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Preface

The work presented in this PhD thesis was carried out at the Department of Chemistry
at the University of Bergen in the period October 2008-October 2012. The thesis
consists of a research report, four papers and a summary of the obtained results as
well as the techniques and methods applied in the work. The work has been financed
by the Norwegian Research Council and the industry partner Roxar through the
Michelsen Centre for Industrial Measurement Science and Technology at Christian
Michelsen Research in a project called “Epsilon”. The project is interdisciplinary,
combining physical chemistry, petroleum chemistry, physics and chemometrics.
During the three years of research I have participated at two international conferences

and two Norwegian conferences.

Roxar is a leading provider of advanced technology to the oil and gas industry, and
some of their products are the Multiphase Flow Metering systems. These systems can
provide measurements of the water cut and flow rates of oil, gas and water in
pipelines. Data from the systems can help in optimising petroleum production,
increasing the oil recovery and lowering the investments and operational costs. This
project seeks to improve the performance of the Multiphase Flow Metering systems
by improving the understanding of how the different compounds in crude oil
influence the physical properties of crude oil, in particular the properties that are

involved in Multiphase Flow Metering.
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Abstract

Crude oil composition and properties have been subject for research for several
decades, as well as the correlation between the chemical composition and physical
properties of crude oil. The physical properties of crude oil are strongly dependent
upon the chemical composition of the oil, and both physical properties and
composition provide important information for the oil producers as different
challenges might occur when handling certain types of crude oil; corrosion,
deposition of solids and plugging of pipelines are just some examples. As a mean of
detecting possible threats and monitoring the flow through the pipelines, a number of
metering devices can be applied, for example a Multiphase Flow Meter, which can
provide measurements of the water cut and the flow rates of oil, gas and water in

pipelines, as well as pressure and density.

The aim of this work is to improve the general understanding of how the distribution
of the different compounds in crude oil influence the physical properties of crude oil,
in particular the properties that are involved in Multiphase Flow Metering, where
permittivity is of special relevance. By improving this understanding, the project
seeks to improve the knowledge base on the interactions between the chemistry of the
petroleum fluids and the parameters that provide the basis for the performance of the

Multiphase Flow Metering systems.

In this work, calibration models of several physical properties and compositional data
has been built, based on GC and IR data respectively. Several of the models are
obtained with good predictive quality, for instance the models for static and high
frequency permittivity, density and velocity of sound. Also, a clear biodegradation
effect has been identified in the regression coefficients for these properties, indicating

that biodegradation has a significant effect on their variation.

A multivariate calculation tool for estimation of static permittivity of crude oils based

on PVT data has been developed during the thesis work, and this tool has been
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applied by Roxar ASA. The tool gives a better initial calibration of the Multiphase
Flow Metering systems, as the static permittivity is more accurately determined
compared to the previously used methods. The tool should also be able to identify
significant changes in oil composition and properties for example during the
production lifetime of an oil field (given representative PVT data), and recalibrate

values in Multiphase Flow Metering systems accordingly.
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Cfluid
€
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Alpha, empirical factor (permittivity)

Velocity of sound (in fluid), m/s

High frequency permittivity

Relative permittivity

Static permittivity

Shear viscosity, mPas

Density, g/cm’

Sigma, conductivity, Siemens/meter (permittivity)

Tau, relaxation time, seconds (permittivity)
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CHAPTER 1. INTRODUCTION AND OUTLINE

Chapter 1

Introduction and outline

The aim of this work is to improve the general understanding of how the distribution
of the different compounds influence the physical properties of crude oil, in particular
the properties that are involved in Multiphase Flow Metering, with permittivity as the
most important. In crude oil production monitoring, Multiphase Flow Meters are used
for online monitoring of the oil, water and gas flow in pipelines, where the output of
the measurement is the volume or mass of each phase passing the flowmeter in a
given time span. Data from multiphase meters help in optimizing petroleum
production, increasing the oil recovery and lowering the investments and operational
costs (Falcone e. al., 2011; Thorn et. al., 1999). Permittivity measurements provide
input for the determination of flow rates and relative distributions of the fluids in
several well established measurement technologies (Falcone et. al., 2002). Such
systems are, however, calibrated to the initial oil composition, and may lose accuracy
over time due to changes in the fluid compositions that result in changes in the actual
permittivities relative to the incorporated calibration values. Monitoring the
permittivity regularly is one approach to quality assurance of the meter readings, but
the necessary instrumentation is often not easily available. Quality control based on
monitoring the fluid composition using standard crude oil analytical data provided by
generally available analytical instrumentation, in combination with multivariate

modelling of the required parameters is thus an attractive alternative.

By improving the understanding of how the different compounds in crude oil

influence the physical properties of crude oil, the project seeks to improve the
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performance of the Multiphase Flow Metering systems, both for initial calibration of

the systems and for recalibrations during the lifetime of the systems.

In this context, Partial Least Squares calibration models of the composition and the
different properties of crude oil can be used as a tool to identify significant changes in
oil composition and properties, for example during the production lifetime of an oil
field, and hence highlight the need for updating calibration values in Multiphase Flow
Meters.

This dissertation is divided in two main sections; one section gives the theoretical
background of the measurement principles and analytical techniques used in this work
as well as a summary of the results obtained in the papers is given, the other section is

the papers, which present the main results of this work.

In chapter 2 some theory is given on the complex mixture which is the subject of
analysis in this work; petroleum, or crude oil as it also is called. Then in chapter 3 and
4, the two main contributors of data to the multivariate analysis, Infra Red

Spectroscopy and Whole Oil Gas Chromatography, are introduced.

In chapter 5, the principles behind the analysis regarding the chemical composition
and physical and electrical properties of petroleum are given, while in chapter 6 a
short presentation of theory regarding multivariate analysis and calibration modelling

is given.

Chapter 7 gives a brief summary of the results presented in each paper, and in chapter

8 some concluding remarks and suggestions for further work are given.

The last section is the papers, which present the main results of this work.
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Chapter 2

Petroleum/crude oil

Petroleum, or crude oil, is a naturally occurring complex mixture of hydrocarbons in a
gaseous, liquid or solid state. Petroleum is typically trapped in porous rock deep under
ground, both on land and at sea in locations throughout the world (Speight, 1980;
Speight, 1998). Petroleum is generally considered a cheap resource for hydrocarbons,
and the usage areas for the refined products are wide; petrol for vehicles, diesel fuel,
jet fuel, fuels for ships, factories and central heating, paraffin and gas for heating and
cooking, bitumen for roads and roofing, lubrication oils, waxes, polishes, and various
chemicals are some general usage areas. As petroleum is generated over a long period
of time, it is not regarded as a renewable energy source. This means that at some point

in time, the petroleum reserves will be depleted.

2.1 Petroleum formation

Petroleum is formed from buried marine sediments, which has been experiencing high
temperature and pressure for millions of years. A quick oil generation extends over 5-
10 million years, whereas a slow generation may cover over 100 million years (Tissot
and Welte, 1984). The organic material that is the origin of the petroleum can be
bacteria, plankton, animals, fish and vegetation. Over a long period of time, this
material gets buried by the geological activity of the earth. The organic material then
undergoes a series of concurrent and consecutive chemical reactions collectively

called diagenesis. These chemical reactions occur under the influence of the
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temperature and pressure conditions, as well as the and long reaction times, at the
reservoir locations. The conditions at each reservoir location may vary greatly, and
the proportions of the different organic material differ from location to location
around the world. Because of this, the petroleum from different petroleum reservoirs

has different chemical composition and properties (Speight, 1998).

2.2 Chemical composition and properties of petroleum

Petroleum is a very complex mixture of paraffinic, naphthenic and aromatic
hydrocarbons as well as compounds containing heteroatoms like nitrogen, oxygen and

sulphur. Traces of a variety of compounds containing metals may also be present.

Although the conditions and base material of which petroleum is formed varies

greatly, the elemental composition of petroleum has a rather narrow spread:

Carbon 83.0-87.0%
Hydrogen 10.0-14.0%
Nitrogen 0.1-2.0%
Oxygen 0.05-1.5%
Sulphur 0.05-6.0%

However, the properties of petroleum are not determined by the total elemental
composition, but rather the ratios of the different hydrocarbon compounds and polar
heteroatom compounds in the petroleum (Speight, 1998). Given the fact that the
number of isomers (molecules having the same atomic formula) increase rapidly with
increasing carbon atoms, the variance in the properties of petroleum is easier to

understand:
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Carbon atoms per hydrocarbon Number of isomers
4 2
8 18
12 355
18 60523

In theory, the heavier fractions of petroleum can contain almost unlimited numbers of
molecules, since the molecular weights of the molecules found in petroleum can range

from that of methane (molecular weight=16) to several thousand.

The spread in elemental composition in petroleum is narrow, in particular for carbon,
so the cause of the major differences between petroleum from different reservoirs is

the contents of hydrogen and heteroatoms.

The specific gravity of petroleum varies from 0.75 to 1.00, with most of the crude oils
falling in the range between 0.80 and 0.95. The viscosity of petroleum can vary
greatly as well, as it can vary from free flowing to having difficulty in being mobile at
room temperature. The viscosity can range from below 1 mPa s (milliPascal seconds)
for the lightest crude oils to 10000 mPa s for the heaviest crude oils (Attanasi et al.,
2010).

2.3 Petroleum types; condensates, biodegraded oil and nondegraded oils

In this project a distinction is made between condensates, biodegraded oils and
nondegraded oils. This distinction is made as these three types of petroleum have

different chemical composition.
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Throughout the world, there are a wide variety of natural gas occurrences which may
vary greatly in composition and modes of formation. In natural petroleum gas
reservoirs, methane (CHy) is the major constituent of the gas. Other gas constituents
are the heavier hydrocarbons (ethane C,Hg, propane CsHg, butane C4H;,), carbon
dioxide CO,, hydrogen sulphide H,S, nitrogen, hydrogen, argon and helium. In
addition, liquid hydrocarbons are dissolved in the gas. These hydrocarbons condense
as the gas mixture reaches the surface during production, and the petroleum is then
called a condensate (Tissot and Welte, 1984). This type of petroleum consists mainly
of lighter hydrocarbons, as they have lower boiling points and hence are more likely

to dissolve in the gas phase in the petroleum reservoir.

In some areas where surface-derived, meteoric formation water is present, microbial
alteration of crude oil, i.e. biodegradation of crude oil, can occur. Biodegradation of
crude oil is a selective utilization of certain types of hydrocarbons by microorganisms.
The sequence in which the selective removal of hydrocarbons occurs is as follows: n-
alkanes (below 125), isoprenoid alkanes, low- ring cycloalkanes and aromatics. The
degree of alteration depends on the different intensities and duration of the
biodegradation; the more biodegraded a crude oil is, the higher the content of
Nitrogen, Sulphur and Oxygen compounds. The aromatic character of the oil also
increases with higher degree of biodegradation (Tissot and Welte, 1984). The
different effects of biodegradation upon crude oils are well documented in the
literature (Evans et al., 1971; Bailey et al., 1973, Deroo et al., 1974, Connan et al.,
1975). Petroleum biodegradation is primarily a hydrocarbon oxidation process,
producing CO, and partially oxidized species like organic acids (Peters et al., 2005).
As organic acids are produced by the biodegradation process, a method for identifying
biodegraded oils can be to measure the acid content of the oil. However, oils that are
not biodegraded can also contain acids, although not in the same amounts as for

biodegraded oils.

In figure 2.1 (from Head et. al.) a schematic diagram of physical and chemical

changes occurring during crude oil and natural gas biodegradation is shown.

6
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Figure 2.1: Schematic diagram of physical and chemical changes occurring during
crude oil and natural gas biodegradation, from Head et.al. References 14, 16, 21 and
34 are, respectively, Peters et. al. (2002), Hunt (1979), Thorn et. al. (1998) and Pepper
et. al. (2001).

Although the chemical composition of condensates, biodegraded and nondegraded

oils are different, the variation in some of the physical properties of biodegraded and
7
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nondegraded crude oils are somewhat similar and cover a continuum rather than
comprising completely separate classes. Both biodegraded and nondegraded oils can
vary from light to heavy crude oils; light oils have low densities (compared to heavy
oils) and low viscosities, while heavy oils have high densities and high viscosities. No
clear density limits are absolutely defined regarding separating light and heavy crude
oil, but as a general reference we can say that heavy crude oils have densities higher
than 0.932 g/cm’, while light crude oils have densities lower than 0.853 g/cm’
(Baboian, 2005). As for the viscosity, light crude oils have values in the order of
around10' mPas, while heavy crude oils have values in the order of around 10°> mPas
(Speight, 1998). In general, lighter crude oils are more valuable than heavier oils, as
they are easier to produce and require less treatment in order to give marketable

products.

2.4 Production and transport of petroleum

Petroleum is produced by drilling wells down to the reservoir location, and then
extracting the oil, gas and water present. There are many ways in which to produce
the petroleum, some methods and means are: natural flow, applied flow, mechanical
lift and water injection. For more information regarding these methods see e.g.

Speight (1980).

Petroleum reservoirs can be located both offshore and onshore, where typically
production of the offshore reservoirs is more challenging than the onshore ones. The
remote locations and harsh environments are the main cause of this, and the depths
that are involved can cause additional challenges, as the sea depth can be several

hundred meters.

Once the petroleum is extracted from the well, it needs to be transported further on to
refineries, in order to be separated into marketable products. The transport is typically

done by tankers or pipelines.
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2.5 Flow assurance; Multiphase Flow Metering (MFM)

The flow through the transport pipelines can be a mixture of water, oil and gas, as
well as solids, either dissolved in the fluid or flowing freely as separate phases. The
flow is therefore determined as multiphase. As the flow moves from reservoir to the
surface, the temperature and pressure conditions experienced by the flow may change
significantly. This can cause the mixture to destabilize; solid particles like gas
hydrates, asphaltene, wax, scale and naphtenates (Gao, 2008) may separate from the
mixture and deposit on the pipeline. This is especially an issue in deep water and cold
weather conditions, as the temperature in the pipelines will be significantly lower than
in the reservoir, increasing the possibility of destabilizing the petroleum. The
deposition of solids can in worst case lead to plugging of the pipelines, which is an
expensive situation since the production must be stopped while resolving the issue.
As such, flow assurance is an important field in the petroleum industry. A variety of
additives and inhibitors can be utilized in order to prevent unwanted issues as
mentioned above. Some inhibitors are against corrosion, scale, gas hydrates, clay

swelling and emulsions (Fink, 2012).

As a mean of detecting possible threats to the flow assurance and in order to monitor
the flow in petroleum pipelines, multiphase flow metering (MFM) systems can be
installed. These systems are placed directly at the pipelines, be it subsea at the sea
floor, topside at platforms or at other locations at the petroleum transport route to the
refineries. They give measurements of the flow rates of petroleum, gas and water in
the pipelines, and can help improving the reservoir management, optimize petroleum
production, increase oil recovery and lower investments and operational costs
(Falcone et al., 2011; Thorn et al., 1999). MFM systems can also be important in

detecting changes in oil composition over the production lifetime of a well.

One of the techniques that are used for measuring multiphase flow is permittivity,

which is explained in more detail in chapter 5.6.
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2.6 Representative oil sampling

The petroleum samples used in this project are stored in glass containers (250ml- 2L)
in a dark, cool place when not in use, and with a topping of nitrogen gas in order to
prevent evaporation and removal of gas upon opening of the containers. Some oils
contain waxes, and these may precipitate and stick to the glass walls of the containers
during storage. In order to dissolve these waxes the oil is placed in an oven at 60 °C
for 4 hours, the oil is then mixed thoroughly in order to homogenize the oils. This
procedure is done prior to all oil measurements when the oil has been in storage for

more than a couple of weeks.

In this project we have been able to provide a total of 20 crude oil samples through
the industry partner Roxar and Christian Michelsen Research, as well as some
samples that are in fact residuals (unaltered and/or unused) from other PhD projects at
the University of Bergen. This is a recurrent challenge in petroleum chemistry; even
with industrial partners in the project group large datasets of crude oils are difficult to
achieve. However, datasets with around 20 samples is considered acceptable in most
journals. For example, 22 oils is used in Satya (2007), 17 oils is used in Talita (2011)
and 30 oils is used in Abbasa (2011).

10
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Chapter 3

Infra Red (IR) Spectroscopy

Infra Red (IR) Spectroscopy is an analytical technique in which IR light is used in
order to identify functional groups and specific bond types in a sample. It can be used

both qualitatively and quantitatively.

3.1 Vibrational spectroscopy

IR light is a part of the electromagnetic spectrum, which is a continuum of all
electromagnetic waves sorted by frequency and wavelength. IR light consists of
waves with wavelengths between 2.5 and 25 micrometers (um) as shown in figure 3.1

(Pavia et al., 2001).

