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Abstract

The dynamics of the cellular proportion of mutant mtDNA molecules is crucial for mitochon-

drial diseases. Cellular populations of mitochondria are under homeostatic control, but the

details of the control mechanisms involved remain elusive. Here, we use stochastic model-

ling to derive general results for the impact of cellular control on mtDNA populations, the

cost to the cell of different mtDNA states, and the optimisation of therapeutic control of

mtDNA populations. This formalism yields a wealth of biological results, including that an

increasing mtDNA variance can increase the energetic cost of maintaining a tissue, that

intermediate levels of heteroplasmy can be more detrimental than homoplasmy even for a

dysfunctional mutant, that heteroplasmy distribution (not mean alone) is crucial for the suc-

cess of gene therapies, and that long-term rather than short intense gene therapies are

more likely to beneficially impact mtDNA populations.

Author summary

Mitochondria, best known for their role in energy production, are crucial to the survival

of most of our cells. To respond to energetic demands and mitigate against mutational

damage, cells control the mitochondrial populations within them. However, the character

of these control mechanisms remains open. As experimental elucidation of these mecha-

nisms is challenging, theoretical approaches can help us understand the general principles

of cellular control of mitochondria in physiology and disease. Here, we use stochastic

modelling to compare control strategies by studying their impact on the dynamics of

mitochondrial DNA (mtDNA) populations as well as their energetic burden to the cell.

We identify optimal strategies for the cell to control against mtDNA damage and preserve

energy production and use this theory to explore the action of recently developed mito-

chondrial gene therapies, which reduce the fraction of mutant mtDNA molecules inside

cells. We show how treatment efficiency may depend on pre-treatment distributions of

mutant and wildtype mtDNA molecules: treatments are less effective for tissues consisting
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of cells with highly varying mutant levels, and long-term, rather than short intense, gene

therapies should be favoured.

Introduction

Most human cells contain 100-10,000 copies of mitochondrial DNA (mtDNA) which are situ-

ated inside the mitochondria. The proteins encoded by mtDNA are crucial for mitochondrial

functionality, and mutations in mtDNA can cause devastating diseases [1–6]. Heteroplasmy,

the proportion of mutant mtDNA molecules in a cell, typically has to pass a certain threshold

(* 60-95%) before any biochemical defects can be observed [7–14]. The existence of thresh-

olds at which mutant loads begin to have an effect has profound implications for our under-

standing of disease onset, drawing attention to the variance dynamics of the mutant fraction in

cellular populations. As this variance increases more cells can be above threshold, and thus

show pathology, even if average mutant load is unchanged.

Mitochondrial biogenesis and maintenance require cellular resources, and mitochondria

are key sources of ATP and play other important metabolic roles. The particular ‘effective cost’

that cellular control of mitochondria acts to minimise remains poorly understood: for exam-

ple, both decreases [15] and increases [15, 16] in wildtype copy numbers have been observed

for different mutations as the mutant load increases. Some studies suggest that mtDNA density

is controlled [17–19], others that total mtDNA mass [20, 21], or mtDNA transcription rate

[22] is controlled. Understanding mtDNA population dynamics inside cells, and how these

populations react to clinical interventions, is crucial in understanding diseases [23, 24]. How-

ever, experimental tracking of mtDNA populations over time is challenging, necessitating pre-

dictive mathematical modelling to provide a quantitative understanding.

In parallel with efforts to elucidate cell physiological control, protein engineering methods

to artificially control mtDNA heteroplasmy are making fast progress. Two recently developed

methods for cleaving DNA at specific sites involve zinc finger nucleases (ZFNs) and transcrip-

tion activator-like effector nucleases (TALENs) [25–31], which have been re-engineered to

specifically cleave mutant mtDNA [32–36]. MitoTALENs have been successfully used to

reduce mutant loads in cells containing disease-related mutations, but elimination of the target

mutant mtDNA was not complete [32, 37]. Similarly, treating cells multiple times with

mtZFNs led to near-complete elimination of mutant mtDNAs [35, 36]. Quantitative theory for

these therapeutic technologies has not yet been developed, leaving open questions about how

these tools can be optimally deployed.

In this paper, we develop theory from bottom-up bioenergetic principles which allows us to

study the effects of distinct cellular mtDNA control strategies, to analyse the bioenergetic cost of

different mtDNA states, and to combine mtDNA control and energy-based cost to identify opti-

mal control strategies for the cell. Finally, we construct a model for therapeutic mtDNA control

using recent experimental data [36] and highlight challenges linked to heteroplasmy variance.

Results

Control: General insights on the role of feedback control

We employ a linear form of mtDNA feedback control and assume each mtDNA molecule

replicates and degrades according to Poisson processes with rates λ and μ, respectively.

Because control of biogenesis or autophagy yield similar behaviours [38], we assume that the

degradation rate μ is constant and that feedback control is manifest through the replication
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rate λ(w, m), where w and m denote the number of mutant and wildtype mtDNA molecules in

the cell. To connect with experiments, we use μ� 0.07 day−1 corresponding to a half-life of

about 10 days [39]. We only model post-mitotic cells, though our analysis can be extended to

include cell divisions.

Specifically, we use a birth rate of the form:

lðw;mÞ ¼ mþ c1ðwopt � ðwþ dmÞÞ ð1Þ

where c1 > 0, wopt> 0 and δ are constants, with wopt denoting the steady state value towards

which the effective population, here defined as w + δm, is controlled. The magnitude of c1

determines how tightly the population is controlled. We use the term ‘mitochondrial sensing’

to describe how the cell might sense the mitochondrial population that is present. ‘Mutant

sensing’ then refers to how strongly mutants are sensed relatively to wildtypes, which is

encoded in the parameter δ. When steady state is reached (i.e. w + δm = wopt), replication and

degradation rates are equal. In the absence of mutants, the resulting wildtype steady state is

assumed to be optimal. We note that assuming the existence of wopt does not imply a control

based on copy number. Other quantities related to mitochondria may be controlled instead,

such as total mitochondrial mass or ATP production, their desired values being reached at an

effective population size of wopt. Thus, we define ‘mitochondrial sensing’ to refer to a wide

range of mechanisms available to the cell to infer properties of its mitochondrial population,

which can then be used to decide on a control action.

The deterministic dynamics resulting from this control are described in Eq (4). We do not

include the possibility of de novo mutations but our approach can straightforwardly describe

the subsequent behaviour if new mutations arise. Our linear model shares features with the

‘relaxed replication model’ [40, 41] (Eq (5)), though is written in a simpler form. The relaxed

replication model has been used in a variety of other models [42, 43] and has obtained experi-

mental support [15].

We will first investigate properties of more general control strategies, after which we return

to our linear control and discuss parameterisations that optimise the energy status of the cell.

Finally, we use the linear control to fit recent experimental data involving treatment of hetero-

plasmic cells with mtZFNs.

A wide range of control strategies induces similar mtDNA behaviour and admits quan-

titative analysis. Many possible control strategies can be parameterised to give rise to nearly

identical means and variances for wildtype, mutant, and heteroplasmy dynamics up to long

times (e.g. a human life-time) (Fig 1A, 1B and 1C, S1B, S1C and S1D Fig). This is especially

true when mtDNA copy numbers fluctuate around their steady state values, in which case a

linear control forms a good first order approximation to the complex ‘true’ control function.

In this case, it is not the manner in which the controlled quantity is being controlled, but

which quantity is controlled that is the most important. For example, the extent to which

mutants and wildtypes contribute to the replication feedback function (determined by δ)

determines how their relative means and variances evolve (Fig 1D), and contains more infor-

mation on the dynamics than the functional form of λ(w, m) for fixed δ (e.g. whether λ(w, m)

is linear or quadratic).

We stress the difference between two types of average heteroplasmy, as was also

stressed in Ref. [41]: the individual cellular mean heteroplasmy hhicellular ¼ 1

ncells

X

cells i

mi
miþwi

(with ncells the number of cells in the tissue) and the tissue homogenate heteroplasmy

hhihomog ¼ ð
X

cells i

miÞ=ð
X

cells i

ðmi þ wiÞÞ. This difference is clearly seen in Fig 1C. When no

explicit selection is present for either mtDNA species, mean cellular heteroplasmy remains
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constant at its initial value m0/(m0 + w0), where w0 and m0 denote the initial wildtype and

mutant copy numbers, respectively. The homogenate heteroplasmy at long times is given by

m0/(m0 + δw0) (section 2.2 in S1 File). It is clear that when mutants contribute little to the

feedback control (small δ), tissue homogenate heteroplasmy can reach high values, and even

approach hhihomog = 1, without explicit selection. A tissue can thus appear, when studying

the homogenate heteroplasmy, to show selection for one type of mtDNA over another,

whereas in fact mean cellular heteroplasmy is unaltered and mutant and wildtypes have

identical proliferation rates.

