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Abstract. We propose and investigate novel max-flow models in the spatially continuous setting, with or without
supervised constraints, under a comparative study of graph based max-flow / min-cut. We show that the continuous
max-flow models correspond to their respective continuous min-cut models as primal and dual problems, and the
continuous min-cut formulation without supervision constraints regards the well-known Chan-Esedoglu-Nikolova
model [15] as a special case. In this respect, basic conceptions and terminologies applied by discrete max-flow / min-
cut are revisited under a new variational perspective. We prove that the associated nonconvex partitioning problems,
unsupervised or supervised, can be solved globally and exactly via the proposed convex continuous max-flow and
min-cut models. Moreover, we derive novel fast max-flow based algorithms whose convergence can be guaranteed
by standard optimization theories. Experiments on image segmentation, both unsupervised and supervised, show
that our continuous max-flow based algorithms outperform previous approaches in terms of efficiency and accuracy.
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1. Introduction. Many applications of image processing and computer vision can be
modeled in the form of energy minimization through Markov Random Fields (MRF) and
solved by means of min-cut and max-flow, see [39, 38] for a good reference. A long list
of successful examples includes image segmentation [10, 2, 5], stereo [31, 32], 3D recon-
struction and shape-fitting[44, 36, 37], image synthesis and photomontage [34, 1], etc. The
discrete energy minimization problems are often tackled by searching for the minimal cut
over an appropriately constructed graph, which can be efficiently computed by maximization
of corresponding flows by the classical theorem of min-cut and max-flow [19, 16]. There
has been a vast amount of research on this topic during the last years [8, 10]. Other dis-
crete optimization methods include message passing [45, 29] and linear programming [33]
etc. One main drawback of such graph-based approaches is the grid bias. The interaction
potential penalizes some spatial directions more than other, which leads to visible artifacts
in computational results. Reducing such metrication errors can be done by considering more
neighboring nodes [9, 28] or high-order interaction potentials [27, 25]. However, this either
results in a heavy memory load and high computation cost or amounts to a more complex
algorithmic scheme, e.g. QPBO [7, 30].

Recent studies [15] showed that formulating min-cut in the spatially continuous setting
properly avoids metrication bias and leads to fast and global numerical solvers through convex
optimization [11]. G. Strang [41, 42] was the first to study max-flow and min-cut problems
over a continuous domain. Related studies include [2, 3], where Appleton et al proposed an
edge-based continuous minimal surface approach to segmenting 2D and 3D objects. Chan et
al [15] considered image segmentation with two regions in the form

min
S

∫
Ω\S

Cs(x) dx +

∫
S

Ct(x) dx + α |∂S| . (1.1)
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By means of relaxing the characteristic function λ(x) ∈ {0, 1} of S to λ(x) ∈ [0, 1], Chan et
al proved that the binary-constrained nonconvex formulation (1.1) can be globally solved by
the convex minimization problem

min
λ(x)∈[0,1]

∫
Ω

(1− λ(x))Cs(x) dx +

∫
Ω

λ(x)Ct(x) dx + α

∫
Ω

|∇λ(x)| dx . (1.2)

More specifically, solving (1.2) leads to a sequence of global binary optimums through thresh-
olds of its optimum λ∗(x) ∈ [0, 1] by any value t ∈ (0, 1]. In consequence, it gives rise to a
set of global binary solutions to the original nonconvex partition problem (1.1), not just one
which is the case for graph-cuts. In this regard, (1.2) is actually known as the continuous
min-cut model. We will revisit this model in Sec. 2. Recently, Chan’s approach was extended
to more than two regions in [40, 35, 4], i.e. the continuous Potts model, although no simple
thresholding scheme as above has been discovered for these relaxed models.

However, in contrast to the duality between discrete max-flow and min-cut models [19]
where efficient min-cut algorithms are designed in a max-flow fashion [16], max-flow mod-
els over a continuous image domain, as the dual formulation of (1.2), is still lost in recent
developments. For minimization problems involving total variation like the ROF model [13],
where the primal variable is unconstrained, dual formulations are also known and has been
used to design fast algorithms. However, if constraints like u ∈ [0, 1] are introduced, the dual
formulation changes completely, as we will see. To tackle such constraints in research so
far, algorithms which are designed for unconstrained total variation have been applied. They
are simply modified such that the primal variable is forced to the feasible set every iteration,
either by projections or by adding forcing terms [15, 11, 22]. This is in contrast to graph
cuts where the min-cut problem can be restated as a max-flow problem in an elegant way
and helps to significantly accelerate the algorithms, e.g. the Ford-Fulkerson algorithm [16],
push-relabel algorithm [21], Dinitz blocking flow algorithm [17] etc. Recently Bae et al [4]
studied the dual formulation of the continuous Potts problem with multiple labels, but not
in the manner of maximizing flows. This motivates our studies in this work. Moreover, we
will also investigate the min-cut problem with priori supervision constraints by adapting its
supervised information into the corresponding max-flow structures.

1.1. Contributions. We contribute this paper to propose and study new continuous
max-flow formulations, which are in analogy with the discrete graph based max-flow mod-
els. In other words, we will explore and solve continuous min-cut problems with or without
supervision constraints by the means of the proposed continuous max-flowmodels. This is in
contrast to previous works.

We summarize our main contributions in this work as follows:
First, we propose novel continuous max-flow models, which provide new equivalent

representations of their respective continuous min-cut problems, unsupervised (1.2) or super-
vised (4.12), in terms of primal and dual.

Second, we revisit and give explanations of fundamental conceptions used in graph cuts,
e.g. ’saturated’ / ’unsaturated’ and ’cuts’, through a new variational perspective which also
provides a new viewpoint to understand the classical max-flow / min-cut algorithms. Via
the equivalent max-flow formulation, we prove that the nonconvex image segmentation prob-
lems, unsupervised (1.1) and supervised (4.1), can be solved exactly and globally in a convex
relaxation way.

Third, for the continuous min-cut model under supervised constraints, the proposed con-
tinuous max-flow formulation encodes such user-input constraints implicitly, which does not
require to change flow capacities artificially as is done previously. Meanwhile, the complex-
ities of the new supervised max-flow and min-cut models are the same as the unsupervised
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ones.
Finally, new and fast max-flow based algorithms are proposed, which splits the optimiza-

tion problem into simple subproblems over independent flow variables, where the labeling
function λ(x) works as a multiplier and can be simply updated at each iteration. Their con-
vergence can be easily validated by classical optimization theories. Experiments show our
continuous max-flow algorithms significantly outperform previous continuous min-cut meth-
ods in terms of efficiency, e.g. [11], and graph based methods in terms of accuracy. This work
extends [46] with detailed proofs and more extensive experimental evaluation.