11
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high < Frequency (v) > low
high < Energy » low
MICRO- | RADIO
X-RAY ULTRAVIOLET INFRARED WAVE |FREQUENCY
Vibrational
Visible Infrared

| | | |
400 nm <«— 800 nm 25um «—— 25pum
BLUE RED

shot ———— Wavelength long

Figure 3.1: A portion of the electromagnetic spectrum, showing the relationship of the

vibrational infrared to other types of radiation.

The energy in the electromagnetic spectrum is given by the Planck relation (Planck
1901), where the connection between the wavelength and frequency of the radiation is
explained as:

E=hv=—, 3.1
V=" G.1)

where h=Planck constant=6.63x107*Js, c=velocity of light, \=wavelength, and

v=frequency.

The bonds that hold molecules together are never completely still, but vibrate
continuously. When irradiating a molecule with light, the bonds will absorb energy,

or light, with specific wavelengths. In the infrared area of the electromagnetic

12
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spectrum, the absorption occurs as vibrations in kind of stretching and bending of the

bonds.
The energy of molecules can be divided as follows:

E +E +E (3.2)

molecule ™ E translation rotation vibration +E electronic

In vibrational spectroscopy Eouion @0d Eyipration 18 studied, and each of these can be
divided into several vibration levels. In these levels the molecule has increased
energy, but the electrons are not excited. These vibrational levels, E;=ground state,

and E,=increased energy, can further be divided into several rotational levels.

Transitions between £, and E, happens when energy equivalent to AE=E,-E=hv, is
either absorbed or released from the molecule. If the molecule is irradiated with light
of a specific wavelength A=c/v , the molecule will absorb the energy and its inner
energy will increase from ground state to the increased energy level E,. The same

amount of energy will be emitted from the molecule when the irradiation stops.

If the frequency between two vibrating nucleus coincide with the electric field from
submitted electromagnetic radiation and the vibration results in a net change in the
molecular dipole moment, infrared radiation will be absorbed. This means that
homonucleus molecules like H, and N,, which have symmetrical charge distribution,
does not absorb radiation in the infrared part of the electromagnetic spectrum.
Further, a molecule with strong dipole moment absorbs more infrared radiation then a

molecule with a weak dipole.

The infrared waves do not contain enough energy to excite electrons in chemical
compounds, but can make the atoms vibrate. A molecule that absorbs electromagnetic
radiation will increase its inner energy, which needs to be released in order to return
to the stabile ground state. This energy is released by bending and stretching the

bonds of the molecule.

13
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N /H N H
LA

ST
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(~2853 cm-1) (~1450 cm-1) (~1250 cm-1)
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(~2926 cm-1) (~720 cm-1) (~1250 cm-1)
STRETCHING VIBRATIONS BENDING VIBRATIONS

Figure 3.2: Different types of vibration in molecules.

Table 3.1 shows an IR correlation chart, where some general absorption peaks for
common types of atomic bonds and functional groups are listed. The ability of IR
spectroscopy to detect certain functional groups and atomic bonds is an important tool
for identification of unknown samples, but is often not enough by itself for a

definitive structure allocation.
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Table 3.1: Simplified IR correlation chart, showing absorption areas for some
functional groups and bonds. The intensity of the peaks is given as strong (s), medium

(m) or weak (w) (Pavia et al., 2001).

Type of
Functional group/bond vibration Frequency (cm -1) |Intensity
C-H Alkanes Stretch 3000-2850 S
-CH3 Stretch 2962 and 2872 s
-CH2 Stretch 2926 and 2853 s
-CH3 Bend 1450 and 1375 m
-CH2 Bend 1465 m
Alkenes Stretch 3100-3000 m
Out-of-plane
bend 1000-650 s
Aromatics Stretch 3150-3050 S
Out-of-plane
bend 900-690 S
C=C Alkanes 1680-1600 m-w
Aromatic 1600 and 1475 m-w
C=0 Aldehyde 1740-1720 s
Ketone 1725-1705 s
Carboxylic acid 1725-1700 s
Ester 1750-1730 s
Amide 1680-1630 s
O-H Alchohols, phenols
Free 3650-3600 m
H-bonded 3400-3200 m
Carboxylic acids 3400-2400 m
N-H Amines and amides
Stretch 3500-3100 m
Bend 1640-1550 m-s

3.2 Absorption of infrared energy in Attenuated Total Reflection (ATR) FT-IR

In ATR FT-IR, a beam of infrared light is emitted through a crystal or diamond and
into the sample. The sample will attenuate the beam in the areas of the infrared
spectrum where the sample absorbs energy, and the changes in the beam are measured

by the detector. Figure 3.3 shows an ATR reflection.
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Attenuation

\S‘ample

Incident Radiation ‘ Reflected Radiation

Figure 3.3: ATR reflection.

The amount of radiation that is reflected from a sample is given by:

R=1, (3.3)

>~

where R= reflectance, = intensity of the light that hits the detector after reflecting of
the sample and I= intensity of the light that hits the detector without being hindered
by the sample.

The amount of absorbed radiation by a sample is given by:

A=1lo [lj——lo (R)=1lo 1 (3.4)
= log r) j4 g 7 .

By inspecting Beer- Lamberts law (Svanberg, 2004):

A=exCxlI , 3.9
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where A= absorbance, C= concentration (mol/l) and €= molar absorptivity (ﬁ ),
X cm

we see that the response in a spectrum is dependent on the concentration of analyte in

the sample, and that quantitative analysis is possible using IR spectroscopy.

IR Spectroscopy can be defined as the study of absorption or emission of

electromagnetic radiation in the infrared region of the electromagnetic spectrum.

IR spectroscopy is widely used in qualitative and quantitative analysis (FitzPatrick et
al., 2012; Profeta et al., 2011; Parisotto et al., 2010; Peinder et al., 2009; Bak and
Larsen, 1994; Karstang et al., 1991).

3.3 The IR Spectrophotometer: ATR- FT- IR

The most important units of an IR spectrophotometer are the light source, the
wavelength separator, the detector and the computer. The light source, for example a
Helium- Neon laser emitting monochromatic light, emits a beam which then enters
the wavelength separator, for example an interferometer. In the interferometer the
light is divided in two separate beams, where one of the beams is reflected of a mirror
that is fixed in place while the other beam reflects of a mirror that is in motion. The
beams now have different phase and intensity, and are recombined, resulting in a
signal which is called an interferogram as the two beams are “interfering” with each
other, cancelling some waves and enhancing other waves. The beam then enters the
sample compartment, for example an ATR measuring cell, where some of the energy
in the beam is absorbed by the sample. The changes in the beam are then measured by
the detector, for example a thermoelectric Deuterated TriGlycerine Sulfate (DTGS)
detector. The measured signal is then sent to the computer and the Fourier
Transformation (FT) takes place, producing the final infrared spectrum (Bracewell,

1978; Application note, 2001).
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3.4 Measuring procedure

A Nicolet Protege 460 FTIR Spectrometer with an ATR measuring cell (shown in
Figure 3.4), equipped with a diamond crystal, has been used for obtaining FT-IR
spectra of the oils in this project. One drop of oil is placed on the crystal, and 32 scans
are taken, giving an averaged spectrum. 5 drops has been measured for each oil, and

the average of the resulting 5 spectra has been used in the modelling. The data is

given as absorbance: A=log (1/R) where R is the percentage reflectance divided by
100.

Figure 3.4: Nicolet Protegé 460 FT-IR spectrophotometer with an ATR measuring

cell.
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3.5 FTIR sample spectra

In this chapter spectra of some of the crude oils in the dataset are shown. Figure 3.5
shows the spectrum of a nondegraded crude oil (labelled 3S in the dataset), Figure 3.6
shows the spectrum of a biodegraded crude oil (labelled 6B in the dataset), and Figure
3.7 shows the spectrum of a condensate (labelled 8C in the dataset). FTIR spectra of

all the crude oils are shown in Appendix A.
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Figure 3.5: FTIR spectrum of the crude oil labelled 3S in the crude oil dataset.
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Figure 3.6: FTIR spectrum of the crude oil labelled 6B in the crude oil dataset.
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Figure 3.7: FTIR spectrum of the crude oil labelled 8C in the crude oil dataset.
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As Figure 3.5- 3.7 shows, the spectra seem to be very similar. By looking closer at the
regions 1200-1800 cm™ and 2750- 3050 cm™ we see that there are some variation
between the spectra. This variation might be enough to work as a base for
multivariate calibration modelling. The variations in these frequency ranges are

expanded and shown in Figure 3.8 and 3.9.

3S, 6B and 8C
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Figure 3.8: Comparison of a biodegraded oil (6B), a nondegraded oil (3S) and a
condensate (8C) in the 1200-1800 cm'- region of the FTIR spectrum. The condensate
(8C) is marked as the blue, solid line, the biodegraded oil (6B) is marked as the green,
dashed line and the nondegraded oil (3S) is marked as the red, dotted line.
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Figure 3.9: Comparison of a biodegraded oil (6B), a nondegraded oil (3S) and a
condensate (8C) in the 2750-3050 cm’'- region of the FTIR spectrum. The condensate
(8C) is marked as the blue, solid line, the biodegraded oil (6B) is marked as the green,
dashed line and the nondegraded oil (3S) is marked as the red, dotted line.
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Chapter 4

Whole Oil Gas Chromatography (WOGC)

Chromatography is a laboratory technique for separation of mixtures. The sample
mixture is dissolved in a fluid called the mobile phase, which carries it through a
structure holding another material called the stationary phase. The various

constituents of the mixture travel through the stationary phase at different speeds

depending on the nature of the stationary phase, causing them to separate.

Gas Chromatography (GC) is a common type of chromatography used in analytical
chemistry for separating and analyzing compounds in a mixture that can be vaporized

without decomposition.

Whole Oil Gas Chromatography (WOGC) is a type of Gas Chromatography where a
drop of the oil is analyzed, without solvents. WOGC is typically performed using 30-
60 m fused silica columns with bonded apolar stationary phases and analyzes over the

range of C4 to C40 (Grob and Barry, 2004).

4.1 Measuring principle

A GC instrument consists generally of three major components; the injection

chamber, the column, and the detector.

The sample, typically from 0.1 to 2 pL in volume, is injected into the injection

chamber. The temperature in the injection chamber is kept high, around 350 °C, and
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the sample is quickly vaporized. The sample is then pushed into (and through) the
column by the carrier gas, which is the mobile phase in GC, and is most commonly
helium. If the analytes of interest constitute more than 0.1% of the sample, split
injection is preferred; otherwise the amount of material can be too much for the
column, leading to poor quality chromatograms. In split injection, typically a
maximum of 2% of the total vaporized sample is injected into the column. The
proportion of the sample that does not reach the column is called the split ratio, and
ranges typically from 50:1 to 600:1, meaning that for each portion of sample reaching
the column, 50 (or 600) portions does not (Harris, 2003).

The vaporized sample then enters the column, which is a long, thin tube, typically
from 15 to 100 m long and with an inner diameter of typically 0.10 to 0.53 mm. The
inside of the tube is coated with the stationary phase, typically a film ranging from 0.1
to 5 um, which is selected based on the polarity of the analyte following the “like
dissolves like” rule; Polar columns are best for polar analytes, and nonpolar columns
are best for nonpolar analytes. The column is located in an oven, in which the
temperature can be controlled and programmed. As the analytes are pushed through
the column by the mobile phase (the carrier gas), the analytes are retained by the
stationary phase, some more than others. Nonpolar columns cause the separation of
analytes to be based primarily by the volatility of the analytes, so the compounds are
eluted from the column nearly in order of increasing boiling point (Harris, 2003). To
ensure that all the desired compounds elute from the column, a temperature program
can be applied. A temperature program makes it possible to keep the temperature
constant for a given amount of time, or increasing/decreasing the temperature at a

given rate until a given temperature. A mix of both can also be applied.

The eluate exiting the column needs to be detected in order to be quantified and
identified. This can be done by a Flame Ionization Detector (FID), in which the eluate
is burned in a mixture of H, and air. Carbon atoms (except carbonyl and carboxyl

carbons) produce CH radicals which are thought to produce CHO" ions in the flame:

CH+0 > CHO' +¢ 4.1)
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Electrons flow from the anode to the cathode, where they neutralize the CHO" ions in
the flame. This current is the current signal. The signal then goes to the computer,
where the resulting chromatogram is produced. A chromatogram is a graph showing
the detector response as a function of elution time. Different compounds elute at
different times called retention times, causing each component to have its own peak in
the chromatogram. The area of a peak is proportional to the quantity of that
component in the mixture, meaning that quantitative analysis is possible. Integration
of each peak gives the relative abundance of each compound in the mixture, by using
an internal standard with known concentration and comparing the integrated peak

areas, the concentration of the compounds in the sample can be found.

4.2 Measuring procedure

1 uL of the crude oil is injected into the GC instrument, which is a ThermoFinnigan
Trace GC equipped with a FID (shown in figure 4.1). The stationary phase is a HP-
PONA dimethylpolysiloxane column (50 m x 0.20 mm x 0.5 pm) from Agilent
technologies. The mobile phase is helium. The temperature programme is as follows;
30 °C for 15 min, 1.5 °C/min up to 60 °C, 4 °C/min up to 320 °C, and in the end 320
°C for 35 min. The injector temperature is 300 °C while the FID is kept at 350 °C,
split injection is used with split ratio of 30:1. The program Chromeleon™, version

6.60 (Chromeleon, 2004), is used to obtain and treat the chromatograms.

Each oil is measured two times, and the averaged peak areas for each compound are

used in the multivariate analysis and modelling.

In the first chromatogram in a series, the peaks are manually assigned and quantified
according to the Norwegian Standard Oil (NSO-1, Weiss et al., 2000). The peaks in
chromatograms acquired after the manual assignment will mostly be assigned
automatically, but manual inspection of each chromatogram is necessary in order to

validate the assignment and quantifications.

25



CHAPTER 4. WHOLE OIL GAS CHROMATOGRAPHY

Figure 4.1: ThermoFinnigan Trace GC instrument.

4.3 WOGC sample chromatograms

In this chapter chromatograms of some of the crude oils in the dataset are shown.
Figure 4.2 shows the spectrum of a nondegraded crude oil (labelled 3S in the dataset),
Figure 4.3 shows the spectrum of a biodegraded crude oil (labelled 6B in the dataset),
and Figure 4.4 shows the spectrum of a condensate (labelled 8C in the dataset). The y-
axis maximum (voltage detected by the FID detector) varies between the three types
of crude oil, where biodegraded crude oils typically have low maximum voltage and
condensates typically have high maximum voltage. Chromatograms of all the crude

oils are shown in Appendix B.
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Figure 4.2: WOGC chromatogram of the crude oil labelled 3S in the crude oil dataset.
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Figure 4.3: WOGC chromatogram of the crude oil labelled 6B in the crude oil dataset.
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Figure 4.4: WOGC chromatogram of the crude oil labelled 8C in the crude oil dataset.
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Chapter 5

Analysis of chemical composition and physical

properties

In this chapter a brief introduction is given regarding the different analysis of
chemical composition and physical properties of crude oil which has been performed

in this project.

5.1 Density

Density p is defined as mass divided by volume:

..
v (5.1)

p=Density, m=mass, V=volume. The unit for density is kg/m3 or g/cm3.

The density of gas and liquids is highly dependent on the temperature; hence density
measurement requires an accurate temperature measurement. Density typically
decreases with increasing temperature as the individual molecules require more space

due to their thermal motion.
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5.1.1 Measurement principle

The density of crude oils was measured with a density meter that uses a hollow U tube
made of glass. This tube is electronically excited to oscillate at its characteristic
frequency, which changes depending on the density of the sample inserted into the U
tube (Picker et al., 1974). By measuring the period of the oscillation, the density of
the fluid in the U tube can be calculated.

If the oscillator has mass m and volume V, then the frequency is given by equation

5.2 (Operating instructions, Anton Paar):

1 k

where p is the density of the fluid which fills the oscillator, and k is a power constant.

The period, T, then equals:

T =27 /LPV
k (5.3)

Squaring and simplification of equation 5.3:

1
Ak (5.4)

k (5.5)
The period is then given by:

T2:Bp+C (56)
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By combining equations 5.2-5.6, we get the relationship between frequency and
density. The following expression gives us information of the difference in density

between two samples:

(5.7)

Where T= the period of the fluid (s), A=instrument constant (g/scm3), p= density of

the fluid (g/cm3). p* and T* denotes a pure solvent.

5.1.2 Instrument and setup

The density of the crude oils was determined using a DMA 60 density meter with
DMA 602 measuring cell, produced by Anton Paar K.G. Anton Paar’s method for
measuring the density of fluids is based on the law of harmonic oscillations (Ozerov
and Vorobyev, 2007). Because of its precision and versatility, it has become the

standard method for density measurements worldwide.

