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Ahstract.

The propagation of an electrostativ wavepacket in a

collissionless plasma is studied. ¥e get a change in amplitude

caused hy interaction hetween the packet and particles propa

gating with velocities near to the group velocity. Also, we

get modulation of the plasma in the front of the plasma caused

hy trapping effects.
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Introduction.

In this paper we shall study the interaction between

particles and an electrostatic wave packet. The evolution

of a large amplitude wave packet, has heen studied earlier hy

numerical simulation (j. Denavit and R.N. Sudan 1972), but a

more complete theory has not been given. As in nonlinear optics

and water-wave theory, we shall try to find a waveequation.

In collisionless plasmas, the nonlinearity often comes from the

trapping of particles in the potential troughs of the waves.

Therefore we have to find a procedure which takes care of this

effect.

I. The wave equation.

The equations to govern the onedimensional motion of

collisionless plasmas are the Vlasov - Poisson equations:

(i.O

(1.

The suffix J denotes the species of plasma particles.

representing -- A , /vvij = f*y\ for electrons, and Xy =SL ,

Wj = M for the ions.

øxj C x>Ki) -+ t UA) £*» Kt )

3* Ei*, i) = V/7 Jijj f} (.x. v, i) d-V



 



2

problem.

(1.5)

(1.4)

(1.5)

(1.6)

(1.7)

(1.8)

(1.9)

¥e shall solve eqs. (1.1 - 2) as an initialvalue

E tx, o)

are given consistently.

In order to solve eqs. (1.1 - 4), we assume that

Further we define:

7-C* ,-t)

Now, eqs. (1.1 - 8) gives :

where :

>) ' /) a t X (*. o)

p < *,*. o) - jt iv) + p (x.y.o)j.

_ i % (*< °)
L Lx, o) x

(.X, i/,i) * C-f

_ cXu,i)
b. (.*,+ ) - t (X,

UJ i X , l )

9* % (y,i) -

(o-t -* ) + u,v>i)

6 (“- uv) -fi tx, t ''•* )  
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10)

11)

12)

13)

\
(fi + L k ) E cx t i) (1

Integrating eq. (1.9) along the characteristics we get:

dr * /

(1

«it * h

tq * rr -
/'"'j t- -2-

(i

¥e shall solve eq. (1.11) with the following conditions:

X

(1

s/

v// JEL Jjj u, ki) dv

% - % E- Vf

Xj ( r=

vs C r = i)

which gives:

i
, JL *

T r T 0.14)
£ J )Ar _ ij(w-XKi)<<S QA \

-a 4 *
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15)

16)

Now„ eqs. (1.10) and (1.14) combine to.

(i

¥e assume that 0(x, i/, 4 ) exists in the sense that the

right hand side of eq. (1.1 5) is finite.

Integrating the last integral in eq. (1.15) by parts.

(1

 i
Op _ ,( . i «%)cLt >
ff +

_ y *V'T Ij'1 ff i f C /fr \ A _ L
J~ (J dl/ jB) g X t <d- *TJ0

we get: é

Q £ .. r- f A i(t )ci 'T

+Lk & r 1/77 fij j , LT*o) Jl o £ V -f-

r *

,/_i L( E rl[l \ J
l d7l * ' (

0

T t

 (_L__ a f_L_ ifX
0

,Lu f_L_ é [J— å f-£- &)))
•+ L j r [d7 l w dT V U>- Vt W,. Qy. yj SL J.

i>
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it in a

(1.17)

(1.18)

(1.19)

(1.20)

(1.21)

f

Eq. (1.16) is rather complicated, so we want to write

more attractive form.

