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1 Introduction

In this work, we extend the space decomposition and subspace correction algorithms
of [6l, 57] to solve convex optimization problems over a convex constraint subset.
One of the main concerns of this work is the rate of convergence when multilevel
domain decomposition and multigrid methods are used to solve some obstacle prob
lems.

Prom the time that multigrid and domain decomposition methods have gotten
the attention of numerical mathematicians and engineers, efforts have been contin
uously devoted to the study of using domain decomposition and multigrid methods
for obstacle problems, see [2, 4, 3, 11, 19, 25, 30, 28, 29, 31, 32, 26, 27, 36, 34, 35, 37,
38, 39, 43, 42, 22, 44, 47, 49, 59, 52, 53, 51, 50, 54, 56, 62]. In the book of McCormick
[44, p.loo], treatment of constraints for multilevel methods was listed as one of the
open and challenging problems. For linear elliptic partial differential equations, it
is known that the solution will be influenced globally if the boundary value or the
right hand is perturbed around a point. This justifies the need for coarser meshes
when using iterative solvers to solve the problems. However, this is not the case for
obstacle type problems. A small perturbation of the input data may only infiuence
a small part of the solution domain due to the appearance of the obstacles. Re
lated to this difficulty, the algorithms in [25, 30, 32] are trying to use the active set
strategy to separate the obstacle from the solving of the partial differential equa
tions, i.e. during the iterative procedure, the algorithms are trying to identify the
active regions of the obstacles and then solve a partial differential equation where
the obstacle is not active. The algorithms proposed in [2, 3, 26, 37, 39, 54, 59, 62]
are specified for domain decomposition methods. Due to the absence of the coarse
mesh in the algorithms, the convergence of the algorithms depends on the number
of subdomains. One of the contributions of this work is the convergence rate esti
mates. For the obstacle problem, it is shown that the algorithms have a convergence
rate which is of the same order as the linear unconstrained elliptic problems.

To be more precise, we ciassify the main contributions of this work into the
following few points:

Convergence for obstacle problems for overlapping domain decomposition
methods without a coarse mesh has been studied in many papers. Rate of
convergence has been studied in [4, 62, 54]. However, all of these convergence
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proofs require that the computed Solutions increase or decrease monotonically
to the true solution. Numerical evidence has shown that linear convergence is
correct even if the computed solution is not monotonically increasing or de
creasing. In this work, we show that the overlapping domain decomposition
method has a linear convergence rate which is of the same order as the un
constrained case if the obstacle and the computed functions are decomposed
correctly.

Numerical experiments and convergence analysis for the two-level domain de
composition method, i.e. an overlapping domain decomposition with a coarse
mesh, seem still missing in the literature. The real difficulty is the determi
nation of the coarse mesh obstacle. It shall be shown that the algorithm may
not converge or converges as slow as the one-level method if the obstacle and
the computed Solutions are not decomposed properly. In this work, a linear
convergence with a convergence rate independent of the mesh parameters and
the number of subdomains is obtained by using a proper decomposition of
the obstacle and iterative Solutions. The nonlinear interpolation operator
defined in §4 play an important role in the decomposition. Moreover, our
algorithms are different from the literature ones.

Multigrid method has been intensively studied for obstacle problems. Con
vergence has been studied in [ll, 25, 30, 28, 32, 22, 36, 42, 43, 44] without
analyzing the rate of convergence. Asymptotic linear convergence rate esti
mates for multigrid methods can be found in Komhuber [34, 35] which can
be regarded as the pioneering works for multigrid convergence rate analysis.
We propose some different algorithms for multigrid method. A linear conver
gence rate is proved for the proposed algorithms. Moreover, the convergence
estimates are valid right from the first iteration. We do not need to assume
that the obstacle problem is nondegenerate ( c.f. [43, p.B4], [34, p.173]) and
also do not need to assume that the contact region between the obstacle and
the true solution has been identified, see [34, p.173, Lemma 2.2], [3s]. The
convergence rate is valid for all kind of obstacles from H

In applications to domain decomposition and multigrid methods, the method
we use to get the obstacle functions for the subproblems is really different
from the methods given in the afore mentioned references. We propose to
decompose the global obstacle function. In order to get a mesh independent
linear convergence, the initial function must be decomposed properly. In the
literature, the global obstacle is often used for the subproblems.

Even though our main concern is the obstacle problem, our algorithms are pre
sented in a general setting for general space decompositions. The general algorithms
as well as the assumptions are given in §2. The convergence analysis for the general
algorithms under the given assumptions are stated in §3. The convergence rate
depends essentially on two constants, i.e. C\ and C2, see (7) and (8). In section §5,
we show that domain decomposition and multigrid methods can be interpreted as
space decomposition techniques and can be used for solving the obstacle problems.

2 The optimization problem and the algorithms

2.1 The optimization problem

Given a reflexive Banach space V and a convex functional F: V R, we shall
consider the following nonlinear optimization problem

min F(v), KC V . (1)veK
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The nonempty convex subset K is assumed to be closed in the strong topology of
V. We are interested in the case that the space V and the convex set K can be
decomposed as:

We assume that the functional F is Gåteaux differentiable (see [l2]) and that
there exists a constant k > 0 such that

(3)

Here (•, •) is the duality pairing between V and its dual space V', i.e. the value of
a linear function at an element of V. Under the assumption (3), problem (1) has a
unique solution, see [l7, p. 35]. For some nonlinear problems, the constant k may
depend on v and w.

