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Abstract

The Greenland-Scotland Ridge separates the subpolar North Atlantic from the Nordic
Seas and constrains the flow of the upper and lower branches of the northern extremity
of the Atlantic Meridional Overturning Circulation (AMOC). Warm, saline Atlantic
Water flowing northward across the Greenland-Scotland Ridge into the Nordic Seas
is transformed into cold, dense water, which returns to the south as overflow plumes
through gaps in the ridge. The exchange flows across the ridge have been monitored
for several decades, but gaps in our knowledge remain about where and how the dense
waters are formed and transported toward the overflows. In this thesis, observational
data are used to clarify the upstream pathways of the densest overflow waters and to
examine the transformation of the Atlantic Water inflow through Denmark Strait.

Paper I focuses on the North Icelandic Jet (NIJ), which supplies the densest water
to the overflow plume passing through Denmark Strait. The properties, structure, and
transport of the NIJ are investigated for the first time along its entire pathway along
the slope north of Iceland, using 13 high-resolution hydrographic/velocity surveys con-
ducted between 2004 and 2018. The comprehensive data set reveals that the current
originates northeast of Iceland and that its volume transport increases toward Denmark
Strait. The bulk of the NIJ transport is confined to a small area in temperature-salinity
space, and these hydrographic properties are not significantly modified along the NIJ’s
pathway. The transport of overflow water 300 km upstream of Denmark Strait exceeds
1.8± 0.3 Sv (1 Sv≡ 106 m3 s−1), which implies a more substantial contribution from
the NIJ to the overflow plume than previously envisaged.

In paper II we present evidence of a previously unrecognised deep current follow-
ing the slope from Iceland toward the Faroe Bank Channel, using a high-resolution
hydrographic/velocity survey from 2011 along with long-term hydrographic and veloc-
ity measurements north of the Faroe Islands. We refer to this current as the Iceland-
Faroe Slope Jet (IFSJ). The bulk of the IFSJ’s volume transport occupies a small area
in temperature-salinity space. The similarity of the hydrographic properties of the
eastward-flowing IFSJ and the westward-flowing NIJ suggests that the densest compo-
nents of the two major overflows across the Greenland-Scotland Ridge have a common
source. We estimate that the IFSJ transports approximately 1.0± 0.1 Sv, which can
account for roughly half of the total overflow transport through the Faroe Bank Chan-
nel. As such, the IFSJ is a significant component of the overturning circulation in the
Nordic Seas.

In paper III we quantify the along-stream evolution of the North Icelandic Irminger
Current (NIIC) as it progresses along the shelf break north of Iceland, using a high-
resolution shipboard hydrographic/velocity survey, satellite and surface drifter data,
and historical hydrographic measurements. The NIIC cools and freshens along its
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pathway, predominantly due to mixing with cold, fresh offshore waters. Dense-water
formation on the shelf is limited, occurring sporadically in only 7 % of all historical
winter profiles. The hydrographic properties of this locally formed water match the
lighter, shallower portion of the NIJ. Along the northeast Iceland slope, enhanced eddy
activity and variability in sea surface temperature indicate that locally formed eddies
due to instability of the NIIC divert heat and salt into the interior Iceland Sea. The
emergence of the NIJ in the same region suggests that there may be a dynamical link to
the formation of the NIJ. As such, our results indicate that while the NIIC rarely sup-
plies the NIJ directly, it may be dynamically important for the overturning circulation
in the Nordic Seas.

The three papers advance our knowledge about the circulation along the northern
slope of the Greenland-Scotland Ridge and highlight its significance for water mass
transformation in the Nordic Seas and our understanding of the Nordic Seas–North
Atlantic exchange. In particular, my results contribute to an improved understanding of
the pathways of dense water feeding the overflows, which is imperative to accurately
predict how the AMOC will respond to a changing climate.
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Chapter 1

Motivation

The Greenland-Scotland Ridge separates the subpolar North Atlantic from the Nordic
Seas. This submarine ridge system constrains the exchange between the two regions,
i.e., the flows of the upper and lower branches of the northern extremity of the At-
lantic Meridional Overturning Circulation (AMOC). The AMOC is a system of ocean
currents that is key for the redistribution of heat, freshwater, and carbon in the ocean,
and thus constitutes a fundamental component of the global climate system (e.g., John-
son et al., 2019; McCarthy et al., 2020). The Nordic Seas, comprising the Norwegian,
Greenland, and Iceland Seas (Fig. 2.1), are crucial for the state of the AMOC and the
climate (e.g., Lozier et al., 2019; Chafik and Rossby, 2019; Drange et al., 2005).

The Nordic Seas are a region of transition and transformation, where warm sub-
tropical water masses meet and interact with cold polar waters, and where intense wa-
ter mass modification takes place (e.g., Hansen and Østerhus, 2000). They are also
one of few regions where considerable amounts of atmospheric carbon dioxide (CO2)
are being taken up by the ocean throughout the year (Skjelvan et al., 2005). The warm
water inflow from the south keeps large areas of the Nordic Seas free of sea ice and
maintains, along with the vast amounts of heat transported by the atmosphere, the mild
climate in northern Europe that exceeds the mean temperatures at similar latitudes by
more than 10 ◦C (Årthun et al., 2018; Drange et al., 2005). The nutrient-rich warm
waters also create favourable conditions for primary production (e.g., Stefánsson and
Ólafsson, 1991) and for fish stocks that are of great economic value (e.g., Lehodey
et al., 2006). Cold polar waters transit the Nordic Seas along the east Greenland shelf.
This is one of the main export routes for sea ice and freshwater from the Arctic Ocean
(Haine et al., 2015). In the interior Nordic Seas, strong air-sea exchange of momentum,
heat, freshwater, and gases such as CO2 leads to significant water mass transformation,
especially during winter (Drange et al., 2005). In particular, the Nordic Seas are one of
the key regions for the formation of dense water that fills the deep North Atlantic and
spreads throughout the world ocean. Gebbie and Huybers (2010) estimated that more
than half of the overturning in the North Atlantic occurs in the Nordic Seas. Recent
observational studies emphasised the importance of water mass transformation east of
Greenland (Lozier et al., 2019), and especially north of the Greenland-Scotland Ridge
(Chafik and Rossby, 2019), for sustaining the lower limb of the AMOC. As such, un-
derstanding where and how the warm, saline waters are transformed into cold, dense
waters and transported across the Greenland-Scotland Ridge is imperative, especially
in view of the warming climate.



2 Motivation

Climate change is altering the processes and locations of dense-water formation
in the Nordic Seas. Oceanic convection important for dense-water formation occurs
mainly in the centres of the Greenland and Iceland Seas (Marshall and Schott, 1999;
Swift et al., 1980). Convection is facilitated by strong heat fluxes that tend to be largest
near the ice edge where cold and dry polar air meets the relatively warm surface waters
(Papritz and Spengler, 2017; Renfrew and Moore, 1999). Over the past decades, the
winter sea-ice extent in the Nordic Seas has dramatically declined, which, in turn, has
increased the distance between the interior basins of the Greenland and Iceland Seas
and the ice edge (e.g., Moore et al., 2015). Along with a general warming further reduc-
ing the temperature gradient between the atmosphere and the ocean, the retreat of the
ice edge has resulted in a diminished heat loss and weakened convection in the interior
basins, and hence the formation of less dense water masses (Moore et al., 2015; Våge
et al., in prep.). However, a warming Arctic may lead to more favourable conditions
for dense-water formation at other locations (Lique and Thomas, 2018). In particular,
dense waters transported by the East Greenland Current that were previously insulated
by the sea ice are now exposed to the atmosphere and can be further densified (Våge
et al., 2018). These shifts in dense-water formation sites may affect the properties and
the composition of the overflow waters that cross the Greenland-Scotland Ridge.

Furthermore, recent work has shown that enhanced water mass transformation oc-
curs not only in the East Greenland Current, but also in the Atlantic Water bound-
ary current branches flowing northward through Fram Strait and into the Barents Sea
(Moore et al., submitted). Increased densification within these currents, along with re-
duced sea-ice cover, a weakened stratification, and enhanced vertical mixing, leads to
the so-called "Atlantification" of the Barents Sea and parts of the Arctic Ocean (Årthun
et al., 2012; Lind et al., 2018; Polyakov et al., 2017). The documented heat accumu-
lation in the Nordic Seas and the Arctic Ocean since 2000 can to a large extent be
explained by the increased ocean heat transport across the Greenland-Scotland Ridge
(Tsubouchi et al., accepted). As such, the changes in the Arctic climate suggest of late
a greater role for the Atlantic Water flowing into the Nordic Seas.

The focus of this thesis is to better understand three currents that are of central
importance to the exchange across the Greenland-Scotland Ridge and the overturning
in the Nordic Seas: the North Icelandic Jet (NIJ), which advects the densest water to
the overflow through Denmark Strait (Paper I), the Iceland-Faroe Slope Jet (IFSJ), a
previously unrecognised pathway supplying the densest water to the overflow through
the Faroe Bank Channel (Paper II), and the North Icelandic Irminger Current (NIIC),
which transports warm and saline water into the Nordic Seas (Paper III). In particular,
each of the three papers in this study is concerned with an overarching research question
regarding the circulation along the northern slope of the Greenland-Scotland Ridge:

• Paper I: How does the NIJ evolve along the Iceland slope toward Denmark Strait?

• Paper II: How does overflow water progress toward the Faroe Bank Channel?

• Paper III: How is the NIIC modified along the north Iceland shelf?

To address these research questions we employed a multitude of observational plat-
forms. The data sets are described in Chapter 3.



Chapter 2

Introduction

2.1 The Atlantic Meridional Overturning Circulation

The large-scale, full-depth circulation system in the Atlantic Ocean consists of four
main branches that constitute the AMOC: upwelling of water from the deep ocean
to the near-surface, poleward transport of warm and light water by surface currents,
formation of deep water that sinks to depth at high latitudes, and the equatorward re-
turn flow of cold and dense water at depth (e.g., Rahmstorf , 2006). This circulation
stretches over both hemispheres in the Atlantic Ocean and can be divided into two
overturning cells: The northward flow of dense Antarctic Bottom Water extends into
the mid-latitude North Atlantic in the abyssal ocean. The northern part of the deep At-
lantic Ocean, however, is filled by North Atlantic Deep Water, which is formed through
densification of the poleward-flowing warm and saline surface water (Kuhlbrodt et al.,
2007). While wind-driven upwelling and vertical mixing are important driving pro-
cesses of the AMOC, the deep-water formation sets the interhemispheric shape and
strength of the overturning cells (Kuhlbrodt et al., 2007). In the northern hemisphere,
this overturning or transformation from the upper to the lower layer occurs in the high-
latitude North Atlantic, where the water is substantially cooled and loses buoyancy
(Johnson et al., 2019). These surface buoyancy fluxes are considered as necessary for
the AMOC’s existence (Huang, 2004). In particular, dense-water formation sustaining
the lower limb of the AMOC takes place both in the subpolar North Atlantic and in
the Nordic Seas (Fig. 2.1). Observational evidence has recently highlighted the impor-
tance of the region east of Greenland (Lozier et al., 2019), and especially the Nordic
Seas (Chafik and Rossby, 2019) – contrary to previous understanding of the Labrador
Sea as one of the key sites of the overturning. As such, the deepest and densest waters
that supply the lower limb of the AMOC and constitute its main component are formed
in the Nordic Seas (Dickson and Brown, 1994; Gebbie and Huybers, 2010).

2.2 The Nordic Seas and the Greenland-Scotland Ridge

The Nordic Seas comprise the Norwegian, Greenland, and Iceland Seas (Fig. 2.2).
The region is the main gateway to the Arctic Ocean; the northern boundary is Fram
Strait with a sill depth exceeding 2500 m (e.g., Langehaug and Falck, 2012). The
southern boundary is the Greenland-Scotland Ridge, a submarine ridge extending from
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Figure 2.1: Schematic circulation of the Nordic Seas and subpolar North Atlantic. Colours of curves
indicate approximate temperatures (warm–red, cold–blue). Courtesy of Woods Hole Oceanographic
Institution.

Greenland via Iceland and the Faroe Islands to Scotland (Fig. 2.3). The Greenland-
Scotland Ridge constrains the exchange of waters between the subpolar North At-
lantic and the Nordic Seas as it provides a continuous barrier below approximately
850 m depth, which is the sill depth of the deepest gap, the Faroe Bank Channel (e.g.,
Hansen and Østerhus, 2000). All other passages across the ridge are at least 200 m
shallower: Denmark Strait, located between Greenland and Iceland, has a sill depth of
approximately 650 m. Progressing eastward, the Iceland-Faroe Ridge deepens from
about 300 to 500 m toward the Faroe Islands and is intersected by several smaller
channels. The southeasternmost gap in the Greenland-Scotland Ridge is the Wyville-
Thompson Ridge, which diverts most of the overflow water passing through the wide,
deep Faroe-Shetland Channel toward the Faroe Bank Channel (Hansen and Østerhus,
2000, Fig. 2.3).

Submarine ridges play also an important role in the interior of the Nordic Seas,
where they separate the major basins and provide guidance for the deep flow, which
generally follows the bathymetry (Nøst and Isachsen, 2003). As such, the Greenland
Sea is bordered by the West Jan Mayen Ridge to the south and the Mohn Ridge to the
east, while the Jan Mayen Ridge, a continuation of the Mohn Ridge, is the boundary
between the Iceland Sea and the eastern basins (Fig. 2.2). The Kolbeinsey Ridge, an
extension of the mid-Atlantic Ridge north of Iceland, separates the western Iceland Sea
from the central basin of the Iceland Sea. The deep Greenland and Norwegian Seas
exceed depths of 3500 m; steep continental slopes connect the basins to the shallow
shelf areas along the margins. This complex and diverse bathymetry has major impli-
cations for the hydrography of the Nordic Seas, in particular the location and formation
of different water masses.
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Figure 2.2: Schematic circulation of the Nordic Seas. The pathways of warm Atlantic inflow and dense
outflow are shown by red and green arrows, respectively. Colours and grey contours represent the
bathymetry from ETOPO2, and relevant topographic features and basins are named. The abbreviations
are: EGC–East Greenland Current; IFSJ–Iceland-Faroe Slope Jet; NAC–Norwegian Atlantic Current;
NIIC–North Icelandic Irminger Current; NIJ–North Icelandic Jet. Modified after Huang et al. (ac-
cepted).

