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Summary.

2
The unstable solutlon cp(y,k ,c) contiguous to the neutral

2
one cp_ (y,k , c ) which may occur in shear flows in stratified,o S o

incompressible and inviscld fluids, can be expressed as

Here k is the wave-number and c the wave-velocity

corresponding to the unstable solution, and k and cs s

the wave-number and wave-velocity of the neutral solution.

Expressions for and are given.

00 00
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I. Introduction.

In this paper we are corcerned with the unstahle

Solutions contiguous to the neutral ones which may occur

in shear flows in stratified* incompressible and invlscid

fluids. In this connection we have to find Solutions of

the equation:

(1.1)

Here U(y) denotes the unperturbed flow velocity* and

P(y) = -p 1 (y)/p(y). where p(y) is the unperturbed den

sity field. The prime denotes differentiation with re

speet to y . U(y) and p(y) vary in the y-direction

perpendicular to the flow direction* which is taken to

be the x-direction, This basic State is perturbed, and

the perturbation stream funetion is

number (real)* and c = + is the wave-velocity

(which may be complex* 0). Re{...} means the real

part of the quantity within the brackets, Eq.(l.l) is

the equation for the amplitude funetion cp(y). The fluid

is supposed to be conflned between two rigid horisontal

planes at y - and y = The boundary conditions

to be satisfied are therefore:

(1.2)

*" + - - k2}9 = 0
ku~c) 2 U-c J

¥(x,y,t) = Re{<p(y) e lk^x where k is the wave-

9= 0 at y = y 1 , y2





In this paper we assume that U(y) and p(y) are ana

lytic functions of y on the interval I = [yjy-j g y g y2 ]

of the real axis. Then U(y) and p(y) are analytic

in some region in the complex plane dose to this inter

val. Further it is assumed that U 1 (y) 0 on I. Let

us take U ! > 0 on I. The case U ! <0 can be treated

in an analogous way.

¥e consider the case when the fluid is statically

stable. In this case there may exist singular neutral

Solutions, i.e. Solutions which are located on the stabi

lity boundary in a wave number - Richardson number -

plane, see for instance [1]. The singular neutral solution

cp with the wave velocity c and the wave number ks s s

satisfies eq.(l.l) with c= c and k= k and thenx' s s

boundary conditions eq.(1.2). Since U' 0 for

(1.5)

'j _1_
p = (-rj: - Rg ) 2 , where Rg = g(3/(u’) is the Richardson

number at the critical layer defined by U(y ) - c = 0.s s

Ys is analytic on I since U and (3 are assumed to be

analytic there. We define arg(U-c o ) in the followings

manner; arg(U-c ) = 0 when U - c >0, and arg(U-c )= -7rs s s

when U - c < 0 . If arg(U-c ) is defined in this way,

v/e have shown in [2] that 9 coincides almost everywheres

with the viscous solution within the limit of zero vis

cosity. Also with this definition of arg(U-c ) cp wllls s

y G [y 1 ;y2 ] J must be of the form, see [1]:

9 S = (U-c g ) 2+[1 Y g , where p, e
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+be the limit when -» 0 of the unstable solution

Let L be the contour shown in fig.1. <p given by thes

eq.(l.3) is analytic along

L if p is made small

enough. (Note that

Fig,
We also observe that an

unstable solution is analytic on I, and will therefore

also be analytic along L if p is made small enough.

We also see that -rr arg(U-c) 0 when 0 both

when y g I and y g L

II. Perturbation about the neutral solution.

We assume that there exists a neutral solution cpY s

as defined in eq.(l.3). As mentioned this solution is

analytic along L if p is made snall enough. Let

~'tt arg(U-c) 0 ; and if c ± <0 , ~tt -g 2 < arg(U-c) < g

A solution cp of eq. (i .1 ) is an analytic function of

yGIjj c g |c |c-c s ( and , with arg(U-c)
defined as above. This solution can therefore be

expanded in a series:

(2.1) y

U' > 0 for y G [y 1 .y2 ]).

