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Abstract

We consider the standard pooling problem with a single quality parameter,
which is a polynomial global optimization problem occurring among other

places in the oil industry. In this paper, we show that if the feasible set has a
nonempty interior, the problem can be solved by a hierarchy of semidefinite
relaxations in which the resulting sequences of their optimal values converge to
the global optimum. For a fixed relaxation order, this technique provides tight
lower bounds for the global objective function value. Based on the experiments,
for low order relaxations, the lower bound provided by this method matches the
true global optimum in several instances.

Keywords Pooling Problem · Linear matrix inequality · Semidefinite program-
ming · Polynomial optimization · Global optimization

1 Introduction

Consider the problem of transporting oil from producers to consumers, through
a pipeline network. Suppose we have two sources of oil, for instance two offshore
platforms. Suppose in addition that the oil from both sources contains a con-
taminant which cannot be above a certain level in order for the oil to be usable.
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If there are no purification nodes in the network, the only way to control the
level of contaminant (or quality) of the oil that reaches the terminals is to blend
the oil from the different sources either at the terminals or within the network.
One can imagine the oil being blended in a big vat, or pool, which gives rise to
the name pooling problem. The pooling problem in itself is not inherently linked
to oil, such problems can also occur with gas, chemicals, beverages or even food
production – anywhere, when two or more source ingredients with a notion of
quality can be blended in a network.

For oil, the contaminant can be e.g. sulfur, for natural gas, its contaminant
can be CO2, H2S, or other components. In other words, there can be more than
one quality attribute. In this work, however, we will focus on the situation where
there is only one such contaminant.

The pooling problem has been studied for many years, see e.g. (Adhya et al.,
1999; Haugland, 2010; Misener and Floudas, 2009) and the references therein for
a comprehensive treatment. To the best of our knowledge, all existing global
optimization methods for this problem (Adhya et al., 1999; Ben-Tal et al., 1994;
Foulds et al., 1992; Quesada and Grossmann, 1995; Sahinidis and Tawarmalani,
2005; Visweswaran and Floudas, 1990) employ branch-and-bound based tech-
niques for searching the feasible domain. In this work, we propose an alternative
solution method that based on linear matrix inequality (LMI) relaxations pro-
posed by Lasserre (2001a).

The paper is organized as follows. In Section 2, we introduce the problem
under study through a popular instance, and give a general formulation for it.
Section 3 describes the LMI relaxations for quadratic polynomial optimization
problems. In Section 4, we show how we can apply this technique to the pooling
problem. Finally, we present numerical experiments in Section 5, and conclude
in Section 6.

2 The standard pooling problem with a single quality

2.1 Haverly’s first instance

A frequently studied problem instance was constructed by Haverly (1978), and
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is henceforth referred to as Haverly1. This instance can be visualized as in Figure
1. As the figure shows, there are three sources on the left, which can provide
oil with various levels of sulfur (“S”) contamination, at different prices. On the
right, there are two terminals, each with an upper bound on the amount of oil
needed, which quality is acceptable, and the price they will pay. This is a pooling
problem instance because of the structure around node 4.

3% S,
Cost: 6

1% S,
Cost: 16

2% S,
Cost: 10

1

2

3

4
5

6

Max 2.5% S,
Price: 9,
Demand: 100

Max 1.5% S,
Price: 15,
Demand: 200

Figure 1: The Haverly1 pooling problem instance.

Here the oil coming in from nodes 1 and 2 is blended, and the sulfur content
of the oil exiting node 4 is a weighted average of the sulfur content of the oil
entering it. Letting w4 be the relative sulfur content of the oil exiting node 4,
and xij be the flow from node i to node j, we have:

w4 = 2x14 + x24

x14 + x24
,

which we can also write

w4(x14 + x24) = 2x14 + x24.