The oscillator, or measuring cell, which holds about 1ml of fluid, is directly
connected to a frequency counter. The reference frequency, 106Hz, is compared to the
input frequency of the medium, which can range from 100 to 1000Hz. The measuring
cell is placed inside a tube of stainless steel, and is isolated from the rest of the
instrument with polystyrene. A thermostat cap regulates the water intake from the
water bath to the area around the measuring cell. In order to achieve the best
temperature equalization, the inner part of the oscillator is filled with gas with large

thermal conductivity.
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Density meter Measuring cell

(
L

Digital thermometer ) Thermostatic bath

Figure 5.1: Simplified setup for density measurements.

5.1.3 Thermostat control and temperature measurement

The thermostat of the measuring cell was controlled by using a closed system, where
the water circulates from the water bath to the area around the measuring cell. The
walls of the measuring cell are thin enough to monitor temperature variations with
good accuracy. The temperature in the water bath was regulated by a Hetofrig
Birkerad thermostat, and a Fluke 2180 digital thermometer, with uncertainty of =
0,0001°C, was used to measure the temperature in the water bath. The water
circulated in the bath, and had a temperature of about 20°C when measuring the
temperature. The variation in temperature in the water bath during the measurements
was lower than £0.01°C, and we can assume that the temperature in the measuring

cell follows the same pattern.
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5.1.4 Calibration and control of the density meter

The instrument constant, A, can be determined by measuring the period, T, of to
systems, water and air, where the density of one of the systems is already known. The

density of water at 298,15K is 0.997048 g/cm’ (Del Grosso and Mader, 1972).

The density of air, pair, expressed as a function of temperature, T, in Kelvin, relative
air humidity, B, in %, and air pressure, p, in mmHg, is shown in the equation below

(Alagic, 2005):

7XB
X

Py = 0.46464x% 107 (5.8)

The instrument constant is then calculated by rearranging equation 5.7.

5.1.5 Measuring procedure

A 3ml sterile plastic syringe is used to inject the sample into the oscillator. The
oscillator is washed with the sample that is to be measured, prior to every
measurement. In order to avoid air bubbles in the measuring cell, the injections are
done very carefully. A light source behind the measuring cell, and a window in front,
makes it possible to control the sample inside. After about 8 minutes, the temperature
inside the measuring cell is stabilized. The temperature in the measuring cell is
expected to be constant when successive readings of the period do not vary more than
+1 by period numbers at 1,0x10°. The measured period at constant temperature is

then inserted into equation 5.7 and the density of the sample is calculated.

Each oil is measured three times, in order to eliminate any effect from inhomogeneous
sampling. Between each measurement the oscillator is rinsed with dichloromethane,

ethanol, distilled water and acetone. Then it is dried with air from an air compressor.
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The period of water and air was measured after each measurement in order to see that

it is constant, indicating that the instrument constant (A, equation 5.7) is unaltered.

The measurement system is shown in figure 5.2:

Figure 5.2: Measurement system for density measurements.

5.2 Velocity of sound

Sound travels through materials at different velocities depending on the state (gas,
liquid or solid) and the chemical nature of the material. As such, sound has many
usage areas for characterization of materials, for example in SONAR systems,

medical acoustics as well as engineering acoustics (Rossing, 2007).
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5.2.1 Theory

Sound is a longitudinal wave (a wave in which the disturbance occurs parallel to the
line of travel of the wave) of pressure that propagates through compressible media
such as air and water. The disturbance may for example be created by a vibrating
object, and can only be created and transmitted in a medium, such as a gas, liquid or a
solid. As the vibrating object moves into the medium, the space directly in front of the
object is compressed, causing the pressure to rise slightly. This region of increased
pressure is called a condensation, and travels away from the object at the speed of
sound. As the vibrating object moves back inward, a region where the pressure is
slightly less than normal is formed. This region is called a rarefaction, and also
travels away from the vibrating object at the speed of sound. As the condensations
and rarefactions are travelling outward, the individual molecules in the medium are
not carried along with the wave. Instead, the molecules collide with each other and

pass the condensations and rarefactions forward (Cutnell et al., 2004).

The sound waves can be reflected, refracted or attenuated by the medium during
propagation, which can distort the propagating sound. The velocity of sound depends

on the density and the bulk modulus K in the fluid (Benenson et al., 2002).

The velocity of sound in fluids is given by:

(5.9)

€ fia =

SH

where cgg=speed of sound in given fluid (m/s), K=bulk modulus of given fluid

(N/m?) , and p=density of the given fluid (kg/m’) (Halliday et al., 1997; ).

The bulk modulus measures a substance’s resistance to uniform compression, and

varies with the nature of the substance (Cutnell et al., 2004).
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Velocity of sound in liquids is in the range of about 1000 m/s to about 2000 m/s,

some sound velocities at 20°C are given in table 5.1.

Table 5.1: Velocity of sound in some liquids at 20°C (Cutnell et al., 2004; Benenson
et al., 2002).

Liquid Velocity of sound (m/s)

Chloroform 1004
Ethanol 1162
Methanol 1156
Naphta 1295
Water 1480
Seawater 1522
Benzene 1330
Mercury 1450
Transformer oil 1425

5.2.2 Measuring principle/procedure

The velocity of sound of the oils in this work was measured with a technique used for
density measurement in liquids developed by Erlend Bjerndal. This is based on
measurement of the liquid acoustic impedance in order to determine the density. A
detailed version of the technique can be found in Bjerndal (2007). The measurements

were done by technicians at Christian Michelsen Research AS (www.cmr.no).
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5.3 Viscosity

Viscosity is a fundamental characteristic property of all fluids. The molecules in a
flowing fluid have relative motion between each other, a process that is combined
with internal frictional forces. Viscosity is a measure of the resistance to flow or shear

(Metzger, 2006; Viswanath et al., 2007).

5.3.1 Theory

In this project, the shear viscosity of the crude oils is measured. Shear viscosity is

defined as:

n=- (5.10)

z
7
where = shear viscosity(Pas), t=shear stress (Pa), and y=shear rate (1/s) ( Metzger,

2006).

Shear stress is defined as:

, (5.11)

where F= shear force (N) and A= shear area (m?). Shear stress, T, has the unit Pa

(Pascal). 1 Pa=1 N/m’

The Two-Plates- Model, shown in figure 5.3, shows how the upper plate with the
shear area A is set in motion by the shear force F and the resulting velocity v is
measured. The lower plate is stationary. The distance h is the distance between the

plates, and the liquid sample is sheared in this gap.
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Figure 5.3: Two-Plates-Model (Metzger, 2006).

Shear rate is defined as:

y \%
=, 5.12
V=1 (5.12)
where v= velocity (m/s) and h= distance (m) between the plates (Figure 5.3). The unit

of shear rate is 1/s.

For low- viscosity fluids the unit mPas (1000 Pas) is normally used, the unit used
earlier was cP(“centipoise”), after the doctor and physicist Jean L.M. Poiseuille. 1
cP= 1mPas. Shear viscosity is a material constant, and Table 5.2 shows shear

viscosity for some materials.
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Table 5.2: Shear viscosity for some materials (Metzger, 20006).

Materials |Shear viscosity n

Gases / air |0,01 to 0,02 mPas

Water 1,00 mPas

Milk 2 to 10 mPas
Olive ol approx. 100 mPas
Gear oll 300 to 800 mPas

Glycerine  |1480 mPas (10
Pas)

Bitumen 0,5 Mpas (10°
Pas)

5.3.2 Measuring principle/procedure

The viscosity measurements in this work were done on an Anton Paar MCR 300
Rheometer with a Conical Plate (CP) measuring system at 20°C. The system was
calibrated before each measuring series, by measuring air and distilled water at 20°C.
If the viscosity of air is measured to be approximately 0.01 mPas and the viscosity of
distilled water was measured to be approximately 1.00 (£0.03), the system is

calibrated.

The measurements were done on 3ml of oil sample. The shear rate was increasing
linearly from 1/s to 1000/s, then back from 1000/s to 1/s, with 32 measuring points
each way. This is done in order to detect hysteresis or other effects that may influence

the measured viscosity. The measured viscosity at the shear rates from 100/s to 900/s
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(both from measuring from 1/s to 1000/s, and from 1000/s to 1/s) has been averaged
in order to give the viscosity of the measurement. The measuring points from shear
rates between 1/s and 100/s, and between 900/s and 1000/s have been omitted from
the averaging, as these measuring points usually are noisy. After each measurement,
the measuring cell is rinsed first with dichloromethane (or toluene), then ethanol, then
distilled water and in the end acetone. The measuring cell is then dried with air from

an air compressor.

In order to eliminate any effects produced by inhomogeneous sampling, two or more
measurements is done for each oil, producing an average value and a standard

deviation.

The measuring system is shown in figure 5.4:

Figure 5.4: Measurement system for viscosity measurements; Anton Paar MCR 300

Rheometer with a CP measuring system.
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5.4 Total Acid Number (TAN)

The Total Acid Number (TAN) is a measure of the acidity of a crude oil, and is
defined as the mass of a base (Potassium hydroxide, KOH) in milligrams that is
required to neutralize one gram of oil. Acid numbers greater than 1.0 is generally
considered high, most crude oils have TAN lower than 5 mg KOH/g oil (Sheng,
2011).

5.4.1 Acids in petroleum

One source of acids in petroleum is the sediment in which the organic material was
buried in, which can contain both acidic and basic minerals as well as metal
containing ores (Speight, 1998). Another source of acids in petroleum is the lipids of
many organisms, in which carboxylic acids are the major component. As such they
are widespread chemical fossils, occurring in sediments and petroleum oils (Lochte

and Litmann, 1955; Albrecht and Ourisson, 1971).

A third source for acids in petroleum is the microbial degradation of the petroleum
occurring in the reservoir, which has been associated with increased acidity of the
remaining oil phase (Behar and Albrecht, 1984; Wenger et al., 2002; Meredith et al.,
2000).

The main cause of acidity in petroleum is the oxygen containing compounds. Some of
the acids that are identified are the saturated fatty acids from C; to C,, isoprenoid
acids, naphtenic acids, cyclopentane and cyclohexane carboxylic acids from Cg to Cy,
and the cyclopentyl acetic acids from Cg to C;o (Tissot and Welte, 1984) The most
abundant carboxylic acids are the naphthenic and naphthenoaromatic types, followed

by polyaromatic and heterocyclic types (Seifert and Teeter, 1970).
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Other compounds that contribute to the acidity in petroleum are phenols like the
cresols, which are abundant in the acidic fraction of crude oils (Seifert and Howells,

1969).

Figure 5.5 shows molecular structures for some of the acidic molecular types in

petroleum.
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Figure 5.5: Molecular structures for some of the acidic molecular types in petroleum

(Moen, 1996).

5.4.2 Measuring principle

TAN is determined by the standard method ASTM- D664, a non- aqueous
potentiometric titration technique performed on an autotitrator. Potentiometric
titration is a technique where the potential difference between a pair of electrodes

immersed in the solution is measured. One of the electrodes displays a constant
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potential and is the reference electrode, while the other electrode is the indicating
electrode, which responds to the changes in concentration of one of the ions involved
in the reaction. The electrodes are connected to a potentiometer, which measures the
difference between them. The titrant is added in small increments with continuous
stirring, and the potentiometer reading in millivolts is recorded after each addition.
The endpoint of the titration is the steepest point of the S shaped plot obtained when
plotting the millivolt readings against volume of added titrant (Cullum, 1994). An
autotitrator automatically adds titrant, records potential difference, and determines the

endpoint of the titration, all based on the settings the user has applied.

5.4.3 Measuring procedure

The following chemicals are needed in order to perform the TAN measurement:

-KOH, p.a. (approx. 0.05M, 3.0g/L.Mm=56.106g/mol)
-Isopropanol (99.8%), p.a. (dry)
-CaCl, (for drying tube)

-Toluene, p.a.

-Distilled, deionised water

-Potassium hydrogen phthalate (PHP) (4 g/200 ml, Mm=204.23g/mol))
-Stearic acid, p.a. (approximately 0.05 M)

-KCl, p.a. (saturated solution, 36 g/100 ml. 3M=)

-Acetic acid 99-100%, p.a.
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These chemicals are used in the following solutions:
-Titrant solution

-Electrode solution

-Titration solution (solvent for the oil)

-PHP standard solution

The titrant solution is prepared by weighing 3g KOH and adding 1L dry isopropanol,
then the solution is gently boiled with total reflux until all of the salt is dissolved. The
solution is then put away to rest for two days, before it is bubbled with nitrogen for 30
minutes in order to remove traces of water, and vacuum filtrated in order to avoid
carbonate precipitation. The titrant solution should then be a solution with
approximately 0.05M KOH in isopropanol. When the titration solution is connected to
the autotitrator, a drying tube filled with CaCl, is fitted in order to avoid CO,

dissolving and forming carbonate.

The electrode solution is prepared by dissolving 36 g KCl in 100 ml distilled water,
enough to make a saturated solution. There should always be an undissolved amount
of KClI in the bottom of the flask. The electrode is stored in this solution when not in

use.

The titration solution, used as solvent for the oil, is prepared by mixing toluene,
distilled deionised water and dry isopropanol in a 50/0.5/49.5 wt% ratio. If a large
amount of samples are to be tested, 4 L of titration solution should be prepared. The
amounts is then 2000 g toluene, 16 g distilled deionised water and 1984 g dry

isopropanol.
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The PHP standard solution is prepared by drying approximately 3 g PHP at 100°C for
3 hours, and cooled to room temperature in a desiccator. About the exact 0.5 g PHP is
weighed and dissolved in 100 g acetid acid 99-100%. The molality (mmol/g) of the

PHP solution is then calculated.

The stearic acid solution is prepared by weighing approximately 2.85 g stearic acid
and dissolving it in 100 ml of titration solution. This solution is used in order to move
the endpoint of titration for oils with low TAN value, as we do not want the endpoint
of titration to occur below 1 ml of added titrant due to instrument noise in this region.
0.5 g of the stearic solution will move the endpoint of titration with approximately 1

ml.

All of the required solutions for the TAN measurements are now prepared, and the
titrant solution (KOH solution) can be standardized. Titration of an exact weighed
PHP solution will give an consumption of KOH equal to the amount of PHP + the
amount of acid in the solvent: n(KOH)=n(PHP)+n(blank). When n(PHP) is known,
both n(blank) and n(KOH) can be determined by two or more measurements by
producing a standard curve. The standard curve is produced by doing 5 titrations of
PHP with the KOH titrant with 5 different amounts of PHP, for example 1g, 2g, 3g,
4g, and 5g of PHP. Each titration is done by first weighing the exact amount of PHP,
and then adding exactly 40 ml of the titration solution. The mixture is then titrated
with the standard settings (see end of chapter), and the volume and potential (or pH
value) for the endpoint, along with the weight of the PHP, is noted. The data is plotted
in a spreadsheet, as volume KOH added at endpoint against mass of PHP weighed,
resulting in a regression line explained by for example y=3.1457x+0.6489.
n(KOH)=n(PHP)+n(blank) can be written as:

C(KOH)*V(KOH,endpoint)=m(KHFT)*M’(KHFT,mmol/g)+n(blank) (5.13)

This can be plotted as a straight line, V(KOH) against m(PHP), and give both
C(KOH) and n(blank) as results:
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V(KOH) = [M’(KHFT)/C(KOH)]*m(KHFT)+[1/C(KOH)]*n(blank) (5.14)
y = asx + b

With the example y=3.1457x+0.6489, this gives:

a=3.1457= [M’(KHFT)/C(KOH)] - C(KOH)=M’(KHFT)/3.1457=0.0158 M

b = 0.6489 = n(blank)

The concentration of the titrant solution is now known, and the blank value as well.
The concentration of the stearic acid solution is acquired by titratrion a known amount
of stearic acid solution in 40 ml titratrion solution with the titrant solution, and the

concentration is determined directly from the following equation:
C(KOH)*V(KOH, end point)=C(stearic acid)*V(added stearic acid) + n(blank) (5.15)

The TAN values of petroleum can now be determined by weighing approximately 10
g oil and dissolving it in 40 ml titratrion solution. The mixture is then titrated using
the standard settings, if the endpoint comes at less than 1 ml added titrant, stearic acid
is added to the solution in order to move the endpoint. The TAN value is then

calculated using the following formula:
TAN = TA*Mm(KOH)/m(oil), (5.16)

where TA= amount of acid in the mixture. If stearic acid is used in the titration,
TA=C(KOH)*V(KOH, endpoint) — C(stearic acid)*V(added stearic acid) — n(blank), if
no stearic acid is used, TA= C(KOH)V(KOH, endpoint) — n(blank).