The general theory developed for (1) will be applied to the following obstacle
problem in connection with finite element approximations:

(4)

with

It is well known that the above problem is equivalent to the following minimization
problem

assuming that f{v) is a linear functional on For simplicity, the domain
fl C Rd is assumed to be bounded and is a polygonal (d=2) or polyhedral (d=3)
domain.

For the obstacle problem (4), the minimization space V = Hq{Q). Correspond
ingly, we have k = 1 for assumption (3).

For simplicity, || • || shall be used for the norm of V. Standard notations for
Sobolev spaces Hk {Cl) and Wk,p {£l) will be used, i.e. |( • \\k,p,D denotes the Wk,p
norm on a domain D , and || • \\k,D denotes the Hk -norm on a domain D. The
semi-norms are denoted by ] • and | • \k,P,D- In the case D = fl, we will omit
D. The generic positive constant C, which may differ from context to context, will
be used to denote a constant that is independent of the variables appearing in the
inequalities or equalities and the size of the finite element meshes.

Obstacle problems arise from many important appiications. For some concrete
examples, we refer to Baiocchi and Capelocite [s], Cottle et al. [l4], Duvaut and
Lions [l6], Elliot and Ockendon [lB], Glowinski [23], Glowinski et al. [24], Kinder
lehrer and Stampaccia [33], Kornhuber [36], and Rodrigues [46]. See also [l, 21, 48]
for some recent researches on general iterative methods for linear complementary
problems.

2.2 Conditions for the convergence of the algorithms

We need to impose some conditions on the decomposed subspaces to guarantee
that the proposed algorithms have a uniform linear convergence rate. First, we
assume that there exits a constant C\ > 0 and this constant is fixed once the

m m

V = J2Vi, K = Y, K" Ki(2)
i=l i— l

{F'{w) F'{v), w—v) > k\\w v\\y, Ww, V€ V

Find uG K, such that a{u, v—u)> f{v u), \/v € K

a(v, w) Vv •Vw dx, K—{v G Hq (fi)| v(x) > ip{x) a.e. in Q}. (5)
Jn

min F{v), F{v) = \a{y,v) - f(v), (6)v£K Z



4

decomposition (2) is fixed. With such an C\ > 0, it is assumed that any u,v £ K
can be decomposed into a sum of Ui, vi £ Ki and the decompositions satisfy

For given u,v £ K, the decompositions Ui,V{ satisfying (7) may not be unique. In
addition to the assumption of the existence of such a constant C\ , we also need to
assume that there is a C? >0 such that

(8)

2.3 The algorithms
The following algorithms for general space decompositions can be regarded as a
generalization of the Jacobi and Gauss-Seidel methods, see [9, 57, 61]. For algo
rithm 2, all the subproblems shall be computed sequentially. For algorithm 1, all
the subproblems are computed in parallel. In applications to domain decomposition
methods for linear elliptic partial differential equations without constraints, Algo
rithm 1 is in fact the additive Schwarz method and Algorithm 2 is the multiplicative
Schwarz method. In applications to multigrid methods for linear elliptic partial dif
ferential equations without constraints, Algorithm 1 is essentially similar to the
ideas used in the BPX preconditioner [lo] and Algorithm 2 reduces to sequential
multigrid methods. Algorithm 1 is sometimes called the additive or parallel space
decomposition method and Algorithm 2 is sometimes called the multiplicative or
successive space decomposition method (c.f. [ss]).

For a given approximate solution u £ K, we shall find a better solution w using
the following two algorithms.

Algorithm 1

1. Choose a relaxation parameter a £ (0,1/m] and decompose u into a sum of
Ui £ Ki satisfying (1).

2. Find ibi £Ki in parallel for i 1,2, •• •, m such that

(9)

3. Set

(10)

Algorithm 2

£ (o,l] and decompose u into a sum of1. Choose a relaxation parameter a
Ui £ Ki satisfying (7).

1
m m fm \ ?

w = X Ui ’ v = and XI ~ 2) < v|| . (7)
i= l t=l \i= l /

m m

t= l j— 1

< C,(f>|>)*(£>!!>)*.
' t=l ' 'j = l '

V Wij GV, Vt), G and Wvj GVj

FiTUj+Wi I < F ( Uj +Vi j , Vvi €Ai
\j=Ufti ) )

m

W{ =(1 a)ui + awi and w=(l o)u + a Wi .
t=i
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2. Find wi G Ki sequentially for i 1, 2, • • •, m such that

and set

3. Define

(12)

In implementations, it may not be necessary to compute and store the values
of wi, wi and Ui. It is possible to define other auxiliary functions and to compute
and store these auxiliary functions could make the implementation simpler. For
Algorithm 1, under-relaxation (i.e. a < 1) must be introduced in order to guarantee
the convergence. Even for the unconstrained case (i.e. K = V), the algorithm can
diverge when a > 1, see Remark 4.1. of [53, p. 146]. For Algorithm 2, over-relaxation
(i.e. a > 1) may accelerate the convergence, but it is hard to do the analysis. In
this work, the convergence of Algorithm 2 is only analyzed for the case that a < 1.
An analysis for some problems with K = V and a > 1 can be found in Frommer
and Renaut [2o].