¥e define:

£C^,k)

/ 9£
0K / 3\9é. f. x, -t)

(H ) ''q, (x, i)

T* ( Uj . K ) £ f U>,K) -

2
9* Ok ) 4

_ i[U il-K~ ]),

jU -zÉv))]^

il-u. d/HnW
V<*V IW J Ia;-KV (aj-ku dl/VuT^-KV// J

_ uffA * f
* * £ Vi J

nr \ 'f2 IT
Si(.x,i ] - 2 i11
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(1.22)

(1.25)

(1.24)

(1.25)

(1.26)

(1.27)

(1.28)

v 4 3,J
where J-t = øi+[/;and

Using eqs. (1.17 “ 22), eq. (1.16) reduces to:

. tfd fVT 2 r wr 9 p].£f 121 2 c.TZ 3 c
b[/D z\2t ty T 3X ( Qw'3K9tC cSK* S* 1-,

%( T = 'i) — (p L* < -i) -f

It + Vc\ ff ~ Lvo £ (uj - k ) 4

V __
vD <L -1 c CX, I ) -ts( £ t x, i)C " /

where:

£

-r c f / I (u> - K ]/y ) fltjg

I, = - W JLJ fj (T* o) J.

Ti

-r  c- un-»' frlii 1 '/(U.-KI/J
i r-i, > i f(T i ytr. [ <• { .

x j J i " '

 f

7- - S 'Æ*s( f—léf £ v ‘ ' j
—3 ' j L V ~ K /J7- 0 Æl/

 é-

J 01*1 flJ—i Ui(V)]x 4 (tu '****-S 0<j- '“varl w - Kt jvJ r= o au'

 i T

T - is: Vfj;/ ,JÅ7 U/J LIJsLf iJé-])) •<’!*"'*
" <j- ati Lo-KV-jj/jl * J

0
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The left hand side of eq. (1.25) is a nonlinear Schroedinger

type of wave equation. But the term on the right hand

side contains £(X,i ), so we still have a integrodifferential

equation to solve.

il. The lowest order solution.

In order to solve eq. (1.25), we shall introduce the

characteristic time and space scales connected to the problem.

The frequency and wavenumher of the waves making up the packet

are given hy LO(/ f i) and |< ( i), and define the fast time-

and space-scales.

If X is the characteristic length for the variation of

the amplitude of the wave packet, we may define:

£* vx

and we shall assume that

e <.c / (2.1)

Therefore we may define the slow space- and timescales hy:

(2.2)
i, * e*

Now, our hasic assumtions are that the amplitude of the

wave packet, the frequency and the wavenumher vary only on the

slow time- and space-scales.

x, = £ X
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E(x,t) = E(xv t 1 )

(2.3)

. There are two other characteristic timescales which enter

into the problem:

(2.4)

Tp is the typical time which a particle with the velocity
CO
 jf uses to get through the wave packet. We may note that if

we have a very long wave packet, or a finite amplitude wave,

Å should be taken as the damping or growth scale of the amplitude

/ tv- is the oscillation time for the trapped particles, and

it depends on the particle mass

(2.5)

This means that we have to distinguish between electron

waves and ion-waves.

¥e assume that

rO > rp (2.6)

for electron-waves, and

jk(x,t) = K(x 1 ,t 1 )

2.L

Tp - /s -*/

Zi -ir,r CI^Ekiy*

V * (—) r/
,A1C1 £ j
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rJl ? r„ (2.7)

for ion-waves.

Eq. (2,5-6) means that the trapped electrons make less

than one oscillation in the potential well, while the ions feel

no trapping effects.

Eqs. (2.5) and (2.7) means that the ions make less than

one oscillation in the potential well, in which the electrons

may oscillate several times, However, in many cases the electrons

hehave as an ideal fluid and the electron trapping effects may he

neglected.

wave packet, are given hy;

(2.8)

and trapping effects will he important in the same range of the

velocity-space.

Us ing eq. (2.3), we notice that S2( x j j xij is the only

term on the left hand side of eq. (1.23) which depends on the

fast time and space scales.