A minimum of 3 parallels are measured, in order to obtain an average value and a

standard deviation.

The electrode is washed after each measurement, first with dichloromethane, then

with titration solution and last with distilled water. The electrode is then put in a
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storage solution (3M KCI, buffer pH 7) for 5 minutes. The electrode is then washed

with distilled water, and titration solution before the next measurement can be started.
When the measurements are finished, the electrode is stored in the electrode solution.

The TAN measurements in this project were done on a Metrohm 798 MPT Titrino

Autotitrator, shown in Figure 5.6:

Figure 5.6: Metrohm 798 MPT Titrino Autotitrator.

5.5 Asphaltene content

Asphaltenes are the heaviest constituent of crude oil, and are considered the least
valuable component in crude oil. This is due to the fact that they mostly cause
problems in transportation and production, as well as it is difficult to convert it to
valuable products. However, at the field of highway surface, a derivative of

asphaltenes is the material of choice, namely asphalt (Yen and Chilingarian, 2000).
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Crude oils have varying amounts of asphaltenes; some oils contain nothing while

others have large amounts.

5.5.1 Theory

Asphaltenes are brown to black amorphous materials that are separated from
petroleum during petroleum refining. The preferred method for separating the
asphaltenes from the petroleum is by addition of #-pentane in a ratio of more than 40

times the volume of the petroleum.

The composition of asphaltene is still subject to analysis, because asphaltene does not
have one single molecular formula. Due to this fact, asphaltenes does not have a
definite melting point, and asphaltenes are actually a solubility class (Speight, 1980).
Asphaltenes are soluble in liquids having a surface tension of above 25 dyn/cm, some
examples are pyridine, carbon disulfide, carbon tetrachloride, carbon dichloride and
benzene. Asphaltenes are insoluble in liquids having a surface tension of below 25

dyn/cm, some examples are petroleum ether, pentane and hexane.

Asphaltenes isolated from petroleum by use of n- pentane as precipitation agent gives

an elemental variation as follows:
82 £ 3% carbon

8.1 = 0.7% hydrogen

0.3 to 4.9% oxygen

0.3 to 10.3% sulphur

0.6 to 3.3% nitrogen

48



CHAPTER 5. ANALYSIS OF CHEMICAL COMPOSITION AND PHYSICAL
PROPERTIES

The H/C ratio is in the range of 1.15 + 0.05, giving a very high aromaticity level. As
mentioned, asphaltene does not have a single molecular formula, but consist of

various aromatic structures like condensed polycyclic aromatic ring systems bearing
alkyl side chains. Some proposed structures and origins for asphaltene are shown in

figures 5.7- 5.10.
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Figure 5.7: Possible origins for asphaltene (Becker, 1997).
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Figure 5.8: Proposed asphaltene structure (Mullins et al., 2007).

Figure 5.9: Proposed asphaltene structures (Groenzin and Mullins, 2000).
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5.10: Three dimensional structures of some Arab model asphaltene structures (Yen

and Chilingarian, 2000).

Upon recognition of the complexity of the proposed structures for asphaltene, it
makes sense that the molecular weight of asphaltenes has been found to range from

about 600 up to 300 000.

Asphaltenes are regarded as the most polar constituents in petroleum (Kontogeorgis
and Folas, 2010); hence the relative amount of asphaltene in petroleum influences the
physical properties of the petroleum, especially the properties that depend on polarity

like permittivity.
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5.5.2 Measuring principle/procedure

The asphaltene content of the crude oils in this work has been determined by
precipitation with 40 volumes of pentane per volume petroleum by the method
described in NIGOGA (Norwegian Industrial Guide to Organic Geochemistry
Analyses, Weiss et al., 2000).

0.2 ml crude oil is added to a weighed glass centrifuge tube, weighed again, then 8 ml
of n- pentane is added to the tube and the solution is mixed thoroughly. The tube is
then put in an ultrasound bath for ten minutes, and then placed in a dark, cool place
for 24 hours in order to let the asphaltenes precipitate. The tube is centrifuged at 3000
rpm for 5 minutes and most of the supernatant liquid is carefully removed with a
Pasteur pipette, in order to avoid removal of precipitate. The precipitate is washed
with 5 ml n- pentane, mixed thoroughly and centrifuged. The supernatant liquid is
removed with a Pasteur pipette. This washing procedure is repeated until the
supernatant liquid is colourless. The tube, containing precipitate and a low amount of
supernatant liquid, is then dried for 2-3 days before it is weighed. The result is given

as mg asphaltene/g crude oil.

5.6 Permittivity

Permittivity is a measure of how an electric field affects, and is affected by, a
dielectric medium. A medium is classified as dielectric if it has the ability to store
energy when an electric field is applied (Application note, Agilent Technologies Inc.).
Permittivity is a fundamental material constant that is specific to a material under
given conditions of temperature, frequency and moisture content (Laughton et al.,

2003).
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Measurement of dielectric properties is one technique that is often utilized in

multiphase flow metering (Falcone et al., 2009).

On a molecular level, the main cause of variation in the permittivity of different
materials is polarity, or more specific; the strength of the dipoles in the different
mixtures or materials. As the different atoms in molecules have different abilities of
holding on to their electrons (electronegativity), the charge distribution in the
molecule can be uneven. This causes the molecule to have one negative side and one
positive side. Some molecules are polar, like water (H,0), and is therefore a

permanent dipole (Chang, 2003).

Other molecules are nonpolar, meaning that the charge distribution in the molecules
are in balance, like propane (C;Hg), and are not permanent dipoles. However, as the
electrons in the molecules move around the molecule, the electrons are for short
periods of time concentrated in one area of the molecule, creating a temporary dipole.
The temporary dipole then induces neighbouring molecules to become temporary
dipoles as well. This effect increases with increasing molecular weight; the temporary
dipole moment in propane (C3;Hy) is therefore stronger than the temporary dipole

moment in butane (C4H;() (Chang, 2003).
Permittivity is a complex quantity, given by:

£, =€, —je, ,

(5.17)

where ¢,=relative permittivity, ¢,'=real part of permittivity, ¢,”'=imaginary part of
petroleum. j is an indicator of a complex number (Application note, Agilent

Technologies Inc.; Jin, 2010).

The real part of permittivity is a measure of how much energy is stored in a material
when an external electric field is applied, while the imaginary part of permittivity is
called the loss factor and is a measure of how dissipative or lossy a material is to an

external applied field. In order to examine the complex dielectric properties of a

53



CHAPTER 5. ANALYSIS OF CHEMICAL COMPOSITION AND PHYSICAL
PROPERTIES

material, several isothermal scans as a function of frequency is performed, producing

a complex permittivity spectrum as shown in figure 5.11.
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Figure 5.11: Complex permittivity spectrum, showing which polarization mechanisms
contribute in the different frequency regions (Figure from

http://en.wikipedia.org/wiki/Permittivity).

At low frequencies the response is caused by ionic polarization, which is composed of
ionic conductivity and interfacial or space charge polarization. Space charge
polarization occurs when more than one material component is present or when
segregation occurs in a material containing incompatible chemical sequences and
when translating charge carriers become trapped at the interfaces of these

heterogeneous systems (Boiteux, 1987).

When increasing the frequency, the response caused by ionic polarization decreases

and the response caused by permanent and temporary dipoles increases. In this region
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the dipoles orient themselves with the applied electrical field, as shown in figure 5.12.
At first, the dipoles manages to align themselves with the field, but as the frequency
increases further the dipoles fail to align themselves, causing a drop in the real part of
permittivity, and an increase in the imaginary part of permittivity (loss factor). This is
called relaxation, and can be expressed by relaxation time, 7, which is a measure of
the mobility of the molecules that exist in a material. The relaxation time is the time

required for dipoles to become oriented in an electric field.
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Figure 5.12: Alignment of dipoles in an electric field. White end= positive part of

molecule, green end= negative part of the molecule.

Upon further increase of the frequency, the response is caused by atomic polarization.
This occurs when neighbouring positive and negative ions "stretch" under an applied

electric field.

Electronic polarization occurs in neutral atoms when an electric field displaces the

nucleus with respect to the electrons that surround it. Both electronic and atomic
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polarization creates induced dipole moments depending on the polarizability of the

atoms or molecules (Boiteux, 1987).

5.6.1 The Cole- Cole model

The complex permittivity spectrum contains information regarding the physical
properties and mechanisms in the material, and one method of extracting some of this
information is by fitting the spectrum to a curve fit model like the Cole- Cole model

(Cole et al., 1941), given in equation 5.18:

£ —E, e
ot
1+(jo e,

’ , (5.18)
where g~=relative permittivity (dimensionless), €,=high frequency permittivity
(dimensionless), g;=static permittivity (dielectric constant at low frequencies,
dimensionless), @=angular frequency (Radians/seconds), t=macroscopic relaxation
time (Seconds), o=finite conductivity (Siemens/meter), a=empirical factor
(distribution factor, dimensionless), g,=permittivity in vacuum=~ 8.85.-10™">

(Farads/meter).

The static permittivity for some molecules is given in table 5.3.
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Table 5.3: Static permittivity (&) of some organic molecules at 20°C (Marycott et al,

1951).

Molecule

Static permittivity (20°C)

C2H402 (acetic acid)

6.15

C3H602 (propionic acid)

3.30 (10°C), 3.44 (40°C)

nCSH12 1.844
nC6H14 1.89
Cyclohexane 2.024
Benzene 2.285
nC7H16 1.924
3-ethylpentane 1.939
2,3-dimethylpentane 1.939
nC8H18 1.948
C8H1602 (octanoic acid) 2.45
nC9H20 1.972
nC10H22 1.991
nC11H24 2.005
nC12H26 2.014
C18H3402 (linoleic acid) 2.71
H20 (water) 80.37
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5.6.2 Measuring procedure

The dielectric spectra of the petroleum samples in this work were measured on a

measurement system for complex permittivity measurements, based on a system
developed by Christian Michelsen Research AS in 1996 (Folgerg, 1996), shown in
figure 5.13.

Figure 5.13: Measurement system for complex permittivity measurements.
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For the frequency range from 1 kHertz to 20 MHertz, impedance analyzer
measurements with a large reflection cell is performed, while the frequency range
from 20 MHertz to 4 GHertz is covered by transmission coefficient measurements

with a network analyzer.

5.7 Other investigated methods, variables, and approaches

In this chapter a brief summary of some of the methods, variables and approaches
investigated during the thesis work is given. None of these methods, variables or
approaches has been given any attention in the papers, as they did not give results that
could support modelling of the target properties. However, several of them could be
of use in other contexts or projects, given a different data set with more oils and with

different properties to be investigated.

5.7.1 Magnetic Susceptibility

Magnetic Susceptibility is defined as a dimensionless proportionality constant that
indicates the degree of magnetization of a material in response to an applied magnetic

field:
M=xH, (5.19)

where M=magnetization (magnetic dipole moment per unit volume) of the material
(measured in amperes per meter), H=magnetic field strength, measured in amperes

per meter, and X,=volume magnetic susceptibility.

Magnetic susceptibility varies with the amount of the measured sample. The Mass

Magnetic Susceptibility (MMS) is therefore calculated, including the mass in the
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account. The measuring device assumes a sample volume of 10 mL, the

corresponding MMS is calculated by the following formula:

MMS(m’/kg) =(MS*10dm®*10"-6(m’/dm’))/(m(g) *10"-3(kg/g)) (5.20)

The magnetic susceptibility of petroleum fluids seems to be dependent on the
heteroatom content of the crude oil (Ivakhnenko & Potter, 2004), and the magnetic
susceptibility of petroleum fluid was therefore considered to be an interesting
variable. The magnetic susceptibility of the sample set at hand was then measured; 12
crude oils and 4 model oils, in order to investigate the variation of the set. The model
oils were Decane, Diesel, a Medical oil and a Transformer oil, and the purpose of
including these samples in the dataset was to mimic different physical and electrical

properties of crude oils.

The magnetic susceptibility measurements were done at the Geophysical department
at the University of Bergen, since magnetic susceptibility is a measurement normally
performed on rock and soil samples and rarely on liquids. Due to this, some
experimenting was needed in order to determine the ideal filling grade of the sample
glass and the ideal magnetic field strength. This was done by measuring the magnetic
susceptibility of all of the crude oils in the sample set at room temperature at four
different filling grades and with a magnetic field strength of 5, 50, 100, 200, 400 and
700 A/m. This was done in a total of 4 replicate measurement series, in order to
eliminate any effects due to poor homogenization. This results in a total of 96
measurements for every oil. For each magnetic field strength and filling grade an

average value is calculated, with corresponding standard deviation.

In Table 5.4 the typical average values of a crude oil, Crude 8 in this example, is

shown.
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Table 5.4: Average values for Crude 8, Mass Magnetic Susceptibility
Crude 8
H(A/m) Volume 1 Volume 2 Volume 3 |Volume 4
5 -1,11E-08 -1,41E-08| -1,33E-08| -1,17E-08
50| -1,52E-08 -1,35E-08| -1,32E-08| -1,22E-08
100 -1,57E-08 -1,26E-08| -1,31E-08| -1,21E-08
200| -1,55E-08 -1,27E-08| -1,30E-08| -1,21E-08
400 -1,58E-08 -1,25E-08| -1,32E-08| -1,21E-08
700, -1,55E-08 -1,23E-08| -1,30E-08| -1,22E-08

No typical trend has been observed regarding field strength and MMS, it seems to
vary a bit up and down between the strengths, and an average trend has been
established. This was done by inspecting the trends for all volumes and field
strengths, for all oils, and the average trend is exemplified in figure 5.14, with Crude

0il 9, volume 1, which happened to have a similar trend as the average trend.
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Figure 5.14: MMS vs Magnetic field strength (H) for the crude oil labelled 9C, vol 1.

For field strength SA/m the measured value varies quite a lot, from being the highest
to lowest measured value in each measuring series, and the situation in the figure does
not give a 100% accurate description of the situation. Also, the measured values for
200 A/m is more similar to the measured values for 400A/m and 700A/m than what is
the situation in the figure. The measured values for field strength 50 and 100 A/m are
situated in the lowest region of the measured values. As such, neither 5, 50 nor 100
A/m seems to be good choices for measuring the magnetic susceptibility of crude oils,
while 200, 400 and 700 A/m is quite similar in size and seems to be the field strengths

of choice.

Regarding the standard deviation a trend is observed; the higher the field strength, the
lower the standard deviation gets. In Table 5.5 the standard deviations for the
different filling grades and magnetic field strengths for 8C are given. The standard
deviations given here are typical results for the different filling grades and magnetic

field strengths.
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Table 5.5: Standard deviations for the crude oil labelled 8C.

8C

H(A/m) Vol 1 Vol 2 Vol 3 Vol 4

5 4,19E-09| 3,17E-09 1,08E-09| 7,70E-10

50 1,67E-09| 1,22E-09 4,08E-10| 2,36E-10

100 1,76E-09| 1,26E-09 4,73E-10| 1,27E-10

200 7,09E-10| 7,27E-10 417E-10| 1,85E-10

400 9,16E-10| 5,04E-10 1,83E-10| 4,70E-11

700 1,03E-09| 6,59E-10 3,17E-10| 4,04E-11

The standard deviations for Volume 1, the lowest filling grade, is typically lower than
for the other filling grades, and is therefore considered to be a poor choice of
measuring magnetic susceptibility. Furthermore, standard deviations for magnetic
field strengths 5, 50 and 100 A/m is somewhat higher than for 200, 400 and 700 A/m,

and is considered to be poor choices for measuring magnetic susceptibility.

In total, a filling grade of volume 2, 3 and 4, and with field strengths of 200, 400 and
700 A/m is considered to produce satisfactory measurements for the magnetic
susceptibility of crude oil. However, the best standard deviations is achieved for
volume 4, at magnetic fields strengths 400 and 700 A/m, but since a large number of
measurements have been done, the average MMS have been calculated based on the
measurements with filling grade 2,3 and 4 and with field strengths of 200, 400 and
700 A/m. A total of 36 measurements are then used in the calculation of every MMS

value, resulting in figure 5.15.
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Figure 5.15: Average Mass Magnetic Susceptibility of the test set, with standard

deviation ranges marked for every sample.

As shown in Figure 5.15, the variation in MMS is very low; only two or three oils
have a significantly higher or lower value than the rest of the oils. No group trend is
observed for biodegraded oils, condensates or nondegraded oils. The observed
standard deviations for the oils with significantly higher or lower value are quite high
as well; a spot sample of one of these oils could easily be measured to be within the

range of the rest of the oils, indicating no variation at all.