FIG. 2.1. Settings of Max-Flow and Min-Cut, Discrete (left) vs. Continuous (right)

2. Related Works.

2.1. Revisit of Discrete Max-Flow and Min-Cut. Many optimization problems in im-
age processing and computer vision can be formulated as max-flow/min-cut problems on ap-
propriate graphs, as first observed by Greig et. al. [23]. A graph G is a pair (V , E) consisting
of a vertex set V and an edge set E ⊂ V × V .

The vertex set of commonly-used graphs in image processing and computer vision in-
cludes the nodes in a 2-D or 3-D nested grid, together with two terminal vertices, the source
s and the sink t, e.g. see the left graph of Fig. 2.1. The edge set is comprised of two types
of edges: the spatial edges en = (r, q), where r, q ∈ V\{s, t}, stick to the given grid and
link two neighbor grid stencils r and q except s and t; the terminal edges or data edges, i.e.
es = (s, r) or et = (r, t), where r ∈ V\{s, t}, link the specified terminal s or t to each grid
node p respectively. We assign a cost C(e) to each edge e, which is assumed to be nonnega-
tive i.e. C(e) ≥ 0. In this work, we consider this type of graphs in the 2-D case mainly for
simplicities. Of course, our discussions can be easily extended to the 3-D case.

2.1.1. Min-Cut. Based on the above discrete configuration, the two-partition cut assigns
two disjoint partitions to the source s and the sink t respectively, also called s-t cut. Obviously,
it divides the spatial grid nodes of Ω into two disjoint groups: one relates to the source s and
the other one to the sink t, hence segments the given image nodes into two different parts (see
the left graph of Fig. 2.1):

V = Vs
⋃
Vt , Vs ∩ Vt = ∅ .

To each cut, an energy is defined as the sum of the costs C(e) of each edge e ∈ Est ⊂ E ,
whose end-points belong to two different partitions. Hence the problem of min-cut is to find
two partitions of vertices such that the corresponding cut-energy is minimal:

min
Est⊂E

∑
e∈Est

C(e) . (2.1)
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2.1.2. Max-Flow. On the other hand, each edge e ∈ E can be viewed as a pipe and the
edge cost C(e) can be regarded as the capacity on this pipe, for which the maximal flow is
allowed. For such a ’pipe’ network, we have the following constraints on flows:

• Capacity of Spatial Flows p: for undirected spatial edges en = (r, q) ∈ E , r, q ∈
V\{s, t}, the spatial flow p(en) is constrained by:

|p(en)| ≤ C(en) ; (2.2)

here we use the same flow capacity for both the two directions r → q and q → r
for simplicities. This corresponds to an anisotropic total-variation term. In fact,
discussions on it in the following sections can be easily extended to the case where
different flow capacities Cr→q, Cq→r ≥ 0 are applied in the two flow directions.
Assuming r → q is the positive direction the constraint would be

−Cq→r ≤ p(en) ≤ Cr→q .

• Capacity of Source Flows ps: for the edge es(v) : s→ v linking the terminal s to a
node v ∈ V\{s, t}, the source flow ps(v) is directed from s to v. Its capacity Cs(v)
indicates that

0 ≤ ps(v) ≤ Cs(v) ; (2.3)

• Capacity of Sink Flows pt: for the edge et(v) : v → t linking a node v ∈ V\{s, t}
to the terminal t, pt(v) is directed from v to t. Its capacity Ct(v) indicates that

0 ≤ pt(v) ≤ Ct(v) ; (2.4)

• Conservation of Flows: at each node v ∈ V\{s, t}, incoming flows should be bal-
anced by outgoing flows. In other words, all the flows passing through v, including
spatial flows p(en := (v, q)) where q ∈ N(v) is in the set of neighboring nodes of
v, the source flow ps(v) and the sink flow pt(v), should be constrained by( ∑

q∈N(v)

p((q, v))
)
− ps(v) + pt(v) = 0 . (2.5)

In this regard, the maximal flow problem is to find the largest amount of flow allowed to
pass from the source s to the sink t, i.e.

max
ps

∑
v∈V\{s,t}

ps(v) , (2.6)

subject to the above conditions (2.2), (2.3), (2.4) and (2.5).
It is well known that the max-flow problem (2.6) is equivalent to the min-cut problem

(2.1), where the flows are saturated uniformly on the cut edges, i.e. the total flow is bottle-
necked by the ’saturated pipes’. By the graph-cut terminologies, when a flow p(e) on the
edge e ∈ E reaches its corresponding capacity C(e), given by (2.2), (2.3) or (2.4), we call
it ’saturated’; otherwise, ’unsaturated’. We will revisit these conceptions under a variational
perspective in the following sections.

2.2. Convex Relaxation and Continuous Min-Cut. As in Sec. 1, Chan et al [15]
introduced an exact convex relaxation formulation (1.2) to the nonconvex segmentation prob-
lem (1.1), which results in a global optimization framework for the well-known active con-
tour/snake model [26, 12] with region priors, e.g. active contour without edges [14]. The
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authors applied a comparatively slow PDE-descent scheme in numerics, together with an
exact penalty term to enforce the pointwise [0, 1] constraints. Experiments in [15] showed
the proposed convex relaxation scheme properly avoided the trap of local optimums and was
reliable with respect to the given data and initial conditions.

Bresson et al [11] extended Chan et al’s work by applying a weighted total-variation
term. They also proposed a fast algorithm for (1.2) based on an approximation of (1.2):

min
λ,μ

{
α

∫
Ω

|∇λ(x)| dx +
1

2θ
‖λ−μ‖2 +

∫
Ω

μ(x)
(
Ct(x)−Cs(x)

)
dx + βP (μ)

}
(2.7)

where P (μ) :=
∫
Ω
max{0, 2 |μ− 0.5|−1} dx is an exact penalty function which forces μ(x)

to the interval [0, 1] pointwise. Clearly, when θ > 0 is chosen small enough, it is expected
that λ � μ, hence (2.7) solves (1.2) given μ(x) ∈ [0, 1]. To this end, the convex constrained
optimization problem (1.2) is approximated by a relatively simple unconstrained optimization
formulation (2.7).

In view of (2.7), the authors introduced a fast alternation-descent scheme which includes
two inner steps concerning the two variables λ and μ within each outer iteration, i.e. at the
k-th iteration,

• fix μk and solve

λk+1 := argmin
λ

{
α

∫
Ω

|∇λ(x)| dx +
1

2θ
‖λ(x)− μk(x)‖2

}
which can be computed by the standard Chambolle’s projection algorithm [13];

• fix λk+1 and solve

μk+1 := argmin
μ

{ 1

2θ
‖μ(x)−λk+1‖2 +

∫
Ω

μ(x)
(
Ct(x)−Cs(x)

)
dx + βP (μ)

}
which can be simply solved in closed form by shrinkage (see Prop. 4 of [11]).