This is a bilinear constraint, which in general makes the problem nonconvex and
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consequently hard to solve. If we wish to minimize the cost, the entire Haverly1
instance can be formulated as:

min
x,w

6x14 + 16x24 + 10(x35 + x36)− 9(x35 + x45)− 15(x36 + x46),

s.t. x35 + x45 ≤ 100,

x36 + x46 ≤ 200,

x14 + x24 − x45 − x46 = 0,

3x14 + x24 − w4(x45 + x46) = 0,

2x35 + w4x45 − 2.5(x35 + x45) ≤ 0,

2x36 + w4x46 − 1.5(x36 + x46) ≤ 0,

x14, x24, x35, x36, x45, x46 ≥ 0, (1)

w4 ≥ 0. (2)

The globally optimal solution is:

x14

x24

x35

x36

x45

x46

w4


=



0
100
0

100
0

100
1


,

which corresponds to the objective function value −400. Minimizing the cost is
not the only possible objective function, for instance one might want to maximize
the flow to the customers, which would have given the objective function

max
x

x35 + x36 + x45 + x46,

with the same constraints.
Representing the problem with arc flows as the variables and a linear objective

function as we have done is called the P-formulation of the problem. The problem
can also be written in other ways, for instance with the so-called Q-formulation
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(Ben-Tal et al., 1994), which has a nonlinear objective function. We restrict
ourselves to the P-formulation in this work.

2.2 General formulation

In general, we define our problem as follows. Consider a directed graph G =
(N,A) with the node set N consisting of sources S, pools I and terminals T . Let
the arc set A be such that the graph is connected, and such that all arcs link
either a source with a pool, a source with a terminal, or a pool with a terminal.

With each node i ∈ N , we define the node capacity bi. At each source or
terminal node i ∈ S ∪ T there is defined a quality qi and a constant ci. If s ∈ S,
qs is referred to as the quality parameter and cs is the cost at that source. If
t ∈ T , qt is referred to as the quality bound and ct is the price of selling at this
terminal.

Choosing minimization of the total cost as the objective, we can write the
problem as:

min
x,w

∑
s∈S

∑
j∈N :(s,j)∈A

csxsj −
∑
t∈T

∑
i∈N :(i,t)∈A

ctxit,

s.t.
∑

j∈N :(s,j)∈A

xsj ≤ bs, s ∈ S, (3)

∑
j∈N :(j,i)∈A

xji ≤ bi, i ∈ I ∪ T, (4)

∑
s∈S:(s,i)∈A

xsi −
∑

t∈T :(i,t)∈A

xit = 0, i ∈ I, (5)

∑
s∈S:(s,i)∈A

qsxsi − wi
∑

t∈T :(i,t)∈A

xit = 0, i ∈ I, (6)

∑
s∈S:(s,t)∈A

qsxsj +
∑

i∈I:(i,t)∈A

wixit − qt
∑

j∈N :(j,t)∈A

xjt ≤ 0, t ∈ T, (7)

xij ≥ 0, (i, j) ∈ A.

Inequalities (3) and (4) are the flow capacity constraints at all nodes, and (7) is
the quality constraints at each terminal. Equation (5) is the flow conservation
constraint for each pool, and Equation (6) is the corresponding quality balance
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constraint, stating that the amount of the contaminant entering a pool equals
the amount leaving it.

As one can see the objective function is linear, and the constraints are either
linear or bilinear. In other words, even though the feasible region is noncon-
vex, both the objective function and the constraints are polynomial, and in fact
quadratic. We can therefore apply polynomial optimization techniques.

3 Polynomial optimization by LMI relaxations

We now give a brief outline of the technique of global optimization of (quadratic)
polynomials by linear matrix inequality (LMI) relaxations, as presented by
Lasserre (2001b). For a more thorough introduction of the case of polynomials
of any degree, see (Lasserre, 2001a).

3.1 Moments and moment matrices

For a polynomial function f on Rn, we wish to compute

f∗ = min
x∈K

f(x), (8)

where K is a subset of Rn defined by polynomial constraints

gk(x) ≥ 0, k = 1, 2, . . . ,m.