Multivariate analysis and modelling of a sample set that has very low variance, and
with just a few objects with significant variance, is very difficult. A quick test
analysis confirmed that, as the R value was only 0.55 with GC data as base. Accurate
calibration models was not achieved, even distinguishing between high and low value
was very difficult. Based on the low variation in MMS and high standard deviation in
some of the samples, measuring of Magnetic Susceptibiliy of crude oils is considered

not to give relevant information about the present data set.
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Based on external information, we know that 11B has approximately 4 times as high
sulphur content compared to 10S. In addition we know that 11B has the highest
content of asphaltenes (which contains sulphur, oxygen and nitrogen) in the sample
set. An observed trend is that the higher content of heterocompounds, sulphur in
particular, the higher the MMS (Ivakhnenko & Potter, 2004). These two facts could
explain the measured MMS for 11B. Given a data set with more oils that contain
more heteroatoms like sulphur, the method of measuring MMS combined with

analysis of the content of heteroatoms could be interesting to explore.

5.7.2 Headspace gas GC

With headspace gas it is referred to the gas volume above the crude oil. A sample of
the crude oil is left in a gas tight container for 24 hours; it is then assumed that the
liquid and gas in the container has reached a state of equilibrium. A gas sample is
then extracted from the container and injected in a gas GC and the results are
analysed. The analysed gases in the headspace gas sample of a crude oil are CO, CO,,

CH,, C,Hg, CsHg, iC4H o, nC4H,, iCsH,, and nCsH5.

During some of the early tests of this project it was suggested that the headspace gas
could be an interesting variable to investigate, as the headspace gas composition
should clearly be very dependent on the composition of the composition of the liquid

it is in equilibrium with.

As such, gas GC analysis was performed on the data set at hand; 12 crude oils and 4
model oils, and the results were subjected to multivariate analysis and calibration
modelling together with variables like permittivity, density and asphaltene content.
But, as with the magnetic susceptibility, the variation of these samples was very low
and the resulting calibration models had poor predictive quality; none was able to

distinguish between high and low value.
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As the gas GC gives results for 9 compounds, the information in the data is quite
limited compared to the data given by whole oil GC (82+ compounds), and it is not
likely that the information given by the gas GC would give more information than for
the whole oil GC. At best it could say something about the volatility of the oil, and
possibly distinguish between light crude oils (like condensates) and heavier crude oils
(crude oils containing wax for example), and this information is already covered by

the information given by whole oil GC.

The fact that the gas content is dependent on the sampling method and the use of
oil/gas separation processes at the different oil fields, which we have no information
of for any of the oil samples in the data set, further indicates that head space gas is a

variable with high uncertainty.

As such, it was concluded that headspace gas was an uninteresting variable, at least

for the purpose of this study.

5.7.3 Model oils

As mentioned in part 5.7.1, model oils (decane, diesel, Medical oil and transformer
oil) were used in order to broaden the variation space for the different physical,
magnetic and electric properties. This was done early in the project for several of the
variables like magnetic susceptibility, gas GC, whole oil GC, density and permittivity.
The reason for including these model oils was that they were used as calibration
liquids for the permittivity measurement, in order to broaden the variation space. They
were therefore used further for the other variables in order to broaden the variation

space of those variables as well.

From the analytical chemistry perspective, this works perfectly well, but when
performing multivariate analysis on these oils the problems starts. The main issue

with these oils is that they have a chemical composition that is vastly different
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compared to crude oils, so when creating a multivariate calibration model of the GC
data for example, the model needs to stretch itself quite a lot in order to be able to
model the information given from the model oils. Since the model oils are so different
compared to the crude oils, they are weighted higher than the other oils and it seems
like they are the most important objects in the data set, which they are not. The
information given by the crude oils are deemed less important, and the model suffers
from this as the ability of the model to predict variables of new unknown crude oils
will be greatly reduced by introducing the model oils to the model. The model oils are
classified as huge statistical outliers in all multivariate analysis and modelling
performed, and should therefore not be included in the multivariate analysis or
modelling. Diesel is the only model oil that is remotely similar to any of the crude oils

in the data set (the condensates), but is still regarded as an outlier.

One other point that also eliminates the model oils from the data set is the fact that we
want to investigate the variation of representative crude oil samples in the dataset.
That is, crude oil samples that originates from real oil fields, with as little
modifications, treatment or additions as possible. As model oils do not come close to

falling in this category, model oils cannot be applied in the modelling stages.

It is for the same reasons that direct modification of crude oils in the sample set, like
dilution with lighter hydrocarbons like pentane, hexane and so on, or mixing crude
oils in order to make “new” crude oils is not an acceptable approach. We have no
guaranty that the “new” oil we get is similar to the crude oil of any other oil field in
the world, and as such we have no guaranty that the “new” oil is a representative
crude oil. We considered modifying the crude oils in the sample set, but when the
results from the initial multivariate analysis was ready, together with the fact that we

would not have representative samples, the idea was rejected.
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5.7.4 Biodegradation level

In the early stage of the project, we were interesting in knowing the level of
biodegradation of the crude oils in the data set in order to group the oils into
biodegraded oils, nondegraded oils and condensates. The biodegradation level was
determined by inspecting the GC chromatograms of the crude oils (only the
chromatograms) and comparing them to the Peters and Moldowan biodegradation
scale (Figure 2.1). This resulted in a table of biodegradation levels, and as such made
it possible to build calibration models for the biodegradation level based on GC or

FTIR. The predictive quality of these models were quite good, as shown in table 5.6
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Table 5.6: Predicted biodegradation levels for calibration model based on GC data.

1S and 11B are validation objects.

Object Predicted Measured

number value value Residuals %Error
1S 0.25 0.10 -0.15 156.0
28 0.09 0.10 0.00 3.4
3S 0.09 0.10 0.00 4.1
4S 0.08 0.10 0.01 13.1
5B 1.97 2.00 0.02 1.3
6B 3.01 3.00 -0.01 0.4
7S 0.16 0.10 -0.06 67.3
10S 0.11 0.10 -0.01 17.3
11B 1.69 2.00 0.30 15.2
128 0.04 0.10 0.05 51.6

The results for the model based on IR is very similar, and shows that it is possible to
predict the biodegradation level of crude oils based on GC or IR data. However, this

requires that the biodegradation levels of the model objects are determined correctly,
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and this is a big uncertainty with the method as the determination is done manually

and based on the experience of the person who is performing the evaluation.

The usefulness of such models is quite limited as well, and considering the fact that
the biodegradation info already is present within the GC and IR data (as will be
shown in Paper I and II) we have no need for the models either, since we already have
determined the levels manually. The models could be used by inexperienced users for
a quick determination of the biodegradation level of a crude oil, given that the models

are based on accurately determined biodegradation levels.

Based on these facts, it was determined that the biodegradation level was an

uninteresting variable, at least for building calibration models.
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Chapter 6

Multivariate data analysis/chemometrics

When handling large amounts of data, for example in spectroscopy where thousands
of variables might be available, it is difficult to extract important information.
Multivariate data analysis, or chemometrics as it is called when applied to chemical
data, is a field where mathematical and statistical methods are applied in order to plan
and optimize experiments and processes, recognise patterns and extract relevant
information from data. Hence, application of multivariate data analysis to large
datasets can help with the interpretation of the data (Nordtvedt et al., 1996; Martens
and Nas, 1989).

6.1 Object space and variable space

Data can be represented as a matrix X, called the data matrix, which consists of N
rows equivalent to a series of experiments or objects, and columns equivalent to M

variables (temperature, wavelengths etc.), which in total constitutes a N x M matrix.
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Figure 6.1: Data matrix X consists of N row vectors x" and M column vectors x;.

By plotting all of the object vectors in the M dimensional coordinate system where the
axes are the M variables, you get a coordinate system that is called the variable space.
Similarly you get the coordinate system called the object space by plotting the
variable vectors in a N dimensional coordinate system where the axes are the N
objects. Together, the variable and object space contains all the information in the
dataset; the variable space contains all the information of the objects in the X matrix,
for example correlations between different objects. Correlations between two objects
a and b is given as:

T
X, Xx,
cosQ =

(6.1)

x, x|

If the angle ¢ is 0° the objects are perfectly positive correlated, if the angle is 180° the

objects are perfectly negative correlated, and if the angle is 90° there is no correlation
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between the objects. Similarities between objects can be found by looking at the
angles and distances between them; the smaller the distance and angle between two
objects, the more similar they are. The same principles can be used for the object

space.

6.2 Pretreatment

Data collected directly from measuring instruments are termed raw data. Raw data
can contain noise, baseline drift, scattering effects, dominant variables and other
factors that may conceal the significant information in the dataset (Nordtvedt et al.,
1996; Martens and Nas, 1989). Therefore, it might be necessary to pretreat the raw
data, in order to remove any effects that do not represent chemical or physical

properties in the dataset.

6.2.1 Centring

The objects positions in relation to each other is of higher interest than the objects

positions in relation to the centre of the coordinate system, and in order to detect the
variation between the objects, the raw data needs to be centred. This can be done by
calculating the mean value for each variable and then subtracting the mean from the

original values, as equation 6.2 shows:
Xeenvea (1) =X (i) 20 X (i.]) (6.2)

where X=full matrix, i=column in matrix, j=row in matrix, N=total number of objects.
The centre of the coordinate system is then set to the centre of the dataset (Nordtvedt

et al., 1996; Martens and Nes, 1989).
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6.2.2 Block normalization

Some measuring procedures and instrumentation processes might include manual
sampling, which might produce measurements with varying amounts of sample. In
order to eliminate any effects from this, the variables can be normalized to constant
sum. This is done by dividing the selected variables of each object with the sum of the
objects to obtain the relative distribution of the variables in each object. This

procedure is applied to GC data (Blomquist et al, 1979; Karrer et al, 1983).

6.2.3 Logarithmic transformation

Some variables might have a significant spread in variation causing the dataset to
consist of, for example, a high amount of low value objects, and only a few medium
and high value objects for a given variable. This can cause problems in the modelling,
since there is such a large difference between the values. This effect can be
minimized by a logarithmic transformation of the variable, causing the spread of
variance to look smaller than it actually is (Aitchison, 1984). The transformation is
done by doing the following calculation for the variables that are subject to
transformation: New value=log;o(1+old value). By adding a 1, negative values can

also be transformed.

In this work, all datasets have been centred. Also, GC data has been block normalized
in datasets where GC data is included. In addition, TAN and viscosity has been
logarithmically transformed in datasets where they are included, as they contain a

significant spread in variation.
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6.3 Principal Component Analysis (PCA)

When handling large datasets with thousands of variables, for example from IR
spectroscopy, the variable space will be very large and difficult to interpret. By
gathering the relevant information in principal components (PCs), the amount of
variables can be reduced to an amount that makes it easier to interpret (Nordtvedt et

al., 1996; Martens and Nas, 1989; Wold et al., 1987).

6.3.1 Latent variables

The different variables in data sets might contain the same information — they are
interdependent. This is called colinearity, and makes it possible to gather a smaller set
of variables that explain all systematic variation in the dataset. These variables are
linear combinations of the original variables, and are called Latent Variables. In PCA

the LVs are called Principal Components (PCs).

6.3.2 PCA

PCA on a data matrix X can be described as:
X->" tp,+E=TP +E, (6.3)

where A is the total amount of PCs, X is the start matrix with N x M dimension, T is a
N x A matrix containing orthogonal score vectors t, P is a A x M matrix containing
orthogonal loading vectors p. E is the residual matrix, has the same dimensions as X,

and contains noise only.

The PCs can not be written neither as multiples nor as linear combinations of each

other; they are linearly independent. The colinearity from the original data matrix is
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removed by decomposing the dataset to PCs. In the multivariate space the PC now

face in different directions and are perpendicular to each other.

The first PC is placed in the direction where the largest variation is situated. The next
PC is placed orthogonal on the latter and in the direction that has the second highest

variance. This continues until all the variance in the dataset is accounted for.

6.3.3 Scores and loadings

Every PC consists of a score vector and a loading vector. The loading vectors
describes the directions of the PCs in the variable space, while the score vectors
contains the different objects coordinates on the PCs. When performing a PCA, a new
coordinate system is formed where the PCs makes up the axis. The core vector has
dimension equal to the number of rows in the data matrix, while the length of the

loading vector is equal to the number of columns in the data matrix.

The score of an object can be found by projecting the object down on a PC, the
distance between the point to the origin of the coordinate system is then the score of

the object. The loadings of different variables can be found using the same approach.

A score plot can be obtained by projecting the variable space down in the space
spanned by the PCs. Similarities between different objects can be inspected by using

the principles of distance and angles (chapter 6.1). Figure 6.2 shows an example:

76



CHAPTER 6. MULTIVARIATE DATA ANALYSIS/CHEMOMETRICS

*10
2.00
1.00
2 | 102%65 ¢ -
8‘ L &"
- | 133\5 23
~ 0.00 \
. 11B 6B
o
£ i
o
o 8B
-1 .00 \j/
-2.00 10"
-2.00 -1.00 0.00 1.00 2.00

Comp. 1 (41.1%)

Figure 6.2: Score plot obtained from PCA analysis of GC data of the 20 oils in this

project. Biodegraded oils=brown, nondegraded oils=blue, condensate=cyan.

Two oil samples being clearly separated in the score plot in figure 6.2 are 8C (a
condensate) and 18B (a biodegraded oil), two oils that are chemically different as
condensates generally contain lighter hydrocarbons, while in biodegraded oils the
lighter hydrocarbons are removed by the degradation process. Groupings can be
identified as well, as biodegraded oils are located in one part of the plot (red circle)

while the nondegraded oils are located in the other part (green circle).

Similarly, loading plots can be obtained by projecting the object space down in the
space spanned by the PCs. In a loading plot similarities between different variables

can be inspected.
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By plotting the scores and loadings in the same plot you obtain a biplot. This plot
shows which objects are explained by certain variables, again by using the principles

of distance and angle.

6.4 Multivariate calibration

By expressing one or more response variables y as a function of a given amount of x
variables it is possible to predict the response values. What is actually done is to adapt

the regression model (or calibration model) given as:
y=Xb+f, (6.4)

where y is the response variable subject to prediction, X contains the measured

variables, b contains estimated regression coefficients and f contains residuals from y.

6.4.1 Partial Least Squares Regression (PLSR)

Partial Least Squares (PLS) (Hoskuldson, 1995) is a method for expressing a response
variable y is a method to express a response variable y as a function of a given
amount of x variables. The LVs obtained during a PCA explains as much as possible
of the variance in X, while in PLS the LVs explains as much as possible of the
covariance between X and y. Covariance is a measure of the linear independence

between to varying sizes, in this case X and y.

One way to explain PLS is by imagining that you perform one PCA on X and one
PCA ony, and then rotate two and two LVs (one from X and one from y) against
each other until the correlation is at its highest; when the angle between the score
vector in the X space and the score vector in the y space is 0. The context between the

scores is then explained by:
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ug = bt (6.5)

where u is the score vector in the y space, t is the score vector in the X space and b is

the inner relation regression coefficient.

The decomposition that the PLS performs is done in one step, simultaneously on X
and y. A vector w, called loading weights, is sought for each pair of LVs. These
vectors are compromises between the LV in the y space and the LV in the X space.
The PLS finds one vector at a time, the most significant first, and then subtracts the
information explained from that vector from the X and y matrixes. Then the next

vector is found.
In the end one ends up with a model where the regression vector is given by:
B=w®PwWi10", (6.6)

where W is the loading weights, P is loadings in the X space and Q is the loadings in
the y space.

6.4.2 External validation

One way of inspecting the predictive quality of the PLS model is by using external
validation. This is done by dividing the original data matrix into a training set and a
validation set. The PLS model is build based on the training set, the validation set is
then fitted to the model. By doing this the model is validated externally, as the
validation set acts as unknown samples, and the prediction errors from the fitting is

then a measure of the predictive quality of the model.

It is important that both training set and validation set originates from representative
samples; that they are in the same concentration range and generally have the same

conditions at sampling. A PLS calibration model is only valid in the range spanned by
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the objects in the model; given a validation object with higher value than the object in

the training set with the highest value, the prediction will most likely be uncertain.

Normally, the predictive quality of a PLS model increases with increasing number of
samples in the training set. Similarly, increasing the amount of samples in the
validation set will increase the total impression of the predictive quality of the PLS
model. The number of samples in the training set and the validation set must then be
balanced in such a way that the validation set does not decrease the predictive quality
of the model, but still gives a reasonably good impression of the predictive quality of

the model.

