.e. we have found the first term in
S

the series for (c-cs) in powers of (R—RS), keeping

Ke - k82 rixed.

The coefficient of (c-cs) in eq.(2.4) may be zero,

(see the example in section III), and that is the reason

why we have expanded (kg-ksg) in a series of (c-cs).

If the coefficient of (c—cs) is not equal to zero,

k, . 0 o mmd (kz—ksg) behaves as k1(c-cs) for, e

close to Cq- If this coefficient is equal to zero,

k, =0, and (k2~k52) behaves as kg(c—cs)2 for c c¢lose to
Cq- This shows that if we had expanded (c—cs) b I

series in (kg—ksg), we would have had to treat these
two cases separately.

We have assumed that there exists a solution ¢ for
a ¢ near W and for a kg near ksg, which satisfies

the boundary conditions eq.(1.2), i.e.:

e

(2.6) o(y,,k",c) =0 and o(y,,k SR TG
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- T =

The functions in the egs.(2.6) are analytic functions of

R

with respect to ¢ and k° exist . Derivating the egs.

lc—csl < p1} and ke , so that all the derivatives

(2.6) with respect to c¢ , yields:

where the value of y 1s either vy or Y,

(§9§> # 0 ©because of the assumption above that the
K~ /s

coefficient of . (kg—ksg) in‘eq.(2¢4) 148 nokiegual to
2
zero. It then follows from eq.(2.7) that %% exists

in some region around Cq- There flonc (kg—ks2) is ana-
Lyiiies ne GRS S rection [c—cS[ < Pos and can be expanded
in a power series, which is valid for ]c—csl < po-
Consequently the series given by eq.(2.5) will converge
whithin SEhilssreoient

Taking inbo account enlf2.5)i wesfind that egs (2.4}

is satisfied if:

k/ﬂ[gc (E_ES)Q}JS @, Ay =0

L

L/‘[ggl{;E—Es)?}}s A

L

Il
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(2.9)

e 20

1 3 2 it
where Q—I = (5— + %5~ 9—§> 5e and *the fderivatives oFf K2
de & A

with respect to ¢ at c=c, are given by eq.(2.5).
By introducing eq.(2.5) into eq.(2.1),the solution ®

can be written as:

dl
where P <;~9>
dcl S

From the above it follows that this series Al EvElaiel ilie)

some region ]c—cS{ - P3 o - O il

From the first of the eqgs.(2.8) we find that we have to

1

T is known. We find that k1 is independent of the

know @ g W s s o Tl ol g RN = i IR S , Where
o 0 oPs

value of AO. AO must of 'course not be equal to zero.

In the expression for k1, we may therefore put AO:1,

WiEchEISH G ool Tl of R fird kl we have to know

R ’kl~1° We observe that kl

does not depend on @1, which follows from the fact that

C‘Po) s .. }cp1_1 a.nd k

1
+[@§“I (E"ES)} » where the first term on the right hand
C s
d

side of this expression is equal to zero.
The eguelion Ffor ®q is obtained by differentiating

eq(1.1) 1 times with IS joEchn. Srel i ey e pealieE)s



‘f aa t .E:ﬁm m&v EQ ¥ Qaa-g, mim

*

Uf‘ @’Q’“M “?JW SW m*x W (a gr) w Mﬁ? 10 fé’iﬁ‘i m(
alade i gok = g s wﬂ ‘bary ot -:mhab“"ﬁ.!z .ﬁ

" Hpe 98 %mbrsqmmt TG T bm“- '@W‘: siveoimt M ‘.ﬁ“

.o o J;mgm Bl m "é’ﬁé‘ﬁjrb:& 20 #a;m QA A 10 wm

i Jghijﬂ' T S48 ord ‘2'31!! o }‘Z"r‘i{ xcﬂ ﬁéi 335‘1(&3'9 aiid HI

WORA oF ovEd W | I)i M.t’k a7 ‘.s—:mob at o ket
O

 sens swsendo ol . s I IO AN L £y .,._‘f,;bgé,f‘
mm. o war A ﬁ#@ﬁm gk I“’ nro bffaqah Jon asob



(2:40) - E—Cl—l— {(E—ES)@HS y

@l = 26 OME y = y1,y2

We observe that the expression on the right hand side of
a2 10) is known 4f Pusimee aPyy 8Nd Ko, e ol
are known,

The homogeneous equation corresponding to eq.(2.10) has
the two linearly independent solutions ?gq and GS
Qs # Dy e y,s¥5 » since @S=O s, AN NS

The general solution of eq.(2.10) is easily found by the

method of variation of parameters:

\/J I il
¢ = Alms + Bles + 9 - e dt + Qs.jF 7 b v,
Y y
dl
where J; = —[——I {(E—E )@}} . The Ynteoration is along
dc = 5

Che econtouri g Al and B1 are constants, and

= @ées ~ wseé is the Wronskian which is a constant

1

in this case because ¢ does not appear in eq.(2.10).