3. Continuous Max-Flow and Min-Cut. In this section, we propose and study the
dualitites of max-flow and min-cut in the spatially continuous context.

3.1. Primal Model: Continuous Max-Flow. In the spatially continuous setting, let Ω
be a closed spatial 2-D or 3-D domain and s, t be the source and sink terminals, see the right
figure of Fig. 2.1. At each point x ∈ Ω, we denote the usual spatial flow passing x by p(x);
the directed source flow from s to x by ps(x); and the directed sink flow from x to t by pt(x).
Now we consider the counterpart of the discrete max-flow problem (2.6) in this continuous
setting, which can be directly formulated in the same manner as stated in Sec. 2.1.

For each x ∈ Ω let ps(x) ∈ R denote the flow from the source s to x and pt(x) ∈ R

denote the flow from x to the sink t. Define further the vector field p : Ω �→ R
n as the

spatial flow within Ω, where n is the dimension of the image domain Ω. In view of the flow
constraints (2.2), (2.3), (2.4) and (2.5) in the discrete setting, the flows p(x), ps(x), pt(x) are
constrained by the capacities C(x), Cs(x) and Ct(x) as follows:

|p(x)| ≤ C(x), ∀x ∈ Ω; (3.1)
ps(x) ≤ Cs(x), ∀x ∈ Ω; (3.2)
pt(x) ≤ Ct(x), ∀x ∈ Ω; (3.3)

div p(x)− ps(x) + pt(x) = 0, a.e. x ∈ Ω. (3.4)

Here div p evaluates the total incoming spatial flow locally around x, which is in analogue
with the sum operator of (2.5) for discrete settings. The notation a.e. stands for ”for almost
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every”. It means the constraint (3.4) should hold in the integrable, weak sense for every
x ∈ Ω, expect possibly a subset of zero measure.

Here, the constraints on the source flow ps(x) (3.2) and the sink flow pt(x) (3.3) are
changed in comparison to (2.3) and (2.4). This is because positiveness of the flows ps(x)
and pt(x) are not needed as they are directed flows and their values indicate how the flow
is distributed from s to the point x or from x to t. Likewise, Cs(x) and Ct(x) are also not
necessary required to be positive. Therefore, this extends the application of max-flow and
min-cut models in the continuous setting.

In analogy with the discrete max-flow problem (2.6), the continuous max-flowmodel can
be formulated as

sup
ps,pt,p

{
P (ps, pt, p) =

∫
Ω

ps(x) dx
}

(3.5)

subject to the constraints (3.1), (3.2), (3.3) and (3.4). In this paper, we also call (3.5) the
primal model and all flow variables ps, pt and p the primal variables.

3.2. Primal-Dual Model. By introducing the multiplier λ(x), also called the dual vari-
able, to the linear equality of flow conservation (3.4), the continuous maximal flow model
(3.5) can be formulated as its equivalent primal-dual model :

sup
ps,pt,p

inf
λ

{
E(ps, pt, p;λ) =

∫
Ω

ps(x) dx +

∫
Ω

λ(x)
(
div p− ps + pt

)
dx

}
(3.6)

s.t. ps(x) ≤ Cs(x) , pt(x) ≤ Ct(x) , |p(x)| ≤ C(x) .

Rearranging the primal-dual formulation (3.6), we then get

sup
ps,pt,p

inf
λ

{
E(ps, pt, p;λ) =

∫
Ω

{(
1− λ

)
ps + λpt + λdiv p

}
dx

}
(3.7)

s.t. ps(x) ≤ Cs(x) , pt(x) ≤ Ct(x) , |p(x)| ≤ C(x) .

Note that for the primal-dual model (3.7), the conditions of the minimax theorem (see
e.g., [18] Chapter 6, Proposition 2.4) are all satisfied. That is, the constraints of flows are
convex, and the energy function is linear in both the primal and dual functions ps(x), pt(x),
p(x) and λ(x), hence convex l.s.c. for fixed λ and concave u.s.c. for fixed ps, pt and p. This
also implies the existence of at least one saddle point, see [18]. It also follows that the min
and max operators in the above primal-dual model (3.7) can be interchanged, i.e.

sup
ps,pt,p

inf
λ

E(ps, pt, p;λ) = inf
λ

sup
ps,pt,p

E(ps, pt, p;λ) . (3.8)

Clearly, optimizing the primal-dual problem over the dual variable λ(x) leads back to the
primal max-flow model (3.5), i.e.

P (ps, pt, p) = inf
λ

E(ps, pt, p;λ) .

3.3. Dual Model: Continuous Min-Cut. We show in this section that optimizing the
primal-dual model (3.6) or (3.7) over the flow variables ps, pt and p leads to its equivalent
dual model:

min
λ(x)∈[0,1]

{
D(λ) =

∫
Ω

{(
1− λ(x)

)
Cs(x) + λ(x)Ct(x) dx + C(x) |∇λ(x)|

}
dx

}
.

(3.9)
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3.3.1. Optimization of Flow Variables. In order to optimize the flow variables of (3.7),
let us first consider the following maximization problem

f(q) = sup
p≤C

p · q . (3.10)

When q < 0, p can be chosen to be negative infinity in order to maximize the value p · q,
which results in f(q) = +∞. We further observe that

{
if q = 0 , then p ≤ C and f(q) reaches maximum 0
if q > 0 , then p = C and f(q) reaches maximum q · C

. (3.11)

Therefore, we can equally express f(q) as

f(q) =

{
q · C if q ≥ 0
∞ if q < 0

(3.12)

Obviously, the function f(q) given by (3.10) provides a prototype to maximize primal-
dual model (3.7) over the source flow ps(x) and sink flow pt(x). Define

fs(x) = sup
ps(x)≤Cs(x)

(
1− λ(x)

)
· ps(x), (3.13)

and

ft(x) = sup
pt(x)≤Ct(x)

λ(x) · pt(x)

. (3.14)

Then, by the discussion above, for each position x ∈ Ω:

fs(x) =

{ (
1− λ(x)

)
· Cs(x) if

(
1− λ(x)

)
≥ 0

∞ if
(
1− λ(x)

)
< 0

(3.15)

and

ft(x) =

{
λ(x) · Ct(x) if λ(x) ≥ 0
∞ if λ(x) < 0

(3.16)

For the maximization of (3.7) over the spatial flow p(x), it is well known that [20]

sup
|p(x)|≤C(x)

∫
Ω

λdiv p dx =

∫
Ω

C |∇λ| dx . (3.17)

By (3.15), (3.16) and (3.17), maximization of the primal-dual model (3.7) over flows ps,
pt and p leads to its equivalent dual model (3.9). Observe that optimal λ must be contained
in [0, 1], otherwise the primal-dual energy would be infinite, contradicting the existence of at
least one saddle point.