Nonlinear cost functions predict changes in tissue maintenance. The birth-death model

used to describe mtDNA dynamics can be written as a master equation (Methods, section 1 in

S1 File). S1 Table shows the first order solution of the system size expansion, an approximation

method to master equations, which is known as the linear noise approximation (LNA). Apply-

ing this approximation to a general form of mtDNA control (section 1 in S1 File), we find that

i) if only one species is controlled, the variance of this species quickly reaches a constant value

(see also [38]), ii) when both species are controlled with equal strength their variances increase

at identical rates, iii) in general the more tightly controlled species has a more slowly increasing

variance, and iv) the rate of increase of heteroplasmy variance depends, to first order, only on

mtDNA copy number and turnover (as found in [38]) (Fig 1, Table 1(I)). Eventually, all vari-

ances reach a constant value due to fixation.

Fig 1. A-C: A wide range of cellular control strategies can yield similar dynamics. Stochastic simulations were used to compare three structurally distinct cellular

controls (see legend), each reflecting a different function of the underlying sensed quantity w + δm with δ = 0.5. All controls are set to have the same wildtype mean and

variance in the absence of mutants (section 2 in S1 File). No explicit selection for either mtDNA species is used. Figure (C) illustrates the difference between cellular

mean and tissue homogenate heteroplasmy. D: Control tradeoffs are required when multiple species are present. The more strongly one species is controlled, the

more control is lost over the other. Changes in variances between cells as described by the linear noise approximation (section 1 in S1 File) are shown (intermediate

times). For long times, fixation occurs and the variance of the surviving species saturates. In the most-right figure we depicted the case in which mutants contribute less

to the control than wildtypes (δ< 1).

https://doi.org/10.1371/journal.pcbi.1007023.g001
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What are the biological implications of these findings? A given mtDNA state (w, m) will

accrue a cost to the cell, denoted by C(w, m), which can e.g. be an energetic cost or some other

metric of tissue burden. If this cost function is nonlinear, increasing variances in w and m can

lead to changes in mean cost hC(w, m)i even when mean cellular copy numbers hwi, hmi
remain constant (Methods) because the mean of a nonlinear function of random variables is

not generally equal to the function of the mean of those variables (as seen above with cellular

vs homogenate heteroplasmy). Therefore, the mean cost of maintaining a tissue may increase

over time, even if tissue demands and mean mtDNA levels stay constant (Table 1(II)). How-

ever, these increases may be small and their significance depends on the details of the cost

function: hence the need to consider explicit forms, as we do in the next section.

Cost: An effective mitochondrial energy-based cost function

Next, to find general quantitative principles underlying mitochondrial energy budgets, we

build a cost function that assigns a cost to any given mtDNA state (w, m) and allows a general

quantitative investigation of the tradeoffs in maintaining cellular mtDNA populations. The

‘true’ energy budget of a cell with a given mitochondrial population is highly complex, involv-

ing many different metabolic processes in which mitochondria are involved [44–46]. We pro-

vide a simpler description, focussing on ATP production as a central mitochondrial function,

and removing kinetic details in favour of a coarse-grained representation, to provide qualita-

tive rather than quantitative results.

General cost function structure. Three important terms involved in the energy status of

a cell are: i) the energy demand D, ii) the net energy supply S, and iii) the efficiency of energy

supply. Here we define efficiency as the amount of energy produced per unit of resource con-

sumed. We included intuitive and general terms in our energy-based cost function, such as

Table 1. Key results.

Key results presented in this paper.

I If only one mtDNA species is controlled the variance of the controlled species reaches a constant value. When

both species are controlled with equal strength their variances increase at identical rates, and, in general, the

more tightly controlled species has a more slowly increasing variance (Fig 1). [D]

II The mean energetic cost of maintaining a tissue can increase over time due to the nonlinear influence of

mtDNA variance, even if the energetic demand on the tissue stays the same and mean levels of mtDNA are

constant (Eq 6). [D]

III Intermediate heteroplasmy states can be more expensive than states homoplasmic in either mutant or

wildtype. [C]

IV A control lacking any mutant contribution can show an exponentially increasing cost, and the effects of

particular cellular control strategies are more pronounced in low copy number cells (Fig 3A and 3B). [D, C]

V Control strategies based on the energy status of the cell can often outperform control based on mtDNA copy

number or sensing mtDNA mass (which would work well for deficient deletion mutants, but would be

suboptimal for deficient point mutations) (Fig 3C). [D,C]

VI Even for pathological mutants, reduction of mutant mtDNA alone is not always the optimal control strategy

for a cell to adopt (Fig 4). [C]

VII Tissues with high mean heteroplasmy levels will generally be harder to treat with mitochondrially targeted

endonucleases if the heteroplasmy variance is high, especially if this high mean level is caused by a small

percentage of cells (Fig 6A and 6B). [D,T]

VIII Weak long-term rather than short intense endonuclease treatments are more likely to beneficially impact

mtDNA populations (Fig 6D and 6E). [D,T]

Here we present key results of this paper, which hold under the assumptions used in our models (see text and

Discussion). We place in square brackets the models we invoke for each part: D—our model for mitochondrial

dynamics; C—a particular illustrative family of cost functions; T—a model for gene therapy.

https://doi.org/10.1371/journal.pcbi.1007023.t001

Energetic costs and control of mitochondrial DNA populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007023 June 26, 2019 5 / 27

https://doi.org/10.1371/journal.pcbi.1007023.t001
https://doi.org/10.1371/journal.pcbi.1007023


replication, degradation and maintenance costs, supply and demand, and resource availability.

We seek a cost function that captures the idea that there might be an optimal number of mito-

chondria: not so few that each mitochondrion is inefficiently overworked and not so many

that the burden of the mitochondrial population is itself large.

We express our effective cost function as:

Cðw;mÞ ¼ jD � Sðw;mÞj þ aðwrw þmrmÞ ð2Þ

where α is a scaling constant, and ri gives the rate of resource consumption of a mitochondrion

of type i (w or m). The second term assigns a cost to the use of resource. The terms in this cost

function are expressed as rates: S and D correspond to net energy production (supply) and

demand per unit time. Supply and demand terms are left deliberately generalisable to encom-

pass the differences in metabolic poise between cell types. The demand can be considered to

represent energy requirements of all cellular processes besides mitochondria (whose mainte-

nance costs are incorporated in their net supply S(w, m)), which we assume to be constant. We

are therefore modelling post-mitotic cells in stable environments, as demands are expected to

change throughout the cell cycle. This cost function can be evaluated for any state (w, m) and

assigns the lowest cost to a state that satisfies demand in the most efficient way.

The net energy production of a state (w, m), S(w, m), is modelled as

Sðw;mÞ ¼ wðsðrwÞ � r1Þ þmð�2sð�1rwÞ � r1Þ � ðwþmÞðr2lþ r3mÞ ð3Þ

where ρ1,2,3 are mitochondrial maintenance, building, and degradation costs, s(rw) denotes the

power production (in ATP/s) of a single wildtype mitochondrion given a resource consump-

tion rate rw (Methods, section 4 in S1 File), and λ and μ (which can be functions of w and m)

denote the birth and death rates in units per second. Mutant mtDNA molecules are distin-

guished by the parameters �1, �2 2 [0, 1] describing the mutant resource uptake rate (�1) and

efficiency (�2) relative to that of the wildtypes (rm = �1rw). A low �1 could represent reduced

flow through the electron transport chain due to e.g. damaged respiratory complexes, whereas

a low �2 could denote increased proton leakage. Many mutants are known to have dysfunc-

tional respiratory chain complexes [47], likely causing reduced electron flow through the respi-

ratory chain and therefore reduced consumption rates of respiratory substrates such as NADH

and oxygen. We therefore use �1 < 1 and �2 = 1 as our default choice (further described in sec-

tion 4.7 in S1 File), though settings with �2 < 1 are also investigated (section 5 in S1 File).