2.3 Hydrography of the Nordic Seas

The Nordic Seas connect the Arctic Ocean with the subpolar North Atlantic and con-
tain a large variety of water masses, which are being transported into the region. Fur-
thermore, substantial air-sea exchange modifies the water within the different basins,
creating additional water mass classes. While Rudels et al. (2002, 2005) have cate-
gorised the different water masses in detail, here we followed the approach by Våge
et al. (2011), where the water mass definitions are simplified but remain sufficiently
accurate for the context of this thesis. Before an overview of the water masses and their
transformation is given, the standard used for the description of seawater properties is
briefly introduced.
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Figure 2.3: Bottom depth along the oceanic part of a section following the crest of the Greenland-
Scotland Ridge (shown on the inset map). From Hansen and Østerhus (2000).

2.3.1 The Thermodynamic Equation Of Seawater – 2010
In this thesis the Thermodynamic Equation Of Seawater – 2010 (TEOS-10) standard
was followed, a formulation from which the properties of seawater can be derived in a
thermodynamically consistent manner (IOC et al., 2010). Consequently, the boundaries
of the water masses were converted to Conservative Temperature and Absolute Salinity
(Table 2.1). As an example, for the hydrographic properties of the NIJ the Absolute
Salinity is on average 0.167 larger than the practical salinity, while the temperature
difference is smaller than the measurement accuracy (Chapter 3), and the potential
density in TEOS-10 is O(0.001) kg m−3 greater than in ITS-90. Throughout the thesis
Absolute Salinity, Conservative Temperature, and potential density are referred to as
salinity, temperature, and density, respectively, unless otherwise specified.

2.3.2 Water masses
We consider six main water masses (Table 2.1). Their volumetric distribution in the
Nordic Seas (Fig. 2.4) highlights the importance of the warm, saline Atlantic Water
and the cold, dense overflow water (defined as waters denser than σΘ = 27.8 kg m−3,
Dickson and Brown, 1994). Note that this volumetric analysis is only based on winter-
time hydrographic profiles. (In summer the properties will be spread even more, as the
surface layer is warmed by the atmosphere and freshened by sea-ice melt in the western
Nordic Seas.) The observations on the east Greenland shelf are sparse, which results in
an underestimate of the Polar Surface Water volume.

Table 2.1: Water masses in the Nordic Seas, simplified after Rudels et al. (2005) following Våge et al.
(2011). The water mass boundaries are converted to the TEOS-10 standard.

Water mass Acronym Boundaries

Surface Water SW Θ ≥0 ◦C; SA <35.066 g kg−1

Polar Surface Water PSW Θ <0 ◦C; σ0 <27.7 kg m−3

Atlantic Water AW Θ ≥3 ◦C; SA ≥35.066 g kg−1

Atlantic-origin water Atow 0≤ Θ <3 ◦C; σ0 ≥27.7 kg m−3; σ0.5 <30.44 kg m−3

Arctic-origin water Arow Θ <0 ◦C; σ0 ≥27.7 kg m−3; σ0.5 <30.44 kg m−3

Nordic Seas Deep Water NDW σ0.5 ≥30.44 kg m−3
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Figure 2.4: Volumetric Θ-S diagram of 0.5◦ longitude by 0.25◦ latitude binned winter hydrographic
profiles in the Nordic Seas. The underlying data set, on which the gridded product is based, has been
assembled by Huang et al. (accepted). The properties of the water masses are given in Table 2.1. The
abbreviations are: Arow–Arctic-origin water; Atow–Atlantic-origin water; AW–Atlantic Water; NDW–
Nordic Seas Deep Water; PSW–Polar Surface Water; SW–Surface Water.

The water masses can be roughly divided into the warm and saline Atlantic Water,
the fresh surface waters, and the cold and dense overflow waters (Fig. 2.4). Atlantic
Water enters the Nordic Seas from the south (Section 2.4.1) and is commonly defined
by a temperature and salinity exceeding 3 ◦C and 35.066 g kg−1 (Swift and Aagaard,
1981). The fresh Polar Surface Water originates mainly in the Arctic Ocean (Rudels
et al., 2005). The remaining broad range of fresh waters at the surface is collectively
referred to as Surface Water. The surface water masses are separated from the interme-
diate water masses by the 27.7 kg m−3 isopycnal, while the intermediate Atlantic-origin
and Arctic-origin waters are distinguished by temperatures above and below 0 ◦C, re-
spectively. Nordic Seas Deep Water, with densities exceeding σ0.5 = 30.44 kg m−3, is
the coldest and densest water mass that fills the deep basins of the Greenland, Iceland,
and Norwegian Seas.

Geographically the Nordic Seas can be divided into three domains based on their
near-surface salinities (Fig. 2.5). This partition was introduced by Helland-Hansen
and Nansen (1909) and expanded by Swift and Aagaard (1981). In the eastern Nordic
Seas the upper water column is dominated by Atlantic Water. This region, called the
Atlantic domain, is always free of sea ice and characterised by intense heat loss to
the atmosphere (Isachsen et al., 2007). The Polar domain is located in the western
Nordic Seas. Liquid and solid discharge from the Arctic Ocean and the Greenland ice
sheet, in addition to locally formed sea ice in winter, are responsible for the dominance
of the cold and fresh Polar Surface Water in this area (de Steur et al., 2015; Haine
et al., 2015). The region between the Atlantic and Polar domains is characterised by
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Figure 2.5: Average salinity at 50 m in the Nordic Seas based on around 100 000 CTD profiles from
1980–2014 (collected by Våge et al., 2013). The eastern dashed line indicates the Arctic Front between
the Atlantic domain and the Arctic domain, and the western dashed line indicates the Polar Front
between the Arctic domain and the Polar domain. The grey contours are the 500, 1000, 2000, and
3000 m isobaths. From Håvik (2018). Note that Håvik (2018) used practical salinity.

a distinct hydrographic regime of surface waters that are warmer and more saline than
the Polar Surface Water, but colder and less saline than the Atlantic Water (Swift and
Aagaard, 1981). To distinguish this region from regions under direct Polar and Atlantic
influence, it is called the Arctic domain (Helland-Hansen and Nansen, 1909; Swift and
Aagaard, 1981). The vertical stability in the Arctic domain is reduced compared to
the adjacent domains, favouring the production of dense waters during winter through
deep convection (Swift and Aagaard, 1981). The three domains are separated by strong
horizontal gradients in hydrographic properties (Fig. 2.5). The Arctic Front, extending
northward along the Jan Mayen Ridge and Mohn Ridge toward Svalbard, forms the
border between the Atlantic and Arctic domains, while the Polar Front, which is located
near the east Greenland shelf, separates the Arctic and Polar domains (e.g., Blindheim
and Østerhus, 2005; Swift and Aagaard, 1981).

2.3.3 Water mass transformation

The three domains also differ in terms of water mass transformation, which occurs
in the entire Nordic Seas due to substantial wintertime heat loss to the atmosphere
(Isachsen et al., 2007). There are two main mechanisms of dense-water formation in
the Nordic Seas: a gradual transformation along the boundary current and the eastern
basins in the Atlantic domain and open-ocean convection in the Arctic domain, i.e., the
interior basins of the Iceland and Greenland Seas.
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Mauritzen (1996a) inferred that Atlantic Water is transformed to overflow water
within the rim current system around the Nordic Seas and the Arctic Ocean (Sec-
tion 2.4), with the Norwegian Sea (i.e., the Atlantic domain) as the most important
site of dense-water formation (Mauritzen, 1996b). Her hypothesis was corroborated by
Eldevik et al. (2009), who analysed the progression of thermohaline anomalies around
the Nordic Seas, and by Isachsen et al. (2007), who estimated the water mass trans-
formation from sea surface buoyancy fluxes over the different basins of the Nordic
Seas. Isachsen et al. (2007) further suggest that the strong surface buoyancy loss in
the Norwegian Sea is largely controlled by eddy dynamics. Atlantic Water that has
been sufficiently cooled to exceed the density of overflow water is then classified as
Atlantic-origin water (Table 2.1).

By contrast, Arctic-origin water is mainly formed in the Arctic domain. The weak
stratification and strong atmospheric forcing favour transformation through open-ocean
convection (Marshall and Schott, 1999). Especially in the Greenland Sea, where the
winter atmospheric temperatures are low and the heat fluxes strong, the intense cool-
ing of the surface layer erodes the weak near-surface stratification and results in an
overturning of the water column. Before the end of the 1970s, wintertime convection
extended almost to the bottom, which led to the formation of deep bottom waters (e.g.,
Helland-Hansen and Nansen, 1909; Malmberg, 1983). Thereafter, the convective ac-
tivity in the Greenland Sea has been reduced, and mixed-layer depths have been limited
to intermediate depths (< 1500 m; e.g., Meincke et al., 1992; Latarius and Quadfasel,
2010; Brakstad et al., 2019).

In the Iceland Sea typical late-winter mixed-layer depths extend to approximately
200 m and light overflow waters are regularly formed (Swift and Aagaard, 1981; Våge
et al., 2015). The deepest convection occurs in the northwestern part of the basin due
to the proximity of the ice edge where the most intense heat fluxes prevail (Våge et al.,
2015). Recent observations from sea gliders revealed convection down to 400 m depth
during winter 2016, re-ventilating the Atlantic-origin water that transits the western
Iceland Sea in the East Greenland Current (Våge et al., 2018, Section 2.4.2). The recent
sea-ice retreat exposes the boundary current directly to the atmosphere and facilitates
enhanced water mass transformation along its pathway (Moore et al., submitted).

Finally, limited water mass transformation occurs on the shelf north of Iceland,
where Atlantic Water is advected by the NIIC (Section 2.4.1). The north Iceland shelf
as a possible source of overflow water is investigated in Paper III.

2.4 Exchange flows across the Greenland-Scotland Ridge

The Greenland-Scotland Ridge is the dominant gateway for exchange flows between
the subpolar North Atlantic and the Arctic Mediterranean, the collective name for the
Arctic Ocean, the Nordic Seas, and their adjacent shelf seas (Fig. 2.6; Østerhus et al.,
2019; Tsubouchi et al., accepted). Three currents crossing the ridge northward con-
stitute the majority of the Atlantic Water inflow into the Nordic Seas: the NIIC, en-
tering through Denmark Strait, the Faroe Current, which combines all inflows across
the Iceland-Faroe Ridge, and the Shetland Current, passing along the continental slope
of the Shetland Islands (Jónsson and Valdimarsson, 2012; Hansen et al., 2015; Berx
et al., 2013). The latter two currents form the Norwegian Atlantic Current system
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Figure 2.6: The Arctic Mediterranean (roughly represented by the oceanic areas within the yellow
curve) and its exchanges with the rest of the world ocean. Ocean areas shallower than 1000 m are
shown in light grey. Red, dark blue, and green arrows indicate inflow, overflow, and surface outflow
branches, respectively. From Østerhus et al. (2019).

that follows the eastern rim of the Nordic Seas northward and extends into the Bar-
ents Sea and the Arctic Ocean (Fig. 2.2). The outflow of cold and fresh Polar Water
across the Greenland-Scotland Ridge takes place primarily on the east Greenland shelf
(Håvik et al., 2017). By contrast, the outflow of overflow water is confined to the deep
gaps in the ridge and occurs in four distinct branches, passing across Denmark Strait,
the Iceland-Faroe Ridge, the Faroe Bank Channel, and the Wyville-Thompson Ridge
(Figs. 2.3 and 2.6). The transports of overflow water across the Wyville-Thompson
Ridge and the Iceland-Faroe Ridge are intermittent and, at least for the latter flow, not
well constrained (Østerhus et al., 2019). Denmark Strait and the Faroe Bank Channel,
however, account for approximately 90 % of the total supply of overflow water to the
deep North Atlantic (Østerhus et al., 2019); these two overflows are the focus of this
thesis (Papers I–II). Since the Faroe Bank Channel is the deepest gap in the Greenland-
Scotland Ridge, the densest water leaving the Nordic Seas exits there. However, due
to extensive mixing downstream of the sill and modification in the subpolar North At-
lantic, the resulting product (Northeast Atlantic Deep Water, Hopkins et al., 2019)
is less dense than the overflow water crossing Denmark Strait (Denmark Strait Over-
flow Water, Mauritzen et al., 2005). The two water masses form the headwaters to the
Deep Western Boundary Current in the Irminger Sea and follow the continental slope
of Greenland into the Labrador Sea (Fig. 2.1). Along the way through the subpolar
North Atlantic, the volume transport approximately doubles due to entrainment of am-
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Figure 2.7: Locations of the Northeast Atlantic Deep Water and Denmark Strait Overflow Water at
the OSNAP West mooring array. The percentage of the time that each grid point sampled a particular
water mass over the four-year period is tallied. From Pacini et al. (2020).

bient water (Dickson and Brown, 1994; Rossby et al., 2018). From the Overturning in
the Subpolar North Atlantic Program (OSNAP) mooring arrays east and west of Green-
land, the Denmark Strait Overflow Water and the Northeast Atlantic Deep Water were
identified as the densest layers in the water column (Fig. 2.7), constituting the Deep
Western Boundary Current (Hopkins et al., 2019; Pacini et al., 2020). In the Labrador
Sea, these two water masses account for a volume transport of approximately 5 Sv each
(1 Sv≡ 106 m3 s−1; Pacini et al., 2020). This demonstrates the significance of the dense
overflows from the Nordic Seas for filling the deep North Atlantic.