We summarize the above discussions by the following proposition:
PROPOSITION 3.1. The continuous max-flow model (3.5), the primal-dual model (3.6)

or (3.7) and the dual model (3.9) are equivalent to each other.
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3.3.2. ’Saturated’/’Unsaturated’ Flows and Cuts. In fact, the above discussions on
(3.10) gives rise to a variational perspective of the connections of flows and cuts and also
recovers related conceptions and terminologies used in graph-cut based approaches.

Let p∗ be an optimum of (3.10). By means of variations, if p∗ < C strictly, its variation
δp can be both positive and negative. Observe that if p∗ + δp doesn’t increase the value f(q)
for any δp, it directly follows that q = 0. On the other hand, for p∗ = C, variations δp
under the constraint must satisfy δp < 0. Again, any p∗+ δp doesn’t increase the value f(q),
hence it follows that q ≥ 0. In other words, if the flow p∗ < C does not reach its maximum
capacity, then q = 0 and f(q) = 0 and hence there is no contribution to the total energy. We
say the corresponding edge is ’unsaturated’ and is therefore not part of the ’minimal cut’.

We can explain the relationships between flows and cuts in the spatially continuous set-
ting in the same manner. Let p∗s , p∗t , p∗ and λ∗(x) be an optimal primal-dual pair of (3.6).

Source Flows, Sink Flows and Cuts: Observe from (3.2) that if the source flow p∗s(x) <
Cs(x) at x ∈ Ω is ’unsaturated’, we must have 1− λ∗(x) = 0, i.e.

p∗s(x) < Cs(x) =⇒ λ∗(x) = 1 .

At the position x, it is definitely labeled as 1. In addition, fs(x) = (1 − λ∗(x))p∗s(x) = 0,
which means that at the position x, the source flow p∗s(x) has no contribution to the cut energy.
It follows that p∗t (x) = Ct(x) is saturated and the minimal cut passes through the edge from
x to the sink t.

Likewise, if the sink flow p∗t (x) < Ct(x) is ’unsaturated’, we must have λ∗(x) = 0, i.e.

p∗t (x) < Ct(x) =⇒ λ∗(x) = 0 .

At the position x, it is labeled as 0. In addition, ft(x) = λ∗(x)p∗s(x) = 0, which means
that at the position x, the sink flow p∗t (x) has no contribution to the cut energy. Hence,
p∗s(x) = Cs(x) is saturated and the minimal cut passes through the edge from the source s to
x.

As we see, only ’saturated’ source and sink flows have contributions to the total energy.
Spatial Flows and Cuts: for the spatial flows p∗(x), let

Cα
TV

:= {p | ‖p‖∞ ≤ α , pn|∂Ω = 0 } .

Observe that

sup
p∈Cα

TV

〈div p, λ〉 = sup
p∈Cα

TV

〈p,∇λ〉 , (3.18)

where the inner product 〈a, b〉 is
∫
Ω
a(x)b(x) dx. The extremumof the inner product 〈p∗,∇λ∗〉

in (3.18) just indicates the normal cone-based condition [24] of∇λ∗, i.e.

∇λ∗ ∈ NCα
TV

(p∗) . (3.19)

Then we simply have:

if ∇λ∗(x) �= 0 , then |p∗(x)|= α , (3.20a)
if |p∗(x)|< α , then ∇λ∗(x)= 0 . (3.20b)

In other words, at potential cut locations x ∈ Ω where ∇λ∗(x) �= 0 the spatial flow
p∗(x) is ’saturated’. At locations x ∈ Ω where |p(x)| < α is not saturated we must have
∇λ∗(x) = 0 and therefore the cut does not sever the spatial domain at x.
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3.4. Global Binary Optimums of the Continuous Min-Cut. When C(x) is constant
over the whole image domain Ω, e.g. C(x) = α, the dual model (3.9) is reduced to

min
λ(x)∈[0,1]

{
D(λ) =

∫
Ω

{(
1− λ(x)

)
Cs(x) + λ(x)Ct(x) + α |∇λ(x)|

}
dx

}
(3.21)

which just coincides with the continuous min-cut model investigated by Chan et al [15].
When C(x) ≥ 0 is some general function, e.g. the so-called edge detector, (3.9) amounts to
the geodesic model studied by Bresson et al [11].

In this paper, we focus on the case that C(x) = α is constant for simplicity, and prove
that there exists a series of binary optimums of (3.21) which are also globally optimal to
the nonconvex min-cut problem (1.1) and can be obtained by thresholding. This is the same
result as was shown by Chan et al [15]. We demonstrate it in another way by duality through
the continuous max-flow model (3.5). We show that every such minimal cut of (1.1) has the
same energy as the maximum flow energy of (3.5). The results can be easily extended to a
more general version of (3.9) with non-constantC(x).

PROPOSITION 3.2. Let p∗s , p∗t , p∗ and λ∗(x) be a global optimum of the primal-dual
model (3.6) when C(x) = α. Then each �−upper level set S� := {x |λ∗(x) ≥ � , � ∈
(0, 1] }, � ∈ (0, 1], of λ∗(x) and the indicator function u�

u�(x) :=

{
1 , λ∗(x) ≥ �
0 , λ∗(x) < �

,

is a global binary solution of the nonconvex min-cut problem (1.1).
Moreover, each cut energy given by S� has the same energy as its optimal max-flow

energy, i.e.

P (p∗s , p
∗
t , p

∗) =

∫
Ω

p∗s(x) dx .

Proof. Let p∗s , p∗t , p∗ and λ∗(x) be the optimal primal-dual pair of (3.6), then p∗s , p∗t , p∗
optimize the max-flow problem (3.5) and λ∗(x) optimizes the dual problem (3.21). Clearly,
the maximal flow energy of (3.5) is

P (p∗s, p
∗
t , p

∗) =

∫
Ω

p∗s(x) dx (3.22)

and satisfies

P (p∗s, p
∗
t , p

∗) = E(p∗s, p
∗
t , p

∗;λ∗) = D(λ∗) .