In this work external validation is used in order to inspect the predictive quality of the
established models. The validation set, consisting of three objects, is chosen manually
for each model; One object with low value for the modelled variable, one with
medium value and one with high value. Typically, the object with the second or third
lowest and highest value is chosen as the low and high value object, while one of the
objects with about the mean value of the modelled variable is chosen as the medium
value object. As the aim of the modelling is to achieve the best predictive quality,
different validation sets are tested by exchanging one or more of the objects in the
validation set, and after some trial and error the model with the best predictive quality
is obtained. This is summarized on a qualitative scale ranging from “Poor”, via “OK”
and “Good” to “Very good”. This is done by comparing the experimental uncertainty
of the measurements with the prediction error of the validation objects; if the error is
much lower than the experimental uncertainty, the predictive quality of the model is
rated as “Very good”, if the error is similar to the experimental uncertainty, then the
predictive quality of the model is rated as “Good”. If the difference between the
experimental uncertainty and the prediction error is larger, the prediction errors are
more closely examined. If the validation objects are predicted to be of high value,
while the measured values are low, the model is rated as “Poor”. If the validation
objects are predicted to be of high value, and the measured values are of high value,

the model is rated as either “OK for distinguishing between high and low value”, or
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“OK”, depending on how close to the experimental uncertainty the prediction errors

arc.
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Chapter 7

Results from papers

In this section a brief summary is given of the different papers and results obtained.

7.1 Research report: Introductory chemometric analysis of crude oil composition

and fluid properties.

This report is based on a poster presented at the 25™ International Meeting on Organic
Geochemistry, held in Interlaken in September 2011. In this report a brief summary of
the results from the initial chemometric analysis of the data set is presented. This

report was an initial test to investigate whether the methods would work. The report is

meant to be an introduction to the following papers.

Modelling results for the model for static permittivity based on GC, TAN and
asphaltene content is shown. The prediction errors for the model lie in the same range
as the experimental error for the permittivity measurements, indicating that the
predictive quality of the model is good. The regression coefficients for the model are
shown as well, with TAN as the most significant variable. In addition, the low to
medium molecular weight straight chained alkanes have negative effect on the PLS
model, and the high molecular weight straight chained alkanes have a positive effect
on the PLS model. As the low to medium molecular weight straight chained alkanes

are the first compounds to be altered during biodegradation, and since acids are
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generated during biodegradation, a clear biodegradation effect is identified in the

regression coefficient.

Also, modelling results for the model for viscosity based on GC, TAN and asphaltene
content is shown. Reasonably good predictive quality is obtained for the high
viscosity validation object, but the results are not so good for the low and medium
value validation objects; precise predictions for low value objects is not possible. The
model is good enough to distinguish between high and low viscosity objects, and give

reasonably good predictions for high viscosity objects.

7.2 Paper I: Multivariate analysis of crude oil composition and fluid properties
used in Multiphase Flow Metering. ENERGY & FUELS, Volume: 26 Issue: 9
Pages: 5679-5688 Published: SEP 2012.

This paper focuses on PLS modelling of parameters that are involved in multiphase

flow metering systems, like density, permittivity and velocity of sound.

Score plots from PCA analysis of GC and FT-IR data, respectively, shows that three
groupings occur; one grouping for biodegraded oils, one for nonbiodegraded oils and
one for condensates. As these three types of petroleum oils are chemically different,

this grouping pattern is expected.

PLS calibration models for static permittivity, high frequency permittivity, density
and velocity of sound, based on GC and IR data respectively, is obtained with good
predictive quality (compared to the experimental deviations for the measurements).
The results are comparable, and somewhat better, to similar modelling work (Satya et
al., 2007). For a quality assurance purpose, in order to detect changes in chemical
composition in comparison with the last calibration of the MFM, these models are

considered precise enough to be useful.

On the other side, the calibration models for permittivity variables tau and sigma,

based on GC and IR data respectively, is obtained with poor predictive quality. This
84



CHAPTER 7. RESULTS FROM PAPERS

indicates that estimating complex permittivity spectra by predicting the Cole- Cole

parameters from IR or GC data will not be possible without significant error.

Upon inspection of the regression coefficients of the PLS calibration models,
biodegradation seems to have the most significant effect on most of the models. For
the models for static permittivity (shown in Paper 1), high frequency permittivity,
density and velocity of sound based on GC, there is a positive effect from branched
alkanes and higher molecular weight straight chained alkanes, while negative effect
originates almost exclusively from low to medium molecular weight straight chained
alkanes. This indicates that biodegradation of crude oil has an important effect on the
variance of density in crude oils, since the smallest straight chained alkanes are the

first to be removed or altered during biodegradation.

The same trend is observed for the models for static permittivity, high frequency
permittivity, density and velocity of sound based on IR data; Biodegradation seems to
have the most significant effect on the models, as the signals originating from CH3
stretch have positive effect on the model while the signals originating from CH2

stretch have negative effect on the model.

Although the models based on both IR and GC, respectively, show good predictive
quality, IR spectroscopy is the best approach if MFM calibration is the major purpose.
It is a much faster and easier technique, also; portable measuring devices for IR
spectroscopy already exist. GC measurements take several hours, but are already in
use for quality control in other contexts, and may therefore be a good choice in a

combined flow assurance perspective.
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7.3 Paper II: Comparison of Partial Least Squares calibration models of
viscosity, acid number and asphaltene content in petroleum, based on GC and IR

data. FUEL, Volume: 120 Pages: 8-21 Published: MAR 2014.

In this paper PLS models of some important crude oil parameters like viscosity, acid
number and asphaltene content, based on GC and IR data respectively, have been

compared based on predictive quality and chemical significance.

The PLS calibration models obtained in this paper have varying predictive quality,
and the models based on IR data are generally better than the ones based on GC data,
even when the GC models is supplied with additional information in form of TAN
and/or asphaltene content. Although the models based on IR data are better than the
ones based on GC data, they can not provide accurate predictions of viscosity, TAN
and asphaltene content of an unknown sample of crude oil. However, if an OK
estimate is required, the models should be able to give a satisfactory value. IR is an
easy, rapid and generally available technique, while TAN, viscosity and asphaltene
content measurements are more time consuming (30 minutes for viscosity and TAN,
2-3 days for asphaltene content) and require more preparations and equipment. Hence,

an OK estimate produced by IR measurements would save both time and effort.

Regarding the chemical significance of the models, the regression coefficients for the
models for TAN based on GC and IR data, respectively, show that biodegradation has
a significant effect on the TAN value. As acids are generated during biodegradation,
this is expected. For the models for viscosity based on GC and IR data, the regression
coefficients show no clear indication of biodegradation. Biodegraded oils tend to have
higher viscosities than nondegraded oils, and this is also observed in the dataset in
this work. However, this is not reflected in the regression coefficients. The same is
partly observed for the models for asphaltene content; the biodegraded oils in this
dataset tend to have higher contents of asphaltenes than nondegraded oils, but this is

only partly reflected in the regression coefficients for the model based on GC. The
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model based on IR does not have a clear indication that biodegradation has a

significant effect on the variation.

The fact that IR spectra give overall somewhat better models than GC can be
understood as the spectroscopic “snapshot” of the oil composition contains more
information — or more relevant information — than the individual hydrocarbon
distribution in the GC data range, which can be considered to represent the “solvent”
part of the crude oil in relation to the lower concentration, more polar compounds like

asphaltenes and petroleum acids.

7.4 Paper I1I: Estimation of dielectric properties of crude oil based on IR

spectroscopy. Submitted to Chemom. Intell. Lab. Sys., second revision.

In this paper the feasibility of estimating permittivity spectra from measured IR
spectra using multivariate calibration techniques has been investigated. In addition, a
physical model of permittivity is fitted to both the estimated spectra and the original
measured spectra, and the resulting model parameters are compared in order to assess

the usefulness of the proposed method.

The estimated permittivity spectra in this paper are obtained well within the
experimental uncertainty of the dielectric spectroscopy used to obtain the original
permittivity spectra, and hence show that it is possible to obtain information about

dielectric properties based on IR data.

The fitting of the Cole- Cole model to the spectra are not that conclusive, as there are
large deviations for some crude oils. The parameter estimation is sensitive to
experimental noise, and there are some issues in the algorithm for the estimation that

needs to be sorted in order to be robust.

IR spectrophotometers are already widely used, and the method proposed in this paper
would add functionality to these, as additional information in form of permittivity

spectra can be obtained by applying the method to IR spectra.
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7.5 Paper 1V: Permittivity calculator. Method and tool for calculating the
permittivity of oils from PVT data. Conference proceedings, 30™ International
North Sea Flow Measurement Workshop, St. Andrews, 23rd — 26th October 2012
(http://www.nfogm.no/ikbViewer/Content/873131/NSFMW %202012%20-
%20Technical%20Papers.pdf).

In this paper the method and tool for calculating the permittivity of crude oils from
Pressure Volume Temperature (PVT) data is presented. The work presented here was
initiated as it was realised that some of the results from paper II and III could be
transferred to an area where it could be used directly. GC data and PVT data are in
many ways similar, and as the calibration models from paper II and I1I showed good
predictive quality for both density and static permittivity based on GC data
investigations was started in order to see if the models could be modified to work on
PVT data. The presented method in this paper show that the permittivity of a crude oil
can be predicted within 4% at standard conditions, and considering the fact that the
measuring uncertainty of permittivity measurements are estimated to 2% we can

conclude that the permittivity can be predicted with good accuracy.

The method presented in this paper has been implemented as a software tool which
applies an equation and a regression model given in the paper to calculate the static
permittivity of a given crude oil based on PVT data from the given crude oil. The tool
has been implemented by Roxar ASA for initial calibration of multiphase flow
meters, and it could also be applied to accurate PVT data sampled during the
production lifetime of an oil field in order to detect changes in permittivity and

density, and to recalibrate the meter.
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Chapter 8

Concluding remarks and suggestions for further

work

The work presented in this thesis confirms established results like the fact that
biodegradation has a significant effect on several crude oil properties. Also, this work
has presented new results regarding the permittivity of crude oil as a function of
composition. This subject has not been investigated much earlier, and hence the

results presented here have contributed to new knowledge on that topic.

Estimation of permittivity spectra from IR data can be used as a routine quality
control of calibration values for MFM, however; the algorithm must be improved in

order to increase the robustness.

The project sought to improve the performance of the MFM systems. As a result of
this thesis, a software tool has been developed for initial and recalibration purposes of
MFMs. As such, some of the results obtained in this thesis have provided important
information and knowledge to the MFM industry, as well as a useful tool for direct

use.

In order to further investigate the effect of polarity on petroleum properties,
measurements like Total Base Number, elemental composition and SARA (Saturates,

Aromatics, Resins and Asphaltenes) should be done on the crude oils, and PLS
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calibration models of these results based on IR data and GC data, respectively, should
be built. In addition, these new variables should be included in the models for static
and high frequency permittivity based on GC in order to investigate whether they
have further information that can contribute to improved prediction quality of the

calibration models.
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Appendix

Appendix A. FT-IR spectra

In this section the FT-IR spectra of all the crude oils in this thesis is presented. In the
figures the x-axis is the wave number region (1/cm) at which the FT-IR spectra are

measured, and the y-axis is the absorbance for each wave number.
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Figure A.1: FTIR spectrum of the crude oil labelled 1S in the crude oil dataset.
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Figure A.2: FTIR spectrum of the crude oil labelled 2S in the crude oil dataset.
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Figure A.3: FTIR spectrum of the crude oil labelled 3S in the crude oil dataset.
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Figure A.4: FTIR spectrum of the crude oil labelled 4S in the crude oil dataset.
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Figure A.5: FTIR spectrum of the crude oil labelled 5B in the crude oil dataset.
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Figure A.6: FTIR spectrum of the crude oil labelled 6B in the crude oil dataset.
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Figure A.7: FTIR spectrum of the crude oil labelled 7S in the crude oil dataset.
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Figure A.8: FTIR spectrum of the crude oil labelled 8C in the crude oil dataset.
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Figure A.9: FTIR spectrum of the crude oil labelled 9C in the crude oil dataset.
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Figure A.10: FTIR spectrum of the crude oil labelled 10S in the crude oil dataset.
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Figure A.11: FTIR spectrum of the crude oil labelled 11B in the crude oil dataset.
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Figure A.12: FTIR spectrum of the crude oil labelled 128 in the crude oil dataset.
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Figure A.13: FTIR spectrum of the crude oil labelled 13B in the crude oil dataset.
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Figure A.14: FTIR spectrum of the crude oil labelled 14C in the crude oil dataset.
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Figure A.15: FTIR spectrum of the crude oil labelled 15B in the crude oil dataset.
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Figure A.16: FTIR spectrum of the crude oil labelled 16S in the crude oil dataset.

Absorbance

17S

0.2
0.18
0.16
0.14
0.12

©
=

0.08
0.06
0.04
0.02

0

oo

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
650800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 3950

Wave Number (1/cm)

Figure A.17: FTIR spectrum of the crude oil labelled 17S in the crude oil dataset.
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Figure A.18: FTIR spectrum of the crude oil labelled 18B in the crude oil dataset.
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Figure A.19: FTIR spectrum of the crude oil labelled 19C in the crude oil dataset.
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Figure A.20: FTIR spectrum of the crude oil labelled 20B in the crude oil dataset.
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Figure A.21: Comparison of a biodegraded oil (6B), a nondegraded oil (3S) and a

\
1700

condensate (8C) in the 1200-1800 cm'- region of the FTIR spectrum. The condensate

(8C) is marked as the blue, solid line, the biodegraded oil (6B) is marked as the green,

dashed line and the nondegraded oil (3S) is marked as the red, dotted line.
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Figure A.22: Comparison of a biodegraded oil (6B), a nondegraded oil (3S) and a

P —

condensate (8C) in the 2750-3050 cm’'- region of the FTIR spectrum. The condensate
(8C) is marked as the blue, solid line, the biodegraded oil (6B) is marked as the green,
dashed line and the nondegraded oil (3S) is marked as the red, dotted line.

Appendix B. WOGC chromatograms

In this section the WOGC chromatograms of all the 20 crude oils in the data set used
in this thesis is presented. In the WOGC chromatograms the x-axis is the time
window in which the different compounds elute, ranging from 0 to 135 minutes,
while the y-axis is the voltage detected by the FID detector, ranging from 0 up to
around 1250000 pV. The range is different for the different figures, some range from
0 to 80000 pV while others range from 0 to 1250000 pV.
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Figure B.1: WOGC chromatogram of the crude oil labelled 1S in the crude oil dataset.
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Figure B.2: WOGC chromatogram of the crude oil labelled 2S in the crude oil dataset.
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Figure B.3: WOGC chromatogram of the crude oil labelled 3S in the crude oil dataset.
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Figure B.4: WOGC chromatogram of the crude oil labelled 4S in the crude oil dataset.
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Figure B.5:WOGC chromatogram of the crude oil labelled 5B in the crude oil dataset.
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Figure B.6:WOGC chromatogram of the crude oil labelled 6B in the crude oil dataset.
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Figure B.7: WOGC chromatogram of the crude oil labelled 7S in the crude oil dataset.
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Figure B.8:WOGC chromatogram of the crude oil labelled 8C in the crude oil dataset.
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Figure B.9:WOGC chromatogram of the crude oil labelled 9C in the crude oil dataset.
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Figure B.12: WOGC chromatogram of the crude oil labelled 12S in the crude oil dataset.
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Figure B.14: WOGC chromatogram of the crude oil labelled 14C in the crude oil dataset.
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Figure B.15: WOGC chromatogram of the crude oil labelled 15B in the crude oil dataset.
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Figure B.16: WOGC chromatogram of the crude oil labelled 16S in the crude oil dataset.
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Figure B.17: WOGC chromatogram of the crude oil labelled 178 in the crude oil dataset.
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Figure B.18: WOGC chromatogram of the crude oil labelled 18B in the crude oil dataset.
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Figure B.21: WOGC chromatogram of the crude oil labelled 17S in the crude oil dataset, a

closer look at the first 30 minutes of the chromatogram.

Table B.1: Variable coding and variable names for the GC data.