I°- C s I Py where p <p . Further let us define

arg(U-c) in the following manner: -tt - e 2 < arg(U-c) <e 1 ,

where >0 and >0. Our choice of and

will depend on . ¥e see that if c. £ 0 ,

* = + (I?) ( c - c s } + fe) - fc2) +x ' e x ok 7s s
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where (...) means that the quantity within the bracketss

Assume that there exists a solution cp of eq. (1 .1 ),

the boundary conditions eq.(1.2). By introducing eq.(2.1)

into eq.(1. 1) and eq.(1.2) we get within the limit when

Wee see that cp Q must satisfy the same equations as cpg^

and we get that cpQ = A Q cp oJ, where A q is a constant.

By using the equations which govern cp and cp we get:s

I!

Let us denote by E the expression — p ~—— -k2 ,,
(U-c) 2 U-c

and by E the same expression with c and k 2 insteads s
2

of c and k . By introducing eq.(2.1) into (2.3) we get:

2 2
is calculated at c = c and k = ks s

2 2
with a c near c and a k near k , that satisfieso S

2 2c -> c and k-> ks s

(2 - 2) + |/-te '2 - — k2} <p =0 , and cp = 0
0 Hu-c s r U-c s SJ ° °

for y = y yY2 >

(2.3) f - - k2) -
£ LV(u_ c ) 2 u_ c J

-(Pg 2 k wdy= 0.
MU-c U-cs s
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(k"-ks) f [|i?{ (E'E s )cp}] s cp s dy +L

L

where [...] means that the expression within theo
2 2

brackets is calculated at c= c and k=k . Thes s

integrals in will exist because cp is an ana-

lytic function on L.

¥e assume that the coefficient

zero. Then if eq.(2.4) is to be satisfied within the

limit when c c , we must have that:o

When U is an odd and p is an even function of y ,

y-j - s a singular neutral solution with

wave velocity c =0 , the coefficient of (k2 -k 2 ) ins s '
y2

eq.(2.b) is eqaal to (e _ y1+2p y where
o s

it has been assumed that U ! > 0 . This expression is

not equal to zero when |p| e (0,-|] . In sectlon III we have

eonsidered an example oT this type.

(2.4) J + (c-c s ) f [|s{(E-Es )<pJ-] cps dy + ...
L 3

[_ hl + (k2 -ks ) {(E-Eg )cp| + •••= 0,

of (k2 -k 2 ) Ineq.(2.4),o

1 - e - r-M(E-EJ.| <Pc.dy =-f cp 2 dy ,is not eaual to
j - JJ S s J s

J-j L

(2.5) k2-ks 2 = k i( c-c s ) + k2 ( c -° s ) 2 + • • 1+... ,

where 1 = 1,2., ... are constants.

When \i -0 3 i.e. R a = , the coefficient of (k^-kg^)
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is zero. However, to find the unstable solution dose

to the neutral one on this point of the stability boundary.

we should expand co and (c-c ) in a series in (R-R )s s
2 2

keeping k = k rather than expanding cp ando
2 2 \

(k -kg ) in a series in (c-c„) keeping R= Rg fixed.

as is done in this paper. In [1] we have found the

the series for (c-c ) in powers of (R-R ), keepings s
2 2k = k fixed.s

The coefficient of (c-c ) in eq.(2.4) may be zero,s

(see the example in section III), and that is the reason
2 2

why we have expanded (k -k ) in a series of (c-c,).s s

If the coefficient of (c-c ) is not equal to zero,

dose to c . If this coefficient is equal to zero,o

c . This shows that if we had expanded (c-cj in a
2 2

series in (k -k ), we would have had to treat these

two cases separately

¥e have assumed that there exists a solution cp for
2 2

a c near c and for a k near k , which satisfiess s

the boundary conditions eq.(l.2)j i.e.:

(2.6)

formula for *i.e. we have found the first term in

2 2
k, é 0 , and (k -k ) behaves as k.(c-c ) for cs i s

2 2 2
k 1 =0 j and (k~-k ) behaves as k0 (c-c ) for c dose tob d S

'Pfy,, j c) = 0 and cp(y 2 ,c) = 0
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The functions in the eqs.(2.6) are analytic functions of

ce |c |c-c c | g and k2 ,so that all the derivatives
2

with respect to c and k exist . Derivating the eqs.