For the max-flow problem (3.5), the flow conservation condition (3.4) is satisfied, i.e.

div p∗(x)− p∗s(x) + p∗t (x) = 0 , a.e. x ∈ Ω (3.23)

Let S� be any level set of λ∗ and � ∈ (0, 1] and u� be its indicator function. In view of (3.11),
for any point x ∈ Ω\S�, i.e. where λ(x) < � ≤ 1, it is easy to see that

p∗s(x) = Cs(x) , ∀x ∈ Ω. (3.24)

Likewise, for any point x ∈ S�, i.e. λ(x) ≥ � > 0, we have

p∗t (x) = Ct(x), ∀x ∈ Ω.
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Then by (3.23), we have

p∗s(x) = Ct(x) + div p∗(x) , x ∈ S�, a.e. x ∈ Ω (3.25)

Therefore, by (3.24) and (3.25), the total energy defined in (3.22), for each level set S�, is

P (p∗s , p
∗
t , p

∗) =

∫
Ω\S�

Cs(x) dx +

∫
S�

(
Ct(x) + div p∗(x)

)
dx

=

∫
Ω\S�

Cs(x) dx +

∫
S�

Ct(x) dx +

∫
S�

div p∗(x) dx

=

∫
Ω\S�

Cs(x) dx +

∫
S�

Ct(x) dx + α
∣∣∂S�

∣∣ .
The last term follows from the fact that p∗n(x) = α at ∀x ∈ ∂S� and the Gaussian

theorem ∫
S�

div p∗(x) dx =

∫
∂S�

p∗n(x) dl = α
∣∣∂S�

∣∣ . (3.26)

Therefore, the binary function u�, which is the indicator function of S�, solves the non-
convexmin-cut problem (1.1) globally. This can be seen by the facts: u� is obviously obtained
in the relaxed convex set λ(x) ∈ [0, 1] and its energyP (p∗s, p

∗
t , p

∗) is globally optimal to both
convex relaxed models (3.5) and (3.21).

In other words, the continuous max-flow formulation (3.5) implicitly leads to a segmen-
tation of Ω with minimal length, i.e. the continuous min-cut given by the optimal multiplier
function λ∗(x). In this respect, the continuous max-flow model (3.5) solves the nonconvex
segmentation model (1.1) globally and exactly, which provides a clue to build up the novel
max-flow based algorithm in Sec. 5.1.

4. Supervised Continuous Max-Flow and Min-Cut. In this section, we study contin-
uous max-flow and min-cut models with priori given supervision constraints.

In contrast to the continuous max-flow and min-cut introduced above, the supervised
max-flow/min-cut computes the optimal partition subject to given constraints on region con-
figurations, e.g. some image pixels are labeled in advance as foreground or background.
This gives a supervised image partitioning problem which can be modeled as the following
supervised continuous min-cut problem

min
S

∫
S\Ωf

Cs(x) dx +

∫
(Ω\Ωb)\S

Ct(x) dx + α |∂S|

s.t. Ωf ⊂ S ⊂ Ω\Ωb (4.1)

where Ωf ,Ωb ⊂ Ω are the two disjoint areas marked a priori by the user: Ωf belongs to the
foreground or objects and Ωb belongs to the background.

The supervised continuous min-cut formulation can be equivalently be written in terms
of the binary characteristic function λ(x) ∈ {0, 1}:

min
λ(x)∈{0,1}

∫
Ω

(1− λ(x))Cs(x) dx +

∫
Ω

λ(x)Ct(x) dx + α

∫
Ω

|∇λ(x)| dx . (4.2)

subject to the labeling constraints

λ(Ωf ) = 1 , λ(Ωb) = 0 . (4.3)
10



Consider the above discussions in Sec. 3, we may simply set

Cs(Ωf ) = +∞ , Ct(Ωb) = +∞ . (4.4)

This says that the source flow ps(x) is not constrained at x ∈ Ωf and the sink flow pt(x) is
not constrained at x ∈ Ωb. In view of discussions of Sec. 3.3.1, the labeling constraints (4.3)
would then follow. As in [8], this provides a direct way to couple the max-flow approach to
the min-cut problem with supervised constraints (4.3).

In this work, we also propose new supervised max-flow and min-cut models without
the artificial flow constraints (4.4), which implicitly encode the supervised information (4.3)
and share the same complexities as the unsupervised formulations: (3.5) and (3.9). It is also
flexible in case the supervised information is not given in a determinant way as (4.3): for
example the marked areas Ωf and Ωb may be provided in a ’soft’ manner by probabilities:

λ(Ωf ) = tf ∈ (0, 1) , λ(Ωb) = tb ∈ (0, 1) (4.5)

where tf and tb are positive constants but less than 1. It is easy to see that modifying the
flows manually by (4.4) does not work in this case.

To motivate the following approach, we first define two characteristic functions concern-
ing the label constraints (4.3):

uf(x) =

{
1, x ∈ Ωf

0, x /∈ Ωf
, ub(x) =

{
0, x ∈ Ωb

1, x /∈ Ωb
. (4.6)

Observe that Ωf and Ωb are disjoint, it follows that

uf(Ωb) = 0 , ub(Ωf ) = 1 . (4.7)

For the ’soft’ version of the constraints (4.5), we define

uf(x) =

{
tf , x ∈ Ωf

0, x /∈ Ωf
, ub(x) =

{
1− tb, x ∈ Ωb

1, x /∈ Ωb
. (4.8)

It is easy to see that the functions uf(x) and ub(x) describe the lower and upper bounds of
the probability of labeling the image pixel x ∈ Ω as foreground objective. This is further
shown in Sec. 4.3.

In the following discussions, we still focus on the case when (4.3) to ease the derivions.
The results can be simply extended to the case of (4.5).

4.1. Primal Model: Supervised Max-Flow. We propose the new supervised max-flow
model as follows:

Consider the source flow ps(x), which flows from the source s to each pixel x ∈ Ω;
when x ∈ Ωb, the flow should have no contribution to the energy as it passes through the
known background pixel; otherwise, it is valued as the full flow ps(x). Therefore, in view
of (4.6) which implies ub(Ωb) = 0 and ub(Ω\Ωb) = 1, the total source flow ps in Ω is
given by

∫
Ω
ub(x)ps(x) dx. Concerning the total cost of the sink flow pt(x): it flows from

each spatial pixel x to the sink t; when x ∈ Ωf , the sink flow costs −pt(x) where its neg-
ative sign means it reduces the cost; otherwise, sink flow costs nothing, likewise, in view of
(4.6) where uf (Ωf ) = 1 and uf(Ω\Ωf ) = 0 , we can value the total cost of pt in Ω by
−
∫
Ω
uf(x)pt(x) dx.
In contrast to the continuousmax-flow problem (3.5), we formulate the related supervised

max-flow model as

sup
ps,pt,p

PS(ps, pt, p) =

∫
Ω

ub(x)ps(x) dx −

∫
Ω

uf (x)pt(x) dx (4.9)

11



subject to the same flow constraints (3.1), (3.2), (3.3) and (3.4) on ps, pt and p. Likewise,
(4.9) is also called the primal model of the supervised max-flow / min-cut problem.

As the special case when no priori information about foreground and background is
given, then we have the two characteristic functions uf (x) = 0 and ub(x) = 1 for ∀x ∈ Ω.
It is easy to check that the supervised max-flow problem (4.9) coincides with the max-flow
problem (3.5) in this case.