In order to eliminate this dependence, we integrate over the

fast variahles in the following way;

where (p is defined hy eq. (1.22)

Eqs . (?. f7 -8), (1,11) and (1 .22) gives

U)
The phase velocities, , of the waves making up the

K* £ t < K,

2.77

HK.O * *TT , *, 0 i,) A f (2. 9 )
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(2.10)

Writing eqs. (1.26-28) in a more explicit form, we have:

(2.11)

r

(T, s 5T j) )*“ J ~

i,
f r U , / E \1

f) =  'J- "F5j [f j^ v [oicri^-* ° -f
t {

å f ztU r
j i'"-**. d*j(u> - 0 J

•L

T , A \_ / y f r */ j /-rk A- [. 1 Af E ]\l i ds
~J~l/(*,jt,j f) - y- [ co-Kw-y cUli U " kl j' dtli £ * I/ ' J y~ o

-t

(M. i /--L- ))*£}
[J I°°~ * j' d<Sy lU3 - K (LO - K /*nj L~J -f-

+ UJ-L-<L /_£_ jtf & \*icj (2>12)
J Ts f ,/

•L

/%,/_§_ i f_i— A flL V'i /ia rfl .-3/^—.)isJ lu> UJ - ' *-j j y

f x J w fy. ( J 7Zj- tj jg, o J
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—(. f ~ J — — / 4- —/ 1 - /£_M: \
l j Clrfl U>~kVj}J  tu-kkyl

 f

‘f[å 7 /‘ '*j ( “'* l ' i)dS I di i £ %$. \\ e.y r
J dlA < Ldin[*-**sr*A *

= ‘ 6 ’£ 7hi*>-* v s Jtr(‘^“‘'j'

r J cL 7 -f

. ; £ l 0 i< P (dr [Jj_i cL. / e w. _
"  J ' d£7 ito-KIJ )-., E +

t)

i
,<L( / rå t±_ cL f £-55-i f_L cL i WlVi rlMj.

f /— fL / e \\ «v p n
T At7\ ~crrztjj ft.rjl +

-i c,‘ 3f fe ir n .. I /_/_ i! g £) 3 )
J UO- K Uj-jy/V u / J

i T

.. å f E %é- Wii rlM
fli £ Tjd / £ * Ui ~ uo - K V/j- >//( /*'»y W j -+

«i

T

i<f[. .uk”-**)** Ui i A( E \\ a f£jé]lf*i'c]l
-f JL * idVj UJ-uujJJ L JJ '

0
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U)

15)

16)

17)

18)

Assuraing that

lAJ (2.

Lf*
all the coefficients of i. „ n = 1. 2. 5., are slowly

ic* 0
varylng functions compared to X ' . One should note that the

coefficients depend on (f> through which is periodic

in . Therefore,, taking the mean value of eq. (1.23) and

eqs. (2.11-13)* we get to 0(£?):

(2.

V

£ I.

t Sl, 2' fit

(2.

(2.

o(e)

t(vt, + j -1* £< *>'*)L- i/ 0 n

- • w eVl /21Z 1 9 c 21L 2r rfl
[ft, to 1 2>i, L '1w5k 2a, t) 2a, ( 0 w2>« C -) 1 9 *•> 3*;

L = I

where

“ ,/2 2j } __ 2 2H) +o l ,'S lk Jf I d (_L Vj .

XL ~u i -L j2> uo 7)t t >K / ' Jlf{ Jli

(2.

 L, r !,

1 z z -Mf*





13

(2.19)

In eqs.(2.l6) and (2.20), we have neglected the self action term

(Dysthe whlch gives an amplitude dependent frequency shift.

In order to solve eq.(2.8), we shall make the followlng

assumptions:

R ( w, K ) (2.21)

(2.21a)

¥ith the condition (2.21), eq. (2.15) is a hyperholic type

of equation.

Eq. (2.21a) means that the suhcharacteristics (J.D. Cole 1968)

given hy

n * I
(2.22)

d*.

'ki' 0

Furthermore, we divide the ( ; {, ) space into two parts

according to:

-*~2 £ JJyjL dyj^so

7 . i £*? i. (j — i fÉJL Vi} (2.20)_l v  C J J i dz ct£? i  J'Jrv ti A fr o

?0

iajia) / {A.VO 0 7 TIuUJ

are timelike, and the initial value prohlem may he solved.
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(2.23)

(2.24)

out er

in

(3.1)

(3.2)

(3.3)

(3-U

The solution in the region (2.12), we shall call the

solution., and the other one the inner solution.