(2.6) with respect to c , ylelds:

where the value of y is either or y^.

0 because of the assumption above that the
Js

2 2
coefficient of • (k -k ) in eq.(2.4) is not equal to

s 2
zero. It then follows from eq.(2.7) that — exists

2 2
in some region around c . Therefore ) is ana° s v s

lytic in this region | c-c | < and can be expanded

in a power series, which is valid for | c-c | < p 2 •

Consequently the series given by eq.(2.5) will converge

whithin this region.

Taking into account eq.(2.5)* we find that eq.(2.4)

is satisfied if:

(2.8)

(2 7) = 0
1 ' 3c dc

/[M(E - Es)4]s dy = 0
L

f [;|i{ (E -E.>}]s 'Ps dy = 0Xj



.

  ' . ;  . ,

.• cn L i .  ,, z -r: . a- 

  '
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h dlwhere —r
dc

8 V' 2
- -—-) , and tne denvatives of k8k '

with respect to c at c=c g are given by eq.(2.5).

By introducing eq. (2.5) into eq.(2.l),the solution cp
can be written as:

From the above it follows that this series is valid in

some region |c-c g | < p_, for all ye L.

From the first of the eqs.{2.8) we find that we have to

know cp in order to find k, . But cp = A m , whereO 1 ‘O o^s

cp g is known. We find that is independent of the

value of A . A must of course not be equal to zero.o o

In the expression for we may therefore put A =1,

which is done. To find we have to know

cp ••• 3 _.j and 3 ... . We observe that k^o

does not depend on cp , which follows from the fact that

T d1
+ 9—t (E-E ) , where the first term on the right hand

L dc-1 s J s

side of this expression is equal to zero

The equation for is obtained by differentiating

eq(l.l) 1 times with respect to c. We write:

(2.9) V = cpo + <P 1 (c-cs ) + .. . jy cp 1 (c-c s ) 1 + ... ,

where cp =
McVs

“T {(E~ e s ) cp}1 =[(E-E )^r J + (E-E )I +
Lde-1 I- JJ s L sde J s L do dc S -is



'

: / i-r ': . f ... / :  . , ' 1
J v '"'" '' : .   : ;

.

’'   • '  •••' H , ;

- .   Ul



9

¥e observe that the expression on the right hand side of

eq. (2.10) is known if cp Qj, ... ,qn , ani •••

are known.

The homogeneous equation corresponding to eq.(2.10) has

the two linearly independent Solutions <p and

Ø g 0 for y = y^y2 , since cp s =0 for y = y (J ,y2

The general solution of eq.(2.10) is easily found by the

method of variation of parameters:

The integration is along

the contour L. and B-, are and

W = cp'0 - cp 0’ is the Wronskian which is a constantbo S S

in this case because cp' does not appear in eq. (2.10).

satisfies the boundary conditions if 0, because

r 2 yy 1
J J-j_9s it =- J j j^(E-Es 9s ii =0 3 where the
y 1 y 1 dc s 1

integration is along L. This follows from (2.8). <p^

which satisfies the boundary conditions,, is therefore ;

/JJ n 2 J 9

*1 = Åi cp s + Bi e s +*s J ir dt + esJ dt *
y t y

where J = |(E-eJcp}L dc J -Js
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where the integration is along L

¥e see that if cp Q , ... ,cp 2 _,. and ... are1

known, can be determined except for the constant .

It has been mentioned previously that k is independent of

the value of A q , except that A q shall not be equal to zero.