Variable Coding

Variable name

iC5 iso-pentane

nC5 n-pentane

22dm-C4 2,2-dimethylbutane
cyC5 cyclopentane
23dm-C4 2,3-dimethylbutane
2m-C5 2-methylpentane
3m-C5 3-methylpentane
nC6 n-hexane

22dm-C5 2,2-dimethylpentane
m-cyC5 methylcyclopentane
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24dm-C5 2,4-dimethylpentane

223tm-C4 2,2,3-trimethylbutane

Benzene Benzene

33dm-C5 3,3-dimethylpentane

cyC6 cyclohexane

2m-C6 2-methylhexane

23dm-C5 2,3-dimethylpentane
11dm-cyC5 1,1-dimethylcyclopentane
3m-C6 3-methylhexane

1¢.3dm-cyC5 cis-1-3-dimethylcyclopentane
1t.3dm-cyC5 trans-1-3-dimethylcyclopentane
1t.2dm-cyC5 trans-1-2-dimethylcyclopentane
nC7 n-heptane

m-cyC6 Methylcyclohexane
113tm-cyC5 1,1,3-trimethylcyclopentane
e-cyC5 Ethylcyclopentane

25dm-C6 2,5-dimethylhexane

223tm-C5/24dm-C6

2,2,3-trimethylpentane/2,4-dimethylhexane

1c¢.2t.4tm-cyC5

cis-1-trans-2-4-trimethylcyclopentane

33dmC6

3,3-dimethylhexane

1t.2¢.3tm-cyC5

trans-1-cis-2-3-methylcyclopentane

234tm-C5

2,3,4-trimethylpentane

Toluene/233tm-C5

Toluene/2,3,3-trimethylpentane
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23dm-C6 2,3-dimethylhexane

2m-C7 2-methylheptane

4m-C7 4-methylheptane

3m-C7 3-methylheptane
1.c3dm-cyC6 cis-1-3-dimethylcyclohexane
1.14dm-cyC6 trans-1-4-dimethylcyclohexane
11dm-cyC6 1,1-dimethylcyclohexane
1t.2dm-cyC6 trans-1-2-dimethylcyclohexane
nC8 n-octane

e-cyC6 Ethylcyclohexane

i-C9 iso-nonane

e-benzene Ethylbenzene

m-xylene meta-xylene

p-xylene para-xylene

4m-C8 4-methyloctane

2m-C8 2-methyloctane

3m-C8 3-methyloctane

o-xylene orto-xylene

nC9 n-nonane

i-C10 iso-decane

nC10 n-decane

i-C11 iso-undecane

nC11 n-undecane
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nC12 n-dodecane
i-C13 iso-tridecane
i-C14 iso-tetradecane
nC13 n-tridecane
i-C15 iso-pentadecane
nC14 n-tetradecane
i-C16 iso-hexadecane
nC15 n-pentadecane
nC16 n-hexadecane
i-C18 iso-octadecane
nC17 n-heptadecane
pristane pristane

nC18 n-octadecane
phytane phytane

nC19 n-nonadecane
nC20 n-icosane

nC21 n-henicaosane
nC22 n-docosane
nC23 n-tricosane
nC24 n-tetracosane
nC25 n-pentacosane
nC26 n-hexacosane
nC27 n-heptacosane
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nC28 n-octacosane
nC29 n-nonacosane
nC30 n-triacontane

Appendix C. Model characteristics

In this section some of the model characteristic for the multivariate models generated
in this thesis is presented. In chapter C1.1 to C1.9 the characteristics of the models
based on FTIR is shown, while in chapter C2.1 to C2.9 the characteristics of the

models based on GC is shown.

In this section the term Standard Error of Cross Validation (SECV) is used, and is

described as:

Equation C.1

where N= number of objects (samples), A= number of Principal Components, y; =y
predicted, y; =y observed. The first term in the nominator is the predicted response
for sample i, when this sample is kept out of the model building during the cross

validation step.

The method of plotting SECV against number of components is used in order to
determine how many components one should use in a model. A low SECV indicate
that the predictive quality of a model is good. As seen in Figure C.1, the model with 4
components give the lowest SECV, but the model with 3 components should be

considered as the best choice. The reason for that is that the more components in a
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model, the higher the possibility of modelling noise, which could decrease the
predictive quality of the model. Other methods for determining the predictive quality
should also be applied, for example external validation, in order to determine how

many PC’s should be used.

C1.1 Models based on FTIR data
C1.1.1 Density based on FTIR

Table C1.1: Explained variance and Cross Validation Standard Deviation for the

model for density based on FTIR data.

Number of Explained Cross Validation
variance Standard Deviation
Latent Variables
1 84.58% 0.48
2 95.58% 1.29
3 96.03% 1.06
4 97.06% 1.57
5 98.51% 1.93
6 99.01% 1.87
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Explained variance vs number of Latent Variables

100 1 A
90
80
70 /
60 . .
50 / —e— Explained variance vs
40 / number of Latent Variables
30 /
20

Explained variance (%)

1 2 3 4 5 6
Number of Latent Variables

Figure C1.1: Explained variance plotted against the number of Latent Variables in the

model for the model for density based on FTIR data.
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Figure C1.2: SECV plotted against number of components for the model for density
based on FTIR data.
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Figure C1.3: Scores for the model for density based on FTIR data. Brown circles=biodegraded oils,

blue squares=nondegraded oils, cyan triangles=condensates.

*10”
5.1
25
= i
E) .
2
~ 00 Y... o e o
g v
£
<]
S i
-2.5
-5.1 P |
-5.0 2.4 0.1 2.6 5.1 10

Comp. 1 (84.6%)

Figure C1.4: Biplot for the model for density based on FTIR data. Brown circles=biodegraded oils,
blue squares=nondegraded oils, cyan triangles=condensates. The black squares are the variables,
with FTIR data in the centre and density on the far right.
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Figure C1.5: Weighted regression coefficients for the model for density based on
FTIR data.
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C1.1.2 Velocity of sound based on FTIR

Table C1.2: Explained variance and Cross Validation Standard Deviation for the

model for velocity of sound based on FTIR data.

Number of | Explained| Cross Validation

components | variance | Standard Deviation
1 85.10 % 0.44
2 88.97 % 1.09
3 97.21 % 1.01
4 98.52 % 1.58
5 99.18 % 2.10
6 99.60 % 2.03
7 99.76 % 1.92

Explained variance vs number of Latent Variables
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Figure C1.7: Explained variance plotted against the number of Latent Variables for

the model for velocity of sound based on FTIR data.
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Figure C1.8: SECV plotted against number of components for the model for velocity
of sound based on FTIR data.
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Figure C1.9: Scores for the model for velocity of sound based on FTIR data. Brown
circles=biodegraded oils, blue squares=nondegraded oils, cyan triangles=condensates.
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Figure C1.10: Biplot for the model for velocity of sound based on FTIR data. The
black squares are the variables, with FTIR data and objects concentrated in the centre

while the velocity of sound is placed on the far right.
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Figure C1.11: Weighted regression coefficients for the model for velocity of sound
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Figure C1.12: Predicted value plotted against measured value for the model for
velocity of sound based on FTIR data. R*=0.992. Brown circles=biodegraded oils,
blue squares=nondegraded oils, cyan triangles=condensates, red diamonds=validation
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C1.1.3 Static permittivity based on FTIR

Table C1.3: Explained variance and Cross Validation Standard Deviation for the

model for static permittivity (g;) based on FTIR data.

Number of | Explained | Cross Validation

components | variance | Standard Deviation
1 90.38 % 0.41
2 91.80 % 1.22
3 97.15% 0.94
4 98.52 % 1.18
5 98.93 % 3.04
6 99.10 % 2.21
7 99.64 % 2.05
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Figure C1.13: Explained variance plotted against the number of Latent Variables for the
model for static permittivity (&) based on FTIR data.
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Figure C1.14: SECV plotted against number of components for the model for static
permittivity (&) based on FTIR data.
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Figure C1.15: Scores for the model for static permittivity (&) based on FTIR data.
Brown circles=biodegraded oils, blue squares=nondegraded oils, cyan

triangles=condensates.

130



APPENDIX

*10°
7.5

3.7

v ©®
04 Ve ' “

Comp. 2 (1.4%)

-3.9

-1.7
-0.50 -0.12 0.26 0.64 1.02

Comp. 1(90.4%)

Figure C1.16: Biplot for the model for static permittivity () based on FTIR data.
Brown circles= biodegraded oils, blue squares=nondegraded oils, cyan
triangles=condensates. The black squares are the variables, with FTIR data and

objects concentrated in the centre while static permittivity is placed on the far right.
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Figure C1.17: Weighted regression coefficients for the model for static permittivity

(&) based on FTIR data
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Figure C1.18: Predicted value plotted against measured value for the model for static
permittivity (&,) based on FTIR data. R*=0.978. Brown circles=biodegraded oils, blue
squares=nondegraded oils, cyan triangles=condensates, red diamonds=validation

objects.
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C1.1.4 High frequency permittivity based on FTIR

Table C1.4: Explained variance and Cross Validation Standard Deviation for the

model for high frequency permittivity (¢.,) based on FTIR data.

Number of | Explained | Cross Validation

components | variance | Standard Deviation
1 87.11 % 0.48
2 89.07 % 1.76
3 94.99 % 1.45
4 96.58 % 1.83
5 98.29 % 2.12
6 98.51 % 1.89
7 99.21 % 1.94
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Figure C1.19: Explained variance plotted against the number of Latent Variables for

the model for high frequency permittivity (¢,,) based on FTIR data.
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Figure C1.20: SECV plotted against number of components for the model for high

frequency permittivity (g,,) based on FTIR data.
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Figure C1.21: Scores for the model for high frequency permittivity (e,,) based on
FTIR data. Brown circles=biodegraded oils, blue squares=nondegraded oils, cyan

triangles=condensates.
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Figure C1.22: Biplot for the model for high frequency permittivity (€.) based on FTIR data.
Brown circles= biodegraded oils, blue squares=nondegraded oils, cyan
triangles=condensates. The black squares are the variables, with FTIR data and objects

concentrated in the centre while high frequency permittivity is placed on the far right.
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Figure C1.23: Weighted regression coefficients for the model for high frequency

permittivity (&) based on FTIR data.
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Figure C1.24: Predicted value plotted against measured value for the model for high

frequency permittivity (e.,) based on FTIR data. R?=0.980. Brown circles=biodegraded oils,

blue squares=nondegraded oils, cyan triangles=condensates, red diamonds=validation

objects.
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C1.1.5 o based on FTIR

Table C1.5: Explained variance and Cross Validation Standard Deviation for the

permittivity variable o based on FTIR data.

Number of | Explained Cross Validation

components | variance Standard Deviation
1 22.23 % 1.24
2 31.47 % 1.7
3 69.71 % 1.45
4 77.51 % 1.63
5 87.84 % 1.99
6 92.51 % 2.24
7 95.29 % 1.97
8 96.45 % 2.15
9 97.74 % 2.16
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Figure C1.25: Explained variance plotted against the number of Latent Variables for the

model for the permittivity variable o based on FTIR data.
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Figure C1.26: SECV plotted against number of components for the model for the

permittivity variable o based on FTIR data.
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Figure C1.27: Scores for the model for the permittivity variable o based on FTIR data.

Brown circles=biodegraded oils, blue squares=nondegraded oils, cyan triangles=condensates.
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Figure C1.28: Biplot for the model for the permittivity variable o based on FTIR data. Brown
circles= biodegraded oils, blue squares=nondegraded oils, cyan triangles=condensates. The
black squares are the variables, with FTIR data and objects concentrated in the centre while

the permittivity variable a is placed somewhat up and right from the centre.
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Figure C1.29: Weighted regression coefficients for the model for the permittivity

variable o based on FTIR data.
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permittivity variable o based on FTIR data. R>=0.775. Brown circles=biodegraded
oils, blue squares=nondegraded oils, cyan triangles=condensates, red

diamonds=validation objects.
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C1.1.6 T based on FTIR

Table C1.6: Explained variance and Cross Validation Standard Deviation for the

permittivity variable t based on FTIR data.

Number of | Explained | Cross Validation

components | variance | Standard Deviation
1 23.77 % 1.09
2 32.01 % 1.26
3 71.14 % 1.57
4 83.92 % 1.57
5 88.18 % 2.19
6 91.75 % 2.16
7 95.26 % 2.1
8 97.73 % 2.07
9 99.65 % 2.15
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Explained variance vs number of latent variables
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Figure C1.31: Explained variance plotted against the number of Latent Variables for
the model for the permittivity variable T based on FTIR data.
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Figure C1.32: SECV plotted against number of components for the model for the
permittivity variable T based on FTIR data.
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Figure C1.33: Scores for the model for the permittivity variable t based on FTIR data, Component 1 vs

Component 3. Brown circles=biodegraded oils, blue squares=nondegraded oils, cyan triangles=condensates.

¢10—1
1.67 , , ,
0.84 f----ooooeend st T SRREE oo
= | ! s e
@ | | |
) v v Y :
R TE ] l """" R
a ' 0 a ®
£ W ' 1 |
o 1 | | |
(4] 1 | |
083 e A fommmmnnnned fomnnnneeees
-1.66 : : : «10!
-1.60 0.77 0.06 0.90 1.73

comp. 1 (23.8%)

Figure C1.34: Biplot for the model for the permittivity variable t based on FTIR data. Brown circles=
biodegraded oils, blue squares=nondegraded oils, cyan triangles=condensates. The black squares are the
variables, with FTIR data and objects concentrated in the centre. The permittivity variable t is placed in the

centre as well.

143



APPENDIX

-6
*10
4.0
2.7
- 4
=
=
01.4 -
0
o |
2
20.0 -
s
@
=
1.3 -
2
-2.6
'4.0IIIIIIIIIIIIIIIIIIIII
¥+ N © © © ¥ N © ®© N B M = O ©® © ¥ N © © ©
S 1 O ¥ O ¥ O € 00 ™M 0 M® 0 N M &N N N N~ - ©
QKN © ¥ 4 ¢ 9 ® © 1 g N S & N © % 60 v o ©
o W = N o o ¥ 6 © o ®© F O 8w = N 6 o B = ©
g = 0O & Y M €& = M ¥ O N € O M M O © ™M o O
© ©® ® T ®m ¥ © ® O T O ¥ © O O T O ¥ © ® oD
- v v v = = &4 N & & & N ® ® ® ® o o

Wavenumber (1/cm)

Figure C1.35: Weighted regression coefficients for the model for the permittivity
variable t based on FTIR data.
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Figure C1.36: Predicted value plotted against measured value for the model for the
permittivity variable T based on FTIR data. R*=0.721. Brown circles=biodegraded
oils, blue squares=nondegraded oils, cyan triangles=condensates, red

diamonds=validation objects.
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C1.1.7 TAN based on FTIR

Table C1.7: Explained variance and Cross Validation Standard Deviation for TAN

based on FTIR data.

Number of Explained Cross Validation

components variance Standard Deviation
1 68.61% 0.59
2 77.45% 1.09
3 89.99% 0.84
4 93.88% 1.07
5 95.74% 1.12
6 98.09% 1.23
7 98.35% 1.07
8 98.58% 1.11
9 99.62% 1.19
10 99.92% 1.12
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Explained variance vs number of latent variables
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Figure C1.37: Explained variance plotted against the number of Latent Variables for
the model for TAN based on FTIR data.
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Figure C1.38: SECV plotted against number of components for the model for TAN
based on FTIR data.
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Figure C1.39: Scores for the model for TAN based on FTIR data, Component 1 vs

Component 2. Brown circles=biodegraded oils, blue squares=nondegraded oils, cyan

triangles=condensates.
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Figure C1.40: Biplot for the model for TAN based on FTIR data. Brown circles=
biodegraded oils, blue squares=nondegraded oils, cyan triangles=condensates. The black
squares are the variables, with FTIR data concentrated in the centre.

147



APPENDIX

5.1

34

1.7

0.1 -

1.6 4

Weighted Reg. Coeff (TAN)

3.3 4

-5.0

1977
2143 -
2308
2474
2640
2806 -
2972
3138
3303
3469
3635
3801
3967

650
816 -
982 -

1147 -

1313

1479 -

1645 -

1811 -

Wavenumber (1/cm)

Figure C1.41: Weighted regression coefficients for the model for TAN based on FTIR
data.
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Figure C1.42: Predicted value plotted against measured value for the model for TAN
based on FTIR data. R?=0.997. Brown circles=biodegraded oils, blue
squares=nondegraded oils, cyan triangles=condensates, red diamonds=validation

objects.
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C1.1.8 Viscosity based on FTIR

Table C1.8: Explained variance and Cross Validation Standard Deviation for viscosity

based on FTIR data.

Number of Explained Cross Validation

components variance Standard Deviation
1 85.64% 0.45
2 88.04% 1.12
3 95.59% 0.83
4 96.68% 0.76
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Figure C1.43: Explained variance plotted against the number of Latent Variables for

the model for viscosity based on FTIR data.
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Figure C1.44: SECV plotted against number of components for the model for
viscosity based on FTIR data.
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Figure C1.45: Scores for the model for viscosity based on FTIR data, Component 1 vs
Component 2. Brown circles=biodegraded oils, blue squares=nondegraded oils, cyan

triangles=condensates.
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Figure C1.46: Biplot for the model for viscosity based on FTIR data. Brown circles=
biodegraded oils, blue squares=nondegraded oils, cyan triangles=condensates. The black

squares are the variables, with FTIR data concentrated in the centre.
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Figure C1.47: Weighted regression coefficients for the model for viscosity based on FTIR
data.
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Figure C1.48: Predicted value plotted against measured value for the model for
viscosity based on FTIR data. R>=0.964. Brown circles=biodegraded oils, blue
squares=nondegraded oils, cyan triangles=condensates, red diamonds=validation

objects.