3 Convergence Analysis for the Algorithms

Using similar definitions as in [s7], we shall use the following notations in the proofs.
u* will always be used to denote the unique solution of (1), which satisfies [l7]

(13)

In addition, we define

(14)

The convergence of Algorithms 1 and 2 is given in the following theorem

Theorem 1 Assuming that the space decomposition satisfies (7), (8) and that the
functional F satisfies (3). Then for Algorithms 1 and 2, we have

(15)

with

(16)

Proof Using the notations of (14) and the fact that F is differentiable and
convex, it is known (see Ekeland and Temam [l7]) that (9) is equivalent to

(17)

Under the assumption of (3), it is known that (See Tai and Epsedal [55, Lemma
3.2])

F j Wj +Wi+X/Ujl - F ( X/ Wi Vi + Uj 1 ’ VVi £Ki  (11)
\j<i j>i j \j<* j>* )

Wi (1 a)ui + auii.

m

w—(l a)u + a Wi .
t=i

{F'{u*),v - u*) >O, WveK.

m

€{ =Wi Ui, W = Wt .

t=l

F{w)-F{u*) < a
F{u) - F{u*) ~ V (Vl+C* + V<?*) 2 )

{F'{u + 6i), Vi - Wi) >O, Vvi e Ki.

F{vi) - F{v2 ) > {F'{v2 ), vi - v 2) + - v2 \\ 2 , \/v1 ,v2 £V. (18)
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Define

Using (17), (20), the convexity of F and (3), and applying similar techniques
[55, p. 1563], it can be proved that

For notational simplicity.r, we introduce for a given i

It is clear that øj

It is easy to see that

From assumption (7), there exists u* G K{ such that

U

We shall use (8), (10), (17), (23) and (24) to estimate

m

W™ = Uj + Wi.

From (10), we see that w™ = u 4- e* and
m m

w=u + a - Ui) =(1 - am)u + a w ™.
t=l »=i

F{u) F {w)
m

> F{u) - aF {u + et) -(1 - am)F{u)
t=i

= + ei)]
i= 1 ' '

m m

> - + ei),ei) + - 2
i=i i=i
m

> fI>INI2Z t=l

ia! simpiicity, we mtroauce ior a given i

' j+i— 1

u + Y 6k ’ [l, m- i + 1] ;

< m j—m+i—l

u + Y ek + Y ek , Vj e[m—i+ 2, m]
k k=i k 1

iat (f)j depends on i. Moreover, we see that

01 = U + 6i,

02 u + &i + e»+l,

m

Øm = W “)" 'y

fc = 1

m m

F'[u + - F'(u + ei ) = £ ~ F'(h-i))
j= l J=2

m/m \ j

s>?, (Ell“'-<ll 2 ) < C7I ||«-«*||.t=l ' t=l

m

{F'{w), w - u*) = {F’M, -<)t=i
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m

< T (f'(w) - F\u + Cj), Wj - u*)
i=l

(using (17))

(25)

From (3) and (18), it is easy to see that

Let /x G (0,1) be a constant to be determined later. We get from the above inequal
ities, (21), (25) and the inequality ab < + 2 that

F(w) - F{u*)

< [F(u) - F(w)] + ClcJ—[F(u)-F(w)]iJ-[F(u)-F(u‘)]ian V ocn V «

< (c 2 + i—il-) [F(u) - F(»)l + AF(v) ~ f(«•)]\ 2 ku ) an
(26)

From the definition of C* in (16), we get from the convexity of F, (10), (21) and
(26) that

For a given C*, the function = ias a ull^ll6 niaximizer in [o,l] and the
maximizer is /i* = yj(C*) 2 +C*— C* G (0,1). Moreover,

This proves the theorem for Algorithm 1. We are only interested in the case that
C\C2 = 0(1) or CIC2 1. In case that CIC2 = o(l), the proof can be refined to
show that the convergence rate is also of order o(l), i.e. the convergence rate goes
to zero when CIC2 goes to zero.

m m

EE(f'(« - F'{(t)j- 1), w* - (using (23))
i=l j=2

/ m \5/ m \ S

< 2 ) (^||^i-<H2 ) (using (8))
' j= i V i=i '

<c2 ((£lle»ll 2 ) + C\\\u (using (14) and (24))

m/m \ \

c*2 Il et|l 2 + C\C-2 f || e i|| 2 j \\ u ~ w*||-i=l ' t=l '

2 <F{u)-F{u*), F{w) F{u*) < {F'{w),w - u*).

<U + - f(u))] + m|F(«) - F(«*)l-

F(w) F{u*) < (1 a)F{u) + aF{w) F{u*)
= (1 - a){F{u) - F{u*)) + a{F{w) - F{u*))
< (1 - a)(F(u) - F(u')j + - F(w)) + - F(u*))
= (1 -a + C>-‘ + an)(F(u) - F(u’)) - CV(F(«) - F(u*)),

and thus

FM-FK) l + C>-‘-a +aM = I_aMl-M)1 _ a Ml-M) € (0) I} .
F{u) F{u*) 14-C*[i 1 /i 4- C*

g(a*) = 1 ——.
+ Vc^)2
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To prove the convergence rate for Algorithm 2, define

(27)

We see that

(28)

(29)

Since w™ is the minimizer of (11), it satisfies

(30)

Using (18), (28), (30) and the convexity of F to get

F(w{i- 1)/m ) - F(wi/m ) > a (F(?x;(i- 1)/m ) - F{wi/m )) > ei || 2 • (31 )

Thus, estimates (29) and (31) together lead to

Similar as in (22), we can introduce functions (pj to satisfy

We use (7), (8), (24), (30), the above equalities and the fact that o<l a<lto
get

(32)

The rest of the proof is the same as for Algorithm 1.  