An equivalent problem is
min

µ∈P(K)

∫
f(x)µ(dx),

where we minimize over the space of finite Borel signed measures with their
support in K. This is an infinite dimensional problem, so instead of determining
the measure itself we try to determine its moments y defined as

yα =
∫
xαµ(dx),
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where α denotes a collection of n indices and xα is a product of the components
x1, x2, . . . , xn to the power of the corresponding index in α. For example, if
n = 3, then

y456 =
∫
x4

1x
5
2x

6
3µ(dx).

For moments corresponding to a probability distribution, the moment matrix of
order i is a positive semidefinite matrixMi(y) containing all moments up to order
2i, which satisfies

pTMi(y)p =
∫

[p(x)]2µy(dx),

where p is a vector of the coefficients of a polynomial, ordered so that they
correspond to the entries of the moment matrix. Here, µy is the (not necessarily
unique) probability distribution corresponding to the moments inMi(y). If n = 2
and i = 2 then

M2(y) =



1 y10 y01 y20 y11 y02

y10 y20 y11 y30 y21 y12

y01 y11 y02 y21 y12 y03

y20 y30 y21 y40 y31 y22

y11 y21 y12 y31 y22 y13

y02 y12 y03 y22 y13 y04


.

In this case, p contains the coefficients of the base polynomials

1, x1, x2, x
2
1, x1x2, x

2
2,

in this order. Similarly, there exist moment matrices relating to the constraints.
For each constraint gk(x) ≥ 0, k = 1, 2, . . . ,m, there exists a matrix Mi(gky), so
that

pTMi(gky)p =
∫
gk(x)[p(x)]2µy(dx).

3.2 LMI Relaxations

These two matrix types are the main ingredients in the following hierarchy of
convex LMI relaxations for quadratic problems:
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Qi =


min
y

∑
α

(g0)αyα,

s.t. Mi(y) � 0,
Mi−1(gky) � 0, k = 1, 2 . . . ,m,

(9)

where g0 is a vector containing the coefficients of f(x) ordered according to the
order of all the moments {yα} stacked in a vector. The moments yα are the
unknowns. For the different orders of relaxations and the original problem (8),
we have (Lasserre, 2001b, Proposition 3.1),

inf Qi ≤ inf Qi+1 ≤ f∗, i = 1, 2, . . .

Under certain conditions we have that, for increasing i, the objective function
value

lim
i→∞

inf Qi ↑ f∗ (10)

A sufficient condition for (10) to hold that can be applied to the pooling problem
is that we can add a redundant constraint of the form

gm+1(x) = M − ‖x‖2 ≥ 0, (11)

for some finite constant M . For the exact requirements, see (Lasserre, 2001a,b).
Let Q∗i denote the dual of (9). It can be written

Q∗i =



max
X,Zk

−X11 −
m∑
k=1

(gk)0(Zk)11,

s.t. X •Bα +
m∑
k=1

Zk • Ckα = (g0)α, ∀α 6= 0,

X, Zk � 0, k = 1, 2, . . . ,m.

(12)

Here, X11 and (Zk)11 denote the elements in position (1,1) of these matrices, and
(gk)0 denotes the constant term in the expression gk(x) ≥ 0. The operator • de-
notes the inner product between symmetric matrices, that is, A•B = trace(AB).
The matrices Bα and Cα are defined by

∑
α

yαBα = Mi(y), and

132



L. Frimannslund, M. El Ghami, M. Alfaki and D. Haugland

∑
α

yαC
k
α = Mi−1(gky),

where the sum is over each component in α, that is, corresponding to each unique
member of Mi(y). The y-component corresponding to the constant terms is
chosen to be 1. Similarly, the expression ∀α 6= 0 in the constraints of (12) means
that there is one such constraint for each component of α not equal to zero.