2.4.1 The Atlantic Water inflow into the Nordic Seas

Helland-Hansen and Nansen (1909) first identified the three main branches of Atlantic
Water flow into the Nordic Seas and described their general features. While the major
inflow of Atlantic Water takes place east of Iceland (Østerhus et al., 2019), we focus
here on the NIIC entering the Nordic Seas west of Iceland. The water mass transfor-
mation along the current and its fate northeast of Iceland, as well as the resulting im-
plications for the NIIC’s role for the overturning in the Nordic Seas, have only recently
received more attention (Pickart et al., 2017, Ypma et al., 2019, Casanova-Masjoan
et al., 2020, Saberi et al., 2020, Paper III).

The inflow east of Iceland

The inflow across the Iceland-Faroe Ridge accounts for most of the Atlantic Water
transport into the Nordic Seas (Fig. 2.6). The ridge has its deepest gaps directly west
of the Faroe Islands and east of Iceland (Fig. 2.3), where most of the inflow occurs.
However, some water enters over the entire length of the ridge. Due to substantial
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spatial and temporal variability (Meincke, 1983; Perkins et al., 1998; Rossby et al.,
2009, 2018), the inflow has been monitored using a mooring array directly north of the
Faroe Islands, where the flow merges into the Faroe Current, a relatively concentrated
boundary current (Hansen et al., 2015; Østerhus et al., 2019). Between 1993 and 2015,
the average transport of Atlantic Water in the Faroe Current was 3.8± 0.5 Sv (Hansen
et al., 2015).

The inflow between the Faroe Islands and Shetland occurs in the Shetland Current,
which advects the warmest and most saline waters into the Nordic Seas (Hansen and
Østerhus, 2000). Its volume transport was estimated to 2.7± 0.5 Sv between 1993 and
2015; a recirculating component of the Faroe Current has been accounted for in this
transport estimate (Berx et al., 2013; Østerhus et al., 2019).

The inflow west of Iceland

The NIIC entering the Nordic Seas through Denmark Strait has the smallest volume
transport of the three inflow branches (Fig. 2.6). It also has the lowest temperature and
salinity and is the most variable branch (Jónsson and Valdimarsson, 2005). Nonethe-
less, the import of heat, salt, and nutrients to the Iceland shelf is crucial for the lo-
cal ecosystem and climate (e.g., Jónsson and Valdimarsson, 2012). In particular, the
nutrient-rich Atlantic Water favours the growth of phytoplankton and zooplankton, and
the current transports eggs and larvae of the major Icelandic fish stocks from the spawn-
ing grounds southwest of Iceland to the nursery grounds north of Iceland. The reduced
flow of Atlantic Water to the north Iceland shelf in combination with the presence of
cold, fresh Polar Surface Water and sea ice on the shelf led to the so-called "ice-years"
between 1965 and 1970 (Malmberg and Jónsson, 1997). Since the mid-1990s the vol-
ume, temperature, and salt transports have increased and Atlantic Water has prevailed
on the shelf (Casanova-Masjoan et al., 2020; Jónsson and Valdimarsson, 2012).

This variability is reflected in the estimates of the NIIC volume transport, which
show a large range (though it is partly due to a dependence on the observational
platform and applied method). Recent estimates vary between 0.9 and 1.4 Sv at the
Hornbanki transect approximately 300 km northeast of Denmark Strait (Jónsson and
Valdimarsson, 2012; Casanova-Masjoan et al., 2020). The inflow decreases substan-
tially directly north of Denmark Strait due to a recirculation that diverts a portion of the
water offshore and back south through the passage (Casanova-Masjoan et al., 2020;
Saberi et al., 2020). Along the north Iceland shelf the volume transport does not change
significantly before reaching northeast of Iceland (Casanova-Masjoan et al., 2020, Pa-
per III).

These findings revise an earlier hypothesis of the gradual disintegration of the NIIC
eastward and its importance as the upper limb of a local overturning loop responsible
for the formation of overflow water in the Iceland Sea (Våge et al., 2011). In particular,
Våge et al. (2011) argued that the NIIC sheds warm and saline eddies into the Iceland
Sea, where heat loss to the atmosphere densifies the water. The overflow water sinks
near the slope and is advected back to Denmark Strait (Våge et al., 2011). While the
NIIC may be prone to instability along the entire shelf break (Casanova-Masjoan et al.,
2020, Paper I), the eddy kinetic energy appears to be enhanced northeast of Iceland,
suggesting that eddy formation is one process that may cause a local reduction of the
current’s transport (Paper III). However, a recent study indicated that the Atlantic Water
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in the NIIC contributes very little to the overflow water at Denmark Strait (Ypma et al.,
2019). Furthermore, we have shown that water mass transformation in the Iceland Sea
is not important for the formation of overflow water in the present climate (Våge et al.,
in prep.). As such, the dynamics and implications of the NIIC’s role for the formation
of overflow water remain unclear.

2.4.2 Sources and pathways of water supplying the Denmark Strait
overflow

The existence of the Nordic Seas overflows has been known for about a century
(Helland-Hansen and Nansen, 1909). However, the overflows’ importance to the cli-
mate was only recognised much later (Cooper, 1955). The first hypotheses regard-
ing the formation of Denmark Strait Overflow Water focused on the interior basins
of the Iceland and Greenland Seas, where winter air-sea heat fluxes lead to convec-
tion down to intermediate depths (Section 2.3.3; Swift et al., 1980; Swift and Aagaard,
1981; Strass et al., 1993). Later, Mauritzen (1996a) proposed an alternative explana-
tion for the formation of overflow water: In this scheme, the formation occurs through
gradual transformation of the warm, saline Atlantic Water within the eastern part of
the boundary current system of the Nordic Seas and the Arctic Ocean (Section 2.3.3).
The East Greenland Current is then the major source of overflow water through Den-
mark Strait. Until recently, this has been the commonly accepted view, corroborated
by quasi-synoptic measurements (Rudels et al., 2002), historical data (Eldevik et al.,
2009), chemical tracers (Tanhua et al., 2005), and high-resolution numerical simu-
lations (Köhl, 2007). With the discovery of the NIJ (Jónsson, 1999; Jónsson and
Valdimarsson, 2004), the interior basins of the Iceland and Greenland Seas regained
focus as source regions of the densest overflow water passing through Denmark Strait.
The most recent research identified the Greenland Sea as the main formation area of
this densest component, while there are still open questions regarding the exact path-
ways and their transports (Paper II, Huang et al., accepted).

By contrast, the total volume transport of overflow water through Denmark Strait is
very well known. Since 1996, the current velocities have been monitored in the deep
channel; the mean volume transport of overflow water was estimated to 3.2 Sv in the
period 1996–2016, without a significant trend (Jochumsen et al., 2017). As such, the
outflow through Denmark Strait, jointly supplied by the East Greenland Current and the
NIJ (Harden et al., 2016), accounts for more than half of the total export of overflow
water from the Nordic Seas (Fig. 2.6).

The East Greenland Current

The East Greenland Current advects both light surface water and dense intermediate
water along the east Greenland shelf break toward Denmark Strait (Håvik et al., 2017)
and is a key export pathway for sea ice and liquid freshwater from the Arctic Ocean
(Haine et al., 2015). The East Greenland Current is surface-intensified, which partly
results from the density difference between the fresh water on the east Greenland shelf
and the dense water masses in the interior basins of the Greenland and Iceland Seas
(Håvik, 2018). In the upper 1000 m the current carries primarily water of Atlantic ori-
gin, which is recognised by maxima in temperature and salinity at intermediate depths
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and located below the cold, fresh Polar Surface Water (Mauritzen, 1996a; Håvik et al.,
2017; Mastropole et al., 2017). Some of this Atlantic-origin water has encircled the
Arctic Ocean, while another portion has recirculated in Fram Strait (Rudels et al.,
2002).

Along the pathway of the East Greenland Current two currents branch off to the
east: the Jan Mayen Current following the West Jan Mayen Ridge (Bourke et al., 1992)
and farther south the East Icelandic Current (Macrander et al., 2014; de Jong et al.,
2018). These currents divert fresh surface water into the interior of the Greenland and
Iceland Seas, respectively. Approaching Denmark Strait, the East Greenland Current
bifurcates into a shelfbreak and a separated branch (Fig. 2.2; Våge et al., 2013; Harden
et al., 2016). The latter current is located seaward of the shelf break, near the base of
the Iceland slope (Håvik et al., 2017). From a year-long mooring array approximately
200 km upstream of Denmark Strait, Harden et al. (2016) estimated the transports of
overflow water within the shelfbreak and separated East Greenland Current branches to
1.50± 0.16 Sv and 1.04± 0.15 Sv, respectively. This accounts for about two-thirds of
the total overflow water transport, while the remaining portion is advected by the NIJ
(Harden et al., 2016).

The North Icelandic Jet

The NIJ was discovered about 20 years ago and shown to be distinct from the East
Greenland Current (Jónsson, 1999; Jónsson and Valdimarsson, 2004). Along its path-
way following the slope north of Iceland toward Denmark Strait (Fig. 2.2), the volume
transport gradually increases until the Hornbanki transect, approximately 300 km up-
stream of Denmark Strait, where it exceeds 1.8± 0.3 Sv (Paper I). Thereafter, the cur-
rent starts to merge with the separated East Greenland Current, which complicates the
transport estimation and may lead to more uncertain results. The transport estimates
are substantially lower: Based on the year-long mooring array at the Kögur transect ap-
proximately 200 km upstream of Denmark Strait, Harden et al. (2016) estimated that
the NIJ transports 1.00± 0.17 Sv into Denmark Strait, while we estimated a transport
of 1.3± 0.2 Sv based on ten hydrographic/velocity surveys at this transect (Paper I).
The transport estimate upstream of the confluence thus indicates that the contribution
from the NIJ to the Denmark Strait overflow may be larger than previously thought,
exceeding 50 % of the total overflow volume (Paper I).

The water transported by the NIJ is predominantly classified as Arctic-origin water
and Atlantic-origin water; on average the current carries only 10 % non-overflow water
(Paper I). The NIJ transports the coldest and densest water toward Denmark Strait,
which fills the bottom of the trough (Mastropole et al., 2017). A division into Θ-S
classes shows that the bulk of the transport is confined to a small range in hydrographic
space (Paper I). This so-called transport mode is centred at the 28.05 kg m−3 isopycnal
(within the class of Arctic-origin water) and is not significantly modified along the
NIJ’s pathway. This densest portion of the NIJ likely stems from the Greenland Sea,
where sufficiently dense waters are regularly ventilated during winter (Brakstad et al.,
2019; Huang et al., accepted). The previous hypothesis that the Iceland Sea is the main
source region of Denmark Strait Overflow Water in general (Swift et al., 1980), and the
NIJ as part of a local overturning loop in particular (Section 2.4.1, Våge et al., 2011),
has lately been revised. Historical hydrographic measurements and recent sea glider
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observations indicated that waters within the main density classes of the NIJ are not
sufficiently ventilated in the Iceland Sea at present (Våge et al., 2015, in prep.).

While the central Iceland Sea has been depreciated to a transit region for the dense
waters supplying the NIJ, it does play a role as the location of the current’s formation.
One peculiarity of the NIJ is its sudden emergence northeast of Iceland (Våge et al.,
2011, Paper I), which is co-located with the region of enhanced eddy kinetic energy
seaward of the shelf break where the NIIC disintegrates (Section 2.4.1, Paper III). The
emergence of the NIJ could also be related to upstream effects of hydraulic control at
the Denmark Strait sill. This mechanism has been shown to influence the flow near
Denmark Strait (Nikolopoulos et al., 2003; Lin et al., accepted) and may determine the
NIJ’s location near the 600 m isobath, which coincides with the approximate sill depth
of the strait (Paper II). Hydraulic control, however, cannot explain the existence of an
outer core of the NIJ, which was first identified by Pickart et al. (2017). The outer
core is located near the 800 m isobath and is present about 50 % of the time (Paper I).
Both cores have a velocity maximum at mid-depth. This middepth intensification of the
NIJ is related to the up-tilt of dense isopycnals along the Iceland slope (Jónsson and
Valdimarsson, 2004; Våge et al., 2011). Jónsson and Valdimarsson (2004) speculated
that the uptilting isopycnals result from a bottom Ekman layer, but the dense water
is present high up along both the entire slope north of Iceland and the Iceland-Faroe
Ridge (Paper II), indicating that different processes may be at play. Despite the 20-year
research efforts on the NIJ since its discovery, many aspects of the current’s structure
and dynamics remain unclear (Chapter 6).

2.4.3 Sources and pathways of water supplying the Faroe Bank Channel
overflow

The overflow through the Faroe Bank Channel has been continuously monitored since
1995. The mean kinematic overflow, i.e., the volume transport derived only based on
the velocity field, is 2.2 Sv (Hansen et al., 2016). Applying the same density criterion
for overflow water as in Denmark Strait (σΘ ≥27.8 kg m−3) reduces the transport to
1.9 Sv (Hansen et al., 2016). This accounts for about one-third of the total overflow
transport across the Greenland-Scotland Ridge, including the densest water that exits
the Nordic Seas.

The overflow water in the Faroe Bank Channel is mainly composed of approx-
imately equal portions of intermediate and deep waters (Fogelqvist et al., 2003;
McKenna et al., 2016). These water masses are distinguished by their temperatures
above and below -0.5 ◦C, respectively (Hansen and Østerhus, 2000), based on the his-
torical availability of only temperature measurements. The intermediate waters are
ventilated in the Greenland and Iceland Seas and include a considerable contribution
from the Arctic Ocean and a minor portion of Atlantic-origin water transformed within
the boundary current system around the Nordic Seas (Jeansson et al., 2017). The deep
waters are old and have been formed in the shallow shelf regions surrounding the Arc-
tic Ocean and by open-ocean convection in the Greenland Sea during times of vigorous
deep-water formation (Hansen and Østerhus, 2000). They spread into the Norwegian
Sea through a deep channel near Jan Mayen, where they are found beneath the inter-
mediate waters (Østerhus and Gammelsrød, 1999; Somavilla, 2019). The advection of
the intermediate and deep waters to the overflow results in mixing between the two lay-
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ers in the Norwegian Sea. As such, the boundary of -0.5 ◦C between the water masses
is indistinct to some extent (Hansen and Østerhus, 2000).