From the second of the equations in (2.8) it is easily found that

given c dose to c is Independent of the cholce of thes

Let \|/ 1 be the solution given by eq. (2.9) when the constants

corresponds to \|/ and \j/ 2 is k and /c respectively

and the boundary conditions eq. (1.2). Note that in the expresslon

when cp = \j/ 2 . By uslng the equation for , the equation for

\|/ 2 and the boundary conditions, it is easily obtained that

L L

y j Q y 2 j

(2.11) „ 1 = A ltPs +„ B J-p dt -p. dt ,
y 1 y

k 2 is independent of both A q (A £0) and A .We may therefore

put A q = 1 and = 0 when calculatlng k and this is done.

Generally must be independent of A q (a =|=0), ,
p p

Thls is equi valent to saylng that the value of (k - k ) for a&

constants A q (A q 0), 1 = 1,2,.., . Let us show this.

are chosen to be A q -C q f0,A 1 - C 1 1 = 1,2,... . Let \j/

be the solution when the constants are A = D 4= 0 , A n =oo T 9 1 1

1 = 1,2,... . The wave number for a given c dose to c o whlch

\J/-j and  \|/g satisfy the equation

cp M + E g cp = - (E - E g )cp ,

for E we have to put k 2 = /c 2 when cp = \j/ , and = /c 2

2 2 r
i K 1 ~ K .p) I4 / -0• We have assumed prevlously that

L

J hy =)= 0 9 from which it follows that J dy =j= 0in some

region dose to c . But then lt follows that /c? = /(? in thatS I d.



;

I' ",

 ,

'
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2 2
region , which means that the series for (k -k ) is independents

of the cholce of the constants, except that A q 0

and \j/ 2 satisfy the same differentlal equation and the

boundary conditions eq. (l.2). The Wronskian ~/n is zero,

and and are therefore linearly dependent-, i.e.

= A(c)\J/ 2 j, where A(c) is a functlon of c . This can also be

shown directly by using the expressions for \| and , and

then A(c) is also found. This means that the eq. (2.9),,

which are obtained by different choices of the constants., are

linearly dependent Solutions.

Above we have shown that if there exists a solution cp of

eq. (1.1) which satlsfies the boundary conditions eq. (1.2)-, and
p p

which tends to cp given by eq. (1.9) when c-* c and k -» k ,s s s

lt must be given by the eq. (2.9) wlth cp Q = cp g , given by

eq. (2.11 ) and (k2 - k2 ) by eq. (2.5) •s

Now, if there exists a singular neutral solution cp , , theres

wlll always exist a solution cp dose to cp wlth a c doses
2 2

to c and a k dose to k which satlsfies the eq. (1.1) ando S

the boundary conditions eq. (1.2). This solution cp tends to cpŝ
2 2

and k tends to k when c c . This follows from the facts s

that the Solutions of eq. (1.1) are analytic functions of
2

ce {c |c-c o | <p] and of k especlally for

2 r 2 i 2 21
k e(k jk L - k <7 } for all ye L . From the analysiso

above lt follows that cp is given by the eq. (2.9) wlth cp = cp, ,,o s

cp-i ( 1 = 1,2.,...) given by the eq. (2. 11 ) and (k2 - k*~) given

by eq. (2,5) • We see that both and are given when
p P

cp s and are known, so that cp and - kj) can be found.



T    .  • ' - ';

  ..i .

 

    • '   '     •  ,,y*
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7T

at

It is important to be aware of the following. cp

given by eq,(2.9) is valid in some region |c - <

for all y e L . However, it is only the solution with

c i > 0 for real values of

to the stabllity problem of

incompressible and inviscid

with cp = cp tends, whenM o F s J

2 2
(k - k ) whlch is relevantv s

shear flows in stratified,

fluids. This unstable solution

singular neutral solution cp 0 defined in eq e (l.3)j wheres

arg(U - c ) = 0 when (U - c ) > 0 , and arg (U - c )= -s s s

when (U - c ) < 0 . The solution with c. < 0 for real' s i
2 2

values of - kf - ) which is obtalned frdm eq. (2.9).»o

has no relevance to our stability problem. This solution

with cp =cp will also tend, when c c , c. -» 0 ,T o v s J s i *

to cp 0 given by eq.(1.3)* with the deflnition ofs

arg(U - given above. The stable solution (c. <0)s i

which has relevance to our stability problem,, is the one

which is obtained by taking

unstable solution,, and this

the complex conjugate of the

stable solution will tend.