3.3 Finite convergence

In many cases, there exists an integer i0 such that

maxQ∗i = inf Qi = f∗ ∀ i ≥ i0, (13)

and in some instances i0 is relatively small, say 2 or 3. If K has a nonempty
interior, then a necessary and sufficient condition for (13) to hold is that the poly-
nomial f(x)− f∗ can be written as a sum of squares, particularly (see Equation
18.12 in Lasserre, 2001b):

f(x)− f∗ =
r0∑
j=1

[pj(x)]2 +
m∑
k=1

gk(x)

 rk∑
j=1

[pkj(x)]2
 , (14)

where the functions pj(x) and pkj(x) are polynomials, for all j and all (k, j)-pairs.
The coefficients of these polynomials can be retrieved from the dual problem Q∗i .
Specifically, if (14) holds and given the solution to Q∗i (e.g. X,Zk, k = 1, . . . ,m),
then if we let pj and pkj be the vectors of coefficients for the corresponding
polynomials, we have

r0∑
i=1

pjp
T
j = X, and

rkj∑
j=1

pkjp
T
kj = Zk, k = 1, 2, . . . ,m.

If K does not have a nonempty interior then the theory of Lasserre (2001b)
cannot give an if-and-only-if condition for finite convergence. Nevertheless, as
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pointed out in the introduction of Lasserre (2001a), from a numerical point of
view this is not important, and numerical results are promising for this case as
well (Lasserre, 2001b). Recent results regarding the representation of polynomials
(Kojima and Muramatsu, 2009) may close this theoretical gap in the future.

Given a solution maxQ∗i , then the corresponding x-variables for the origi-
nal problem can be extracted from Mi(y) using the procedure by Henrion and
Lasserre (2005) or be read from the first order moments directly. To verify global
optimality, the obtained x must be feasible for the original problem, and attain
the same objective function value.

If the original polynomial optimization problem has n variables and m con-
straints, then the i-th order LMI relaxation (9) has O(n2i) variables and m + 1
positive semidefiniteness constraints. The LMI can be cast as an SDP problem
(Lasserre, 2008). Such problems can be solved in polynomial time using interior
point methods. In other words, any polynomial optimization problem for which
there exists an i0 such that (13) holds in all instances of the problem, is solvable
in polynomial time. It is however important to note that i0 must be independent
of the problem instance.

4 LMI relaxations applied to the pooling problem

For the solution framework in Section 3 to work, the set of feasible solutions
must have a nonempty interior. This means we will have to eliminate all equality
constraints somehow. We show how to do this by example, on the Haverly1
instance.

4.1 Preprocessing the Haverly1 instance

First, we eliminate the flow conservation equation, that is,

x14 + x24 − x45 − x46 = 0.

Let us perform the substitution

x14 ← (−x24 + x45 + x46).
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This gives the following formulation:

min
x,w

10x24 + x35 − 5x36 − 3x45 − 9x46,

s.t. x35 + x45 ≤ 100,

x36 + x46 ≤ 200,

−2x24 + 3x45 + 3x46 − w4(x45 + x46) = 0,

2x35 + w4x45 − 2.5(x35 + x45) ≤ 0,

2x36 + w4x46 − 1.5(x36 + x46) ≤ 0,

−x24 + x45 + x46 ≥ 0,

x24, x35, x36, x45, x46 ≥ 0,

1 ≤ w4 ≤ 3.

Note here that we have replaced the constraint w4 ≥ 0 in (2) with the tighter
constraints w4 ≤ 3, and w4 ≥ 1. These bounds are easily identified, since the
quality of the flow that leaves a pool is bounded by the qualities of the flows
entering it. Note also that constraint (1), which includes the nonnegativity con-
straint x14 ≥ 0 subject to substitution. We continue in the same fashion and use
the remaining equality constraint to remove the variable x24, by performing the
substitution

x24 ← 1.5x45 + 1.5x46 − 0.5w4(x45 + x46).