4 Finite element spaces and some constrained in
terpolation operators

In this section, we shall propose some interpolation operators subject to some con
straints. These operators are not only needed in our analysis for the algorithms,
but also needed in the implementation of the algorithms. We use essentially these
operators to decompose the constraint sets and functions satisfying assumption (7).

w ™ = 22 wj + 22 Uj ' w™ = 22 wi ++ 22 uj  
j<i j>i j<i j>i

w° =u, w m =w, w m =(1 a)w m -f aw m ,
m

F{u) - F{w) = [F(^ (i-1)/m) - F{wi/m ) .I=l

{F'{w™ ),Vi -wi) > 0, Vvi e Ki.

m

F(u) - F(w) >-£ ct||ei|| 2 and so F{u) > F{w).
L i=l

<f>j - <f>j- 1 =Wi-Wi ={ 1 - a)ej, j< z;

4*j —1 ? j i) Øt Øi—l “
m

F'(w) - F'(w*)=(F'(<M - m_i)) •
3 =2

{F'(w), w u*)
m

i= l
m m

t=lj=2

\ j= i ' t=i '
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Let Th be a quasi-uniform triangulation of the domain Q with a mesh size h and
Sh C Hq{Q) be the corresponding piecewise linear finite element space on Th [l3].
In the analysis, we need to use finite element spaces with different mesh sizes. It
will be assumed that h is always the smallest mesh size. For an H > h, we consider
the case that Th is a refinement of Th- Operator Ih C{Cl) Sh will always be
used to denote the nodal Lagrangian interpolation into Sh for any H > h.

In the following, the definition of a nonlinear interpolation operator : Sh
Sh will be given. Denote by Mh all the interior nodes for Th- For a
given Xq, let tvi be the union of the mesh elements of Th håving Xq as one of its
vertices, i.e.

Let {øo the associated nodal basis functions satisfying øo(xo) øo
0, Vi and JTøo(x) = 1- It is clear that u>i is the support of øq. Given a nodal
point Xq G Mh and a v G Sh, let

(33)

The interpolated function is then defined as

Xq £Uh

This nonlinear operator is essentially an extension of the intergrid operator used in
[34], [42]. From the definition, it is easy to see that

(34)

(35)

Moreover, the interpolation for a given v G Sh on a finer mesh is always bigger than
the corresponding interpolation on a coarser mesh due to the fact that each coarser
mesh element contains several finer mesh elements, i.e.

(36)

In addition, the interpolation operator also has the following approximation prop
erties.

Theorem 2 For any u,v G Sh, it is true that

(37)
(38)

Proof. As the interpolation operator is nonlinear with respect to v, the well
known Bramble-Hilbert lemma can not be used in this context. It is necessary to
use the older Taylor expansion techniques [B, 7]. To prove (37), define on each u

From the definition of U of (33), it is true that

u>o,v > 0 in Ui, and (39)

Thus, there must exist a (jGu, such that

(40)

uJi := U{r € Th,x*o G r}.

Uv = mint»(x)CJi

{liV)<f>'o {x).

Ihv <v, Vv G Sh,

Ihv Vv >O, v e

Ih,v^IZ v < Vå!>A2 >ft, V«6S*.

¥h u ~ Ihv -(« - «)l|o < CH\u-v\t,
- HIoSC/ZH,, ||/g»Hi<cwi,.

u= u liU, V— V liV.

min= 0, min v = 0.LU{ U)i

fi(Éo) HCo)-
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Otherwise, u > v or u < v and it is impossible to have the last two equalities of
(39) to hold simultaneously. As u and v are piecewise linear, we get from (40) that

For at E T~u and r C uu, let |r| be the measure of r and

The Poincare-Friedrichs inequality gives

From the definition of Ifj, it is true that

On r, there are only three nonzero terms in the above summation. As (f>q(x) =l,
the following estimate is correct.

(41)

(42)

(43)< CH\u u|i,w.

and estimate (37) follows. To prove (38), we just need to set u = 0 in (37) and use
the inverse inequality for functions from Sh •  

Based on the operator Ifj, it can be seen that the operator ijp :Sh Sh
defined by

also satisfies the properties (34), (35), (37) and (38). Moreover, it is true that

fffv < v< v, and thus ||7^e u u||o < ||7®t; - v||o, Vu G Sh,

i.e. approximates v better than JfjV . Inductively. we can define

If =PHe v + I%(v-I%ev), /jfv= Vt’ €Sh

and each operator satisfies the properties (34), (35), (37) and (38).
From theorem 2, it is easy to see that the following is correct.

Theorem 3 There exists an interpolation operator 7® : Sh >—l Sh sv.ch that

||7®u - v|| o < CH\v\ ly Higvlli < Cl|u||i,Vv G Sh .