2 '
dose to k there is instability. It is for those reals

values which make c. > 0i

Note that cp„ and Q in general have singularitiess s

c-> c . c. 0 + . to thes 9 i J

when c-> c . c. -> 0~ . to (U-c ) 2+ ky wheres i 3 v s' s

arg(u - c ) = 0 when (u - c ) > 0 , and arg(U - c ) =tts s s

when (U - c ) < 0 .v s 1
2

From eq.(2,5) we find for what real values of k

c = . Then also cp , •• • > cp-, j .. . have singularities



V« '  

.

,xj UJ:- .njt;

.

 

 

>  

.

. ' 1 . : • , ,



13

L , but with the radius r of the small semicircle instead

of p . cp Q ... q>i ... will be analytic on for every

r such that 0< r p , and for the integrals in eq. (2.8)

we therefore have

We may use this when evaluating the constants , ... k^

III An example.

therefore write out the explicit expressions for and

. From (2.8) we get :

(3.1)

i

p-£ £

which is the inverse of the expression for ( ——^V / s
obtained in [1] .

at 0=0, Let L be a contour of the same kind ass r

/ ( ... )dy = lim / (...)dy
T J r-* 0 J

L r

In thls section we wlll use and 5 and let us

Um ff-iiL.-iLlA
p-*0 £ L(u-o ) 3 (u-0 ) 2 J sk = §

1

ilm /J b
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where

where the integration is along L

Let us consider the case

llm / { 7' -M T3 ‘ - k i| <Pi«p B d yp->0 j L U-c 7 U-c r J
(3.2) k 2 = 2 £ +

lim / dy
p-° L

p-> o J L (u-o g r (o-c s ) ; J
+ ,

lim f dy
P-° L

(5 ' 5) - - —5 -*, } -.VY 1 v s' v s '

 W V { ' (U-c ) 2 ' kl I** dy 'y v s 1 ' s ’

(3*4) U= y , {3g = +R q } where Q 0 and R q 0

The horizontal rigid planes are at = - 1 and

y 2 = 1 • This case has been studied in [1], where
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JL
2

we have found that there may exist singular neutral
1

Solutions with c = 0 when H å -r • These singularS O X

neutral Solutions are:

zero of the Besselfunction J . The wave number
ia

corresponding to the j- h singular neutral solution is

The number of Solutions is given by the number n which

In the following we will discuss the case when Q = 15
2 /d 2

In this case tt < Q < 3 which means that the number

n in the eq, (3.5) is equal to 1 , and that |q| e [0,4] •

q ( e (0,2) .» q ~ 23 q ~Let us consider the cases

1) When ||x| e (0,4) j the singular neutral solution is

JL.
(3.5) cp„ = y 2 j, (> 1 M y) J = , whereb [X J »

i -i- "f" h
h| = {j - R Q ) 2 and [ M-1 e [0,4] , is the J -

6) k L = Q -*L

satisfies Q - V~ 0 , but Q - V" 1 ,,< 0* y y |wO

When pi = ”2j»cp is proportional tos

cos 7\j _i = cos y , and when [x =4 , cp Q Is

proportional to sin A, ±y = sin (j?r)yJ 9 2
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The function G defined in section II iss

3

0

where Pf. in front of the Integral sign means the

flnite part

We see from eq.(3.9) that is purely imaginary.

In [1] we have shown that the integrals in eq.(3.9) are

positive when |p| e (0,,-g-) , so that changes sign with

cotan tt(jl . Taking into account the expression for k 1 ,

we get from eq. (2.5) that there is instabllity > 0)

for k > k 1 when .p e (o,|) , and for k < k.  _ 1 f \i
when p e (kl 0) . Both cp and 6 are known^s s

and by uslng the formulae in section II we can calculate

the unstable solution for a given k in the vicinity

kq . From eq.(2.5) we can find c which corresponds

to a given k near k„

r i
i = y 2 J (A. ,,y) , and the corresponding wave0 (-i 1 3 P

(7 .>7) / number is:

k? ,, = Q - (Q = 15).1 f h 1 J (i.