The hydrographic properties and their interannual variability have been studied ex-
tensively in the Faroe-Shetland Channel, the passage directly upstream of the Faroe
Bank Channel (e.g., Turrell et al., 1999; Hansen et al., 2016). However, only recently
the pathways transporting the overflow water toward the channel have been identified.
Chafik et al. (2020) used vessel-mounted velocity data in combination with output from
a numerical model to demonstrate that the flow in the Faroe-Shetland Channel occurs
along its eastern slope. The upstream pathways of overflow water feeding the channel,
and thus ultimately the Faroe Bank Channel overflow, have been thought to originate in
the interior Norwegian Sea (Fogelqvist et al., 2003; Eldevik et al., 2009). By contrast,
drifter studies (Søiland et al., 2008; de Jong et al., 2018) and velocity records from deep
moorings (Hopkins et al., 1992) indicated a westerly pathway along the Iceland-Faroe
Ridge, whereas model studies (Köhl, 2010; Serra et al., 2010) suggested that, at times,
the flow can also approach the Faroe-Shetland Channel along the Norwegian slope.

Lately, direct observational evidence has been provided of a current following the
Iceland-Faroe Ridge from Iceland to the Faroe Islands, corroborating the pathway pre-
viously indicated by the drifters (Fig. 2.2, Paper II). This current, named the IFSJ, has
a volume transport maximum in a small area in Θ-S space. The temperature of this
transport mode coincides with the boundary between the intermediate and deep wa-
ters (≈ -0.5 ◦C), corresponding to Arctic-origin water in our classification (Fig. 2.4;
Table 2.1). The density of the transport mode is not significantly different from the
transport mode density of the NIJ (Paper II). As such, the hypothesis that both currents
have the same source in the Greenland Sea seems plausible. Huang et al. (accepted)
quantified the distances between the transport mode and all water in the entire Nordic
Seas in terms of physical properties, based on potential density and potential spicity.
In density-spicity space the isolines of these properties are orthogonal, and their gra-
dients are of the same magnitude, as opposed to Θ-S space. This method is therefore
effective in determining how close different water masses are to each other in terms
of hydrographic properties. The findings by Huang et al. (accepted) confirm that the
Greenland Sea is the main source within the Nordic Seas of this densest overflow wa-
ter, and that the water follows the submarine ridge systems toward the overflows. This
link between the two major overflows from the Nordic Seas suggests that changes in
the process and location of deep-water formation may have large implications for the
supply of the densest water to the lower limb of the AMOC (Chapter 1).



Chapter 3

Data

The two main types of observational oceanographic data analysed in this thesis are hy-
drographic/velocity shipboard measurements (Papers I–III) and moored measurements
(Papers I–II). In addition, several ancillary data sets were used, which include histori-
cal profiles of conductivity, temperature, and depth (CTD), satellite altimetry and sea
surface temperature data, and atmospheric reanalysis data. The data sets are introduced
below; an overview is shown in Fig. 3.1.

Figure 3.1: Main data sets used in the thesis. The high-resolution hydrographic/velocity surveys ana-
lysed in Paper I are shown in green, while additional transects surveyed during the KN203 cruise in
autumn 2011 used in Paper II are presented in blue. Mooring locations (Papers I–II) are indicated
by light blue diamonds. Standard and historical CTD stations used in Papers II and III are indicated
in purple and orange, respectively. Isobaths from ETOPO1 (Amante and Eakins, 2009) are contoured
every 500 m.
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3.1 Shipboard measurements

3.1.1 High-resolution hydrographic/velocity surveys

In Paper I we used high-resolution hydrographic/velocity sections from 13 shipboard
surveys conducted between 2004 and 2018, four of them during winter. Seven transects
across the northern slope of Iceland were occupied during the surveys; six of them are
repeated monitoring sections maintained by the Marine and Freshwater Research In-
stitute (MFRI) in Iceland (Fig. 3.1). The typical station spacing over the slope is ap-
proximately 5 km, which is similar to the Rossby radius of deformation in the Iceland
Sea (4–5 km; Nurser and Bacon, 2014). In addition to the CTD measurements, direct
velocity measurements were obtained from acoustic Doppler current profiler (ADCP)
instruments. On three of the surveys a vessel-mounted ADCP was used, while an
upward- and downward-facing lowered ADCP system mounted on the rosette was em-
ployed on the remaining surveys. The direct current velocity was used to obtain the
absolute geostrophic velocity by referencing the geostrophic velocity computed from
the hydrographic fields. Details on the interpolation routines are provided in Papers I
and II.

In Papers II and III we focused on one of these high-resolution hydrographic/veloc-
ity surveys, the cruise on R/V Knorr in September 2011 led by Robert Pickart at the
Woods Hole Oceanographic Institution. This survey covered the region between Den-
mark Strait and the Faroe Islands. We used seven transects northeast of Iceland and
across the Iceland-Faroe Ridge in Paper II. As this is also the first high-resolution sur-
vey that extended all the way to the coast for the repeat transects north of Iceland, those
transects formed the basis for the analysis of the NIIC in Paper III.

3.1.2 Historical hydrographic data

Seven hydrographic stations from the standard monitoring section N north of the Faroe
Islands maintained by the Faroe Marine Research Institute (FAMRI) were used in Pa-
per II (Fig. 3.1). The stations are spaced 20 nautical miles (18.5 km) apart and were
typically occupied three to four times per year. We analysed measurements from 120
surveys between 1987 and 2018.

In Paper III we used historical hydrographic observations on the north Iceland shelf
between 1980 and 2015, a subset of the data set compiled by Våge et al. (2015) and up-
dated by Huang et al. (accepted). The profiles were obtained from the Unified Database
for Arctic and Subarctic Hydrography (UDASH), the International Council for the Ex-
ploration of the Seas (ICES), the World Ocean Database (WOD), the Norwegian Ice-
land Seas Experiment (NISE) database, the Global Ocean Data Analysis Project version
2 (GLODAPv2), the Argo global program of profiling floats, and MFRI.

3.2 Moored measurements

We used data from a current meter mooring deployed 19 km north of the shelf break
at the Hornbanki transect, approximately 300 km upstream of the Denmark Strait sill,
from August 2005 to August 2006 (Paper I). The year-long time series of velocity in the
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centre of the NIJ was analysed to address the variability in the current and its potential
link to atmospheric forcing.

In Paper II velocity time series from two moorings at section N north of the Faroe
Islands were analysed. One mooring was deployed at a bottom depth of 1210 m, i.e.,
near the centre of the deep core of the IFSJ. An ADCP instrument provided a year-long
(June 2017 to May 2018) record of current velocities between 515 and 1185 m. The
other mooring is part of a mooring array across the slope north of the Faroe Islands
monitoring the Atlantic Water transport in the Faroe Current. This mooring is located
3.1 km farther inshore above a mean bottom depth of 960 m. While this mooring has
been continuously deployed since 1997, we focused on the year 2017–2018, when we
had concurrent near-bottom velocities, and the period 2006–2013, when the mooring
was deployed at approximately the same bottom depth (956± 5 m). The velocities,
recorded between 120 and 670 m depth, extended into the upper portion of the IFSJ
and may be considered a longer-term proxy for the variability in the IFSJ.

When discussing the transport estimate of the NIJ near Denmark Strait in Paper I,
we also used data from the Kögur mooring array approximately 200 km north of the
Denmark Strait sill, compiled by Harden et al. (2016). The mooring array was deployed
between September 2011 and August 2012 and consisted of 12 moorings covering the
distance between the east Greenland and west Iceland shelves.

3.3 Ancillary data

In Paper I we used the mean sea level pressure and 10-m wind field from the ERA-
Interim reanalysis data from the European Centre for Medium-Range Weather Fore-
cast (ECMWF; Dee et al., 2011) to assess the atmospheric conditions during the pe-
riod of the mooring deployment at the Hornbanki transect (2005–2006). This product
agrees well with observations in the study region (Harden et al., 2011). (The new high-
resolution reanalysis product ERA5 had not been released for the mooring deployment
period during the time of analysis.)

Satellite altimetry and satellite sea surface temperature were employed to investi-
gate the role of eddies shed from the NIIC (Paper III). We used along-track sea surface
height anomalies from the Envisat satellite in the period 2002–2010 to calculate eddy
kinetic energy northeast of Iceland. For sea surface temperature a reprocessed analysis
product based on the Operational SST and Sea Ice Analysis (OSTIA) system was used.
The data are on a global regular grid at 0.05◦ resolution and provide an estimate of the
daily average temperature at 20 cm depth. We considered the data for 2002–2010, the
same time period as for the sea surface height anomalies. Both products are distributed
by E.U. Copernicus Marine Service Information (http://marine.copernicus.eu/).

To elucidate the pathway of the NIIC, annual mean near-surface velocities from both
undrogued and 15-m drogued drifters of the Global Drifter Program (GDP) were used
in Paper III. This global 0.25◦ by 0.25◦ climatology is archived and distributed by the
Atlantic Oceanographic and Meteorological Laboratory of the National Oceanic and
Atmospheric Administration (AOML/NOAA; https://www.aoml.noaa.gov/phod/
gdp/mean_velocity.php).
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Chapter 4

Summary of the papers

Paper I: The emergence of the North Icelandic Jet and its evolution from north-
east Iceland to Denmark Strait

Semper, S., K. Våge, R. S. Pickart, H. Valdimarsson, D. J. Torres, and S. Jónsson (2019),
Journal of Physical Oceanography, 49(10)

In Paper I the properties, structure, and transport of the North Icelandic Jet (NIJ) were
investigated for the first time along the entire pathway of the current. We used 13 hy-
drographic/velocity surveys of high spatial resolution covering seven repeat transects
across the continental slope north of Iceland between 2004 and 2018. We found that
the NIJ originates northeast of Iceland and that its volume transport increases toward
Denmark Strait. The bulk of the volume transport is relatively uniform in temperature
and salinity; we referred to this small area in temperature-salinity space as the trans-
port mode. The properties of the transport mode are not significantly modified between
the transects. By contrast, the volume transport of the NIJ varies considerably between
and within the surveys. We investigated the causes of this variability and found nei-
ther a clear seasonal signal nor a consistent link to atmospheric wind forcing. Instead,
we demonstrated that the NIJ is likely susceptible to barotropic and/or baroclinic insta-
bility. In roughly half of the velocity sections, we identified two cores of the current:
One was centred near the 600 m isobath, while the other one was found near the 800 m
isobath. The total transport of water in the NIJ that can contribute to the overflow at
Denmark Strait and exit into the deep North Atlantic exceeds previous estimates from
a year-long mooring array and hydrographic/velocity surveys closer to the strait. Those
earlier measurements were obtained in a region where the NIJ merges with a branch
of the East Greenland Current, which complicated the estimate of the pure NIJ con-
tribution. Our results imply that the NIJ supplies a more substantial portion of dense
overflow waters to the lower limb of the AMOC than previously envisaged.

Paper II: The Iceland-Faroe Slope Jet: A conduit for dense water toward the Faroe
Bank Channel overflow

Semper, S., R. S. Pickart, K. Våge, K. M. H. Larsen, H. Hátún, and B. Hansen (ac-
cepted), Nature Communications

In Paper II we demonstrated the existence of a previously unrecognised deep path-
way transporting dense water toward the Faroe Bank Channel overflow. This current,
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which we named the Iceland-Faroe Slope Jet (IFSJ), follows the northern slope of the
Greenland-Scotland Ridge between northeast Iceland and the Faroe Islands. A high-
resolution hydrographic/velocity shipboard survey in autumn 2011 formed the basis
for the analysis, which was substantiated by historical hydrographic data and long-
term records of current velocities north of the Faroe Islands. We found that the IFSJ is
bottom-intensified and consists of two cores centred near the 750 and 1100 m isobaths.
The bulk of its volume transport is confined to a small area in temperature-salinity
space, and the properties of this transport mode are very similar to the properties of
the NIJ. This suggests that the NIJ flowing westward toward the Denmark Strait over-
flow and the IFSJ flowing eastward toward the Faroe Bank Channel overflow have a
common source, which is likely located in the Greenland Sea. We estimated that the
volume transport of the IFSJ accounts for approximately half of the total overflow trans-
port through the Faroe Bank Channel. As such, the IFSJ is a significant component of
the overturning circulation in the Nordic Seas and a major pathway of dense water
supplying the lower limb of the AMOC.

Paper III: The evolution and transformation of the North Icelandic Irminger Cur-
rent along the north Iceland shelf

Semper, S., K. Våge, R. S. Pickart, S. Jónsson, and H. Valdimarsson (manuscript in
preparation)

In Paper III we quantified the evolution of the North Icelandic Irminger Current (NIIC)
using eight cross-slope transects from a high-resolution hydrographic/velocity survey
extending all the way to the coast, in addition to satellite and surface drifter data as
well as historical hydrographic measurements. The NIIC generally follows the shelf
break north of Iceland, and the current’s hydrographic properties are modified along its
entire pathway. Progressing eastward, the core of the current cools and freshens con-
siderably, mainly due to mixing with cold, fresh offshore waters. The NIIC’s volume
transport decreases significantly northeast of Iceland, where lenses of warm, saline wa-
ter detach from the current and divert heat and salt into the Iceland Sea. This region of
steep bathymetry is recognised from satellite data as a local maximum in eddy kinetic
energy and enhanced variability in sea surface temperature. As the NIJ emerges in the
same region, the instability and disintegration of the NIIC suggest that there may be a
dynamical link to the formation of the NIJ. Furthermore, we demonstrated that while
overflow water is present year-round on the north Iceland shelf, most of this water is
not formed locally. Water mass transformation on the shelf is limited and may only on
rare occasions contribute to the lighter, shallower portion of the NIJ.