This gives the formulation:

min
x,w

x35 − 5x36 + 12x45 + 6x46 − 5w4(x45 + x46),

s.t. x35 + x45 ≤ 100,

x36 + x46 ≤ 200,

2x35 + w4x45 − 2.5(x35 + x45) ≤ 0,

2x36 + w4x46 − 1.5(x36 + x46) ≤ 0,

x45 + x46 − (1.5x45 + 1.5x46 − 0.5w4(x45 + x46)) ≥ 0,

1.5x45 + 1.5x46 − 0.5w4(x45 + x46) ≥ 0,

x35, x36, x45, x46 ≥ 0,
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1 ≤ w4 ≤ 3.

Note that the objective function is now nonlinear, and that the two last con-
straints correspond to the nonnegativity constraints on the two eliminated vari-
ables, x14 ≥ 0 and x24 ≥ 0. We can visualize this reduced formulation as in
Figure 2.

% S ∈ [1, 3]
Cost: 6

2% S,
Cost: 10

4

3

5

6

Max 2.5% S,
Price: 9,
Demand: 100

Max 1.5% S,
Price: 15,
Demand: 200

Figure 2: The Haverly1 pooling problem instance, with two variables substituted.

The feasible region has a nonempty interior, since all the inequalities hold
strictly, e.g. 

x35

x36

x45

x46

w4


=



6
6
1
1

7/6


.

Having eliminated the equality constraints, we can add a constraint of the form
(11). In the current instance, it can be

(105 + 9)− x2
35 − x2

36 − x2
45 − x2

46 − w2
4 ≥ 0.
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4.2 Preprocessing general instances

All pooling problem instances have a flow conservation and quality balance equa-
tion for each pool, but these can be eliminated by the method outlined in the
example.

There may be additional equalities present stemming from the bounds on the
flow variables, as well as the bounds on the quality entering the pools. In most
cases these equalities can be eliminated by repeated application of one or more
of the following preprocessing steps:

1. No flow possible because of quality constraints ⇒ remove edge.

2. Disconnected node ⇒ remove node

3. Quality or flow restricted to one value ⇒ replace variable in question with
a constant.

However, the feasible set for a formulation with no equality constraints is not
always guaranteed to have a nonempty interior, but the converse is true. For
example, if we have the network to the left in Figure 3, using the technique we
have described, we can eliminate all equality constraints, but the feasible set still
has empty interior.

4% S

0.1% S,

1

2

3

4

5

Max 1% S,

Min 2% S.

1

2

3

4

5

6

7

8

9

Figure 3: To the left, an instance where the feasible set has a nonempty interior.
To the right the network used in the experiments.
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5 Numerical experiments

We test the LMI relaxation technique using the software package Gloptipoly 3
(Henrion et al., 2009). First we try a few instances from the literature, listed in
the first five rows of Table 2. All of these are defined in e.g. (Adhya et al., 1999).

As Table 2 reflects, the first order relaxation only finds lower bounds on global
optimum f∗ of the original problem. For order 2 we have maxQ∗2 = f∗ and Glop-
tipoly is able to extract the globally optimal solution x∗ for all but the Foulds2
instance. Foulds2 has infinitely many globally optimal solutions corresponding
the same value of the qualities at its two pools. One such solution is identifiable
from the first-order moments in the moment matrix M2(y), but the software is
not able to detect this, presumably for numerical reasons. It should, namely, be
noted that all of the instances tested are extremely sensitive to scaling, and most
can only be solved successfully with Gloptipoly with the variables scaled to their
expected magnitude at the optimal solution. Since the problem is invariant to
scaling this is a numerical, not a theoretical issue. Unfortunately we are not able
to solve Foulds2 with relaxation order 3 due to lack of memory on the computer
used for testing.

We also generated some instances, using the graph to the right in Figure 3.
The different values for the parameters and constraints are found in Table 1.