P4 satisfies the boundary conditions if B
i Yo "
\/ﬂ Jl@s dt = -k/\ [Q—I ((E—ES)@}J ¢ dt = 0 , where the
de s
Y1 I

integration is along L. This follows from (2.8). Py

1= 0, because

which satisfies the boundary conditions, is therefore ::
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J. 6 )
K g s
(2.11) ¢ = Ao + @Sd/ T db o+ esu/ T dat
V4 i

where the integration is along L .

We see that if Pgr cor sPp_y and k1, i ’kl are

known, ®q can be determined except for the constant Al .
It has been mentioned previously that k1 is independent of

the value of Ao y exceplh that AO shall not be equal to zero.
From the second of the equations in (2.8) it is easily found that

k, 1is independent of both A (AO + 0) and A, . We may therefore

1

put AO = 1 and A1 = 0 when calculating k1 s and this is done.
Generally k; must be independent of A (AO+O), e
This is equivalent to saying that the value of (k° - k) for a

glven ‘o cloge “uo e is independent of the choice of the
constants A (AO + o7, A, 1=1,2,... . Let us show this.
Let ¢, be the solution given by eqg.(2.9) when the constants

are chosen to be e Cq = A, =Cg e e S Het Yo

be the solution when the constants are AO o4 DO + 0, hy = Dl

l1=1,2,... . The wave number for a given c¢ close to I which

correspends o and gl - S and respectively.,
P vy

1 i
v, and Vs satisfy the equation:

n 4] B
o + Escp = (E Es>q) -
and the boundary conditions eq.(1.2). Note that in the expression
for E we have to put k2 = K? when ¢ = vy » and k2 = Kg

when ¢ = Wg . By using the equation for ¢1 e Glze N ecuat lon S Ror
¢2 and the boundary conditions, it is easily obtained that

(K? - Kg)\/.¢1¢2 dy = 0 . We have assumed previously that
L

u/ wg dy ¥ 0 , from which it follows that \/ﬂw1¢2 dy # 0 in some
L L

region close to cS + - Bk chentiisifolll owe that K? = Kg Slial vkl
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region, which means that the series for (k2 —ks) is independent
of the choice of the constants, except that Ao =01

Vg and Y, satisfy the same differential equation and the
boundary conditions eq.(1.2). The Wronskian ¢, - iy, 1s zero,
and ¢1 and ¢2 are'vheretoreiineari v depenasne - 15 el
Y, = A(c)\];2 ; where A(c) 1s a function of ¢ . This can also be
shown directly by using the expressions for ¢1 and Wg Lheand
then A(c) is also found. This means that the solutions, eq.(2.9),
which are obtained by different choices of the constants, are
1inearly dependent solutions.

apove' we'hiave shown"that 17 chere exlgts"a’solution o of
eq. (1.1) which satisfies the boundary conditions eq.(1.2), and
which tends to ¢, given by eq.(1.3) when ¢ - c, and o~ kg g
it must be given by the eq. (2.9) with Py = @g » ®; Elven by
eq. (2.11) and (k2 - kg) by eq. (2.5)

Now,“1f" There 'existsa singular neutyal' solution 9. there
will always exist a solution ¢ close to Pq Wl £ eV elogs
to ¢, and a $eldnegtito kg which satisfies the eq.{1.1) and
the boundary conditions eq.(1.2). This solution ¢ tends to Pq
and k2 tends to kg Whern "eves ool Thaig Tollows Trom the fact
that the solutions of eq.(1.1) are analytic functions of