4.2. Supervised Primal-Dual Model. In analogue with (3.6), we can construct the
equivalent primal-dual formulation of (4.9) by introducing the multiplier function λ

sup
ps,pt,p

inf
λ

ES(ps, pt, p;λ) =

∫
Ω

ub(x)ps(x) dx −

∫
Ω

uf (x)pt(x) dx+∫
Ω

λ(x)
(
div p(x) − ps(x) + pt(x)

)
dx (4.10)

s.t. ps(x) ≤ Cs(x) , pt(x) ≤ Ct(x) , |p(x)| ≤ C(x) ,

which can be equivalently be formulated by

sup
ps,pt,p

inf
λ

ES(ps, pt, p;λ) =

∫
Ω

(ub − λ)ps dx+

∫
Ω

(λ− uf )pt dx+ (4.11)∫
Ω

λ(x) div p(x) dx

s.t. ps(x) ≤ Cs(x) , pt(x) ≤ Ct(x) , |p(x)| ≤ C(x) .

As discussed in section 3.2, we have the same minimax relationship as (3.8), i.e.

sup
ps,pt,p

inf
λ

ES(ps, pt, p;λ) = inf
λ

sup
ps,pt,p

ES(ps, pt, p;λ) ,

and at least one optimal primal-dual saddle point exist.

4.3. Dual Model: Supervised Min-Cut. Maximizing all the flow functions ps, pt and
p in ES(ps, pt, p;λ) of (4.11), in the same manner as (3.15), (3.16) and (3.17), leads to the
equivalent dual model to (4.9), also called the supervised min-cut model in this paper:

min
λ

DS(λ) =

∫
Ω

(
ub − λ

)
Cs dx+

∫
Ω

(
λ− uf

)
Ct dx +

∫
Ω

C(x) |∇λ(x)| dx (4.12)

s.t. uf (x) ≤ λ(x) ≤ ub(x) .

In this paper, we focus on the case that C(x) = α, ∀x ∈ Ω, then (4.12) can be equally written
as

min
λ

DS(λ) =

∫
Ω

(
ub − λ

)
Cs dx+

∫
Ω

(
λ− uf

)
Ct dx+ α

∫
Ω

|∇λ(x)| dx (4.13)

s.t. uf (x) ≤ λ(x) ≤ ub(x) ;

or, observe ub and uf are given in advance, be shortened as

min
λ

DS(λ) =

∫
Ω

λ
(
Ct − Cs

)
dx+ α

∫
Ω

|∇λ(x)| dx (4.14)

s.t. uf(x) ≤ λ(x) ≤ ub(x) .
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We see that (4.14) is just the convex relaxed model of the nonconvex supervised min-cut
problem (4.2), where the subset ordering

Ωf ⊂ S ⊂ Ω\Ωb

in (4.1) is expressed by the inequality ordering

uf(x) ≤ λ(x) ≤ ub(x) , x ∈ Ω

in (4.14).
Moreover, the applied inequality constraint of λ in (4.14), in view of (4.6) and (4.7), just

gives

λ(Ωf ) = 1 , λ(Ωb) = 0 . (4.15)

This coincides with the priori information thatΩf is already labeled as foreground objects and
Ωb is labeled as the background. It follows that the inequality constraint of λ(x) implicitly
encodes the priori supervision information.

In the special case when no priori information about foreground and background is given,
i.e. uf (x) = 0 and ub(x) = 1 ∀x ∈ Ω, it is easy to see that the supervised min-cut problem
(4.13) is equivalent to the continuous min-cut problem (1.2).

4.4. Global Binary Supervised Min-Cuts. Now we prove that global optimums of the
nonconvex supervised min-cut model (4.1) can also be obtained by taking each upper level set
of the global optimum λ∗ to its convex relaxed version (4.13) or (4.14), in a similar manner
as Prop. 3.2.

PROPOSITION 4.1. Let p∗s , p∗t , p∗ and λ∗(x) be a global optimum of the primal-dual
problem (4.10) with C(x) = α. Then each �−upper level set S� := {x |λ(x) ≥ � } of λ∗(x)
where � ∈ (0, 1], and its indicator function u�:

u�(x) :=

{
1 , λ∗(x) ≥ �
0 , λ∗(x) < �

,

is a global solution of the nonconvex supervised min-cut problem (4.1).
Moreover, each supervised cut given by S� has the same energy as the optimal supervised

max-flow energy, i.e.

PS(p
∗
s , p

∗
t , p

∗) =

∫
Ω

ub(x)p
∗
s(x) dx −

∫
Ω

uf (x)p
∗
t (x) dx .

Proof. Let p∗s , p∗t , p∗ and λ∗(x) be a global optimum of (4.10). Then p∗s , p∗t , p∗ optimize
the primal problem (4.9) and λ∗(x) optimizes (4.13) or (4.14) at the same time. Meanwhile,
the two energies are equal, i.e.

PS(p
∗
s, p

∗
t , p

∗) = ES(p
∗
s, p

∗
t , p

∗, λ∗) = DS(λ
∗) .

By the definition of ub and uf in (4.6), the optimal energy of (4.9) is

PS(p
∗
s, p

∗
t , p

∗) =

∫
Ω

ub(x)p
∗
s(x) dx −

∫
Ω

uf(x)p
∗
t (x) dx

=

∫
Ω\Ωb

p∗s(x) dx −

∫
Ωf

p∗t (x) .dx (4.16)
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Concerning the supervised min-cut problem, (4.15) indicates that

λ∗(Ωf ) = 1 , λ∗(Ωb) = 0 . (4.17)

Then each level set S� � ∈ (0, 1],

S� := {x |λ∗(x) ≥ � } ,

of λ∗ contains Ωf and excludes Ωb, i.e. we have

Ωf ⊂ S� ⊂ Ω\Ωb . (4.18)

As λ∗(x) is the optimal multiplier, we must have the flow conservation condition (3.4),
i.e.

div p∗(x) − p∗s(x) + p∗t (x) = 0, a.e. x ∈ Ω. (4.19)

For any point x ∈ S�, i.e. where λ∗(x) ≥ �, we have by (4.17) that λ∗(x) ≥ uf(x), and
therefore

p∗t (x) = Ct(x) .

Then by (4.19), we have

p∗s(x) = Ct(x) + div p∗(x) , a.e. x ∈ S�\Ωf . (4.20)

And for any point x ∈ (Ω\Ωb)\S�, i.e. λ∗(x) < �, hence λ∗(x) < ub(x) and it is easy to see
that

p∗s(x) = Cs(x) . (4.21)

Therefore, in view of (4.21) and (4.20), the total optimal energy (4.16) is

PS(p
∗
s, p

∗
t , p

∗) =

∫
(Ω\Ωb)\S�

Cs(x) dx +

∫
S�

(
Ct(x) + div p∗(x)

)
dx−

∫
Ωf

p∗(x)dx

=

∫
(Ω\Ωb)\S�

Cs(x) dx +

∫
S�\Ωf

Ct(x) dx +

∫
S�

div p∗(x) dx

=

∫
(Ω\Ωb)\S�

Cs(x) dx +

∫
S�\Ωf

Ct(x) dx + α
∣∣∂S�

∣∣ ,
which obviously gives a solution u� of the nonconvex supervised min-cut problem (4.1). The
last term follows from the observation of (3.26).