The first instance is defined to have a nonempty interior and consistency be-
tween quality and price. The rest were randomly generated. As it turns out,
instances B and D have empty interiors. For B, no flow can reach the second
of third terminals because of their strict constraints on the quality. For D, no
flow can reach the first and second terminals, for the same reason. We therefore
construct two versions of each of these instances. Instance B and D denote the
original instances, and B2 and D2 denote the same instances with the unreach-
able terminals removed. The results in these instances are reported in the bottom
half of Table 2.
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Table 1: Parameter settings for test instances.
Sources Terminals

Cost Quality parameter Flow capacity Price Quality bound Flow capacity

A


10
4
5
2




1
3
2
4


 20

7
5

 ≤

 1.5
2.5
3.5

 ≤

 100
100
100



B


8.5577
6.7080
5.2359
2.9882




7.0397
3.8161
5.6768
8.8786


 0.8747

2.6073
0.2280

 ≤

 8.1544
0.0136
0.0309

 ≤

 84.2949
89.8799
93.9003



C


6.4832
6.1467
4.6965
5.7778




9.1131
3.7622
2.2876
4.2352

 ≤


6.1825
23.1367
11.8486
9.8780


 3.0035

4.0003
5.1772

 ≤

 5.3464
3.8544
8.7345

 ≤

 27.3596
44.4566
62.7515



D


8.1472
9.0579
1.2699
9.1338




6.3236
0.9754
2.7850
5.4688


 8.0028

1.4189
4.2176

 ≥

 9.7059
9.5717
4.8538

 ≤

 95.7507
96.4889
15.7613


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Table 2: Results from five instances from the literature and the instances defined
in Table 1.

Name
maxQ∗i for relaxation order

Notes1 2 3
Haverly1 -600 -400 – x∗ found at order 2
Haverly2 -1200 -600 – x∗ found at order 2
Haverly3 -875 -750 – x∗ found at order 2
BenTal4 -600 -450 – x∗ found at order 2
Foulds2 -1200 -1100 – Sol. in M2(y)
A -1925 -1553 -1541 x∗ found at order 3
B 0 – – x∗ found at order 1
B2 0 – – x∗ found at order 1
C -5.69 -5.69 – x∗ found at order 2
D 0 – – x∗ found at order 1
D2 0 – – x∗ found at order 1

Two things happen here that is different from the results of the experiments
with the instances from the literature. One is that for instance A, the solution
is not found with relaxation order 2, but that order 3 is needed. Secondly, for
instances with zero as their solution the global optimum is found and verified for
order 1.

Table 3: Results from experiments with max flow instances.

Name
maxQ∗i for relaxation order

Notes1 2 3
Haverly1 300 300 – x∗ found at order 2
Haverly2 800 800 – x∗ found at order 2
Haverly3 300 300 – x∗ found at order 2
BenTal4 300 300 – x∗ found at order 2
Foulds2 600 600 – x∗ found at order 2
A 300 300 – x∗ found at order 2
B 181 84.30 84.29 x∗ found at order 3
B2 84.29 – – x∗ found at order 1
C 51.04 51.04 – x∗ found at order 2
D 22.89 15.76 15.76 x∗ found at order 3
D2 15.76 15.76 – x∗ found at order 2

We also test the same instances, but with a max flow objective function.
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These results are reported in Table 3. For the max flow objective function,
the instances with an empty interior requires a higher relaxation order than for
min cost, namely order 3. In the remaining instances relaxation order 1 always
provides the correct objective function value, and in the B2 instance, this applies
to the variables as well. In the rest of the instances, relaxation order 2 is needed
in order to obtain the optimal variable values.

6 Conclusion

We use LMI relaxations for solving the standard pooling problem with a single
quality. Based on our experiments, small instances of this problem can be solved
with low LMI relaxation orders, provided that they can be formulated in such
a way that they have a nonempty interior. However, solving such relaxation
implies a large computational effort, which for large instances makes the method
impractical to use. Current research on solution methods for sparse semidefinite
optimization has good promise to ease this limitation.
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