¢ eule |o—cs| x4pdl Bhator k2 especially for

2
K™ e {k2 ,kkg - kgl <=5 ) for all .y e L i Prom the snalysile

above it follows that ¢ is given by the eq.(2.9) with N

2

97 (1 =1,2,...) given by the eq.(2.11) and (k° - kg) given

by eq. (2.5) . We see that both p; and k; are given when

i
¢y and 6, are known, so that ¢ and (k2 - kg) can be found.
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It is important to be aware of the following. ¢

given by eq. (2.9) 1s valid in some region |c - cS[ < p3

itfone, ke Sing = e ekeieiviiin s alag el e iailiza blaie: sieiliviviloio s matizlal

c; > 0 for real values of (k2 - kg) which is relevant
to the stabllity problem of shear flows in stratified,

incompressible and inviscid fluids. This unstable solution

. +
with By =, tends, when c¢ - B s Bg b 0 s Bo The

singular neutral solution ¢, defined in eq. (1.3), where
arg(U - cS) =0 when (U - cs) 00 L ang | sre(l - cS)= -
when (U - cs) < 0 . The solution with c¢; < 0 for real
values of (k2 - kg) which is obtained fram eq. (2.9),

hesg ne relevanee to our 'stabllity preblem. This seolution

with ¢, = ¢, will also tend, when ¢ »c_, ¢; - 2 MR
to ¢, siven by Bge (1537 0 with the definltion of
arg (U - cS) given above. The stable solution (ci z 0}
which has relevance to our stablllity problem, 1s the one
which is obtained by taking the complex conjugate of the
unstable solution, and this stable solution will tend,
when ¢ -c, , ¢; -0, to (U - CS>%+MYS where
arg(U - Cs> =L 00 whefr (1 cs) 0wy and targ(U - CS) = g
when (U - cs) < B

From eq. (2.5) we find for what real values of k=
G lersiE! e, ks ﬂthere als bl simeiontilatn g | lE iHeiE el @RiE) TnEseLl

values which make ci S e

Note that P and GS in general have singularities at

G =g s Ehcalise Py s cees @7 5 ees have singularities

>
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G = Cq s Let Lr be a contour of the same kind as

L 5 but with the radius r of the small gemicircle instead
QL g Py sce Pp oo will be analytic on Lr for every
¥ pguch that 0 £ r'z p'; "=nd Lor the Integrals 1n ag. (2:8)

we therefore have

J/( o YAy =T1im J[ b e Yoy

)
L Lr

We may use this when evaluating the constants k1 ool kl

IIT An example.

In this section we will use k1 and k2 S anie lie Fais

therefore write out the explicit expressions for k1 and

k, « From (2.8) we get

(3.1) (e B - TGO } 2ay
- prf file @ . Teoe

1
1im / cpgdy
=0

which 1s the inverse of the expression for ( §E§ >R
ok S
obtained in [1] .
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(3.2) B, +

e L »
1lim J[ o, dy
p—-0 ¥
where
7
Ps 2 i
(3-3) L W_\/.{ Bg)j N )2 5 k1 } @SGde i
¥, (U—cS (U—cS
I2
e "
s/ { 2Bg U ke } @i
T o ® Y 0]
W (U-C )3 (U—C )2 i S
v S s

where the integration is along L .

Let us consider the case
(3.4) U=y,pe=Q° +R, , where @z 0 and R z O .

The horizontal rigid planes are at Py et i1 el

Yo = 1 . This case has been studled in [1], where
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we have found that there may exist singular neutral

solutions with M 0 when Ro = %—. These singular

neutral solutions are:

: 1
(3.5) o4 =v%3 (ny ¥) J=1,2,...,n, where
1 th

L
bl (e Bod%y and gl e 16,21 s Aj,, 1sthe J=
zero of the Besselfunction Ju . The wave numbker

corresponding to the jgh glmatiae neutral soluclon ds

2 el IR -
(3'6) k«j,U' s 7\31}-4"

3

The number of solutions is gilven by the number n which

e 2 2
satisfies Q - %n,u = O G xn+1’u < [0 ¢

(M

When p = - s Py is proportional to

27-1 .
= cos < % ﬂ> Pt T MR

COSTRAT
Jis w5

iyhe stnoddwly s

P reperEioraliioREE=yin xj 1
52

In the following we will discuss the case when Q = 15
In this case 7° < Q < (%w)g , which means that the number
i

A 18 Bhe eu. (805 1e saf@lito, @d il Bheb o lul e [0,3]

Let us consider the cases |u| € (@8] 5 0 e B, =

1) When |p| e (0,%4) , the singular neutral solution is

N[+
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= e

% 1
g = y2Ju(x1,uy) , and the corresponding wave
|

(3,7) / number is:

, 2 2
= By, sl 90150

./‘

The function QS deflned in section II is
%
BB Lot B Tl amin

By introducing eq. (3.4), eq.(3.7) and e, = 0 into

eq. (3.1) we get:

£ 1
Z -2._2
Pf.g/-(Qy +Ro)y Judy
0

(3'9) k, = - 1 cotan mu

1 i

2
il
J[ i

0
where Pf. 1n front of the integral sign means the
finite part.
We see from eq.(3.9) that k, 1is purely imaginary.
In [1] we have shown that the integrals in eq. (3.9) are
positive when |p| ¢ (0,%2) , so that k, changes sign with

cotan my . Taking into account the expression for k1 &

we get from eq.(2.5) that there is instability (ci > 0]

> .
1,, "hen .y e (0,%2) , and for k< k1;u

when e (-3,0),(k =2 0) . Both ¢, and ¢, are known,

RoET Sla =N

and by using the formulae in section II we can calculate

the unstable solution for a given k in the viclnity

of k1 w From eq. (2.5) we can find ¢ which corresponds
3

to a given k near k
Tapa
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2) When p = -3 , the singular neutral solution is:
(3..140) = cos 2y , and o = Q - (3)2 (3= 159
: s 2re 1,-3 2 '
e
QS =s8in 57y .

By introducing eq. (3.10) together with eq. (3.4) and

¢, =0 L 850 eq. (3.1), we get: k, = 2inQ , which to-

gether with the eq. (2.5) yields instability for

k< k 1 + Again the unstable solution for a given k

1:-2

near k1 i1 (ecan/'bes calculated byrfhe formulae in sgection II .
LT

3) When p = % , the singular neutral solution 1s

e -oacal A TR AT

(B.:31) B 5 Sy e tand Sl

N

3

g releus i .

We find that k, = O in this case. From eq.(3.2) we get:

1im 29 S Ay + 29 @2dy
RS 2l
-0 T il W

(3.12) 5 = .

lim k/.@gdy
=0

=

where @, is given by eq.(3.11) and 9, by eqg-{3.3), l.e.:
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e 1
<3-13> qj)1 =l % Sil’l'rry/ 5322@dt o .@ COSﬂyj 1-00827Ttdt

= v

Tntbodueing eg. (3. 11 ) and gy (513 ) 106 ca. (5. 12}, we get:

: 1 v
3 2 i
0 0

t

2 y
iy 2Q 81§2ﬂvj d/ 1—co§2ﬂtit i
©

1 1
2Q2 /‘sinEwydy, J[ 1-cos2nt
T 5/ v

where we have used that

1 1

./ (singt)gdt E ﬂ/ sin2rtge

0 t J

e e eese O = (15 I i gld wye  LEithE only neutral
solution with ¢ =0 when p = % . In the general case
when the value of Q 1is such that gin agy 1s a neutral

sodlbhvaleial,, wiE el walaiel wlarzs - e =10

1 N aniditinian il S

2
[@aliyizial dong -
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1 1 y
g
Fi, sin2nnt _2Q 1-cos2nmy sin2ngt
(3.15) k, = 6Qnﬂ\/ﬂ———g“——dt i ‘/” v dy\/‘ T
. 0 0

1 ¥
2
2Q sin2nmwy 1-cos2nnt !
o J[ 5 dy\/ﬁ-———j;———— dt
0 0

1

1
2 .
P EQ \/‘51n2nwydy‘/"1—co§2nﬂtdt \
™ o

Using the result from Appendix I, we find that this

expReSsillonEieTR k2 1s equilvalent to the one found in

[3] by a less general method.
When Q = 15 we have shown in Appendix II that
k, glven by eq. (3.14) is negative. From eq. (2.5) we

find that (k2 - k? 1) k202 + +++, and we see that
»2

l

there is instability for k > k1 1 « Again the unstable
-

N

solution for a given k near k can be found since

il
1:§

¢, and 6, are known.

The case yu = 0 remains. In this case
1
e, O 2 %
95 = ¥°7,(7y o¥) eand G R T e R L

s0©
have shown in [1] that < Q—E ) s which is equal to

k1 s 1s equal to zero in this case. We have also shown

ocy
that S >k < 0 , so that there is instability
1

3

—dt +
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: o o
c, = 0, has a maximum R =7 at k = k1,o soEee (1],

angd therefore we Bhould expand . o “"and e 1n a periesg
of powers of (R - %) keeping k = k1,o fixed in order
to f£find an unstable solution elcse to 'this polnt on the
curve. We would not find any unstable solution by ex-

2 2 )

panding ¢ and (k°- k. gh e geries bifigovers of ¢ ,
5

eEEionlae sl = % fixed, which is the method used in this

paper.
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Appendlix 1.