The above binary solution u� is contained in the relaxed convex set λ(x) ∈ [0, 1] and
reaches the globally optimal energyE∗. It follows that such binary solver is globally optimal.

5. Algorithms. In this section, we propose the new algorithms for the continuous min-
cuts (1.2) and (4.14) based their respective max-flow formulations (3.5) and (4.9).
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5.1. Continuous Max-Flow Based Algorithm. We motivate the algorithm upon the
proposed continuousmax-flowmodel (3.5). The energy function of its equivalent primal-dual
model (3.6) is just the lagrangian function of (3.5). For such a linear equality constrained op-
timization problem, we derive our fast max-flow based algorithm by means of the augmented
lagrangian method [6], which introduces an approach to compute both the flows and labeling
function simultaneously. To this end, in view of the lagrangian function (3.6), we define the
respective augmented lagrangian function as

Lc(ps, pt, p, λ) :=

∫
Ω

ps dx+

∫
Ω

λ
(
div p− ps + pt

)
dx−

c

2
‖div p− ps + pt‖

2
, (5.1)

where c > 0. Alg. 5.1 shows the details of the proposed continuous max-flow based algo-
rithm, where λ(x) is updated as the multiplier at each iteration. Alg. 5.1 is an example of the
alternating direction method of multipliers. Convergence can be validated by optimization
theories.

The sub-minimization problem (5.2) can also be solved by one step of the following
iterative procedure:

pk+1 = Πα

(
pk + c∇(div pk − F k).

)
(5.3)

where Πα is the convex projection onto the convex set Cα = {q |‖q‖∞ ≤ α}. This requires
much less computational efforts.

5.2. Supervised Continuous Max-Flow Based Algorithm. Now we propose the al-
gorithm for the supervision-constrained min-cut problem (4.14) based upon its equivalent
continuous max-flow formulation (4.9). Likewise, its equivalent primal-dual formulation of
(4.10) is obviously just the lagrangian function of (4.9). We define its respective augmented
lagrangian function as

Lc(ps, pt, p, λ) =

∫
Ω

ubps dx−

∫
Ω

ufpt dx +

∫
Ω

λ
(
div p− ps + pt

)
dx

−
c

2
‖div p− ps + pt‖

2 .

where c > 0.
The supervised continuous max-flow based algorithm is stated in Alg. 5.2.

6. Experiments. We show two types of experiments for the proposed continuous max-
flow / min-cut models: unsupervised image segmentation and supervised image segmenta-
tion.

6.1. Unsupervised Image Segmentation. For image segmentation without user inputs,
we adopt piecewise constant functions as the image model: i.e. two grayvalues f1 and f2 are
chosen priori for clues to build data terms:

Cs(x) = D(f(x)− f1(x)) , Ct(x) = D(f(x)− f2(x)) ,

whereD(·) is some penalty function.
Fig. 6.1 and Fig. 6.2 show two experiments. Each is computed by the proposed con-

tinuous max-flow based method Alg. 5.1 and Bresson et al [11] for comparisons. For the
experiment shown in Fig. 6.1, we chose α = 0.4 and threshhold value � = 0.5. Our method
converges to a result (see graphs at the second row of Fig. 6.1), which takes the value 0 or
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Algorithm 1Multiplier-Based Maximal-Flow Algorithm
Set the starting values p1s, p1t , p1 and λ1, let k = 1 and start k−th iteration, which includes
the following steps, until convergence:

• Optimizing p by fixing other variables

pk+1 := arg max
‖p‖

∞
≤α

Lc(p
k
s , p

k
t , p, λ

k) . (5.2)

= arg max
‖p‖

∞
≤α
−
c

2

∥∥div p(x) − F k
∥∥2

,

where F k is a fixed variable. This problem can either be solved iteratively by Cham-
bolle’s projection algorithm [13], or approximately by one step of (5.3).

• Optimizing ps by fixing other variables

pk+1

s := arg max
ps(x)≤Cs(x)

Lc(ps, p
k
t , p

k+1, λk)

:= arg max
ps(x)≤Cs(x)

∫
Ω

ps dx−
c

2

∥∥ps −Gk
∥∥2

whereGk is a fixed variable and optimizing ps can be easily computed at each x ∈ Ω
pointwise;

• Optimizing pt by fixing other variables

pk+1

t := arg max
pt(x)≤Ct(x)

Lc(p
k+1

s , pt, p
k+1, λk)

:= arg max
pt(x)∈Ct(x)

−
c

2

∥∥pt −Hk
∥∥2 ,

whereHk is a fixed variable and optimizing pt can be simply solved by

pt(x) = min(Hk(x), Ct(x)) ;

• Update λ by

λk+1 = λk − c (div pk+1 − pk+1

s + pk+1

t ) ;

• Let k = k + 1 go to the k + 1 iteration until converge.

1 nearly everywhere. This is in contrast to the result of the method by Bresson et al (see
graphs at the first row of Fig. 6.1). For the experiment shown in Fig. 6.2, we chose α = 0.4
and threshhold value � = 0.02. Both results look quite the same, but our method converges
significantly faster than the algorithm of Bresson et al [11].

In all experiments, at each iteration we evaluate the following convergence criterion:

errk =
∥∥λk+1 − λk

∥∥ / ∥∥λk+1
∥∥ .

In contrast to Bresson et al [11], the proposed algorithm converges within 100 iterations (the
accuracy below 1× 10−4). It greatly outperforms [11] in terms of convergence rate, see Fig.
6.3: Bresson et al (blue line) and ours (red line). In addition, our algorithm is also reliable for
a wide range of c.
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Algorithm 2Multiplier-Based Supervised Max-Flow
Set the starting values p1s, p1t , p1 and λ1, let k = 1 and start k−th iteration, which includes
the following steps, until convergence:

• Optimizing p by fixing other variables

pk+1 := arg max
‖p‖

∞
≤α

Lc(p
k
s , p

k
t , p, λ

k)

:= arg max
‖p‖

∞
≤α
−
c

2

∥∥div p− F k
∥∥2

;

where F k is some fixed variable and results in a projection algorithm [13] or the
gradient decent project (5.3);

• Optimizing ps by fixing other variables

pk+1

s := arg max
ps(x)≤Cs(x)

Lc(ps, p
k
t , p

k+1, λk)

:= arg max
ps(x)≤Cs(x)

∫
Ω

ubps dx−
c

2

∥∥ps −Gk
∥∥2 ,

whereGk is a fixed variable and optimizing ps can be easily computed at each x ∈ Ω
pointwise;

• Optimizing pt by fixing other variables

pk+1

t := arg max
pt(x)≤Ct(x)

Lc(p
k+1

s , pt, p
k+1, λk)

:= arg max
pt(x)∈Ct(x)

−

∫
Ω

ufpt dx−
c

2

∥∥pt −Hk
∥∥2 ,

whereHk is a fixed variable and optimizing pt can be also simply solved pointwise;
• Update λ by

λk+1 = λk − c (div pk+1 − pk+1

s + pk+1

t ) ;

• Let k = k + 1 go to the k + 1 iteration until converge.