The more detailed structure of our cost function, which has been relatively general so far,

comes from specifying the relation s(rw). In other words, how does the energy output of a

mitochondrion depend on its resource (e.g. oxygen) consumption rate? We consider two pos-

sible forms for this function (section 3 in S1 File): a linear output relationship, suggested by

some literature [48–50], and a saturating relationship, which accounts for finite resource con-

sumption and spare mitochondrial capacity [51, 52] (section 5 in S1 File). We refer to these

alternatives as the ‘linear output model’ and the ‘saturating output model’. Both models are

described in more detail in our Methods section (Eq 7).

A trade-off between yield (efficiency) and rate of ATP production is present in yeast [53–

55] whose rate of ATP production due to respiration can become saturated at high resource

levels or limited oxygen supply [53, 56]. Higher energy production rates can then still be

obtained by using fermentation at the expense of a lower yield [53]. A similar trade-off may

exist in mitochondria, whose power production efficiency is higher when oxidizing NADH

compared to oxidizing succinate [50]. The former may be the preferable substrate due to its

higher yield, but if its levels become limiting an increase in the relative use of succinate would

lower overall efficiency. When oxygen is limiting, increased glycolysis in an attempt to increase

Energetic costs and control of mitochondrial DNA populations
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ATP production also leads to lower overall efficiency. These mechanisms could be the cause of

a reduced power production efficiency at high energy demand, as proposed in our saturating

output model. We will contrast our findings of the saturating output model with those gener-

ated by the linear output model.

We fitted the parameters of the linear output model using data provided in Ref. [48] (sec-

tion 3 in S1 File), and set the parameters of the saturating model such that the two models

behave similarly at low ri. Further details on the choice of parameter values, and their bio-

chemical interpretations, are given in section 4 in S1 File; default values are provided in S2

Table. For a given demand D we find the rw which gives a demand-matching supply (details of

the scenarios when supply cannot meet demand are given in section Methods). Given rw we

calculate rm (using rm = �1rw) and so calculate the cost C(w, m).

In taking both the linear and saturating output models into consideration we have endeav-

oured to build the most general picture of a mitochondrial cost function that retains bottom-

up interpretability. Where possible, we estimate associated parameter values based on experi-

mental data. However, other cost function choices are certainly possible and can be analysed

using the platform we present below: our objective here is to complement the generic result

regarding cost functions in paragraph “Nonlinear cost functions predict changes in tissue

maintenance.” with a specific reasonable choice of cost.

Intermediate heteroplasmies may be inefficient and resource availability can dictate the

cost of mtDNA states. Fig 2 shows heatmaps of the cost function in (w, m)-space for differ-

ent mutant pathologies (modelled as different values of �1). Our cost function generates a het-

eroplasmy threshold, its value depending on both wopt and δ, above which demand cannot be

satisfied using oxidative phosphorylation (Fig 2), though increased glycolysis may still main-

tain cell viability. The threshold effect is an established phenomenon in mitochondrial physiol-

ogy [7–14].

The state with lowest cost according to the linear output model is one with a minimum

number of mitochondria required to satisfy demand (Fig 2C), where these mitochondria

respire as fast as possible. This would mean that this state of lowest cost has no spare capacity.

Assuming a cell controls its mitochondrial population towards the state with lowest cost, the

linear model predicts cells to lack spare capacity, contradicting experimental observations

Fig 2. Intermediate heteroplasmies can be less efficient than either wildtype or mutant homoplasmy. A visualization of the cost function in (w, m) space is shown for

both saturating and linear output models, for various mutant pathologies (described by �1). For visualization purposes, states in which cellular demand cannot be

satisified are shown in white. Cells in these states may still survive by e.g. increasing glycolysis (effectively reducing mitochondrial demand). This figure assumes high

copy numbers, results are qualitatively similar for low copy numbers. The actual cost values (given by the colour map) are of lesser importance for our findings, we rather

focus on the qualitative shape of the cost function. A: The magenta (solid) and black (dashed) lines show the contour of the demand-satisfying region when demand is

increased by 10%, or demand is increased by 50% and cellular resource availability is increased by 35%, respectively. B: The orange line corresponds to constant total

copy number; moving up along this line increases heteroplasmy. Cells in region 1 or region 3 are more efficient, and show a lower cost, than cells in region 2. C: The

linear mitochondrial output model does not show a decreased efficiency at intermediate heteroplasmy values.

https://doi.org/10.1371/journal.pcbi.1007023.g002
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[51, 57, 58]. A saturating output model solves this problem (S2E Fig and Fig 2A and 2B) and

generates a trade-off between using each mitochondrion efficiently (minimising its resource

consumption by increasing population) and minimising the cost of maintaining the total

number of mitochondria (achieved by reducing the population). At low resource consump-

tion, representing the linear regime of the saturating output model, the two models are

similar.

We observe other qualitative differences in cost function structure between the saturating

and linear output models. In the former, it is possible for intermediate heteroplasmy states to

be more expensive than states homoplasmic for either species (Fig 2A and 2B). Hence, in the

saturating output model, it is possible for intermediate heteroplasmies to be the least efficient

and the most expensive (Fig 2 and S4 Fig, Table 1(III)). This result arises from a tradeoff,

when mutant load is increased, between a decrease in global efficiency and a reduction in

resource consumption by the new mutants (section 5 in S1 File). The linear output model, on

the other hand, always shows higher costs at higher heteroplasmy (for fixed total copy number)

(Fig 2C).

For our cost function, the existence of a high-cost intermediate heteroplasmy value is a rela-

tively general feature of the saturating output model. We calculated the value of heteroplasmy

with maximum cost (at constant total copy number), denoted by hmax, as a function of several

model parameters. hmax = 1 (the homoplasmic mutant state) at values �1 ≲ 0.3 due to very low

mutant functionality. However, at higher values of �1 (0.5 ≲ �1 < 1) we find hmax* (0.5–0.8)

over a large range of several of our cost function parameters (section 5.2 in S1 File). Though

the size of the effect may be small, its existence alone is an interesting feature of our saturating

output model.

It was previously found that it is possible for two mtDNA variants in mice to function nor-

mally at homoplasmy, but show deficiencies in heteroplasmic states [59]. While we do not

claim that our model is the reason behind these observations it does suggest that differing

resource consumption rates associated with distinct mtDNA species may play an important

role.

Combining cost and control: Comparison and optimisation of both cellular

control and treatment strategies

Timescales and energy sensing in optimal control of mtDNA populations. Here we

compare the mean cost over time for four plausible cellular control strategies. The first two

consist of the linear feedback model λ(w, m) = μ + c1(wopt − (w + δm)) with (I) δ = 0 (only

wildtypes are sensed) and (II) δ = 1 (total mtDNA copy number is controlled). We further

identify optimal parameterisations (i.e. ones that minimise steady-state cost) of two control

strategies, namely (III) a linear feedback control and (IV) the ‘relaxed replication model’

(Eq (5)) [40, 41].

First, we fix the parameter values that are not being optimised. Our goal is to compare the

costs of the dynamics resulting from each of the four controls, in the presence of mutants. In

other words, we want to investigate whether some of these controls are better at protecting the

cell (in the sense of maintaining a low energy cost) against mutant loads than others. To make

this comparison fair, we demand that all controls yield the same dynamics in the absence of

mutants: we set the wildtype mean and variance in this case to be identical under all controls.

The mean is chosen to be wopt (assuming that, without mutants, each control steers the popula-

tion of wildtypes to its optimal value) and the variance is set by fixing the parameter αR in the

relaxed replication model to αR = 10 (Eq (5)), as its value was originally estimated to lie in the

range (5–17) [40]. This fixes the value for c1 in models (I)-(III) (S3 Table).
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We now wish to optimise the parameters δ and η in models (III) and (IV). These parame-

ters have direct impact on how mutants are sensed by the cell, and are important in determin-

ing how the dynamics change when mutant load increases. We thus want to investigate i)

whether there exists an optimal amount of mutant sensing, and ii) how the cost of the dynam-

ics resulting from these optimal parameters δopt and ηopt compares to that of our other two

control strategies with δ fixed at either 0 or 1. To do this, we require both an optimization

time-scale T and a set of initial conditions. We use T =1, corresponding to the steady state

limit, and initial heteroplasmy values in the range h0 2 [0, 0.2]; we later consider finite values

of T.