(3.8) ø s =

By introducing eq. (3.4), eq. (3.7) and c = 0 intos

eq. (3*1) we get;
1

Pf- J (Qy 2 +R 0 )y" 2

(3*9) k 1 = - i cotan

/ yJ ' dy
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By introducing eq, (3.10) together with eq. (3.4) and

c — 0 into eq. (3.1), we get: k 1 = 2i7rQ , which to

gether with the eq.(2.3) yields instability for

k< k. 1 . Again the unstable solution for a given k1 > 2

near k. 1 can be calculated by the formulae in section II1 3 ~2

(3- 12) k 2 )

P~*° jV

2) When \i = , the singular neutral solution is:

(3. 10) cp s = cos -y 5 and _i =Q - (-) 2 (Q = 15).

e s = sin y

3) When jjl =\ , the singular neutral solution is

(3-11) cp = sin 7iy , and i=Q - / (Q = 15) >to I 3 2

Ø g = cos ?ry

We flnd that = 0 In this case. From eq. (3*2) we get:

llm \ f ~ V <P 1 <P S dy 2 tp = dy
P-o >- L J y s L J y s -i

llm / cp^dy

where cp g is given by eq. (3.11) and cp 1 by eq. (3-3), i.e.:
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Introduclng eq, (3.11) and eq. (3.13) into eq. (j5.12), we get

2 1
2Q_ f Sln2rry d

tt J y

1

,

0 0

where we have used that

In the case Q, = 15 9 cp , = sin rry is the only neutral

solution wlth c o = 0 when p, = \ . In the general cases

when the value of Q is such that sin n-rry is a neutral

y 1
/ _ N Q, f sin27rt,, Q T 1-cos27rt,.

(3.13) <p 1 = - sirwy J —5^ —dt - - oosTry / dt
-1 y

12 1 y

(3,14) k 2 = 6Q-7T / - J ±£2&SL dy J giag2Lfc d t +
0 0 0

2 1 y

+ 2s_ / sln.2^y dy J 1-cosgyt^
o J o J

1 2 1

J Isingt)_ dt = J sln2rrt dt
0 13 0

solutlon, we also find that =0 , and that k p is

given by :
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Using the result from Appendlx I, we find that this

expression for is equivalent to the one found in

[9] hy a less general method.

When Q = 15 we have shown in Appendlx II that

given by eq. (3.14) is negative. From eq.(2.5) we

k, i_ , Agaln the unstable1 * 2

k 1 1 can be found since1 j 2solution for a given k near

cp and ø are known.b S

have shown In [1 ] that f > which is equal to
åk / o

-1
, is equal to zero in this case. We have also shown

/^ c i \
that ( L < 0 , so that there is instability

' 1, o

<j >j

(5.15) k 2 = 6Qn7r J s --| n7Tt dt - |2_,. 1 .-. c .9.5g n .Try d y dt +
u 0 r“

2 1 y
, 2Q f' f 1-cos2n7rt

m t J y ay J t at
0 0

2 1 1
2Q I sln2nrry d j~ 1 -cos2nTrt dt

nir J y y J t
0 0

2' 2 2
find that (k -k. = k 0 c + •••, and we see that1 .> 2 <=-

there is instability for k > k. ± • Agaln the unsta

The case jj. = 0 remains. In this case

'Ps = y 2j o (A 1,o y) and k ?,o = Q - >M,o (« = 15) .we
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f

i
for R< -r . The curve in the k - R - plane on which4 o

\
c = 0 . has a maximum R - -r- at k = k. , see f1 1 ,

s o 4 1,0

and therefore we should expand cp and c in a serles

of powers of (R - keeping k = Q fixed in order

to flnd an unstable solution

curve. We would not find any

dose to this point on the

unstable solution by ex

in a series of powers of c

is the method used in this

paper.
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Appendix I.