We will show that:

[ 1
B f 1-cosenmy 4 /)’ sin2nmt ..
nm y y TE

o)
1
(. $) s J[ s1n§nwy dy k/y 1-cos2nnt dt}
o]

(©]

1
= L/\ cos2nmt 1og2(T§€)dt

L o)
IBRe@ie

It is easily found that:

1
Jf 1~co;2nﬂy dy\/y sininﬂt at

O ©

1
9 u/‘ sininﬂy e L/X 1-cos2nmt ..

O O

1
= Erm[k/W cos2nnwy logzy dy - ‘jp loggydy}
o o
1 y
+ (Enw)g[\/;inany logy dy\/ﬁ cos2nmt logtdt
o o

(A1.2)

1

. jp cos2nmy logydy ./y sinPnnt logt dt}
L o o)




o - 1) e
i &
A




M

Bioe 2

1

f dled = \/\ singy logy dy \/ cosat logt dt
o o

(A1.3)

1
i /\ cosay logy dy \/y STkl otdl
©) o)

The expression on the right hand side of eq.(A1.2) is

phaEe, EErRL ok

1

1
2nm [-/\COSEHWy loggy dy —¥/jlog2y dy} b (2nﬂ)21(2nw)
o o

From eq.(A1.3%) it follows that:
(A1.4) I{(0) = 0

We differentiate eq.(A1.3) with respect to «q , and find
T5laiig

1 1
L 2 il . & ay logy d 2 logy d
= L = —= [ cosay logy dy - —> ogy dy
= ©) o
1

+-j§ L/‘cosa(1—y)logy iy,
5 (0 o

The solution of this equation which satisfies the con-

dition eq. (A1.4), is:

i 1
(A1.6) i) = iﬁ[—éak/\logy dy + k/\§i§9¥ logy dy

® O O]

1
A /ﬁsina(1—y)logy dy}
: 1=y
o






G B

Now:

1 1
sinenm(1-y) d[\sinEnW(T—y)

l o d = l 1— d i)
f e ogy dy o og(1-y)dy
o o

1
- 2ne N/\COSQHW(T—y)lOgy log(1-y)dy =
o
1 1

-\/ﬁSlHE?T§1"y)logy dy - 2nm k/NCOSQnﬂ"y logy log(1-y)dy,
o o

o vidat@lal s el llenE TIesit e

1 1

(A1.7) \/ﬁSlng?T§1-y)ldgy dy = - nﬂL/\COSQEWy logy log(1-y)dy.

0 o
Further:

1 1

(A1.8) JP§E§EX.1ogy dpriad %. /jcosay 1og2y g

o o

1
and \/ﬂlogy dy = - 1.
o

Taking into account eq.(A1.7) and eq.(A1.8), we find that:

1
(i 1 2
I(2nm) = ——e——l w1 “coslioy 102Ny Ay -
(2nm) i
i
- nm /ﬁcos2nwy logy log(1-y)dy} :
o

Now:
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it e

1 1
k/‘COSEHWy loggy ey = k/\cos&’my 1052(7-Y)dy,

(A mA0) 9 i i

and L/ﬁloggy Elhya— e
= 0

-

Introdueing eq. (A1.9) into eq.(A1.2) and using eq.(A1.10),

we get:

1 1
Jf 1-co;2nﬂy dy\/y5122nﬂt b _h/\51?2nﬂy dyk/y1-coi2nﬂt i

O O O @]

1
n

% nﬂ\/ cosEnﬂy[loggy + log2(1—y) - 2logy log(1—y)de s
o

which is equivalent. to (A1.1).

Appendix IT.

By using the result from Appendix I, k2 given by

eq.(3.14) can be written as:

1

(A2.1) K, = 6ar Si(2m) - ngcos&rt logg(%)dt N
@
>
b E%— si(2n)cin(2n),
5 X

Il

fsint dt , Cin(x) = f#g_t_ dt .

(®) (@]

where Si(x)






PRE. &

It will be shown that k, given by 8q.{A2.1) 18 negative.
Q@ =15. Cin(mx) is tabulated in [4], and we find that

cin(2m) = 2,44 approximately. From this it follows that

2
6qm si(2m) < 2% gi(em) Cin(en) . Further:

1
1 I

J[ G 1082(T§E)dt = Q[k/ﬁcos2ﬂt{log2(7§%) g
¢ o

1
since logg(T%%) 2 log2<i
2
From the above it follows that k2 = ol

S

> when t € (O,%].
+ t
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