Through stochastic simulations, we find that i) a control lacking any mutant contribution

shows an exponential increase in cost over time, and ii) effects of particular control strategies

are more pronounced in low copy number cells (Table 1(III)) (Fig 3). The relaxed replication

rate control and our linear feedback function behave very similarly when δ and η take their

optimal values. Cost variances, as well as mutant and wildtype dynamics, are shown in S6 Fig.

Model II shows an increase in mean cost over time while mean mutant and wildtype copy

numbers remain constant (Fig 3 and S6 Fig)—this is due to increases in copy number vari-

ances as argued previously.

We now investigate how the optimal value of mutant sensing for the linear control (δopt)
depends on timescale T, initial heteroplasmy h0 and the ‘mutant pathology level’ described

by �1. Here, we use the term ‘mutation pathology level’ to refer to a lower energy production

rate of mutants due to a lower resource consumption rate, while ‘mutant sensing‘, as

explained earlier, is used as a more general term. Intuitively, values of �1’ 1 have δopt� 1:

when wildtypes and mutants are equivalent, having a steady state with w + m = wopt is

desirable.

Values for δopt were found for the linear and saturating models, with low and high initial

heteroplasmy values, for T = 100 days (Fig 3C). Having δ� 1 means wildtypes and mutants

are fed back similarly, whereas when δ� 1 mutants are fed back less. For very deficient

mutants (low �1), a low δopt ensures that wildtype copy number remains close to its optimal

value to compensate for the mutants. Generally, as �1 decreases, δopt decreases (Fig 3C). Similar

results are found for longer timescales T (section 5.3 in S1 File).

Fig 3. A control that senses no mutations shows an exponentially increasing cost, which is most noticeable in low copy number cells. A + B: Here we show the mean

cost (3 × 104 repeats) for the following four controls: linear feedback controls λ(w, m) = μ + c1(wopt − (w + δm)) with I) δ = 0, II) δ = 1, and III) δ = δopt, and IV) the

optimised ‘relaxed replication control’ [40, 41] (Eq (5)). Controls were initialised in steady state at h0 = 0.15. Both figures used the saturating output model; figures (A)

and (B) correspond to low and high copy number cells, respectively. We used �1 = 0.3; other control parameters used are specified in section 5.3 in S1 File. C: A control

based on sensing mitochondrial energy output is generally a good strategy. This plot shows the optimal value of δ in our linear control as a function of �1, for the linear

and saturating model and for both low (h0 = 0.1, solid line) and high (h0 = 0.8, dashed line) initial heteroplasmies. Here we used T = 100 and high copy number values for

both models. Similar plots for T = 104 are shown in S7 Fig, section 5.3 in S1 File. In the linear model δopt becomes negative for low �1 values; as mutant copy number

increases, a negative δ leads to an increase in wildtype to compensate for the deficient mutants.

https://doi.org/10.1371/journal.pcbi.1007023.g003
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If mitochondrial energy outputs are sensed, the quantity ‘w + δm’ represents the mitochon-

drial energy production rate (power production). In this case, a mutant with low �1 produces

less energy and is thus sensed less (low δ). The relation between �1 and δ now obeys the optimal

trend shown in Fig 3C. Therefore, control strategies based on the energy status of the cell can

often outperform controls based on mtDNA copy number (which always have δ = 1) or sens-

ing mtDNA mass (which would work well for deficient deletion mutants, but would be subop-

timal for deficient point mutations) (Table 1(IV)). Control based on copy number is preferred

when a mutant is nearly as functional as a wildtype, in which case energy output and copy

number are very much related. We have not used the expression for energy output in our cost

function as a control strategy itself because claims based on the linear function w + δm are

more general than one based on the details of our cost function.

Locally optimal control strategies map the control space of mtDNA populations. Our

cost function allows us to identify locally optimal controls: controls that, for each state (w, m),

move the system in the direction of the largest decrease in cost. The resulting dynamics are

shown in Fig 4. When heteroplasmy is high, the main priority is not always to decrease mutant

copy number, but to increase wildtype copy number even if this means an increase in mutant

load (region 2 in Fig 4A). Only after wildtype copy number has sufficiently increased should

the focus be on decreasing m. At high copy numbers, the optimal dynamics are to decrease all

mtDNA in an evenhanded manner (region 1) rather than decreasing m at a faster rate than w.

For the saturating model, there is a divergence point in the space of local optimal strategies,

reflecting the two local cost minima (high wildtype and high mutant) observed earlier (Fig 2).

Hence, there are several regions of state space where even for pathological mutants, reduction

of mutant mtDNA alone is not always the optimal control strategy (Table 1(V)). Finally, the

less pathological the mutants become (e.g. Fig 4B), the more the locally optimal control starts

to resemble a linear control. In the linear output model, the optimal control always shows lin-

ear behaviour (Fig 4C).

A parameterised model of artificial mtDNA control for disease treatment. In the previ-

ous section we identified locally optimal control strategies. Of course, these strategies may not

be achievable by the cell (e.g. the cell may not be able to decouple biogenesis of wildtype and

mutant mtDNA). However, such controls may still be possible through human intervention.

Fig 4. Locally optimal controls show nonlinear behaviours close to demand-satisfying regions, but linear optimal dynamics far away from these regions.

Streamplots in (w, m)-space show the dynamics resulting from a locally optimal control, for various parameters of �1. At each point, arrows show the direction

corresponding to the largest decrease in cost. Regions are coloured according to the magnitude of the decrease in cost when moving in the optimal direction. Black

arrows illustrate general trends in these regions. A: Region (1) shows that at high copy numbers, both mutant and wildtype mtDNAs should be decreased in an

evenhanded manner; region (2) shows the possibility that the optimal control involves an increase in mutant copy number. B: A higher value for the parameter �1 is

used, meaning mutants are less pathological. C: the locally optimal control for the linear output model more closely resembles a linear control. In both (A) and (B)

we see a divergence point (red asterisk) illustrating the fact that both high mutant and high wildtype states constitute local attractors of low cost (as in Fig 2).

https://doi.org/10.1371/journal.pcbi.1007023.g004
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This is why, in this section, we model recently developed genetic treatments to artificially con-

trol mtDNA populations. We then combine this treatment model with our linear feedback

control λ(w, m) and our cost function.

Mitochondrially targeted zinc finger nucleases (mtZFNs) [35, 36, 60–62] are able to pro-

duce shifts in heteroplasmy by specifically cutting mutant mtDNA. To develop quantitative

theory to understand and tune the effects of these interventions, we model nuclease transfec-

tion as inducing selective increases in mtDNA degradation, on the background of the linear

cellular feedback control introduced earlier. Our transfection model contains three parameters

describing strength (I0), duration (b), and selectivity (ξ) of nuclease treatment (Methods). We

assume that for every mutant that is cleaved by the endonucleases, ξ wildtypes are cleaved [36].

For example, when ξ = 1 there is no distinction between mutants and wildtypes, and when ξ =

0 there is no off-target cleavage.

We fit these treatment parameters, as well as our feedback control parameters c1 and δ, to

recently obtained experimental data [36]. These data involve heteroplasmy and mtDNA copy

number measurements during iterative treatments with mtZFNs of 80% heteroplasmic human

osteosarcoma 143B cybrid cells. Four sequential cycles of transfection and recovery were per-

formed, where each recovery period lasted 28 days [36]. We use the data provided in Ref. [36]

as well as additional data from this reference which was not explicitly provided in the paper.

For the current study, we have collected new data consisting of: i) measurements of total

mtDNA copy number in pre-treatment cells (which are used as initial conditions in our infer-

ence model), and ii) measurements of mtZFN expression profiles (S9 Fig).

A Bayesian description of nuclease treatment. We use Metropolis sampling to obtain

posterior distributions of the parameters I0, b, ξ, c1 and δ (Methods). Bayesian credible

intervals for heteroplasmy and total copy number values during four consecutive rounds of

treatment are shown in Fig 5A and 5B, illustrating the ability of this simple model to capture

the dynamics resulting from nuclease activity. A periodicity of 28 days was imposed, represent-

ing the experimental protocol (Methods).