Chapter 5

Scientific papers



24 Scientific papers



Paper I

The emergence of the North Icelandic Jet and its evolution
from northeast Iceland to Denmark Strait

S. Semper, K. Våge, R. S. Pickart, H. Valdimarsson, D. J. Torres, and S. Jónsson
Journal of Physical Oceanography, 49/10 (2019)
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ABSTRACT

The North Icelandic Jet (NIJ) is an important source of dense water to the overflow plume passing through

Denmark Strait. The properties, structure, and transport of the NIJ are investigated for the first time along its

entire pathway following the continental slope north of Iceland, using 13 hydrographic/velocity surveys of

high spatial resolution conducted between 2004 and 2018. The comprehensive dataset reveals that the current

originates northeast of Iceland and increases in volume transport by roughly 0.4 Sv (1 Sv [ 106m3 s21) per

100 km until 300 km upstream of Denmark Strait, at which point the highest transport is reached. The bulk of

the NIJ transport is confined to a small area in Q–S space centered near 20.298 6 0.168C in Conservative

Temperature and 35.075 6 0.006 g kg21 in Absolute Salinity. While the hydrographic properties of this

transport mode are not significantly modified along the NIJ’s pathway, the transport estimates vary consid-

erably between and within the surveys. Neither a clear seasonal signal nor a consistent link to atmospheric

forcing was found, but barotropic and/or baroclinic instability is likely active in the current. TheNIJ displays a

double-core structure in roughly 50% of the occupations, with the two cores centered at the 600- and 800-m

isobaths, respectively. The transport of overflowwater 300 kmupstream ofDenmark Strait exceeds 1.86 0.3 Sv,

which is substantially larger than estimates from a year-long mooring array and hydrographic/velocity surveys

closer to the strait, where the NIJ merges with the separated East Greenland Current. This implies a more

substantial contribution of the NIJ to the Denmark Strait overflow plume than previously envisaged.

1. Introduction

Plumes of cold, dense overflow water spill across

gaps in the Greenland–Scotland Ridge from the Nordic

Seas to the North Atlantic. They form the lower limb

of the Atlantic Meridional Overturning Circulation

(AMOC), which is of key importance for the poleward

transport of heat in the Atlantic Ocean. Approximately

half of the overflow crossing the Greenland–Scotland

Ridge passes through Denmark Strait and supplies the

densest water to the Deep Western Boundary Current
Denotes content that is immediately available upon publica-

tion as open access.
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(Jochumsen et al. 2017; Østerhus et al. 2019). As such,

determining the formation processes and pathways of

the Denmark Strait Overflow Water (DSOW) is nec-

essary to further our understanding of the overturning

in the Nordic Seas, and hence the AMOC.

Cooper (1955) was the first to recognize the climatic

importance of the dense overflow through Denmark

Strait. Subsequent studies suggested that DSOW can

be formed in the interior basins of the Iceland and

Greenland Seas, where winter cooling leads to open-

ocean convection to intermediate depths (Swift et al.

1980; Swift and Aagaard 1981; Strass et al. 1993).

The idea of open-ocean convection forming overflow

water in the interior basin of the Iceland Sea was later

dismissed in part since there was no known direct

pathway from the basin to Denmark Strait. Mauritzen

(1996) proposed instead that warm, saline Atlantic

Water was gradually transformed into DSOW within

the boundary current system of the Nordic Seas and

the Arctic Ocean. This scheme implies that the East

Greenland Current (EGC) advects most of the DSOW

into Denmark Strait, whereas the interior basins of the

Greenland and Iceland Seas contribute only to a lim-

ited extent. Studies based on quasi-synoptic measure-

ments (Rudels et al. 2002), historical data (Eldevik

et al. 2009), chemical tracers (Tanhua et al. 2005),

and high-resolution numerical simulations (Köhl et al.
2007) corroborated the notion that the EGC is themain

source of overflow water to Denmark Strait.

The transport of DSOW through the 650-m-deep

passage in Denmark Strait is estimated to be 3.2–

3.5 Sv (1 Sv[ 106m3 s21; Harden et al. 2016; Jochumsen

et al. 2017). It is relatively constant on decadal time

scales and does not exhibit a dominant seasonal cycle

(Jochumsen et al. 2017). By contrast, the overflow

varies substantially on short time scales (e.g., Harden

et al. 2016; Almansi et al. 2017). In particular, different

mesoscale processes have been identified using in

situ data and numerical models. Large lenses of weakly

stratified water called boluses pass through the deepest

part of the sill every few days (Mastropole et al. 2017;

Almansi et al. 2017). Interspersed with these are

intermittent periods of enhanced flow characterized

by a very thin overflow layer, referred to as pulses (von

Appen et al. 2017). Occasionally the current at the sill

reverses and warm water flows northward through the

strait. Spall et al. (2019) argued that all of these

high-frequency processes are associated with baroclinic

instability of the hydrographic front in the strait.

There are two primary water masses comprising

the DSOW. The water noted above, transported by

the rim current in the Nordic Seas, is referred to as

Atlantic-origin water. This is because there is a direct

advective link between this relatively warm and saline

water and the subpolar North Atlantic south of the

Greenland–Scotland Ridge. The second type of over-

flow water mass is referred to as Arctic-origin water.

This water has been transformed in the interior basins

of the Nordic Seas via convective overturning, and,

as such, it is colder and fresher than Atlantic-origin

water. While other water masses are contained within

the overflow water mix (e.g., Jeansson et al. 2008),

the relative percentages of these constituents appear

to be small (Mastropole et al. 2017). Based on previ-

ous studies (e.g., Swift and Aagaard 1981; Våge et al.

2013), overflow water colder than 08C is referred to

as Arctic-origin water, while that warmer than 08C is

considered Atlantic-origin water.

These two water masses are transported into Denmark

Strait by a system of currents (Fig. 1). The EGC is

the main source of Atlantic-origin water. It accounts

for approximately two-thirds of the total volume trans-

port (Harden et al. 2016). The current bifurcates north

of Blosseville Basin and continues toward Denmark

Strait as the shelfbreak and separated branches of the

EGC (Våge et al. 2013). The former flows along the

Greenland shelf break, whereas the latter is located

farther offshore, near the base of the Iceland slope

(Håvik et al. 2017a).

The other current advecting overflow water into

Denmark Strait is the North Icelandic Jet (NIJ). The

NIJ transports the coldest and densest portion of

DSOW along the continental slope north of Iceland

(Våge et al. 2011; Harden et al. 2016). The narrow

(15–20km) current is centered near the 650-m isobath

and has a velocity maximum at middepth (Jónsson
and Valdimarsson 2004; Våge et al. 2011). The final

current in Denmark Strait is the North Icelandic

Irminger Current (NIIC), which transports warm and

saline Atlantic water northward into the Iceland Sea

(Fig. 1). North of Iceland this surface-intensified cur-

rent shares a common front with the NIJ when the

bathymetry brings the currents into close proximity

(Pickart et al. 2017).

The discovery of the NIJ by Jónsson (1999) and

Jónsson and Valdimarsson (2004) has led to a renewed

focus on the Iceland Sea as source for DSOW. Since

then, observational, theoretical, and modeling studies

have been carried out to enhance our understanding

of the NIJ and its role in the Iceland Sea circulation.

Using data from multiple shipboard surveys, Våge
et al. (2011, 2013) demonstrated that the current is a

distinct source of dense water to the Denmark Strait

overflow plume. This was further verified by Harden

et al. (2016) using measurements from a year-long

mooring array approximately 200 km north of the sill.
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They estimated that the NIJ contributes roughly one-

third of the total DSOW volume transport, and that

it merges with the separated EGC north of Denmark

Strait. Various modeling studies also show the exis-

tence of the NIJ, both in simplified configurations (e.g.,

Våge et al. 2011; Yang and Pratt 2014), and in more

complex general circulationmodels (e.g., Behrens et al.

2017; Ypma et al. 2019).

The seasonal variability in the NIJ appears to be small.

No seasonal cycle is apparent in the velocity time se-

ries from three years of moored current meters on the

Iceland slope upstream of Denmark Strait (Jónsson 1999).

Harden et al. (2016) noted only a slight reduction in

transport of the NIJ during winter and spring from

their year-long moored records at the same location.

Behrens et al. (2017) also found little variability in

the volume transport of the current on seasonal to

interannual time scales in their model study, while

Huang et al. (2019) determined that month-to-month

variation of the NIJ strength is significantly corre-

lated with air–sea buoyancy forcing north of Iceland.

They explained this connection via the mechanism pre-

sented by Spall et al. (2017), in which convection on the

continental slope of an island leads to cyclonic flow

around the island. On shorter time scales (days to a

week), the flow on the Iceland slope north of the sill

is very energetic. Harden and Pickart (2018) argued

that this is the signature of topographic Rossby waves

forced by themeandering of the separated EGC farther

offshore. Huang et al. (2019) showed that there is a

strong conversion from mean potential energy to eddy

energy at the same location, implying that the NIJ is

baroclinically unstable as well.

Recently, de Jong et al. (2018) questioned the existence

of the NIJ east of the Kolbeinsey Ridge, an extension

of the mid-Atlantic Ridge north of Iceland (Fig. 1). They

used RAFOS floats to investigate the subsurface circu-

lation in the Iceland Sea, but did not find a connection

between the flow east and west of the ridge. However,

many of the floats deployed by de Jong et al. (2018)

grounded on the continental slope north of Iceland.

Substantial vertical velocities indicate the presence of

a bottom Ekman layer, presumably caused by the NIJ,

which has also been related to the rising of isopycnals

due to cold, dense water banking up on the slope

(Jónsson and Valdimarsson 2004). This was possibly the

reason for the grounding of the floats.

It has been hypothesized that the NIJ is the lower

limb of a local overturning loop north of Iceland that

involves water mass transformation in the Iceland

Sea. According to the idealized simulation of Våge
et al. (2011), Atlantic Water in the NIIC is fluxed

into the Iceland Sea by eddies, and the water is sub-

sequently transformed due to air–sea heat loss. The

resulting dense water progresses back toward the

boundary and sinks, feeding the NIJ. Lagrangian tra-

jectories from a high-resolution numerical model cor-

roborate the importance of water mass transformation

FIG. 1. Schematic circulation in the vicinity of Denmark Strait. The acronyms are: NIIC5North

Icelandic Irminger Current, NIJ 5 North Icelandic Jet, sb EGC 5 shelfbreak East Greenland

Current, sep EGC 5 separated East Greenland Current. The colored shading is the bathymetry

from ETOPO1 (Amante and Eakins 2009).
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in the Iceland Sea and the boundary current system

north of Iceland for the formation of the NIJ (Behrens

et al. 2017). However, this hypothesized local over-

turning loop has not been verified by observations, and

details regarding the origin and underlying dynamics of

the NIJ remain unclear.

One open question regards the supply of dense

water to the NIJ. Water transformed in the Iceland

Sea regularly exceeds the minimum potential density

of DSOW (Våge et al. 2015), which is su5 27.8 kgm23

(Dickson and Brown 1994). The deepest and densest

mixed layers have been found in the northwestern

Iceland Sea, where enhanced heat loss offshore of the

ice edge can intensify convection (Våge et al. 2015,

2018). However, Våge et al. (2015) and Pickart et al.

(2017) argued that water mass transformation in the

Iceland Sea may not be sufficient to account for the

densest portion of the NIJ (su . 28.03 kgm23). They

suggested instead that this portion may originate from

the Greenland Sea, where sufficiently dense waters

are regularly formed (e.g., Strass et al. 1993; Brakstad

et al. 2019). While a tracer release study indicated

export of dense water from the Greenland Sea to the

Iceland Sea within 1.5 years (Messias et al. 2008), the

exact time scales and pathways of this possible source

for water in the NIJ remain unknown.

In this study we use an extensive collection of ship-

board data, obtained during multiple cruises over mul-

tiple years, to advance our understanding of the NIJ.

We compile hydrographic/velocity sections of high spa-

tial resolution of the NIJ at seven different transects

across the continental slope north of Iceland. In doing

so, we determine the origin of the current and confirm

its existence as an independent, major source of dense

water to the Denmark Strait overflow. We provide ro-

bust estimates of the volume transport, and characterize

the current’s properties, thus quantifying the spatial

evolution of the hydrography and velocity of the NIJ

for the first time along its entire pathway.

2. Data and methods

a. Shipboard measurements

The high-resolution hydrographic and velocity mea-

surements analyzed in this study were collected during

13 shipboard surveys between 2004 and 2018, four of

them during winter (Table 1). The surveys included

seven transects across the northern slope of Iceland

(Fig. 2). Six of the transects are repeated monitoring

sections maintained by the Marine and Freshwater

Research Institute of Iceland (MFRI), with extra sta-

tions added to better resolve the narrowNIJ. The typical

station spacing of approximately 5 km over the slope

is comparable to the Rossby radius of deformation

in the Iceland Sea (4–5 km; Nurser and Bacon 2014).

In the paper we refer to the individual transects by

theirMFRI section names (Table 1 and Fig. 2). For three

of the surveys an alternative transect situated between

the Kolbeinsey Ridge and the Slétta transect was sam-

pled instead. We projected these stations onto the origi-

nal bathymetry of the Slétta transect when constructing

mean sections, but retained the bathymetry at the sam-

pled location for transport calculations.

Some of the sections in our collection have been

used in previous studies. Eight of the occupations at

the Kögur transect were used by Pickart et al. (2017)

to investigate the relationship between the NIIC and

the NIJ. The mean properties at the Hornbanki tran-

sect provided the basis for the model validation in

the study of Zhao et al. (2018). In addition, Våge et al.
(2011), Våge et al. (2013), and Pickart et al. (2017)

TABLE 1. The scientific cruises, survey times, and occupied transects analyzed in this study. The transects are listed from west to east

(Fig. 2). The acronyms are: KG 5 Kögur, HB 5 Hornbanki, SI 5 Siglunes, KR 5 Kolbeinsey Ridge, SL 5 Slétta, LN 5 Langanes

Northeast, and LE 5 Langanes East.