Proof. Replace the definition of Uv given in (33) by the following

The rest of the proof uses the same argument as in Theorem 2.  

||u - v||o,Wi < CH\u - v\ ltU . = CH\u - v|i jWj .

aT =  — f{u—v)dx.
M Jt

||tx v aT 11 o,t CH\xi ji,t  

I§u-Igv= £ (I,u -
x'o €.Vff

IfjV &r||o,r
i

< H^u “ I'v - iu ~ v)||o,r + 3||tx -v - aT IIo,r
i

As a consequence

\\lhu -Ihv- (u v)|| o)T < \\l®u - I^v-aT \\ o ' T + \\aT -{u - v)\\o <r < CH\u- v|i,Wi ,

/|p lf{ v + Vv e sh ,

IjjV >v, Wv G Sh,

TjjV < 0, Vt> < 0, v € Sh,

117®ti - I®v -(w - v)|| o < CH\u - v|i,

liV = maxr(x).Ufi
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5 Space decompositions for Hq{Q) and K
In this subsection, we show that the overlapping domain decomposition methods
and the multigrid methods can be used to decompose a finite element space and
the constraint set K for the obstacle problem (4).

5.1 Overlapping domain decomposition methods

Let Th be a quasi-uniform finite element division, or a coarse mesh, of Cl
where Cli has diameter of order H. We further divide each Cli into smaller simplices
with diameter of order h. We assume that the resulting finite element partition
Th form a shape regular finite element subdivision of Cl, see Ciarlet [l3]. We call
this the fine mesh or the fi-level subdivision of with the mesh parameter h. We
denote Sh C Wj ,00 (ft) and Sh C W01,oc (f)) be the continuous, piecewise linear finite
element spaces over the //-level and h-level subdivisions of fl respectively. More
specifically,

For each 0», we consider an enlarged subdomain Clf consisting of elements r € Th
with distance{r, Cli) < S. The union of Clf covers Cl with overlaps of size <5. Let us
denote the piecewise linear finite element spaces with zero traces on the boundaries
dClf as Sh{Clf). Then one can show that

(44)

For the overlapping subdomains, assume that there exist m colors such that each
subdomain Clf can be marked with one color, and the subdomains with the same
color will not intersect with each other. For suitable overlaps, one can always
choose m = 2ifd = l;m<4ifd = 2;m<Bifd =3. Let Q' be the union of the
subdomains with the ith color, and

we find that decomposition (44) means

(45)

Note that the summation index is now from 0 to m instead of from 1 to m when
the coarse mesh is added.

For the constraint set K, we shall first decompose V 7 as

(46)

and then define

Under condition (46), it is easy to see that (2) is correct. When the coarse mesh is
added, the summation index is from 0 to m.

SH = {«€W0I '°°(fl)| «In, efiW,Vi},

Sa = {v € W01 '“(£l)| o| T ePi(t),Vt€Ta}

M M

Sk = j^Sh (tlf) and ,S* = S„+ £«.(«?)
i=l t=l

Vi ={v e Sh\ v{x) =O, x £ fi'}, i=l,2, • • •, m.

By denoting subspaces Vq = Sh, V = Sh

m m

a). V = Vt and b). V=VQ + Y2 vi
t=i I=l

m m
* = or = V>o + e G

I=l I=l

Kq ={v £ Vq\ v > ipo}, and Ki ={v e Vi\ v > V'»}, i = 1,2, •••, m. (47)
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Following [l5, 60], let {o*}™ x be a partition of imity with respect to
i.e. 6i G VI, 9i > 0 and :6{ = 1. It can be chosen so that

|v«i| < c/s, «,(.).{ J Tc n;, (48)

The partitions 6{ are needed in our implementations to decompose the constraint
set K and the valne of u.

5.2 Decompositions without the coarse mesh

If we use the overlapping domain decomposition without the coarse mesh, i.e. we
use decomposition (45.a), then we will get some domain decomposition algorithms
which is essentially the block-relaxation method. Even in the case that V Rn ,
the analysis for the convergence rate for general convex functional F : Rn R and
general convex set K C Rn is not an trivial matter, see [4O, 41] for a survey. In
case that the convex constraint set K has more structure, there are more avaiiable
convergence rate estimate. For the domain decomposition method without the
coarse mesh, convergence proof can be found in [49, 51, 53, 37, 59], etc. Linear
convergence rate has been proved in [62, 4, 3, 54]. However, all the proofs require
that the computed Solutions converge to the true solution monotonically. Numerical
evidence shows that linear convergence is true even if the computed Solutions are
not monotonically increasing or decreasing. In the following, we shall use our theory
to prove this fact, i.e. we will get a linear convergence rate without requiring the
monotonicity of the computed Solutions.

For any given u,v G Sh, we decompose u, v and if; as

In case that u, v > tp, it is true that Ui, Vi > ipi. In addition,

which shows that

The decomposition for u and if} are needed in the implementation. The decomposi
tion for v is only needed for the analysis. It is known that C 2 < vn with m being the
number of colors. From Theorem 1, the following rate is obtained without requiring
that the computed Solutions increase or decrease monotonically:

5.3 Decompositions with the two-level method

Numerical experiments and convergence analysis for the two-level domain decom
position method, i.e. an overlapping domain decomposition with a coarse mesh,
seem still missing in the literature. The work of [s9] is in fact a two-level algebraic
approach and the coarse mesh space Vq is in fact not used. In §6.2, it will be shown

m m m

U = V = Vi’ V> = X^’
t=l »=1 »=1

Ui = Ih{OiU), Vi = Ih(OiV), Tpi = Ih{oilp).