Our inference suggests the selectivity parameter ξ to lie in the range 0.6–0.8, indicating high

levels of off-target cleavage (S10 Fig). This is not surprising given the large drop in total copy

number (as low as *5% of initial values) combined with a modest shift in heteroplasmy (from

0.8 to * 0.6) upon the first treatment. Supporting the high off-target cleavage, mtZFNs not

targeted to any mtDNA sequence reduced copy numbers to 25% of their original values [36].

We now investigate whether our model can account for additional data (obtained in

Ref. [36]) consisting of heteroplasmy and copy number measurements in a setting in which

the concentration of mtZFNs is reduced by incorporating hammerhead ribozymes in the

mtZFN backbone (for details, see Ref. [36]). A single round of treatment and recovery in this

setting led to a large shift in heteroplasmy, from h� 0.8 to h� 0.2, and a drop in copy number

similar to the previous setting in which mtZFN concentrations were higher (after 24 hours,

mtDNA copy number dropped to*20% of its original value) [36]. These observations indi-

cate that lower mtZFN concentrations lead to the treatment being more selective and, surpris-

ingly, of similar strength. Because the additional data involves a different experimental setup

inducing a large increase in selectivity, we adjust the parameter ξ to fit this additional data by

finding its maximum likelihood estimate (Methods) but use posterior samples for all other

parameters (obtained from inference based only on the data shown in Fig 5A and 5B). We

find, consonant with an improved selectivity of this modified protocol, that ξ� 0.15 in this

low mtZFN concentration setting (Methods) and that our model can reproduce the hetero-

plasmy and copy number dynamics using our previously fitted parameters I0, b, c1 and δ
(Fig 5C and 5D).
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Finally, we measured transient expression profiles of mtZFNs using the same transfection

protocol as in Ref. [36] (S9 Fig). Posterior samples of the parameters I0 and b predict that

mtZFN levels have dropped to very low levels 5 days post-transfection in the setting without

hammerhead ribozymes, consistent with our obtained experimental data (S11 Fig). We thus

show that our model is capable of capturing the dynamics of several data sets. Our mtZFN

treatment model predicts that total copy number reaches a minimum at around 3 days (Fig 5B

and 5D).

Knowledge of the heteroplasmy distribution of a tissue is important in determinining

how effciently the tissue can be treated. To explore the effect of the heteroplasmy distribu-

tion on treatment efficacy, we consider three initial h distributions with different variances but

identical homogenate means. We treat these populations multiple times using the parameter

fits obtained in the previous section. The resulting shifts in heteroplasmy distribution,

Fig 5. Bayesian credible intervals show the ability of a simple nuclease treatment model to capture experimental observations. We used Metropolis sampling to fit

our model parameters to recently obtained experimental data [36]. Solid black lines correspond to the maximum a posteriori (MAP) prediction and vertical dashed lines

indicate transfection events (once every 28 days). A: Drawing from our posterior distributions (5 × 104 samples), we show the mean and 50% and 95% credible intervals of

our heteroplasmy dynamics predictions during four rounds of treatment and recovery. Deterministic simulations were used. Crosses indicate data points from

Ref. citeGammage16Near. B: Similar to figure (A), but showing relative total mtDNA copy numbers. C + D: Heteroplasmy and copy number dynamics were measured

during a single round of treatment and recovery in a setting in which the mtZFN concentration was reduced by incorporating hammerhead ribozymes in the mtZFN

backbone [36]. The credible intervals shown were obtained by sampling from the posterior distributions of the parameters I0, b, c1 and δ obtained using the data in figures

(A) and (B), and using ξ* 0.15 which represents the maximum likelihood estimate of ξ using this low mtZFN concentration data (Methods). Error bars in figure (D)

show standard deviations of experimental measurements [36].

https://doi.org/10.1371/journal.pcbi.1007023.g005

Energetic costs and control of mitochondrial DNA populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007023 June 26, 2019 12 / 27

https://doi.org/10.1371/journal.pcbi.1007023.g005
https://doi.org/10.1371/journal.pcbi.1007023


including mean and threshold-crossing probability, are shown in Fig 6A and 6B. High hetero-

plasmy variances require many cells close to the two extremes h = 0 and h = 1, which are chal-

lenging to shift. A striking reduction in treatment efficacy is predicted as heteroplasmy

variance increases while fixing its mean (Fig 6A and 6B). Threshold crossing probability (for

example, P(h> 0.6)) also becomes harder to shift at higher variance. We conclude that tissues

with a high mean heteroplasmy level will generally be harder to treat if the heteroplasmy vari-

ance is high, especially if this high mean level is caused by a small percentage of cells.

We can use our parameterised theory to find optimal treatment strengths I0,opt for a given

system. Fig 6C shows I0,opt as a function of �1. Intuitively, the strongest treatment should be

given to the least functional mutants, and when mutants are almost as functional as wildtypes

Fig 6. Knowledge of the heteroplasmy distribution is important in predicting how efficiently a tissue can be treated. A + B: The effect of four simulated consecutive

treatments on three different initial heteroplasmy distributions is shown; all initial distributions have identical means (hhi = 0.8) but different variances (increasing from

left to right). The higher the variance of the initial population, the harder to shift mean heteroplasmy values; mean values after each treatment as well as P(h> 0.6) are

shown in figure (B). In these simulations we assumed that every cell gets transfected. Gentle but sustained treatments induce larger heteroplasmy shifts than hard and

brief treatments. C: Both the linear and saturating model show a sharp drop in the optimal treatment strength I0,opt as the mutants become more functional (i.e. as �1

increases). D: Means and variances of mutant and wildtype copy numbers were simulated during a round of treatment and recovery, using: i) parameters fitted to the

data shown in Fig 5A and 5B (blue), ii) a longer treatment duration (smaller b, green) and iii) a higher selectivity (smaller ξ, magenta). MtZFN levels first drop below 5%

of their maximum values after *4.5 and *35 days for the short (blue, magenta) and long (green) treatments, respectively. The longer weaker treatment induces higher

heteroplasmy shifts than the shorter stronger treatment. �1 = 0.2 was used, the corresponding cost heatmap is shown. Error bars show standard deviations (based on 104

stochastic simulations), further detailed are given in section 6.6 in S1 File. E: This figure also illustrates that gentle sustained treatments lead to larger heteroplasmy shifts.

Examples of treatment trajectories are shown; after a single treatment, an initial heteroplasmy of 0.8 is mapped to 0.53 (short strong treatment) or 0.39 (long weak

treatment). Parameters chosen in figures (A)–(E) are based on the inference performed earlier, their exact values are provided in section 6.6 in S1 File.

https://doi.org/10.1371/journal.pcbi.1007023.g006
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it is preferable not to treat at all. The optimal treatment strength drops rather sharply as �1

increases, and does so sooner for the saturating model. This last observation may be because at

some point reducing heteroplasmy becomes more expensive as can be seen in Fig 2B. Optimal

treatment strengths for longer treatments (higher b) show similar qualitative behaviour.

Fig 6D shows trajectories in (w, m) space throughout a single treatment and recovery phase.

The three trajectories shown correspond to: i) a short and strong treatment, ii) a long and

weak treatment, and iii) a short but more selective treatment. The value for I0 was chosen such

that, for the specific treatment duration b used and given a fixed total simulation time, the shift

in heteroplasmy was largest. For the short treatment a relatively large proportion of time is

spent fluctuating around steady state values (dynamics which do not change mean h) due to a

relatively quick recovery, whereas for longer treatments more time is spent in the treatment

phase itself (dynamics which lower mean h). We thus find that in a given time frame, treating

longer but weaker results in a lower final heteroplasmy value than treating short and strong

(Table 1(VIII)). A weaker treatment also reduces the chance of a cell losing all its mtDNA mol-

ecules. Intuitively, a more selective treatment leads to larger heteroplasmy shifts.

Nuclease treatment and a subsequent recovery phase will have the net effect of mapping an

initial heteroplasmy value hi to a mean final heteroplasmy value, hf. We simulated this map-

ping in the presence of cellular feedback control (Fig 6E), finding that heteroplasmy shifts are

largest for intermediate heteroplasmies. The difference in treatment results for long compared

to short treatments is also illustrated. Interestingly, for high h values, it is possible to end up

with a higher heteroplasmy value after treatment, especially if ξ’ 1 (S8 Fig).