Ship Month Year KG HB SI KR SL LN LE

RRS James Clark Ross August 2004 x

R/V Knorr October 2008 x x x

R/V Bjarni Sæmundsson August 2009 x x x x x

R/V Bjarni Sæmundsson February 2011 x x x x x x

R/V Knorr September 2011 x x x x x

R/V Bjarni Sæmundsson February 2012 x x x x x x

RRS James Clark Ross August 2012 x x

R/V Bjarni Sæmundsson February 2013 x x x x x x

R/V Bjarni Sæmundsson August 2015 x x x x x x

R/V Håkon Mosby August 2016 x x

R/V Bjarni Sæmundsson August 2017 x x x x x x

NRV Alliance February 2018 x

R/V Kristine Bonnevie June 2018 x x x
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included individual occupations from various transects

in their studies.

The hydrographic data on all of the cruises were ob-

tained using a Sea-Bird 9111 conductivity–temperature–

depth (CTD) instrument. The CTD was mounted on

a rosette with Niskin bottles to collect water samples,

which were used to calibrate the conductivity sensor.

The resulting accuracy of the CTD measurements is

0.3 dbar for pressure, 0.0018C for temperature, and

0.002 g kg21 for salinity (Våge et al. 2011). Velocities

were measured using acoustic Doppler current profiler

(ADCP) instruments. On three of the cruises (RRS

James Clark Ross 2004, R/V Knorr 2008, NRV Alliance

2018), a vessel-mounted ADCP (VMADCP) was used,

while an upward- and downward-facing lowered ADCP

(LADCP) system mounted on the rosette was utilized

on the remaining surveys. The VMADCP data on the

R/V Knorr 2008 and NRV Alliance 2018 cruises were

acquired using the University of Hawaii Data Acqui-

sition System (UHDAS) and the VMDAS collection

software (Teledyne RDInstruments), respectively. Sub-

sequently, these data were processed using the Com-

mon Ocean Data Access System (CODAS; Firing and

Hummon 2010). On the RRS James Clark Ross 2004

cruise, VMADCP data were collected and processed

using a custom data acquisition system unique to the

ship (Pstar system). The LADCP data were processed

using the LADCP Processing Software Package from

the Lamont–Doherty Earth Observatory (Thurnherr

2010, 2018). Following the processing, the barotropic

tides were removed from all of the velocity datasets

by applying an updated version of the regional tidal

model of Egbert and Erofeeva (2002), which has a

resolution of 1/608.
Using Laplacian-spline interpolation (Pickart and

Smethie 1998), we constructed 2 km 3 10m gridded

fields of Conservative Temperature and potential density

anomaly referenced to the sea surface, as well as Abso-

lute Salinity (hereafter referred to as temperature, density,

and salinity, respectively). We followed the TEOS-10

standard (IOC et al. 2010), which differs by on aver-

age 0.167 for Absolute Salinity compared to practi-

cal salinity for the hydrographic properties of the NIJ.

The temperature difference is smaller than the accu-

racy of the measurements, and the potential density in

TEOS-10 is O(0.001) kgm23 greater than in ITS-90.

Typical CTD stations indicating the station spacing in

the mean sections were identified from the mean dis-

tances between the stations. Because the sections were

truncated in order to display the same horizontal scale,

there is not always a marker at the end of the sections;

we have not extrapolated the data for more than two

grid points.

We deviated from the normal interpolation routine

for the two following situations. First, stations that

were separated by more than 11 km (usually located

FIG. 2. Shipboard transects used in the study (red lines). The location of the shelf break at each line is indicated

by the black crosses. The acronyms and numbers denote the transect names (KG 5 Kögur, HB 5 Hornbanki,

SI 5 Siglunes, KR 5 Kolbeinsey Ridge, SL 5 Slétta, LN 5 Langanes Northeast, LE 5 Langanes East) and the

number of occupations for each transect, respectively. The location of the mooring at the Hornbanki section

is indicated by the yellow diamond. The bathymetry is shaded, and the 650-m isobath is highlighted by the

gray contour.
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on the shelf) were interpolated onto a low-resolution

grid of 10 km 3 20m. This grid and the remaining,

closer-spaced station data were then reinterpolated

onto the final, high-resolution grid. Second, we em-

ployed a combined interpolation approach for occu-

pations where very dense water (su $ 28.03 kgm23)

was observed at the shelf break, in order to conserve

the structure of the dense water banked up on the slope.

In those sections, we interpolated the data first with

respect to depth (depth grid, following the standard

interpolation routine) and then with respect to height

above the bottom (bottom grid). The bottom grid was

used up to 100m above the bottom at the steepest part

of the slope where the dense water was present, while

the depth grid was used for the remainder of the sec-

tion. At the boundaries of the two grids, interpolation

was used to ensure a smooth transition. An example in

which both of these additional interpolation routines

were applied is shown in Fig. 3.

Sections of absolute geostrophic velocity, normal

to each transect, were calculated as follows. First, we

constructed 2 km3 10m gridded sections of the cross-

track ADCP velocities. Next, we computed the rela-

tive geostrophic velocity at each section using the

hydrographic fields. At each grid point of the section,

the depth-averaged relative geostrophic velocity was

then matched to the corresponding depth-averaged

ADCP velocity. The top and bottom 50m were excluded

for grid points with bottom depths greater than 200m,

in order to avoid surface and bottom boundary layers.

The along-stream direction x is taken to be positive to-

ward Denmark Strait, where distances between transects

were calculated following the 650-m isobath (Fig. 2).

For each transect the origin (distance y 5 0km) was

placed at the shelf break (except for the Kolbeinsey

Ridge transect where the latitude of the shelf break at the

nearby Siglunes transect was chosen as zero distance).

Positive velocities are directed toward Denmark Strait.

The absolutely referenced geostrophic velocity sec-

tions were used to estimate the volume transports of the

NIJ. The error associated with the volume transport is

proportional to the area of the NIJ and estimated from a

combination of instrument error and inaccuracies in the

tidal model. Våge et al. (2011) estimated the combined

uncertainty associated with the LADCP/VMADCP

systems and the processing routine to be 3 cm s21, while

they assessed the uncertainty of the tidal model to be

2 cm s21 northwest of Iceland because of inaccuracies in

bathymetry and relatively strong tidal currents. Al-

though the tidal model performs slightly better northeast

of Iceland, we conservatively assume the same error as

for the western transects. An additional source of er-

ror arises from the transport calculation at the Kögur
section (Fig. 2), where the NIJ at times is difficult

to distinguish from the separated EGC (Harden et al.

2016). For each of these occupations, we distinguish

the currents based on the differently sloping isopycnals

and the subsurface salinity maximum of the separated

EGC, which is not present in the NIJ (Harden et al.

2016). The differences between this ‘‘best-estimate’’

boundary, and a maximum and a minimum limit, are

included in the total error for these occupations. Fi-

nally, we also increase the uncertainty of the trans-

port for occupations where the current is not fully

FIG. 3. Example of an occupation (Hornbanki, February 2013) with dense water residing at the shelf break. The

CTD stations are indicated by black triangles. The stations on the shelf are separated by more than 11 km, so there

the low-resolution grid was applied first (resulting in the blue data points). On the slope, the bottom grid was used

(red dots). The low-resolution grid and bottom grid data were then combined with the remaining high-resolution

CTD data (black dots), resulting in the final gridded temperature (color) and density (contours) sections. The cold,

dense bottom layer of water along the slope is maintained using this multistep gridding routine.
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covered by the observations. We then estimate the

missing transport and include both this additional

transport and its uncertainty estimated from the in-

strument and tidal errors to the uncertainty of the

transport of the entire occupation.

b. Moored measurements

We use data from a current meter mooring deployed

from 23 August 2005 to 10 August 2006, situated 19 km

north of the shelf break at the Hornbanki transect

(67830.45160Nand 21832.14100W, Fig. 2). The instrument

was an Aanderaa RCM-7, sampling hourly, which was

placed at 360-m depth on the 620-m isobath. It thus

provided a year-long time series of temperature, pres-

sure, and velocity in the center of the NIJ. The velocity

data were de-tided using the T_TIDE package (Pawlowicz

et al. 2002) and rotated into the along- and across-stream

directions associated with the Hornbanki transect. Fol-

lowing our convention above, positive along-stream

velocities u are directed toward Denmark Strait.

c. Atmospheric data

To assess the wind field during the period of the

mooring deployment, and its possible influence on the

NIJ, we use the ERA-Interim reanalysis data from

the European Centre for Medium-Range Weather

Forecast (ECMWF; Dee et al. 2011). This weather

prediction model, with an effective horizontal resolu-

tion of 80km, assimilates meteorological data to approxi-

mate the atmospheric state every six hours. ERA-Interim

reanalysis data have been shown to be accurate in our

study region (Harden et al. 2011). Here we use the

6-hourly mean sea level pressure and 10-m wind field

in the region across 08–458Wand 558–758N for the period

of the mooring deployment. We also consider the data

from the grid point closest to the mooring as well as one

grid point directly north of Denmark Strait (at the same

latitude farther west).

3. Mean hydrography and velocity

The mean absolute geostrophic velocity sections for

each transect (Fig. 4) offer the first robust view of

the NIJ along the entire continental slope north of

Iceland. Using data from two of the 13 surveys con-

sidered here, Våge et al. (2011) noted that the NIJ was

weak at their northeasternmost transect (the Langanes

Northeast section). This was consistent with the

weakened NIJ in their idealized model in this part

of the domain. The emergence and strengthening of

the NIJ toward Denmark Strait occurring simulta-

neously with the disintegration of the NIIC toward

northeast Iceland was representative of the model’s

Iceland Sea overturning loop. Our data allow us to

quantify the presence of the NIJ between Denmark

Strait and northeast Iceland.

Starting at the easternmost section, Langanes East,

a weak flow directed toward Denmark Strait is present

near the shelf break in two of the five occupations. In

themean, however, the NIJ is not present at this transect

(Fig. 4a). At the Langanes Northeast transect, 94 km

farther downstream, velocities toward Denmark Strait

were observed in each of the occupations (Fig. 4b). At

times two cores of the current were present, although

the flow was generally quite weak (,5 cm s21 in the

mean). Our data thus corroborate the notion by Våge
et al. (2011) that the NIJ emerges somewhere between

these two transects on the northeast slope of Iceland.

At the Slétta transect, 94 km farther downstream, the

existence of several cores becomes evident in the mean,

and the current velocities are greater (Fig. 4c). The flow

becomes even stronger and broadens where it crosses

the Kolbeinsey Ridge (Fig. 4d). At the Siglunes transect,

immediately downstream of the Kolbeinsey Ridge, the

typical structure of the NIJ is more pronounced. In

particular, the deep isopycnals slope upward and the

shallow isopycnals slope downward toward the shelf

break, leading to the characteristic middepth intensi-

fication of the current (Fig. 4e). Here only one core of

the NIJ was observed in each occupation. Farther

downstream at the Hornbanki transect, the NIJ ex-

hibits again two cores in the mean (Fig. 4f). The core

near the shelf break is strongest, with velocities ap-

proaching 15 cm s21. Between the two cores, the flow is

in the opposite direction.

The last section presented here is the Kögur transect,
where the NIJ at times merges with the surface-intensified

separated EGC (Harden et al. 2016). Some of the EGC

is visible in the westernmost part of the mean section

(Fig. 4g). Using two years ofmooring data from theKögur
transect, Huang et al. (2019) determined that there were

three basic configurations of the flow on the Iceland slope:

a strong separated EGC on the midslope, distinct from a

weak NIJ farther upslope; a scenario where the two cur-

rents are merged; and a case where a strong NIJ is located

near the 650-m isobath, its mean position in the moored

time series, with a very weak signature of the separated

EGC farther offshore. At times this latter scenario can

persist close to Denmark Strait (R. Pickart 2019, un-

published data). At the sill, however, the separated

EGC and NIJ appear to be fully merged, with the cold

Arctic-origin water of the NIJ occupying the deepest

part of the sill (Mastropole et al. 2017).

In all of the mean sections except the Kolbeinsey

Ridge transect (which is located farther offshore than the

others, Fig. 2), the surface-intensified NIIC is present
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inshore of the NIJ flowing in the opposite direction.

Notably, this is in contrast to the notion put forth by

Våge et al. (2011) in which the NIIC disintegrates in

concert with the NIJ progressing clockwise around the

island. While we are unable to fully assess the NIIC trans-

portwith our data, since someof the sections donot capture

the shoreward end of the current, we note that the mean

transport of the core of theNIIC at theLanganesNortheast

section is 0.85Sv. This is half of the 1.7Sv of NIIC transport

at the Kögur transect estimated by Pickart et al. (2017).

Hence, at the location where the NIJ first emerges on the

northeast Iceland slope, the NIIC is still strong. Recently,

Ypma et al. (2019) also called into question the direct

connection between the NIIC and the NIJ via the local

Iceland Sea overturning loop. Although substantial

water mass transformation took place north of Iceland

in their numerical simulations, the contribution of the

NIIC to the DSOW was small.

The front separating the NIJ and NIIC is evident from

the mean hydrographic sections (Figs. 5 and 6). In partic-

ular, the saline water of the NIIC is present inshore of the

front at each site except for the Kolbeinsey Ridge section

(Fig. 6). We note that at some of the transects, particularly

the Kögur and Hornbanki sections, a layer of warm water

extends well offshore of the shelf break (Fig. 5). Pickart

et al. (2017) discussed this feature and demonstrated that,

at times, the NIJ was located adjacent to the temperature

front at the seaward edge of this layer, instead of the NIIC

front. This is seen to be the case for the offshore NIJ core

at the mean Kögur section. It is also occasionally true for

individual realizations of the offshore core at the different

transects. In Figs. 4–6 we have highlighted the 27.8kgm23

isopycnal, which slopes downward toward the shelf break

and grounds on the outer shelf at most of the transects.