III. The outer solution.

In this region it is natural to search for a solution

the form

where

i

L * J,l t 3j

Eqs. (2.15) and (3.1-2) glve:

where

u i -i ( t-m-MLo K,i, c - /

2 2. u;
+ Kj **, i t

1 2 ai
+ v % f< e-

<*»»o

r—

= 1 1 ck)

/ L = 0

"oSi.fr*  - £' ; "i -&’*>)
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(3.5)

(3.6)

(3.7)

(3.8)

The solution of eq. (5-3) is given by:

r 0. /. 2,

( i
ds n I

* É (-M * x i

-f

y 2 i fro&.OL* lr>l* i,) *h, (-7L, K + 71, 1])e^

L&.i.) - i i i\ + + K* +

+ y 0 I s

i = 2,3, V

fl

É-L t*,' 1 ,) = JOy> [L I \\s D ( ?(“'*)  + tSX t )di')E L (*,C3^o) y o) f
o

L , s

~h i* ; i 2 |V 0 ( £(**,*) +i J2, )d\a i . / s))
0 1 7

d/,
ds ' V 0
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(5.9)

}

(3.10)

,a) +

(3.11)

11 )

in

{TVvi-

Because fc t as a s l° w ly varying quantlty.

V,,(f(w,*0 must be zero to lowest order:

Expanding £(^ f K ) in a Taylor-series around =U 0

CO = U> 0 , we get :

Because 1/ d (5(w,k ) =/9{£w), ’/ a ri, =d(£ w), which means that

we may meglect this term to lowest order.

This gives :

To get the explicit expressions of eqs. (3.7) and (3.

we have to solve eqs. (1.11) and (3.8), which will he done

sectlon V.

XC o

V 0 tO*M)-- AW- *OM,C^ u f)® UJ* W, LO-LOc \ s

where Aw = w-uj 0 3 = k- K„

We may note that /V-o - AK r 0 ( & 60 }

 £/

-i- f f-5'O

0 * W-w* '

4 j J ((k-., u>„)ZiK) * j(Axfjdsji/*/*},*)0 i
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IV. The inner solution.

In the inner region, we define:

 3*; ' ' 5x, 4£ W. 4 t% Zti i  ' '

(4.1)

Eq. (4.1) is consistent with the assumption (2.24).

Furthermore, we have from Eqs. (1.7-8):

(4.2)

(4.3)

(4.4)

Now, eqs. (2.15), (4.1-3) give to £) (£ 3 ) :

— 2 c 1 , r ? jL

where i  = ti,X L = £ V ; / = /. «, 3 , - • •

Qu) 2K
2*, 4 Si, = 0 * or

w 'l* / r 1 \ Al S
' sx ' a*,  ( c ? *> f k 3 +  J 00 - (/£ 2t ; _)

¥e define:

»

EUv-v r' — * , — Uv-l
-j r <L £„

A7 - o

J v-> -

j % V' J = 0 j i* 1.1.3."-
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Using eqs. (1.18), (4.1-2), we have:

which gives : -£( ttJ| * ) _ q
o X i (4.7)

(4.8)
i h j "h. ' h

As in the out er region, <£ {to, k) = d9(£a;). Otherwise

£(X,i) should have a variation on the fast time scale.

Now, eq. (4.5) reduces to:

(4.9)

ct
av - i

(4.10)

(k + £<-.«) - n )C -i ; (*? g. C +

(4.5)

7 1 *) i !>/ ''a* 'V J h, l v^)\ai, f„ = £ Jl/ o -£ t ('//ij-j

£ k*  % ! nr }( £ f* £ * |£} + • ( 4 • 1 6 :)

V % ' V % (J X 3 J

1c- Er -i i & i-;, fr - £ r1 fc- 0

cW r ' / V° J = x a
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We define :

(4.11)

(4.12)

J

Us ing eqs. (4.Y-8), we may fouriertransform eq. (4.12)