Discussion

In this work, we have built a quantitative theory bridging stochastic optimal control, costs of

mtDNA populations, and gene therapies. Our results contribute to a growing body of evidence

[63–66] that the variance of mtDNA populations has important physiological and therapeutic

implications independently of mean heteroplasmy, and underline that stochastic theory is

required to understand this biologically and medically important quantity.

Key findings of our model (Table 1) include (I) the identification of tradeoffs in the control

of one or the other mtDNA species; (II) the observation that increasing mtDNA variance can

lead to increased energetic costs over time and ageing even when means and demands are pre-

served; (III) intermediate heteroplasmy states can be more expensive than states homoplasmic

in either mutant or wildtype; (IV) mutant sensing can be required to avoid an exponentially

increasing cost; (V) sensing of cellular energetic status can be more effective than other targets

like mitochondrial mass; (VI) reduction of mutant mtDNA alone is not always the optimal

control strategy; (VII) high heteroplasmy variance challenges gene therapy treatments; and

(VIII) weak, long gene therapy trajectories are more effective than short, intense ones.

Our findings hold qualitatively under the range of conditions we discuss above. The aim of

our manuscript is not to make detailed quantitative predictions and conclusions based on

complex models, nor do we intend to imply that our models are the only possible models one

could construct. Rather, we aim to provide general biologically plausible models to gain quali-

tative insights and to comment on large-scale behaviours. To this end, our cost function, used

to illustrate some of our results, is phenomenological and contains several parameters. Most of

these are biologically interpretable, meaning their values can be obtained or estimated from

the literature. The main elements in our cost function are quite general: terms involving sup-

ply, demand, and resource.

To test the qualitative shape of our cost function, one could sort cells based on mitochon-

drial copy number and heteroplasmy to obtain samples at different points in (w, m) space.
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Measurements of e.g. cell proliferation, ROS or apoptosis rates allow for the evaluation of an

effective cost at each of these points. By measuring the relative consumption rates of NADH

and succinate, as well as the amount of ATP produced per glucose consumed, in identical cells

exposed to different energy demands, the saturating output model may be probed.

If the parameter δ is low, i.e. mutants are sensed less, mutant copy numbers at high hetero-

plasmies will be higher than wildtype copy numbers at low heteroplasmies. Experimentally, it

has been observed that heteroplasmic cells can have total mtDNA copy number values that are

5-17-fold higher compared to cells homoplasmic in wildtype [67–70]. The cell has somehow

allowed these mutants to expand, which may mean that they are less tightly controlled; con-

trols based on total energy output or mtDNA mass (which can result in δ< 1) may lead to

such behaviours. A control on mtDNA mass could explain why deletion mutants are often

seen to expand [71, 72] and would also predict normal copy number levels in cells harbouring

mtDNA point mutations. Recently, it was found that samples with mtDNA indels had very

high mtDNA copy number levels, but single nucleotide variants did not [73].

We showed that heteroplasmy distributions in cell populations can provide important

information about the possibility of successfully treating these cells with endonucleases. A tis-

sue may be harder to treat if its high mean heteroplasmy level is caused by a small percentage

of dysfunctional cells. Experimental values of mean homogenate heteroplasmy in heart tissue

of patients with the 3243A>G mutation are roughly around 0.8 (though ranges can be large

[74–77]) and muscle tissue often shows mosaic structures, with deficient patches of cells adja-

cent to healthy cells. These examples show that it may be that, at least in some cases, high

mean levels are indeed caused by a relatively low percentage of cells, meaning that there are

still challenges ahead for efficiently treating these tissues.

One of the features of our cost function is that resource limitations play an important role

in shaping the cost landscape. There are indications that cellular levels of NAD (a coenzyme

involved in oxidative phosphorylation) are limiting, and that a sufficient supply of NAD to

mitochondria becomes critical [78–81]. An increase of intracellular NAD can lead to an

increase in oxygen consumption and ATP production [81] indicating that resource limitation

may, at least in some cases, be a genuine constraint. Adding various kinds of resources can sig-

nificantly change mitochondrial basal respiration rate [82–84].

Like any other model, our models have a defined range of applicability. A key baseline

assumption was using identical replication and degradation rates for mutants and wildtypes.

Various possibilities of distinct rates have been offered in the literature, including faster

mutant replication rates [22, 68, 85–88], lower mutant degradation rates [89], and higher

mutant degradation rates [90, 91]. Including such differences, and other features such as de
novo mutations, degradation control, and cell divisions [38, 64, 92, 93], constitute natural

extensions to our theory.

Methods

Wildtype and mutant mtDNA evolution equations

Wildtype and mutant mtDNA copy numbers are considered to have birth rate λ(w, m) = μ +

c1(wopt − (w + δm)) and death rate μ, leading to the following evolution equations:

dw
dt

¼ wðlðw;mÞ � mÞ

dm
dt

¼ mðlðw;mÞ � mÞ
ð4Þ
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The corresponding stochastic system, required to e.g. describe fixation, does not have an

explicit solution due to nonlinearities. The deterministic steady state solution of Eq (4) is given

by (wss + δmss) = wopt and represents a straight line in (w, m)-space (S1A Fig), whose slope

depends on the value of δ. Stochastic dynamics will fluctuate around the steady state line, caus-

ing heteroplasmy to change over time until fixation of either species occurs. This means that,

over long times, a cell will reach either h = 0 or h = 1 (in the absence of mutations). When

mutations do occur, a cell will always reach a state with h = 1 (though many different mutant

species may be present).

Relaxed replication model

The relaxed replication model assumes a constant death rate μ and a birth rate of the form

lðw;mÞ ¼
m

wþm
aR wopt � ðwþ ZmÞ
h i

þ wþ Zm
� �

ð5Þ

with αR> 1 and η constants [40, 41]. We have renamed the parameters of the original model

for convenience. Note that both αR and η influence the mutant contribution to λ(w, m) (rather

than the single parameter δ in our linear model).

Expected cost per unit time

Let the cost per unit time of state (w, m) be denoted by C, and the cost corresponding to the

steady state (wss, mss) by �C. Even if steady state copy numbers are constant over time (i.e. the

mean values of w and m are always equal to wss and mss) the mean cost per unit time is gener-

ally not equal to �C. By performing a Taylor expansion, the mean cost per unit time can be writ-

ten as follows:

E½C�ðtÞ � �C þ
1

2

�

varðwðtÞÞ
@

2C
@w2
þ varðmðtÞÞ

@
2C
@m2

þ2covðwðtÞ;mðtÞÞ
@

2C
@w@m

� ð6Þ

where E[C](t) is the expected cost per unit time given that the trajectory starts in state (wss,

mss), and all partial derivatives are evaluated at steady state. These findings imply the following:

suppose all cells in a population of cells are initialised in a state with minimum cost (corre-

sponding to some specific number of mutant and wildtype mtDNA molecules). At some later

time, the mtDNA populations in the different cells will have drifted apart and even if mean

copy numbers (averaged over all cells) of w and m are identical to their initial values, the

increase in variance between cells means that the overall mean cost (averaged over all cells) is

higher than it was initially.

Cost function structure

We assume that the net energy supply per unit time in a state (w, m), called S(w, m), involves

the following four terms: (i) the energy output per unit time (si) produced by the mitochon-

dria; (ii) a maintenance cost per unit time (ρ1) to maintain the mitochondria, as their presence

imposes some energetic cost (e.g. mRNA and protein synthesis); (iii) a building cost (ρ2) for

the biogenesis of new mitochondria; and (iv) a degradation cost (ρ3) to degrade mitochondria.

We will assume that every mtDNA molecule is associated to a particular amount of mitochon-

drial volume which we refer to as a ‘mitochondrion’ (section 4 in S1 File).
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At any time, mitochondria experience a certain energy demand and to meet this demand

they need to have a certain resource consumption rate ri (where i = w, m refers to wildtype or

mutant). Here we use the term ‘resource’ as an amalgamation of the substrates used for the oxi-

dation system. We need to specify the relationship between the power supply (s) and the rate

of resources consumed (ri) by mitochondria. We use two different models s(ri) which are dis-

cussed further in section 3 in S1 File

sðrwÞ ¼ �ðrw � bÞ

sðrwÞ ¼ 2
smax

1þ e� krw
� 1:1smax

ð7Þ

where ϕ, β, k and smax are constants respectively describing the mitochondrial efficiency, a

basal proton leak-like term, the saturation rate of the efficiency, and the maximum power sup-

ply (section 4 in S1 File).