This implies that the bulk of the overflow water is found

seaward of the shelf break.

4. Double-core structure of the NIJ

The double-core structure of the NIJ, evident from

the mean sections of absolute geostrophic velocity pre-

sented above, was previously noted by Pickart et al.

(2017). They identified a second core of the NIJ in all of

their winter occupations at the Kögur transect. When

this offshore core was present, it was larger and stronger

than the inshore core near the shelf break. We find that

the double-core structure is not limited to the Kögur
transect. The core locations identified from the indi-

vidual realizations of the Hornbanki and Slétta sections,
west and east of the Kolbeinsey Ridge, respectively, are

shown in Fig. 7. Any outer cores that were not entirely

bracketed by the observations are not included. In all nine

occupations of the Hornbanki transect, the inner core was

situated near the shelf break at the 600-m isobath at

distance y 5 220km. The outer core was present in six

of the nine occupations. Its position varied slightly more

than that of the inner core, and was found at the 800-m

isobath in five of these occupations (Fig. 7).

At the Slétta transect, east of the Kolbeinsey Ridge,

the inner and outer cores were again centered at the

600- and 800-m isobaths, respectively. However, there

was more cross-stream variation in the positions of

both cores at this site. This could be due to the fact that

the continental slope is steeper east of the Kolbeinsey

Ridge, which results in a narrower NIJ. The distance

between the inner and outer cores is approxima-

tely 17 km here compared to approximately 43 km at

the transect west of the Kolbeinsey Ridge. Farther

downstream, at theKögur transect nearDenmark Strait,

the inner core appeared to be diverted higher onto the

continental slope (near 400m, Fig. 4g). We note, how-

ever, that this is likely not always the case. As discussed

above, using the Kögur mooring array data, Huang et al.

(2019) demonstrated that when the separated EGC is

strong, the NIJ tends to be located on the upper con-

tinental slope. By contrast, when the separated EGC

is weak (or absent), the NIJ is located near the 600-m

isobath. We do not have enough shipboard realizations

to investigate this definitively.

The double-core structure of the NIJ can also be iden-

tified from the mean current vectors computed using

the repeat LADCP/VMADCP data (Fig. 8, where the

currents are averaged between 100m and the bottom).

At both the Hornbanki and the Slétta transects, the vec-

tors were generally directed toward the west following the

bathymetry with cores near the 600- and 800-m isobaths.

Themean current vector at 360-mdepth from the year-long

mooring deployment at the Hornbanki transect west of

the Kolbeinsey Ridge agrees well with the depth-averaged

ADCP current vectors in magnitude and direction. Hence,

the average of our nine synoptic shipboard surveys appears

to be representative of the mean conditions.

The double-core structure of the NIJ appears to be a

frequent feature of the current, with a second core pres-

ent in roughly 50% of all occupations. The depth of the

velocitymaximumof the outer core is generally shallower

in thewater column (ranging from200 to 400m) compared

to that of the inner core (ranging from 200 to 600m). The

temperature and salinity properties of the cores varied

little within each occupation and did not show a system-

atic difference between the inner and outer cores. While

Pickart et al. (2017) observed the second NIJ core only in

the wintertime occupations of the Kögur transect, where
it was stronger than the inner core, we did not identify

any consistent seasonal variability in our more exten-

sive dataset. At present it is unknown why the NIJ is
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filamented in this fashion; we provide some thoughts

concerning this in section 7.

5. Along-stream evolution

a. Hydrographic properties

For each of the six transects where the NIJ was

present in the mean (which excludes Langanes East),

we constructed a volume transport Q–S diagram, which

shows the mean volume transport over all occupations

of the transect as a function of temperature and salinity.

The resulting diagrams for the Slétta and Hornbanki

transects are shown in Fig. 9. This revealed that only a

very small portion of the water transported by the NIJ

is not overflow water. At the Slétta transect, east of the
Kolbeinsey Ridge, water lighter than 27.8 kgm23 was

very warm (up to 48C) and saline (Fig. 9b).While the same

was true at the Hornbanki transect west of the Kolbeinsey

Ridge, there was also cold, fresh water near the surface

(Fig. 9a). The total transport was larger at Hornbanki

than Slétta, but at both transects the bulk of the transport

was limited to a small area in Q–S space.

For each of the volume transport Q–S diagrams,

we defined the locus of the 10 Q–S classes contain-

ing the highest transport as the transport mode of

the given section. (The exact number of Q–S classes

and their extents do not affect the results substan-

tially; we chose divisions of 0.18C in temperature and

0.005 g kg21 in salinity). Considering all six transects,

the transport mode is centered near 20.298 6 0.168C
in temperature and 35.075 6 0.006 g kg21 in salinity,

corresponding to a density of su 5 28.05 kgm23. This

demonstrates that the main source waters of the NIJ

must be very dense. The cold temperature (,08C)
classifies the mode as Arctic-origin water. This agrees

well with the Kögur mooring time series analyzed

by Harden et al. (2016), who found that the NIJ transports

water ofArctic origin at depth. By comparison, the EGC

carries mostly warmer and lighter water of Atlantic

origin (e.g., Håvik et al. 2017a). At Denmark Strait,

Arctic-origin water is found in the deepest part of the

passage, below water of Atlantic origin (Mastropole

et al. 2017).

FIG. 8. Mean current vectors (red) for the nine occupations of

(a) Hornbanki (west of the Kolbeinsey Ridge) and (b) Slétta (east

of the Kolbeinsey Ridge) at the typical stations indicated in Fig. 4.

The vectors are averaged between the bottom and 100-m depth,

which coincides approximately with the depth of the 27.8 kgm23

isopycnal (Fig. 4). The mean current vector from the year-long

mooring record at Hornbanki and its standard error ellipse are

shown in black. Black crosses indicate the location of the shelf

break. Background colors show bathymetry, and the 600- and

800-m isobaths are highlighted.

FIG. 7. Overlay of the locations of fully resolved NIJ cores at (a) Hornbanki (west of the Kolbeinsey Ridge) and

(b) Slétta (east of the Kolbeinsey Ridge). The color indicates the number of realizations.

2510 JOURNAL OF PHYS ICAL OCEANOGRAPHY VOLUME 49

38 Paper I



To quantify the evolution of temperature and salinity

along the length of the NIJ, we considered the variation

of the 10 highest transport Q–S classes at each site

(Fig. 10). This shows how the hydrographic properties

of the bulk of the overflow water are modified toward

Denmark Strait. There is no significant linear trend of

the median values of the 10 classes (red bars in Fig. 10)

at the 95% confidence level according to the Student’s

t test, for either temperature or salinity. Since any such

trends are based on six values only, we used the boot-

strap method to estimate the reliability of these trends.

The bootstrap method is based on random sampling

with replacement from the dataset and is not con-

strained by assumptions about the underlying prob-

ability distribution (e.g., Emery and Thomson 2014).

From 1000 sample combinations chosen randomly

from the pool of Q–S classes at each transect, there

is no true positive or negative trend in the hydrographic

FIG. 9. Mean volume transport of the NIJ as function of temperature and salinity combined from all occupations

at the (a) Hornbanki and (b) Slétta transects, west and east of the Kolbeinsey Ridge, respectively. The gray con-

tours represent density, and the 27.8 kgm23 isopycnal is highlighted.

FIG. 10. Along-stream evolution of (a) temperature and (b) salinity for the 10 main transport classes of the NIJ

(see text). The 25th and 75th percentiles for each transect are indicated by the blue boxes, and the median value is

marked by the red dash. The black dashed lines show the range of values not considered to be outliers, while the red

crosses indicate the outliers. The y axis is chosen such that the maximum range corresponds to a change in density

of 0.05 kgm23 with constant salinity and temperature for (a) and (b), respectively. The acronyms are: KG5Kögur,
HB 5 Hornbanki, SI 5 Siglunes, KR 5 Kolbeinsey Ridge, SL 5 Slétta, and LN 5 Langanes Northeast.
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properties at the 95% confidence level. We therefore

conclude that the temperature, salinity, and density

of the dominant transport mode of the NIJ are not

significantly modified from northeast Iceland to

Denmark Strait.

Interestingly, the temperature does exhibit a signifi-

cant warming trend of approximately 0.18C per 100 km

toward Denmark Strait when considering the evolu-

tion of the mean temperature for the entire current (not

shown). This implies that some portion of the NIJ warms

along its path, possibly due to entrainment of ambient

waters which are warmer northwest than northeast of

Iceland. However, as demonstrated above, the entrain-

ment does not significantly affect the properties of the

dense transport mode.

b. Volume transport

While the temperature and salinity of the transport

mode do not change significantly toward Denmark

Strait, the mean velocity sections of Fig. 4 presented

earlier indicate that the volume transport does; recall

that the NIJ originates between the Langanes East

and Langanes Northeast transects. We now present

estimates of the overflow water transport at the dif-

ferent transects, computed as the mean of the indi-

vidual occupations.

For each transect we provide two estimates. The first is

based on a conservative approach where we disregarded

all outer cores that were not fully resolved. This estimate

does not include all of the NIJ and provides a lower

transport limit. For the second estimate, we doubled

the transport of any outer core that was not fully re-

solved, with the idea being that the ship sampled

roughly half of the core. This value, which we refer to

as the inclusive estimate, is more realistic because we

know that the full extent of the current was not sam-

pled. In cases when we doubled an outer core that was

not fully resolved, a larger uncertainty was assigned

(section 2a). The two transport estimates are identical

for the three transects where the NIJ was completely

resolved.

The volume transport of overflow water increases by

on average approximately 0.4 Sv per 100 km considering

the six transects fromLanganesEast, northeast of Iceland,

to Hornbanki, roughly 300 km upstream of Denmark

Strait (Fig. 11). This trend is significant at the 95% con-

fidence level according to the Student’s t test. We have

included the easternmost transect in Fig. 11, even though

there is no flow in the mean section (Fig. 4). Our results

emphasize that the NIJ emerges in the region northeast

of Iceland. Furthermore, overflow water is by far the

dominant constituent of the NIJ: the fraction of overflow

water to the total transport is on average 90% for the

collection of transects (Fig. 11).

The contribution to the transport from water deeper

than 650m, the approximate depth of the Denmark

Strait sill, is comparably small. This portion accounts

on average for only 10% of the transport of overflow

FIG. 11. Mean volume transport of overflow water (OFW) in the NIJ at the different tran-

sects, computed as the mean of the individual occupations. For the conservative estimate

(cOFW, blue colors), the outer cores that were not fully resolved are ignored. For the inclusive

estimate (iOFW, orange colors) the partially resolved outer cores were extrapolated (see text).

Also shown is the portion of overflow water denser than su5 28.03 kgm23. The percentage

indicates the fraction of overflow water to total transport at each transect. The acronyms

are: KG 5 Kögur, HB 5 Hornbanki, SI 5 Siglunes, KR 5 Kolbeinsey Ridge, SL 5 Slétta,
LN 5 Langanes Northeast, and LE 5 Langanes East.
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water. To contribute to the overflow, this water needs

to be brought to shallower depths. Harden et al. (2016)

showed that there is significant aspiration in Denmark

Strait, which is why the deepest portion is included in

our transport estimates. However, since the transport

associated with this deepest portion is small, we can

still compare the transport estimates to previous esti-

mates by Våge et al. (2011) and Våge et al. (2013) who
neglected this deep part of the NIJ.

While the transport increases overall toward Denmark

Strait, the value decreases between the last two tran-

sects (Hornbanki to Kögur, Fig. 11). Observations

(Harden et al. 2016) and numerical models (Behrens

et al. 2017) show that the NIJ merges with the separated

EGC between Hornbanki and Denmark Strait. Some

of the water that is transported by the NIJ at Hornbanki

may therefore be entrained into the separated EGC

farther downstream, and thus is not accounted for in

our transport estimates at Kögur. Our estimates for

the Kögur transect are 1.3 6 0.2 Sv, which agrees

well with the 1.4 6 0.3 and 1.23 6 0.32 Sv estimated

by Våge et al. (2013) and Pickart et al. (2017), respec-

tively, both of whom took similar approaches for de-

termining the transport using different subsets of the

data analyzed here.

Notably, the transport estimates using our synoptic

realizations of the Kögur transect are larger than the

transport of the NIJ estimated by Harden et al. (2016)

using data from the mooring array at that location

(1.00 6 0.17 Sv). One possible reason for this discrep-

ancy is that we are presenting only 10 occupations, while

the mooring data provided three realizations per day

over a year-long period. Another possible reason for the

discrepancy is that Harden et al. (2016) calculated net

transport between the separated EGC and the Iceland

shelf break, while we included only equatorward flow in

our transport estimate. As such, these estimates are not

directly comparable, and higher transports are expected

from our approach. Furthermore, it was often difficult

for Harden et al. (2016) to distinguish between the

separated EGC and the NIJ. They developed an ob-

jective technique for determining the boundaries of these

two currents and split the transport in the transition region

evenly between them, but therewas inherent uncertainty in

such a division.

To shed light on this, we examined the gridded ve-

locity sections from the mooring array and assigned a

boundary between the separated EGC and the NIJ

at each time step guided by the automatically de-

termined separation lines from Harden et al. (2016),

but also taking into acccount the differently sloping

isopycnals of the two currents. In approximately 20%

of the sections the separated EGC and the NIJ were

clearly distinct, while in the remaining realizations the

currents were partially or fully merged. The transport

of the NIJ estimated for the entire time series based

on our boundary and considering equatorward flow

only is 1.4 6 0.1 Sv, which is in close agreement with

our transport from the 10 hydrographic/velocity sec-

tions (1.3 6 0.2 Sv). Considering only the subset of

sections where the separated EGC and the NIJ were

clearly distinct, the NIJ is recognizable as a middepth-

intensified current. In approximately 40% of these

sections it exhibited a double-core structure. Further-

more, the bulk of the transport had properties simi-

lar to the previously identified transport mode. This

strongly suggests that our 10 hydrographic/velocity

sections are representative of the mean conditions.