»=i ' '

Cl < C(l + (5- 1 ).

F{w) - F{u•) Q
F{u)-F{u*) ~ 1 + C(1 + S~ 2 )

For aigorithm 2, we can take a = 1 .
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that the algorithms may not converge or converges as slow as the one-level method
if the coarse mesh obstacle is not given properly. Decomposing the obstacie and
the function u properly, a linear convergence rate which is independent of the mesh
sizes and the number of subdomain is obtained for the proposed algorithms.

For the obstacle function ip, there exist ipo G Vq and ipi € K, i = 1,2, ••*,m
such that ip ip0 -f V’i • The decomposition may not be unique. We just pick
any of the decompositions. The analysis and the numerical tests show that this
does not affect the convergence rate.

For any given u G K, the decomposition for u shall be obtained from the de
composition of ip and a decomposition of u ip as in the following

0 < «r 0 <u— ip and so ai>o, i = 1,2, •••, m (50)

Combining (49) and the decomposition for ip, one gets the following decomposition
for u

As a consequence of (50), it is correct that uq G Kq and Ui € K{, i 1,2, •• •, m.
The decompositions for u and ip are needed for the implementation of the algo
rithms. For the analysis, we also decompose any v G K as

It is clear that vq g Kq and vi G Ki for any v G K. It follows from Theorem 2 that

(53)

Note that

Using estimate (37) and similar to the proofs for the unconstrained cases, c.f. [6o],
and [s7], it can be proven that

(54)

The estimate for C 2 is known, c.f. [s7]. Thus, for the two-level domain decomposi
tion method, we have

where C(m) is a constant only depending on m, but not on the mesh parameters
and the number of subdomains. An application of Theorem 1 will show that the
following convergence rate estimate is correct:

m

u--ø = (70 + cr0 = I%{u - ip), = Ih {Oi{u -lp - cr0 )). (49)
i=l

From (34) , (35) and the fact that u > xp, it is true that

m

li =UO Wo = V'o+<To, Ui=ll>i+(Ti. (51)
I=l

m

« = + = + Ih(v ~VO> v< = 'l>i + Ih{Oi{v-i/>-lfj{v-il)))). (52)
I=l

lIWo - volli < C\\u - u||i.

Ui - Vi = Ih{Oi{u - v - /f (w - VO + /Jf (v - VO))-

Thus

C, = C(m) fl + j , C 2 = C(m)

F{w) - F(u*) < i a
F(u)-F(u*) - l+C(l+HiS~i)'
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For algorithm 2, we can choose a = 1. When H —> 0 and h —> 0, we will get a mesh
independent linear convergence if the overlapping size S is chosen to satisfy H/S =
constant.

5.4 Multigrid decomposition

In this subsection, we discuss the application of our theory to multigrid methods.
From the space decomposition point of view, a multigrid algorithm is built upon
the subspaces that are defined on a nested sequence of finite element partitions.

We assume that the finite element partition Th is constructed by a successive
refinement process. More precisely, Th = Thj for some J > 1, and Thå for j < Jis a
nested sequence of quasi-uniform finite element partitions, i.e. Th} consist of finite
elements ThJ = {r]} of size hj such that Q = Lfir] for which the quasi-uniformity
constants are independent of j (cf. [l3]) and rlj _ 1 is a union of elements of {r*}.
We further assume that there is a constant 7 < 1, independent of j, such that hj is
proportional to 72T

As an example, in the two dimensional case, a finer grid is obtained by connecting
the midpoints of the edges of the triangles of the coarser grid, with Th x being
the given coarsest initial triangulation, which is quasi-uniform. In this example,
7 = l/\/2- We can use much smaller 7 in constructing the meshes, but the constant
C\ is getting larger when 7 is becoming smaller, see (57).

Corresponding to each finite element partition a finite element space Mj
can be defined by

Each finite element space Ad.,- is associated with a nodal basis, denoted by
satisfying

where is the set of all the interior nodes of Tj. Associated with each nodal
basis function, we define a one dimensional subspace as follows

Letting V = Adj, we have the following trivial space decomposition:

J nj

(55)

Each subspace V- is a one dimensional subspace.

For the obstacle function ip, assume that iplj G V- satisfies ip 1 V'}*
The choice of the decomposition is not unique. For simplicity for the presentation
of the decompositions of u and u, it shall be assumed that

(56)

In case that the obstacle functions are not zero, one just need to add V 7] to the
decompositions of u ip and v ip to get the decompositions for u and v , see (58)
and (59).

For any v > 0 and j < J 1, define Vj = I®v I'hj-i v VJ
v G Adj. A further decomposition of Vj is given by

Mj ={v e W0I ’°°(n) : v\r £ Pi(t), Vr € Thl ],

= «it,

Vj = span {(f)]).

V = v;-
j—lt=l

 ø —O, rpi=o,Wi,j.

n:

Vj v) with vlj = Vj{xtj )(f)tj
I=l



15

It is easy to see that

It follows from (34), (35) and (36) that u*, u* > 0 for all u, v > 0, i.e.