We assume that pathological mutants can have a deficient electron transport chain (which

may support a smaller flux leading to a lower resource consumption rate for mutants and

therefore a lower ATP production rate) and a lower energy production efficiency, leading to

the following mutant energy output: �2s(�1rw). Here, �1, �2 2 [0, 1] describe the mutant

resource uptake rate and the mutant energy production efficiency relative to that of a wildtype,

respectively. In the main text we set �2 = 1; other values of �2 are discussed in section 4.7 in S1

File.

The mitochondrial maintenance cost is denoted by ρ1 and corresponds to the energetic cost

required to maintain the mitochondrion that contains the mtDNA. This energetic costs

involves factors like the synthesis and degradation of mitochondrial proteins and enzymes. We

assume the maintenance cost is the same for wildtype and mutant mitochondria (though for

some mutations this is quite possibly not the case). The net energy supply per unit time, S(w,

m), then follows as Eq 3.

To determine the value of rw for a given state (w, m), we first check whether the demand D
(which we assume is a constant) can be satisfied by supply S(w, m). If it can, we set Eq (3)

equal to D and solve for rw, i.e. we assume that if possible, the mitochondria will exactly satisfy

demand. It may, however, not be possible to satisfy demand, which can be because of two rea-

sons: i) there are not enough mitochondria present to produce enough energy, or ii) the

resource supply rate, R (a constant), is not enough to meet demand. In the former case, we set

rw = rmax (a specified maximum resource consumption rate per mitochondrion): the mito-

chondria work as hard as possible to keep their energy output closest to demand. In the latter

case, we assume that the total available resource supply is shared equally between the mito-

chondria: rw ¼ R
wþ�1m

. Further details of the cost function are given in sections 3–5 in S1 File.

The parameters used in our cost function are summarised in S2 Table and motivated in

section 4 in S1 File. Despite our model being simple, most parameters are biologically

interpretable.

Modelling control through mitochondrially targeted endonucleases

Experimentally, cells are transfected with two mtZFN monomers: one which binds selectively

to mutant mtDNAs, and one that binds mutants and wildtypes with equal strength [62]. We

simplify this picture by assuming an ‘effective’ mtZFN pool and use [ZFN] to denote its con-

centration. The increase in mtDNA degradation rate caused by the mtZFNs is then assumed

to be proportional to [ZFN].

Nucleases are imported into the cell and then degrade over time, meaning that their con-

centration in the cell (and in the mitochondria) may be approximated by an immigration-
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death model:

d½ZFN�ðtÞ
dt

¼ IðtÞ � mz½ZFN�ðtÞ ð8Þ

where I(t) and μZ are the immigration and death rates of the effective mtZFN pool, respec-

tively. In recent experiments [36], nucleases are expressed for short times meaning that the

immigration rate will increase sharply at the start of the treatment after which it decreases over

time: we chose to model I(t) as an exponentially decaying function, I(t) = I0e−bt, where I0
denotes the initial rate directly after the treatment is initiated and b is a constant describing the

duration of the treatment. The mtZFN concentration now becomes

½ZFN�ðtÞ ¼
I0

mz � b
e� bt � e� mz t
� �

ð9Þ

which is shown for various parameter values in S8A Fig. The data we use to fit our models con-

cerns heteroplasmy and total copy number measurements over four rounds of treatment, each

treatment consisting of mtZFN transfection followed by a 28-day recovery period. During this

recovery period, total copy numbers recover their initial values due to cellular feedback con-

trol. The increase in mtDNA death rate due to the presence of the mtZFNs, μZFN, is given by

mZFNð28 � i < t < 28 � ðiþ 1ÞÞ ¼ mþ
Xi

j¼0

½ZFN�ðt � 28 � jÞ ð10Þ

where i = 0, 1, 2, 3 indicates the treatment round. This equation is simply stating that new

mtZFNs are added every 28 days. Death rates for m and w are now assumed to be

mðtÞw ¼ mþ x � mZFNðtÞ

mðtÞm ¼ mþ mZFNðtÞ
ð11Þ

where μ denotes the baseline degradation rate and ξ represents treatment selectivity (e.g. when

ξ = 0 there is no off-target cleavage).

Model fits using Metropolis sampling

To fit our nuclease model to recently obtained experimental data [36], we use Eq (4) with μ
replaced by μ(t)w or μ(t)m and λ(w, m) given by Eq (1):

dw
dt

¼ w½c1ðwopt � ðwþ dmÞÞ � x � mZFNðtÞ�

dm
dt

¼ m½c1ðwopt � ðwþ dmÞÞ � mZFNðtÞ�
ð12Þ

Total mtDNA copy numbers in pre-treatment 80% heteroplasmy cells were measured

using quantitative PCR (section 6.4 in S1 File) and were found to be 889 ± 214 (S.E., n = 3).

We therefore assume an initial total copy number of 900, meaning w and m were initialized at

0.2 � 900 = 180 and 0.8 � 900 = 720, respectively. These evolution equations incorporate cellular

feedback control as well as the nuclease treatment which occurs in cycles of 28 days. The

mtZFN degradation rate was assumed to be μz = ln(2) day−1, corresponding to a half-life of 1

day. This is in accord with the experimental observation that almost no mtZFN was present 4

days post-transfection (with a half-life of 1 day, only 6% of initial copy numbers remain after 4

days).

Energetic costs and control of mitochondrial DNA populations
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MCMC inference was performed using the Python package Pymc3, a package designed for

Bayesian statistical modelling and probabilistic machine learning [94]. A Gaussian error model

was assumed, i.e. the observed heteroplasmy yðhÞi and total copy number yðTÞi data are given by

yðhÞi ¼ ŷðhÞi þ Nð0; s2
hÞ

yðTÞi ¼ ŷðTÞi þ Nð0; s2
TÞ

ð13Þ

where ŷðhÞi and ŷðTÞi denote our predicted heteroplasmy and copy number values obtained by

numerically solving Eq (12), and we allow for different noise variances for h and T (in general,

different experimental errors are expected as different methods are used to measure h and T). A

metropolis sampler is used for parameter estimation. Maximum a posteriori (MAP) values were

found to be ðI0; b; c1; x; d;s
2
h; s

2
TÞMAP � ð122:82; 46:68; 1:90� 10� 4; 0:72; 1:26; 0:061; 0:10Þ.

Due to a degeneracy in our mtZFN dynamics model (section 6.5 in S1 File) the MAP values of

I0 and b are not necessarily unique at large b (details in section 6.5 in S1 File).

We explore the ability of our model to account for additional data from Ref. [36] (Fig 5C

and 5D) which was not included in our inference. Using the MAP values for parameters I0, b,

c1, δ, s2
h and s2

T (based on the data shown in Fig 5A and 5B), the maximum likelihood estimate

of ξ is obtained based on the additional data, using a Gaussian error model similar to Eq (13).

This maximum likelihood value is ξ� 0.15.

Supporting information

S1 Fig. A linear feedback control has straight steady state lines. A) The deterministic steady

state lines of the feedback control given in Eq 4, using our linear version of λ(w, m), are shown

in (w, m) space for various values of δ (grey lines show particular examples of ranges of δ).

Constant heteroplasmy lines form straight lines through the origin. B, C, D) Equal variances

for different feedback control mechanisms. Three different controls (see legend), all of the

form λ(w + δm) with δ = 0.5, show nearly identical wildtype, mutant and heteroplasmy vari-

ances. Other parameters used are Nss = 1000 (referring to the steady state copy number present

in the absence of mutants), μ = 0.07 (corresponding to a half-life of 10 days), and initial copy

numbers (w0, m0) = (920, 160) (corresponding to an initial heteroplasmy of * 0.15).

(EPS)

S2 Fig. Relationship between resource consumption and energy output. A) The energy pro-

duction rate of a single wildtype mitochondrion as a function of its resource consumption rate

is shown, as given by Eqs. (15) and (16) in S1 File. For the linear model (corresponding to the

straight lines) the parameters ϕ and β are changed by 10%, for the saturating model we vary

smax and k. The magenta line indicates rmax. B) As w increases, demand is shared between

more mitochondria and each individual one can afford to consume resources at a lower rate

(the same figure legend applies for figures C, D and E). C) The total resource consumption

increases with w because the mitochondria need to consume a non-zero amount of resources

to produce a net energy output and each mitochondrion comes with a maintenance cost.