¥e will show that:

1
2 1 -cos2n7ry .

y y
sin2n7rt — atriTi

o o

(Al . 1 )

o

L °
Proof.

It is easily found that:

1

1 -cos2n7ry d
y y

o

sinPmry
y 17

1-cos2n7rt +at

o o

1 1

2n7T
_

2
cos2n7ry log y dy log 2 ydy

o o
(A1.2) 1

+ (2n?r) 2 /sin2n7ry logy dy / cos2n7rt logtdt
o o

1

sin2n7rt logt dt
_

cos2n7ry logydy
o o

J sirxSnrry dy J 1 -cos2n7it dt
d o

1

J cos2n7rt log 2 (jj—)dt
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The expression on the right hand side of eq.(A1.2) is

then equal to;

1 1
2

cos2mry log y dy log 2 y dy + (2n7r) 2 l(2n7r)2nrr

o o

From eq.(A1.3) it follows that:

(A 1.4)

We differentiate eq.(A1.3) with respect to a , and find

that:

The solution of this equation which satisfies the con

dition eq.(A1.4), is:

N r 1
l(a) = J sinay logy dy J cosat logt dt

r f/ cosay logy dy / sinat logt dt
o o

1(0) - 0

1 1
rdi 2 i r 2 r

; e+ 5 i = t / cosay iogy d y —p / logy dy
I a O “ o

(Ai .5) ( 1

i +—p / cosaf 1 -y)logy dy.
L « o J

1 1

(A 1.6) I (°0 =Xj -2a f logy dy + f 1—Ai ay logy dy
a^ L J J yo o

1
T sina(l-y) n , 1

+ J yy- ——logy dy j
o
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y)dy

y)dy.

1

that

Now:

1

2mr / cos2n7r( 1 -y)logy log(l
o

1 1
sin2nrr( 1 -y)_ ,

—— logy dy 2n7i / cos2n7iy logy log(l
o o

from which it follows that:

(Al.7)

Purther:

1
sinay ,
—logy dy(A1.8)

o
1

and logy dy
o

Taking into account eq.(A1.7) and eq. (A1.8), wo find

Now;

f sln2^y) logy dy = J sin2n^1-y ) log(l .y)dy
o o

1 1
r sin2n7r( 1 -y)_ - P , s

J JZy l0gy = - nrr J cos2n7ry logy log(l-y)dy.
o o

1

- J cosay log2 y dy ,
o

1

l I(2mr) =—1 J 4n?r - n-TT / cosSnTiy dy -
(2n7r) L

, o
(A1.9) < 1

- n?r f cos2mry logy log(l-y)dyl
o
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o

Introducing eq.(A1.9) into eq. (A1.2) and using eq.(A1.10),

we get:

y) - 21ogy log(l-y) dy ,

which is equi valent to (A1.1).

Appendix II.

By using the result from Appendix I, k 2 given by

eq.(3.lA) can be written as:

(A2.1 )

X

where Si(x) i-y st dt
o

1 1

f cos2n7ry log 2 y dy = J cos2n7ry log 2 (l-y)dy.
(Al.10) / ° 1

and dy = 2
o

i y 1 y

J. 1 -cosSnTry j sin2nrrt _ J sin2n7iy j 1 -cos2n7it
° O o o

1
1 r r p p

2 nrr J cos2n?ry log y + log (1
o

1

k 2 = 6Qtt Sl (2tt) - Q 2 J cosS-rrt log 2 (—)dt
o

2
~~ Si (2tt) Cin(27r),

J 13 dt , Cin(x) =J
o n
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It will be shown that given by eq.(A2.1) is negative

Q = 15- Cin(Tix) is tabulated in [A], and we find that

Cin(27r) = 2,44 approxlmately. From this it follows that
2

6Qtt Si (2tt) < Si (2tt) Cin(27r) . Further:

1
1 ¥

J cos27Tt log 2 (y—-)dt = f cos27Tt|log 2
o o

log 2 jldt > 0,+ 1/J J

- - t

since log 2 log 2 (j y when t € (O^j.

From the above it follows that < 0.
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