Uj n

U3 {x]) - Vj {x])\ 2 |o}|*Ua ~ V

Here, we have used the fact that, in the finite element space, an L 2 norm is equivalent

to some discrete L 2 norm, namely ||Vj||q —rf |*b(a:*-)| 2 • From the definitions
of Uj and Vj and estimate (37), it is easy to see that

(57)

which proves that

The estimation for C 2 is known, i.e. C 2 C{ 1 see Tai and Xu [s7]. Thus
for the multigrid method, the error reduction factor for the algorithms is

For unconstrained linear problems, the dependence on J can be removed with much
more complicated analysis [45, 6].

In case that the obstacle functions are not zero, one needs to first decompose
u ip as

u ip (58)

<*i = lh2 (w ~ V>) ~ IhJ _ 1 {u-W, j< J\ crj ={u ip) Jgr _ i (w - VO

- decomposition for u, which is needed in the implementation, is then given by
J ri.

W = (59)

J J Tlj
” = É’i = ÉE4

j= i j=ii=i
For any u > 0, it shall be decomposed in the same way, i.e.

J rij

U = u)' u) = uÅxWv UJ = lh] u ~ JS-i u' 3 <J] UJ =u ~ JZ-iu
j=it=i

ulj, Vj eKj={v e Vj :v > Tpj} under condition (56).
We estimate

i= i—

< Chd~ 2 jr \u,(xi) - < ChJ2 l Uj - Vj\l.
i= 1

||Uj - Vj ||o < C{hj + hj-i)\u - u|i.

As a consequence,
J rij j
EDK-^ cE ft72 iK-^iioj=li=l j=l

J
<cY. h-2h]_1 1« - v\l<cr2 J |U - «I?,

j= l

Ci = 7 1 J 2 —7 1 1 log h\ 2

F{w)-F{u*) _ a
F{u)-F{u*) ~ 1 +C7-2 J‘

J rij
aj (x) =ci (x (x)’

j=ll=l

=1 t=
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The decomposition (55) only represents a ”half-V-cycle” (or called ”\-cycle”)
multigrid method. In order to produce the full ”V-cycle” or ”W-cycle” multigrid
iteration, we just need to repeat some of the one dimensional subspaces once more
or several times more in the decomposition (55). The estimates for C\ and C 2 can
be done in a very similar way.

In decomposition (55), the total number m of subspaces is m
each level, the nodes can be colored so that the neighboring nodes are always of
different colors. The number of colors needed for a regular mesh is always a bounded
constant; call it mc . Let V- 0 , k - 1,2, •••mc be the sum of the subspaces VJ
associated with nodes of the kth color on level j. We have the following trivial
space decomposition: V = The total number of subspaces for such
a decomposition is mc J . Such a decomposition is only needed theoretically. The
algorithm produced by this decomposition with Algorithm 1 is the same as the one
produced by decomposition (55). For algorithm 2, the resulting schemes for the two
decompositions are different. However, both have a convergence rate independent
of the number of subspaces.

6 Implementation issues and some numerical ex
periments

We shall test our algorithms for the obstacle problem (4) with Q. = [-2,2] x
[—2, 2], / = 0 and

With consistent Dirichlet boundary condition, the problem has an analytical solu
tion

The subdomain probleras are solved by the augmented Lagrangian approach of Tai
[5B, p.235] with or without the dimensional splitting. Let matrix A be the matrix
associated with the bilinear form a(-, •) for the finite element space and b the load
vector associated wdth the linear functional /(•), then u* and ø, which now represent
the vectors that contain the nodal values of the finite element functions, satisfy (4)
if and only if they satisfy (see [l4])

The stopping criteria for the subproblems is

j] min(o, Au —6) +|| min(o, u ø) || £2 + ||(Au b)(u < TOL. (60)

The same stooping criteria is used for Algorithms 1 and 2 for the global problem.
Algorithms 1 and 2 are used as iterative solvers, i.e. we take an initial guess and

use Algorithms 1 and 2 to get a better approximation and use this newly computed
function as the initial guess to compute another better solution and continue in this
way. In the plots, en is the between the computed solution at the nth
iteration and the true finite element solution, see Figure 1. eO is the initial error. In
the implementation for the decompositions of §5.2 and §5.3, we need to construct
the functions 6{ which are not unique. We have used several choices that satisfy
(48) and it seems that they do not alter the convergence rate much.

ip{x,y) = \Jx2 +y2 x 2 +y2 <l, =-1 elsewhere

f y/l —x2 —y2 r < r*
U [X ' V) \ —{r*) 2 \n{r/R)/y/\ (r*)2 r> r*

where r = >/x2 + y 2, i? = 2 and r* = 0.6979651482..., which satisfies

(r*)a (l-ln(rV*)) = l.

Au* >b, u*>xp, {Au* - b){u* -VO= 0.
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The computed solution uThe obstacte function

Figure 1: The obstacle and the true finite element solution with h = 4/128. un is
the computed solution by algorithms 1 or 2, Uh is the true finite element solution
and u* is the analytical solution.

6.1 Experiments without the coarse mesh

Without the coarse mesh, the computed Solutions will increase monotonically to
the true solution if we start with a function which is less than the true solution
[s4]. We shall start with a function that is less than the true solution in part of
the domain and bigger than the true solution in the rest of the domain. Thus, the
convergence will not be monotonically. Linear convergence is observed, see Figures
2 and 3. In Figure 2, convergence rate is compared for different choices of the
starting function. It can be seen that the convergence is much better if the staring
function is below the true solution. However, all three choices have a uniform linear
convergence. In Figure 3, the starting function is partly below and partly above
the true solution. Convergence for different overlapping sizes is shown. In order to
reach a given accuracy, it was observed that the iteration number is reduced by a
factor of 2 if we increase the overlapping size by a factor of 2.