D) The total energy produced by wildtypes increases when mutants are present. E) When

demand is satisfied, the cost increases with w in the linear model, resulting in minimal costs

when copy numbers attain the minimum number required to satisfy demand (1). In contrast,

for the saturating model the cost decreases at first because as individual resource consumption

drops, the energy production efficiency increases. Minimum cost now occurs when mitochon-

dria are working most efficiently (2). Parameters �1 = 0.1 and �2 = 1.0 were used.

(EPS)
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S3 Fig. Changing mutant efficiency (�2) does not lead to expensive intermediate hetero-

plasmies. A), B) Similar to Fig 2 in the main text, these figures show the cost values in (w, m)

space, but now as a function of �2 (mutant efficiency) instead of �1. This time we show the cost

in the entire space. The white lines show the region in which demand is satisfied for our default

parameter values. Because mutants consume the same amount of resource as wildtypes (�1 =

1), resource becomes limiting at relatively low values of m compared to when �1 < 1. Note that

intermediate heteroplasmies are not less efficient here.

(EPS)

S4 Fig. Intermediate h values require more resources to satisfy demand, but only if

mutants consume less resources. A) The resource consumption rates and energy produc-

tion rates of wildtypes and mutants are shown for two states: (w1, m1, h1) = (9000, 1000, 0.1)

and (w2, m2, h2) = (7000, 3000, 0.3). In both cases, the total energy output is equal to the

demand. When heteroplasmy is higher (h = 0.3), the individual resource consumption

rates are higher in order to maintain a constant total energy output. Overall, the state with

h = 0.1 uses the least resources (Eq. (20) in S1 File). �1 = 0.35 was used. B) This figure is simi-

lar to figure (D) but now the two states (w1, m1, h1) = (3000, 7000, 0.7) and (w2, m2, h2) =

(1000, 9000, 0.9) are compared. The state with h = 0.9 uses the least resources (Eq. (21) in

S1 File).

(EPS)

S5 Fig. The existence of intermediate heteroplasmy values is a robust feature of the satu-

rating output model. We show the value of hmax, the most expensive heteroplasmy value at

constant copy number, as a function of total copy number and �1 (describing mutant pathol-

ogy). White regions correspond to hmax = 1. A) Using our default parameter values, an inter-

mediate hmax exists for large enough mutant functionality �1. B) The parameter smax is

increased by 50% with minimal effect on the output. We kept the parameter k fixed as it

defines the amount of proton leak (the resource consumption rate at zero energy output)

which agrees with the amount of proton leak in the linear output model whose parameters are

based on experimental data. C) The parameter ρ1 is increased by an order of magnitude with

minimal effect on the output. D) The parameter ρ1 is increased by an order of magnitude and

smax is decreased by 50%. Again, change in hmax are small.

(EPS)

S6 Fig. Wildtype, mutant and cost dynamics for four different control strategies. Dynamics

are shown for the four controls I, II, III, and IV defined in Table 3 in S1 File. Again, we see that

the effects of the control are more noticeable in low copy number cells. Parameters are set as

given in Table 3 in S1 File. Values for wopt are those for the saturating output model at low and

high copy number. The free parameters in control III and IV (δ and η) were optimised over

initial conditions in the range h 2 [0, 0.2]. For the optimization the default cost function

parameters were used as well as �1 = 0.3.

(EPS)

S7 Fig. At long times and high heteroplasmies, energy sensing control becomes subopti-

mal. The optimal value of δ in a linear feedback control is shown as a function of �1. Here we

used T = 104 days (optimization time) and low copy numbers for both the linear and saturating

model. The solid and dashed lines correspond to trajectories starting at h0 = 0.1 and h0 = 0.8,

respectively. The less resources the mutants consume (and the less output they therefore pro-

duce) the lower their optimal contribution to the control.

(EPS)
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S8 Fig. Zinc finger nuclease concentrations for short and long treatments. A) Here we

show the concentration of mitochondrially targeted Zinc Fingers as modelled by Eq (9) in the

main text. The parameter values for the short and strong treatment illustrated here (I0 = 36,

b = 11) are similar to those found in fitting the model to the data. For the mtZFN degradation

rate we used μZ = log(2) day−1 (corresponding to a mtZFN half-life of 1 day). There exists a

possibility of increasing heteroplasmy levels through treatment. B) The probability of

increasing heteroplasmy above its initial pre-treatment value h0, after one round of treatment

and recovery, is shown as a function of h0 and ξ. Cells are initialised with a total copy number

of 500. The cross indicates the parameters used in figure (D). The parameter values for I0, b
and c1 are fixed at: (I0, b, c1)� (39, 20, 3 × 10−4); these values provide good fits to experimental

data when assuming a total initial copy number of 500. We used δ = 1. C) Similar to figure (B),

but now cells are initialised with a total copy number of 5000; in these large copy number cells

stochastic fluctuations in copy number have less effect and the probabilities of exceeding initial

heteroplasmy values are smaller compared to figure (B). D) An example of a distribution of

post-treatment heteroplasmy values is shown using parameters h0 and ξ as indicated by the

cross in figure (B). The orange line indicates the value of h0 (the heteroplasmy that was present

before the treatment started).

(EPS)

S9 Fig. mtZFN expression profile during transient transfection of 143B cells. A) Here we

show a schematic of the experiments involving i) transient transfection of high-heteroplasmy

cells with plasmids expressing mtZFN monomers and fluorescent marker proteins, ii) FACS-

based selection of cells expressing both mtZFN monomers (NARPd(+) and COMPa(-)), and

iii) phenotypic evaluation of treated cells. Technical details are provided in Ref. [35]. B) West-

ern blots showing the mtZFN expression profile indicate that the mtZFNs are almost undetect-

able at 96 hours post-transfection, and completely undetectable at 120 hours. Details of the

protocol are provided in Ref. [35].

(EPS)

S10 Fig. Posterior mtZFN treatment parameter distributions. Here we show our posterior

distributions obtained after running our MCMC algorithm (left) as well as the corresponding

sample values (right). Prior distributions are provided in the text. The posterior of log10 b is

cut off due to a degeneracy in our model (Eq. (22) in S1 File), which does not affect our model

predictions.

(EPS)

S11 Fig. Predictions of mtZFN expression are broadly consonant with experimental data.

Drawing from our posterior distributions for I0 and b obtained through Metropolis sampling,

we show 50% and 95% credible intervals of our predicted mtZFN expression profile (solid

black line denotes the maximum a posteriori (MAP) estimate). Data points are obtained

through quantification of the western blots shown in S9B Fig and were subsequently rescaled

to investigate whether our model can broadly account for the experimentally observed dynam-

ics (our predicted mtZFN concentrations are proportional to the measurement data points

with an arbitrary proportionality constant).

(EPS)

S1 Table. Analytical expressions for the means and variances according to the linear noise

approximation. Solutions are shown for wildtype, mutant, and heteroplasmy variances for

various types of control. Dots indicate constant or exponentially decaying terms; full solutions

are provided in Eqs. (11)–(13) in S1 File. Note that the initial rate of increase of heteroplasmy
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variance only depends on mtDNA copy number and turnover (see also [38]).

(EPS)

S2 Table. Parameters used in our mitochondrial cost function with their descriptions.

Parameter values are derived and motivated in Section 4 in S1 File. In this table, ‘high’ and

‘low’ refer to high and low copy numbers, respectively, and the abbreviations ‘sat.’ and ‘lin.’ are

used to indicate our saturating and linear output models.

(EPS)

S3 Table. Parameter values for the four different control mechanisms we employ. Two

parameters of each control are set by the two constraints we impose. The parameter αR was

proposed to lie in the range 5-17 [40] and here we used αR = 10. The values for δ and η are

found by optimizing our cost function over the steady states corresponding to our initial con-

ditions. We used 50 initial conditions equally spread over the range h0 2 [0, 0.2]. The two val-

ues used for wopt are 1524 and 7616 (Table 2 in S1 File). We further use μ = 0.07 day−1.

(EPS)

S1 File. Supporting text.

(PDF)
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