(4.13)

i r j fJ 1'i 1 ;
 v J 1 | *- )

Al’ («0 (4.14)

(4.15)

6U

r~ f
t ° = b o (-

v

noting that t = t ,*) - Eqs . (4.9), (4.11) give :

(jL ‘ "i ' 3

d-C- U ET- I L
i. x C ** o

—-

«o £

E? 1 *,*)* (vryiJfEjCLL-o ) f— ou

- -=» & / i
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(4.16)

i.
<,eCl

Noting that X* is the fouriertransform of

j ( '-) =( W L )«* SL ' lw: , so, using the convolution theorem

for f ouriertransf oms* we have that;

Eq. (4.16) descrihes a diffusion in X, -space, during the

evolution.

J

7-* 0 7 0

Ti 1 r d-tfvuV^-

(J.D. Cole 1968).

"D .'>? - Corvt^A*

-L x oO

e 0 (* *) »&

w o<2

- i iL*-y) l (- / j$cU) \
 JL 0 ) -i

,fi < f f f . Ja* <**) 1 t i
"f Jds ((J K &y J £ ti (y, * ) A-yj) \

Introducing an intermediate scale
L

V T' ? tn L

i , — 1 * 00 ->

Choosing = £3 , it is easy to show that

Cr^Jr
— 9 h0 £>
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As in the outer solution we have to solve eqs. (1,11),

(4.10) to get an explicit expression in eq. (4.16).

V. The uniform solution.

 To solve eqs. (1.11), (1.1j5)* there are two different

effects which. have to be taken into account.

Particles with velocities:

(5.1)

(2.8)

(5.2)

are trapped by the waves making up the wave packet., while

particles with velocities outside this region., are untrapped.

Furthermore, the wave packet will behave similar to an

electrostatic pulse. This means that particles with velocities:

(5.3)

c / Aj. r~where (5U)

are accellerated by the packet, while particles with velocities

(5.5)

K 'J < i“ +S K

< * < v;

V-(£y Ei

-s> < i <

“) <
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are retarded (M.S, Espedal 1971).

Particles outside the regions (5.1), (5.7) and (5.5)

are passing the wave packet, and get no final change in

velocity. They may get a change in phase if the packet is

unsymmetrical.

Because of eqs. (2.6-7), the regions (5.1) and (5.5),

(5.5) are seperated.

Using eqs. ( 1 .11 ), (1.13) and (2.10), we get;

ii r , v /
Å LZ T) ( *?C ('?) + (X1 "i ) (5.6)

r

X (7) -
(co.ccr) - U (£.r) l/j (i)) d.7 (5.7)

i

Eqs. (5.6-7)j we shallsolve approximately, dividing

the velocity space into the following regions:

(5.8)

(5.9)

(5.10)

(5.11)

hl 9 h C 1 / (5.12)

V s 3

V °i v %

-f <C V £ x

~ S K< V M * S K



. : anolgoi gnlvjollol sricl- odnl sosqa
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Further, we shall approximate E(£T) to lowest order

by:

(5.13)

In the regions (5.8), (5.10) and (5.12), the particles

are passing the packet. Therefore we take V toJ

lowest order, which gives:

n

j luj lit)- *iit) v] £7
t

Now, in the region (5.9)j we define:

(5.13)

(5.14)

(5.15)

= t a (£x (-r), o)

r

Kj ('f) -w + j£ ( t(x-n^(7-é)) l bj (-%[ f U.iijdf (i 1 - 14 )
-fc

where

' K, CLT)

X(t)
J(lo - k ) jjr d y (7)x c '% l (7 )0

'T T

y'{i) - j Si7) dr * x(t) -x- J K dr
 l - 1
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Eqs. (5.6-7) and give:

(5.16)

The lowest order solution of eq. (5.16) is :

(5.17)

We should note that particles which have velocities

! / = ± oi , |oc| £ , before the interaction with the packet,

get a velocity V = ih- + after the interaction.