6.2 Experiments with the two-level method

Due to the coarse mesh correction, the computed Solutions will not increase or
decrease monotonically. The first thing we want to show is that the algorithms will
not converge if u and ip are not decomposed properly. We decompose u and ip as

i.e. the coarse mesh functions uq and ipo are the coarse mesh interpolations for u
and ip respectively. With such an decomposition, the algorithms are not convergent.

The second decomposition we have tried is:

(62)

i.e. the coarse mesh functions uq and ipo are taken to be zero functions. With
such a decomposition, it can be proven that the estimate for C\ is the same as

W Uq -f- Uii Uq
0 = 00 + YJIL I Øi> øo = //fø, Øi = - øo)), '

u =uo + W», U 0 =O, Ui = Ih{9iU),
Tp = -00 + IXI V>», =O, ipi = Ih {9^),
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Iteratkxi number Iteration number

Figure 2: Convergence for the domain decomposition method without the coarse
mesh when the starting function is below, above or partly below and partly above
the true solution. h 4/128, H 4/8, S = 2 h.

without using the coarse mesh in the decomposition. In the numerical tests, the
convergence rate for this decomposition is the same as the domain decomposition
method without the coarse mesh, see Figure 4.

Let ipo to be an arbitrary coarse mesh function from Vq. We then decompose ip
as xp V>o + ''Pi with ''Pi = Ih{9i{ip 'øo))- The decomposition for u should be
taken as in (49) and (51). The analysis indicates that linear convergence shall be
obtained for any ipo £ Vq. This is in fact observed in the experiments.

In Figure 4, the convergence for different decompositions is compared. The first
curve, counting from the top to the bottom, shows the convergence for decom
position (61). It is not convergent. The second curve shows the convergence for
the domain decomposition method without the coarse mesh with overlapping size
5 2h. The third curve shows the convergence with the coarse mesh and with the
decomposition given by (62) when the overlapping size is 5 = 2 h. The convergence
is the same as without using the coarse mesh. The last curve shows the convergence
with the correct decomposition given by (49) and (51).

In Figure 5, the fine and the coarse meshes are fixed. The convergence for differ
ent overlapping sizes is shown. The convergence is better with bigger overlapping
sizes.

6,3 Experiments with the multigrid method

For the multigrid method, there are infinitely many choices to decompose ip
eLesI  ø*-. For any of these decompositions, the convergence rate is the same
just if we decompose uas given in (59). One of the decompositions for is to take
Vj* = 0 for any j < J and xpj = ) for i = 1, 2, • • •, nj, i.e. all the coarser
mesh obstacle functions are taken to be zero and only the obstacle on the finest
mesh is nonzero. We always start with u being the global obstacle. Convergence for
different J is shown in Figure 6. It can be seen that the convergence rate increase
slightly with bigger J. For J = 5, the rate is 0.78. For J = 6, the rate is 0.8. For
J = 7, the rate is 0.81. For J = 8, the rate is 0.85.
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Iteratioo number Iteration number

Figure 3: Convergence for the domain decomposition without the coarse mesh when
the starting function is partly below and partly above the true solution. h =
4/128, H = 4/8.

There are some tricks that enable us to compute the decomposition of u given
in (58) and (59) very efficiently. For any v G Sh and v > 0, we use a vector Zj to
store the values minr. v for all the elements t] C 7/. As the meshes are nested, the3 J 3
vectors Zj can be computed recursively starting from the finest mesh and ending
with the coarsest mesh. From the vectors Zj, it is easy to compute 7® v on each
level. The value of 7® v at a given node is just the smallest value of z 3 in the
neighboring elements.

7 Conciusion

The decomposition of the obstacle and u can be done very efficiently with the
nonlinear operator for the two-level and the multigrid methods. The complexity
of the code is nearly the same as the unconstrained linear case. However, the
convergence rate can be improved if we use other interpolation operators. There
are many other nonlinear interpolation operators satisfying the properties (34),
(35), (36), (37) and (38). Some of these operators satisfy (37) and (38) with a much
smaller constant C. The corresponding C\ for these operators will be much smaller
for the two-level and multigrid method. From Theorem 1, the convergence rate with
these interpolation operators can be better. This is confirmed in our numerical tests.
Extra costs are involved with these operators and there are several alternatives.
Intensive numerical tests with these operators will be reported elsewhere.

In condition (3), the nonlinear operator F' is required to be coercive. Condition
(8) implies that F' is Lipschitz continuous. The convergence of Theorem 1 can be
extended to nonlinear problems under weaker conditions as in [s7]. Just assuming

{F'{w) F'{v), w— v) > v\[y, Vw,v£V ,
\\F'{w) F'{v)\\v < £\\w - v^ 1 , \/w,veV,
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Iterabon number Iteratson number

Figure 4: Convergence for different decompositions. h 4/128, H = 4/8, <5 = 2h

In order to get the above estimates, conditions (7) and (8) also need to be modified
correspondingly and can be shown to be valid for all the decompositions given in
sections 5.2, 5.3 and 5.4. The constant cq > 1 is given explicitly as a function of
a, k, q, C\ and C2.
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