C1.1.9 Viscosity based on FTIR

Table C1.9: Explained variance and Cross Validation Standard Deviation for

asphaltene content based on FTIR data.

Number of Explained Cross Validation

components variance Standard Deviation
1 88.73% 0.38
2 92.29% 1.06
3 96.12% 0.91
4 96.85% 0.96
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Figure C1.49: Explained variance plotted against the number of Latent Variables for

the model for asphaltene content based on FTIR data.
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Figure C1.50: SECV plotted against number of components for the model for

asphaltene content based on FTIR data.
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Figure C1.51: Scores for the model for asphaltene content based on FTIR data, Component 1

vs Component 2. Brown circles=biodegraded oils, blue squares=nondegraded oils, cyan

triangles=condensates.
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Figure C1.52: Biplot for the model for asphaltene content based on FTIR data. Brown
circles= biodegraded oils, blue squares=nondegraded oils, cyan triangles=condensates. The
black squares are the variables, with FTIR data concentrated in the centre.
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Figure C1.53: Weighted regression coefficients for the model for asphaltene content

based on FTIR data.
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Figure C1.54: Predicted value plotted against measured value for the model for
asphaltene content based on FTIR data. R?=0.944. Brown circles=biodegraded oils,
blue squares=nondegraded oils, cyan triangles=condensates, red diamonds=validation

objects.
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C2.1 Models based on GC data
C2.1.1 Density based on GC

Table C2.1: Explained variance and Cross Validation Standard Deviation for the

model for density based on GC data.

Number of Explained Cross Validation

components variance Standard Deviation
1 72.20 % 0.64
2 81.24 % 1.10
3 88.39 % 1.05
4 93.35% 0.94
5 95.64 % 1.03
6 97.66 % 1.02
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Explained variance vs number of latent variables
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Figure C2.1: Explained variance plotted against the number of Latent Variables for

the model for density based on GC data.
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Figure C2.2: SECV plotted against number of components for the model for density
based on GC data.
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Figure C2.3: Scores for the model for density based on GC data, Component 1 vs
Component 2. Brown circles=biodegraded oils, blue squares=nondegraded oils, cyan

triangles=condensates.
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Figure C2.4: Biplot for the model for density based on GC data. Brown circles= biodegraded
oils, blue squares=nondegraded oils, cyan triangles=condensates. The black squares are the
variables, with GC data and objects concentrated in the centre while density is placed

somewhat up and right from the centre.
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Figure C2.5: Weighted regression coefficients for the model for density based on GC
data.
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C2.1.2 Velocity of sound based on GC

Table C2.2: Explained variance and Cross Validation Standard Deviation for the

model for velocity of sound based on GC data.

Number of Explained Cross Validation

components variance Standard Deviation
1 65.34% 0.74
2 73.02% 1.21
3 91.16% 0.94
4 95.95% 0.83
5 96.38% 0.80
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Figure C2.7: Explained variance plotted against the number of Latent Variables for

the model for velocity of sound based on GC data.
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Figure C2.8: SECV plotted against number of components for the model for velocity of
sound based on GC data.
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Figure C2.9: Scores for the model for velocity of sound based on GC data, Component 1 vs
Component 2. Brown circles=biodegraded oils, blue squares=nondegraded oils, cyan

triangles=condensates.

161



APPENDIX

20.00

10.00

Comp. !23(7.7%)
o
o
L

-10.00

-20.00

=
]
o
mo ©
n -'
L] "o - [ ] [ ]
o o
] =N -'i - °
LY n
" " n °n
"= o
-20.00 -10.00 0.00 10.00 20.00

Comp. 1 (65.3%)

Figure C2.10: Biplot for the model for velocity of sound based on GC data. Brown circles=

biodegraded oils, blue squares=nondegraded oils, cyan triangles=condensates. The black

squares

are the variables.
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Figure C2.12: Predicted value plotted against measured value for the model for
velocity of sound based on GC data. R*=0.960. Brown circles=biodegraded oils, blue
squares=nondegraded oils, cyan triangles=condensates, red diamonds=validation

objects.
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C2.1.3 Static permittivity based on GC, asphaltene content and TAN

Table C2.3: Explained variance and Cross Validation Standard Deviation for the

model for the permittivity variable static permittivity based on GC data, asphaltene

content and TAN.

Number of Explained Cross Validation

components variance Standard Deviation
1 82.41% 0.53
2 92.86% 0.79
3 94.87% 0.95
4 95.76% 1.10
5 98.35% 1.02
6 98.65% 1.04
7 98.89% 1.04
8 99.32% 1.00

164



APPENDIX

Explained variance vs number of latent variables
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Figure C2.13: Explained variance plotted against the number of Latent Variables for

the model for the permittivity variable static permittivity based on GC data,

asphaltene content and TAN.
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Figure C2.14: SECV plotted against number of components for the model for the

permittivity variable static permittivity based on GC data, asphaltene content and

TAN.
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Figure C2.15: Scores for the model for the permittivity variable static permittivity based on GC data, asphaltene

content and TAN, Component 1 vs Component 2. Brown circles=biodegraded oils, blue squares=nondegraded

oils, cyan triangles=condensates.
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Figure C2.16: Biplot for the model for the permittivity variable static permittivity based on GC data, asphaltene
content and TAN. Brown circles= biodegraded oils, blue squares=nondegraded oils, cyan
triangles=condensates. The black squares are the variables, with the GC variables grouped in the middle

together with the TAN variable, and the asphaltene variable placed on the far right.
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Figure C2.17: Weighted regression coefficients for the model for permittivity variable
static permittivity based on GC data, asphaltene content and TAN. TAN and

asphaltene on the far left, with TAN having a large positive effect on the model.
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Figure C2.18: Predicted value plotted against measured value for the model for the

permittivity variable static permittivity based on GC data, asphaltene content and

TAN. R*=0.993. Brown circles=biodegraded oils, blue squares=nondegraded oils,

cyan triangles=condensates, red diamonds=validation objects.
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C2.1.4 High frequency permittivity based on GC, asphaltene content and TAN

Table C2.4: Explained variance and Cross Validation Standard Deviation for the
model for the permittivity variable high frequency permittivity based on GC data,

asphaltene content and TAN.

Number of Explained Cross Validation

components variance Standard Deviation
1 74.08% 0.64
2 89.92% 0.76
3 91.53% 0.96
4 96.33% 1.06
5 97.19% 0.95
6 97.85% 1.30
7 98.31% 1.01
8 99.08% 1.01
9 99.36% 1.32
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Explained variance vs number of latent variables
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Figure C2.19: Explained variance plotted against the number of Latent Variables for
the model for the permittivity variable high frequency permittivity based on GC data,

asphaltene content and TAN.
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Figure C2.20: SECV plotted against number of components for the model for the
permittivity variable high frequency permittivity based on GC data, asphaltene
content and TAN.
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Figure C2.21: Scores for the model for the permittivity variable high frequency permittivity based on
GC data, asphaltene content and TAN, Component 1 vs Component 2. Brown circles=biodegraded

oils, blue squares=nondegraded oils, cyan triangles=condensates.
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Figure C2.22: Biplot for the model for the permittivity variable high frequency permittivity based on
GC data, asphaltene content and TAN. Brown circles= biodegraded oils, blue squares=nondegraded
oils, cyan triangles=condensates. The black squares are the variables, with the GC variables grouped

in the middle together with the TAN variable, and the asphaltene variable placed on the far right.
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Figure C2.23: Weighted regression coefficients for the model for permittivity variable
high frequency permittivity based on GC data, asphaltene content and TAN. TAN and
asphaltene on the far right, with TAN having a large positive effect on the model.
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Figure C2.24: Predicted value plotted against measured value for the model for the
permittivity variable high frequency permittivity based on GC data, asphaltene
content and TAN. R*=0.993. Brown circles=biodegraded oils, blue
squares=nondegraded oils, cyan triangles=condensates, red diamonds=validation

objects.
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C2.1.5 a based on GC

Table C2.5: Explained variance and Cross Validation Standard Deviation for the

model for the permittivity variable o based on GC data.

Number of Explained Cross Validation

components variance Standard Deviation
1 37.12% 1.14
2 59.32% 1.01
3 63.45% 0.91
4 69.13% 1.14
5 75.58% 1.15
6 83.24% 0.98

Explained variance vs number of latent variables
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Figure C2.25:

Explained variance plotted against the number of Latent Variables for the model for
the permittivity variable o based on GC data.
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Figure C2.26: SECV plotted against number of components for the model for the

permittivity variable o based on GC data.
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Figure C2.27: Scores for the model for the permittivity variable o based on GC data.
Component 1 vs Component 2. Brown circles=biodegraded oils, blue

squares=nondegraded oils, cyan triangles=condensates.
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Figure C2.28: Biplot for the model for the permittivity variable o based on GC data. Brown
circles= biodegraded oils, blue squares=nondegraded oils, cyan triangles=condensates. The

black squares are the variables, with the GC variables grouped in the middle.
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Figure C2.29: Weighted regression coefficients for the model for permittivity variable

o based on GC data.
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Figure C2.30: Predicted value plotted against measured value for the model for the
permittivity variable o based on GC data. R?>=0.808. Brown circles=biodegraded oils,

blue squares=nondegraded oils, cyan triangles=condensates, red diamonds=validation

objects.
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C2.1.6 T based on GC
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Figure C2.31: Predicted value plotted against measured value for the model for the
permittivity variable © based on GC data, TAN and asphaltene content. R*=0.393. 1
Latent variable, explained variance=25.67%, Cross Validation Standard
Deviation=0.96. This model could be used for separating between high and low value,
the low value objects could then be applied to the second model in this section.
Brown circles=biodegraded oils, blue squares=nondegraded oils, cyan

triangles=condensates, red diamonds=validation objects.
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Table C2.6: Explained variance and Cross Validation Standard Deviation for the low

value model for the permittivity variable T based on GC data, TAN and asphaltene

content.

Number of Explained Cross Validation

components variance Standard Deviation
1 44.57% 0.85
2 59.28% 1.17
3 81.05% 1.13
4 88.85% 0.92
5 90.98% 0.87
6 93.58% 1.39
7 99.64% 1.10

Explained variance vs number of latent variables
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Figure C2.32: Explained variance plotted against the number of Latent Variables for the low

value model for the permittivity variable t based on GC data, TAN and asphaltene content.
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Figure C2.33: SECV plotted against number of components for the low value model

for the permittivity variable t based on GC data, TAN and asphaltene content.
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Figure C2.34: Scores for the low value model for the permittivity variable T based on
GC data, TAN and asphaltene content. The high value objects are omitted from this
model, in the score plot they would be placed in the upper right quadrant, showing
clear outlier character. Component 1 vs Component 2. Brown circles=biodegraded

oils, blue squares=nondegraded oils, cyan triangles=condensates.
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Figure C2.35: Biplot for the low value model for the permittivity variable t based on GC
data, TAN and asphaltene content. Brown circles= biodegraded oils, blue
squares=nondegraded oils, cyan triangles=condensates. The black squares are the variables,

with the GC variables and TAN grouped in the middle and asphaltene content on the far

right.
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Figure C2.36: Weighted regression coefficients for the low value model for the permittivity

Variables

variable t based on GC data, TAN and asphaltene content. TAN and asphaltene on the far

right, with TAN having a large positive effect on the model.
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Figure C2.37: Predicted value plotted against measured value for the low value model
for the permittivity variable t based on GC data, TAN and asphaltene content.
R?=0.969. Brown circles=biodegraded oils, blue squares=nondegraded oils, cyan

triangles=condensates, red diamonds=validation objects.

180



APPENDIX

C2.1.7 TAN based on GC and asphaltene content.

Table C2.7: Explained variance and Cross Validation Standard Deviation for the

model for TAN based on GC data and asphaltene content.

Cross Validation

Number of Explained
Standard
components variance
Deviation
1 27.92% 0.96
2 45.02% 1.07
3 58.12% 1.41
4 67.33% 1.16
5 81.61% 0.77
6 86.51% 0.83
7 90.55% 0.96
8 95.10% 1.39
9 95.92% 1.30
10 97.55% 1.26
11 98.94% 1.12
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Explained variance vs number of latent variables
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Figure C2.38: Explained variance plotted against the number of Latent Variables for
the model for TAN based on GC data and asphaltene content.
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Figure C2.39: SECV plotted against number of components for the model for TAN

based on GC data and asphaltene content.
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Figure C2.40: Scores for the model for TAN based on GC data and asphaltene content. Component 1

vs Component 2. Brown circles=biodegraded oils, blue squares=nondegraded oils, cyan

triangles=condensates.
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Figure C2.41: Biplot for the model TAN based on GC data and asphaltene content. Brown circles=

biodegraded oils, blue squares=nondegraded oils, cyan triangles=condensates. The black squares are

the variables, with the GC variables grouped in the middle and asphaltene content on the far right.
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Figure C2.42: Weighted regression coefficients for the model for TAN based on GC data and

asphaltene content. Asphaltene content on the far right, having small to little effect on the

model.
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Figure C2.43: Predicted value plotted against measured value for the model for TAN based
on GC data and asphaltene content. R>=0.989. Brown circles=biodegraded oils, blue

squares=nondegraded oils, cyan triangles=condensates, red diamonds=validation objects.
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C2.1.8 Viscosity based on GC, TAN and asphaltene content

Table C2.8: Explained variance and Cross Validation Standard Deviation for the

model for viscosity based on GC data, TAN and asphaltene content.

Number of Explained Cross Validation

components variance Standard Deviation
1 85.81% 0.43
2 90.62% 0.93
3 92.16% 1.08
4 93.41% 1.18
5 95.64% 1.07
6 96.66% 1.19
7 97.52% 1.12
8 98.85% 1.10
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Explained variance vs number of latent variables
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Figure C.2.44: Explained variance plotted against the number of Latent Variables for

the model for viscosity based on GC data, TAN and asphaltene content.
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Figure C2.45: SECV plotted against number of components for the model for

viscosity based on GC data, TAN and asphaltene content.
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Figure C2.46: Scores for the model for viscosity based on GC data, TAN and asphaltene

content. Component 1 vs Component 2. Brown circles=biodegraded oils, blue

squares=nondegraded oils, cyan triangles=condensates.
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Figure C2.47: Biplot for the model viscosity based on GC data, TAN and asphaltene content.

Brown circles= biodegraded oils, blue squares=nondegraded oils, cyan

triangles=condensates. The black squares are the variables, with the GC variables and TAN

grouped in the middle and asphaltene content on the far right.
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Figure C2.48: Weighted regression coefficients for the model for viscosity based on
GC data, TAN and asphaltene content. TAN and asphaltene content on the far right,

having some positive effect on the model.
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Figure C2.49: Predicted value plotted against measured value for the model for
viscosity based on GC data, TAN and asphaltene content. R*=0.981. Brown
circles=biodegraded oils, blue squares=nondegraded oils, cyan triangles=condensates,
red diamonds=validation objects.
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C2.1.9 Asphaltene content based on GC

Table C2.9: Explained variance and Cross Validation Standard Deviation for the

model for asphaltene content based on GC data.

Number of Explained Cross Validation

components variance Standard Deviation
1 40.72% 0.92
2 54.98% 1.06
3 78.72% 1.37
4 90.63% 0.99

Explained variance vs number of latent variables
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Figure C.2.50: Explained variance plotted against the number of Latent Variables for

the model for asphaltene content based on GC data.
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Figure C2.51: SECV plotted against number of components for the model for

asphaltene content based on GC data.
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Figure C2.52: Scores for the model for asphaltene content based on GC data.
Component 1 vs Component 3. Brown circles=biodegraded oils, blue

squares=nondegraded oils, cyan triangles=condensates.
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Figure C2.53: Biplot for the model for asphaltene content based on GC data. Brown circles=
biodegraded oils, blue squares=nondegraded oils, cyan triangles=condensates. The black

squares are the variables, with the GC variables grouped in the middle.
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Figure C2.54: Weighted regression coefficients for the model for asphaltene content based

on GC data.
191



APPENDIX

80.0

3
4
=)

Y
4
=)

(Asphaltene)

Predicted
N
o
o

o
=)

-20.0 T T T T T T T T T T T T T
0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00

Measured (Asphaltene)

Figure C2.55: Predicted value plotted against measured value for the model for
asphaltene content based on GC data. R?=0.893. Brown circles=biodegraded oils,

blue squares=nondegraded oils, cyan triangles=condensates, red diamonds=validation

objects.
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