6.2. Supervised Image Segmentation. For supervised image segmentation, we use the
Middlebury data set [43] for experiments, see images in Fig. 6.4. The corresponding data
term, i.e. Cs(x) and Ct(x), is based on Gaussian mixture color models of foreground and
background and provided in advance. It is not required for us to put very large flow capacities
artificially at the marked areasΩf andΩb as proposed in the supervised continuous max-flow
method (4.9). This in contrast to graph-based supervised image segmentation [45, 29, 10].

Here the tree-reweighted message passing method [45, 29] and α expansion method
[10, 8] are applied for comparisons. As we see, there are no visual artifacts, like metrication
errors, in our results (see details of the results, e.g. the left-bottom pedal of the flower (middle
column)).

7. Conclusions and Future Topics. We study continuous max-flow and min-cut mod-
els, with or without supervised constraints, in this work. Dualities between max-flow and
min-cut in the spatially continuous setting are set up and investigated by variational tech-
niques. In this regard, terminologies used by graph-cut based techniques are revisited and
explained under a new variational perspective. New optimization results on the exactness of
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FIG. 6.1. At this experiment, we chose α = 0.4 and � = 0.5. Graphs of the first row show the results by
Bresson et al: (left) computed λ∗(x), (middle) threshholded u�(x), (right) segmented image. Graphs of the second
row show the results by our method: (left) computed λ∗(x), (middle) threshholded u�(x), (right) segmented image.

the proposed convexmodels are derived and discussed with helps of the continuous max-flow
formulations. The proposed continuous max-flow based algorithms are based upon classical
convex optimization theories, which provide fast and reliable numerical schemes. In con-
trast to discrete graph-based methods, the algorithms can be easily speeded up by adopting a
multigrid or parallel numerical scheme.

The max-flow methods can also be extended to other min-cut problems with multiple
phases (see the companion of this work and [47]). It also paves the way to understand the
classical graph based max-flow / min-cut algorithms in a completely variational manner. To
this end, the proposed max-flow algorithmic scheme can also be generalized to solve min-cut
problems over a regular weighted graph, where the cut information, i.e. labeling function,
works as associated multipliers. This is one topic of our future studies.

Recently, the Split-Bregman method, a technique for solving unconstrained total varia-
tion problems has been applied to solve the convexified labeling problem (1.2), and was also
shown to outperform the method of Bresson et al [11], see [22]. A detailed comparison with
this method will be presented in another paper along with several fast implementations of our
continuous max-flow algorithms.

REFERENCES

[1] Aseem Agarwala, Mira Dontcheva, Maneesh Agrawala, Steven Drucker, Alex Colburn, Brian Curless, David
Salesin, and Michael Cohen. Interactive digital photomontage. ACM Trans. Graph, 23:294–302, 2004.

[2] Ben Appleton and Hugues Talbot. Globally optimal surfaces by continuous maximal flows. In DICTA, pages
987–996, 2003.

[3] Ben Appleton and Hugues Talbot. Globally minimal surfaces by continuous maximal flows. IEEE Trans.
Pattern Anal. Mach. Intell., 28(1):106–118, 2006.

18



FIG. 6.2. At this experiment, we chose α = 0.02 and � = 0.5. Graphs of the first row show the results by
Bresson et al: (left) computed λ∗(x), (middle) threshholded u�(x), (right) segmented image. Graphs of the second
row show the results by our method: (left) computed λ∗(x), (middle) threshholded u�(x), (right) segmented image.

FIG. 6.3. Comparisons of convergence: (left) for the experiment shown in Fig. 6.1, the method of Bresson et
al (blue line) converges much slower than the proposed continuous max-flow method (3.5)(red line); (right) for the
experiment shown in Fig. 6.2, the method of Bresson et al (blue line) also converges much slower than the proposed
continuous max-flow method (3.5)(red line).

[4] E. Bae, J. Yuan, and X.C. Tai. Global minimization for continuous multiphase partitioning problems using a
dual approach. Technical report CAM09-75, UCLA, CAM, September 2009.

[5] Egil Bae and Xue-Cheng Tai. Efficient global minimization for the multiphase Chan-Vese model of image seg-
mentation. In Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR),
pages 28–41, 2009.

[6] Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, September 1999.
[7] Endre Boros and Peter L. Hammer. Pseudo-boolean optimization. Discrete Appl. Math., 123(1-3):155–225,

2002.
[8] Yuri Boykov and Vladimir Kolmogorov. An experimental comparison of min-cut/max-flow algorithms for

19



FIG. 6.4. 1st. row: The three given images, from the Middlebury data set, with pixels marked as foreground
(white) and background (black). 2nd row: computation result of λ∗ to each image shown by color images, 0: blue
and 1: red. 3rd row: the black-white segmentation result by a threshhold of λ∗. 4th and 5th rows: respective
results computed from tree-reweighted message passing method [45, 29] and α expansion algorithm [10, 8].

energy minimization in vision. IEEE Transactions on Pattern Analysis andMachine Intelligence, 26:359–
374, 2001.

[9] Yuri Boykov and Vladimir Kolmogorov. Computing geodesics and minimal surfaces via graph cuts. In ICCV,
pages 26–33, 2003.

[10] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy minimization via graph cuts. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 23:1222 – 1239, 2001.

[11] Xavier Bresson, Selim Esedoglu, Pierre Vandergheynst, Jean-Philippe Thiran, and Stanley Osher. Fast
global minimization of the active contour/snake model. Journal of Mathematical Imaging and Vision,
28(2):151–167, 2007.

20



[12] Vincent Caselles, Ron Kimmel, and Guillermo Sapiro. Geodesic active contours. In ICCV, pages 694–699,
1995.

[13] Antonin Chambolle. An algorithm for total variation minimization and applications. Journal of Mathematical
Imaging and Vision, 20(1):89–97, January 2004.

[14] T. F. Chan and L. A. Vese. Active contours without edges. Image Processing, IEEE Transactions on,
10(2):266–277, 2001.
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