Similarly, in the region of trapped particles, (5.10),

we define:

+ (JL(7)v s tT) (5.18)

J (5.19)

Xfr) kV C7) X,'frJ (5.20)

(5.21)

d-

It-4 j = £.(e*£r>, 4 ) -£ # ?

x'n) N i

S J0 (T) = +åj E 0 U *n>,o) + f}lx'a)j' c O '

(£ T ) -f -Sj 6 1 'i )

r t*

/n )-x - J Ar = j ta t) dr

Bo,, eq. (5*6) reduces to;

= F 0 (£X(7),») w (%l +f) - e Ti 7 (%)
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which gives to lowest order:

(5.22)

If T = P is the time when the interaction between the

partlcle and the packet start, and t- the Interaction time,

we may write eqs. (5.14), (5.1?) and (5.25):

1/

V- (T) rJft'- ' (5.25)

p t Tun T

T° solve eqs. (5.8) and (4,10) to lowest order, we have

to approxlmate \/ c . This may he done, us ing the fact that

fc W) k ) * 0(t K) (5.24)

Therefore eqs. (5.11). (4.16) and (5.25) may be used

as a first step in a successive approximation procedure.

In this section, we shall study the podulation of a electron

plasma wace packet propagating through a collisionless electron

plasma in a background of fixed ions.

¥e assume that:

(6.1)

M 7 -> * - ((?- l/>) 1’ x

YjliV --

r < p

f <r r < p +

Vjt Ct= p * r^j.)

i = 1 > 2, 3

VI. The electron plasma wave packet.

1 ( £<,)*)



ct-sswo 89V.9
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(6.2)

(6.3)

(6.4)

(6.5)

(6.6)

(6.7)

the

(5.12),

To calculate , i = 1, 2, 3, 4, we have to estimate

interaction time, TWa . In the regions (5.8), (5.10),

XXi is the passing time;
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(6.8)

In the regions (5.9). C^l is twice the time needed

to accelerate a particle from 1/

This is approximately:
s| <s r

KiMlfiiy (6.9)
The interaction time in the region (5.10), is also the

passing time, which is approximately:

(6.10)

Å rough figure of the phase-plane is;

~ |1/ - !

= l/j to (/ = l/j + 5

at /, to-Ki/ \
Tua * /i/-iy l KS 0 )

C -(— F -M *i- D K /
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11 )

With these assumptions , the main contribution from the

integrals (2,18-20), is:

(6.
Jdt__ /Jlzlli'C - K l / -f

where the plus-sign should be used for X, - 4, > 0 and

the minus-sign for X, - IX, -£ ; < 0 •

The plus-sign should be used for V - > 0 and the minus-

sign for \/ ~ < OK

r. <* i (i _4 lE (''--M £ 'f“ 0 'J V ~ 1 j2_

* C - ; + 0(t i)

f fr,, r (&%,(> Mit]

'X (x 1 14 J + (6-12)

(I - ))'

+ £ )

S j
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Eqs. (3.11), (4.16), (6.12-13) give :

J - Ij, l‘ ('--'• ; 3) give that the effect of trapped particles,

 I trJL } P ro P a g a tes as a free streaming effect. Because

k “ : tl > ' 9 faster than the packet, and should

he observed as a modulation in the front of the packet.

(J.N. Denavit and R.N. Sudan, 1972).

ihe term in eq. (6.1 3) takes care of the "pulse

effect (M.S. Espedal, 1971). This interaction effect propagates

with the velocity Vp , and modulates the packet itself.

VII. Conclusion.

ihe interaction between particles and an electrostatic

wave packet results mainly in two different effects. We get a

modulation of the packet caused by particles propagating with

velocities near to v . The evolution of these effects is

represented by eq. (4.16).

Particles with velocities near to — get a net change in

velocity during the interaction. The evolution of these effects

is given by eq. (3.11).

*-») =  + R< j T i) d 5 +
4

0
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¥e may note that* taking into account wave-wave inter

action effects, the average equatlon is no longer linear. In

models where these effects appear., we may get similar equation

as those obtained by Y.H.Ichikawa and T.Taniutl.
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