The transport of the NIJ for the subset of Kögur
mooring sections where the current was distinct was 1.76
0.2Sv. This is close to our estimate from the Hornbanki

transect where the NIJ has not yet started to merge with

the EGC. There the transport is 1.8 6 0.3 Sv for the

conservative estimate and 2.2 6 0.4 Sv for the inclusive

estimate. All things considered, this suggests that the

value of Harden et al. (2016) may be an underestimate.

In particular, when the NIJ and the EGC are apart, the

NIJ has a larger transport. On the other hand, when the

currents are merged, some of the water transported by

the NIJ may be assigned to the EGC, which would tend

to reduce the estimated contribution of the NIJ at the

Kögur transect. Our results thus imply a potentially

greater role of the NIJ in supplying overflow water to

Denmark Strait.

We also present the portion of overflow water trans-

port denser than su5 28.03 kgm23 in Fig. 11. This value

represents the bounding isopycnal of the NIJ trans-

port mode discussed in the previous section (Fig. 9). As

noted in Våge et al. (2013), water this dense is not found
in either the shelfbreak EGC or the separated EGC

above sill depth. Furthermore, most boluses passing

through Denmark Strait contain water near this density

(Mastropole et al. 2017). Våge et al. (2011) computed

a transport of 0.66 0.2Sv of this dense water inDenmark

Strait, which is comparable to our value of approximately

0.5 6 0.1Sv for the inclusive estimate at the Kögur
transect (Fig. 11).

In general, the transport of water denser than su 5
28.03 kgm23 increases toward Denmark Strait and ac-

counts for on average 50% of the entire overflow

transport (Fig. 11). This implies that the NIJ is supplied

with dense water along its entire pathway. The model

simulation of Våge et al. (2011) suggested that roughly

two-thirds of the NIJ is supplied by sinking of dense

water along the northern boundary of Iceland, while

the remaining third is due to lateral entrainment.
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Alternatively, there could be direct advective sources

feeding theNIJ. One possible such source is a southward

flow of overflow water that emanates north of the Spar

Fracture Zone (Fig. 1) and follows the western side of

the Kolbeinsey Ridge. The existence of such a flow has

been suggested from RAFOS float tracks (de Jong et al.

2018) and numerical simulations (Behrens et al. 2017).

Observations from a year-long mooring deployment

close to the Kolbeinsey Ridge also indicated generally

southward flow in 2007/08 (Jónsson and Valdimarsson

2012a). However, the mooring was situated near the

1000-m isobath south of the Spar Fracture Zone and

hence it may have recorded parts of the NIJ crossing

the ridge from the east and not a distinct flow originat-

ing from north of the Spar Fracture Zone. From our

sections, we can neither confirm nor reject the existence

of a southward flow west of the Kolbeinsey Ridge that

supplies the NIJ. However, if there is such a current,

it would only contribute a minor amount of water to

the NIJ, as there is little change in transport between the

Kolbeinsey Ridge and Hornbanki transects (Fig. 11).

The origin of the water constituting the densest por-

tion of the NIJ is under debate. Using historical CTD

data, Våge et al. (2015) showed that wintertime mixed-

layer densities in the Iceland Sea only occasionally

exceed su 5 28.03 kgm23. This mainly occurs in the

northwestern part of the Iceland Sea. (It is worth noting

that the data coverage in winter is generally sparse.) In

this region, heat loss offshore of the ice edge can in-

tensify convection (Våge et al. 2015), which is facilitated

by the removal of fresh surface waters before the onset

of winter by northerly winds (Våge et al. 2018). Based

on a freshwater budget of the region, Pickart et al. (2017)

argued that convection in the northwestern Iceland Sea

cannot account for more than half of the water in the

NIJ. While water with properties of the densest por-

tion of the NIJ is present throughout the Iceland Sea

at greater depths, significant transformation must occur

elsewhere.

The Greenland Sea has been suggested as a possible

source for the densest portion of the NIJ (Våge et al.

2015; Pickart et al. 2017), where much denser and

deeper mixed layers are common (e.g., Strass et al.

1993; Brakstad et al. 2019). For the Greenland Sea

gyre, Brakstad et al. (2019) estimated the annual

production of waters exceeding su 5 28.05 kgm23 to

be at least 0.6 6 0.5 Sv for recent winters. This is

roughly the same as the amount of water denser than

su 5 28.03 kgm23 transported by the NIJ, and thus

adds credence to the notion that the densest water

in the NIJ stems from the Greenland Sea. A tracer

release study indicates that rapid export of dense

water from the Greenland Sea to the Iceland Sea is

possible (Messias et al. 2008), but the exact pathways

have not yet been identified.

While the RAFOS floats of de Jong et al. (2018) did

not provide any evidence of the NIJ crossing the

Kolbeinsey Ridge, we observed clear westward flow

across the ridge on all of the occupations of this tran-

sect (Fig. 4d). This provides compelling evidence that

the NIJ successfully negotiates the ridge as it flows

westward. We note, however, that the transport of the

current at the Siglunes transect, immediately down-

stream of the Kolbeinsey Ridge, appears to be anom-

alously small (i.e., it does not follow the general trend

of increasing transport, Fig. 11). This motivates us to

investigate the behavior of the NIJ around this sharp

ridge using a scaling analysis.

Marshall and Tansley (2001) derived a condition for

the separation of a boundary current from the conti-

nental slope which has been applied to different cases,

including the middepth-intensified flow of Levantine

Intermediate Water around Sardinia in the Mediter-

ranean Sea (Bosse et al. 2015) and the flow of Canadian

Basin Deep Water around the Morris Jesup Rise in the

Arctic Ocean (Björk et al. 2010). Marshall and Tansley

(2001) integrated the potential vorticity over an area

encompassing the slope and the boundary current and

found that the condition for the separation of the boundary

current is comprised of three terms related to the planetary

b effect, vortex stretching of the boundary current when

crossing isobaths, and the curvature of the coastline or

bathymetry. In our case, the b term is small compared

to the vortex stretching term and can be neglected. The

condition for separation of the current then scales as

r,

�
U

f=H/H

�1/2

, (1)

where r is the radius of curvature, U is the speed of the

boundary current, f is the Coriolis parameter, and H

is the depth. The radius of curvature where the NIJ

crosses the Kolbeinsey Ridge is r ’ 4–8 km, while the

depth isH’ 600–800m.Using the average speed ofU5
4.6 cm s21 as well as the minimum and maximum speeds

(62 cm s21) of the NIJ at the Kolbeinsey Ridge gives a

critical r of 5–9km, which is very similar to themeasured

radius of curvature. This result suggests that the entire

NIJ cannot remain intact when turning south after

crossing the ridge, and that only some part of the

current is able to make the sharp turn to the Siglunes

transect only 36 km downstream where the transport

is lower (Fig. 11). We note that only a single current

core has been observed at this transect (Fig. 4e), while

the ADCP velocities farther offshore exhibit a south-

ward component (not shown). Such a southward flow
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at the offshore end of the Siglunes transect, which

has a north–south orientation, would not be accounted

for since the absolute geostrophic velocity fields that

the transports are calculated from are normal to the

section. As noted above, a southward flow was also

observed at a mooring located at the 1000-m isobath

on the western side of the Kolbeinsey Ridge (Jónsson
and Valdimarsson 2012a). It is possible that this flow

is the separated part of the NIJ forced into deeper

water due to the curvature of the ridge. The importance

of the sharp curvature of the Kolbeinsey Ridge is

also apparent from the flow pattern across the ridge

(Fig. 4d). After following the bathymetry northward

along the slope, the NIJ broadens when crossing the

ridge and the double-core structure becomes less de-

fined, likely due to the curvature effect. The separation

of the current after crossing the ridge might reestablish

the double-core structure of the NIJ and thus could

explain the existence of the offshore core at theHornbanki

section, which was observed in six of the nine occupa-

tions (section 4).

Another aspect of the NIJ negotiating the Kolbeinsey

Ridge pertains to flow observed on the shelf. As men-

tioned in section 2a, there was a transect situated just

east of the ridge (14 km west of the Slétta transect). The
continental shelf at this transect, and at the Siglunes

transect, is deeper than 300m—the only two survey lines

where this is true. Recall that the maximum velocity of

the NIJ is situated vertically in the water column near

this depth. It is thus possible that some portion of the

NIJ takes a direct route along the shelf instead of flowing

around the Kolbeinsey Ridge. Unfortunately, the oc-

cupations of these two transects do not coincide in time,

so we cannot make inferences about the continuity of

this flow. Further work is required to understand pre-

cisely how the NIJ progresses past the Kolbeinsey Ridge,

although our data indicate that the current clearly trans-

ports overflow water from the east side of the ridge to the

west side of the ridge.

6. Variability

The volume transport of the NIJ varies substantially

both within and between the surveys. This is seen by

plotting the individual transport values for all of the

occupations following the inclusive approach (Fig. 12).

The large scatter motivates us to explore possible forcing

mechanisms that could influence the current’s transport

over different time scales.

a. Seasonal variability

While our dataset consists predominantly of summer

occupations (Table 1), there is nonetheless no apparent

difference in NIJ transport between summer and win-

ter (Fig. 12). Both large and small transports occur in

winter relative to the mean at most transects. This lack

of seasonality agrees with transport time series from

moorings as well as numerical simulations. Harden

et al. (2016) reported a slight reduction in the NIJ

transport in winter and spring from the 1-yr mooring

array at Kögur, while Huang et al. (2019) found no

consistent seasonal cycle from a 2-yr mooring deployed

FIG. 12. Volume transport of overflowwater in the NIJ and its uncertainty for all occupations

and transects. Outer cores which were not fully resolved by the observations were doubled

(see text). The survey years are color-coded, and winter occupations are marked by diamonds.

For better legibility, estimates for the same transect are plotted adjacent to each other. The

acronyms are: KG 5 Kögur, HB 5 Hornbanki, SI 5 Siglunes, KR 5 Kolbeinsey Ridge, SL 5
Slétta, LN 5 Langanes Northeast, and LE 5 Langanes East.
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in the NIJ at the same location. This agrees with velocity

time series from three years of moored current meters

on the Iceland slope of the Kögur transect (Jónsson
1999). Similarly, the transport of the NIJ did not have a

seasonal cycle in the high-resolution numerical simula-

tions of Behrens et al. (2017). Seasonal variability ap-

pears to be negligible farther upstream at theHornbanki

transect as well, and farther downstream at Denmark

Strait. Neither the velocity time series in the core of

the NIJ from theHornbanki mooring (Fig. 13), nor long-

term observations of the overflow plume (Jochumsen

et al. 2017), reveal a seasonal cycle.

Regarding the hydrographic properties of the NIJ,

we cannot identify distinct seasonal differences at any

transect when comparing summer and winter subsets

of Figs. 5 and 6 (not shown). The lack of a seasonal cycle

is also reflected in the quantitative analysis of the indi-

vidual cores of the NIJ (section 4). This corroborates

the results of Mastropole et al. (2017) who found neither

a seasonal cycle in the Arctic-origin water at Denmark

Strait nor a seasonality in the occurrence of the boluses

of Arctic-origin water passing through the strait. Our

hydrographic sections reveal a seasonal change only

near the surface, within the NIIC. As previously pointed

out by Pickart et al. (2017), the water on the shelf is

warmer, saltier, and more strongly stratified in summer

than in winter. The NIIC varies seasonally in transport

also, exhibiting a transport maximum in summer and a

minimum in late spring, as other observations (Jónsson
and Valdimarsson 2012b) and numerical simulations

(Zhao et al. 2018) show. The seasonality in the NIIC is a

result of changes in the atmospheric forcing (Logemann

and Harms 2006; Zhao et al. 2018), which leads us

to investigate if atmospheric forcing may play a role

in the variability of the NIJ on other time scales.

b. Atmospheric forcing

1) MESOSCALE VARIABILITY

Harden et al. (2016) found that, while the trans-

ports of the surface-intensified shelfbreak and separated

EGC vary in time, the changes largely compensate each

other. They argued that this variability is controlled by

the across-stream gradient in the local wind through

Denmark Strait. Herewe investigate the possible effect of

the wind on the mesoscale variability in the middepth-

intensified NIJ using the moored record in the center

of the current at the Hornbanki transect (Fig. 13; sec-

tion 2b). The westward speed was on average 13 cm s21,

ranging between a maximum of 41 cm s21 in September

and a minimum of 217 cm s21 in December. The latter

event was unique in that the current reversed its direction

for approximately four days.

Using the ERA-Interim reanalysis data (section 2c),

we investigate the atmospheric conditions before, dur-

ing, and after weakening and strengthening events of

the NIJ at Hornbanki. The events are defined as times

when the velocity from the moored record either ex-

ceeded or fell short of a certain threshold (such as a

defined velocity, a local maximum, or a gradient). The

exact magnitude of this threshold did not affect the re-

sults substantially. While a high pressure system south

of Iceland induced southerly wind through Denmark

Strait against the flow direction of the NIJ during the

strong reversal event noted above, similar wind anom-

alies occurred without weakening the NIJ in a consistent

FIG. 13. Time series of de-tided velocity in the NIJ for the period of the mooring deployment

(August 2005–August 2006) at the Hornbanki transect west of the KolbeinseyRidge (see Fig. 2

for the location of themooring). The hourly and 3-day filtered time series are shown by the thin

gray and thick black line, respectively.
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way. Similarly, we did not detect any relation between

strengthening events of the NIJ and the atmospheric

conditions. We thus conclude that, despite the coinci-

dence of the extended current reversal and the strong

southerly storm, there was no consistent mesoscale

response of the NIJ at Hornbanki to atmospheric forc-

ing southwest of Iceland and in Denmark Strait during

the period of the mooring deployment.

2) LONG-TERM VARIABILITY

While the compensation in volume transport of the

separated and shelfbreak branches of the EGC has

only been observed on short time scales (Harden et al.

2016), numerical simulations suggest that the two

current branches vary out of phase on seasonal to in-

terannual time scales as well. Behrens et al. (2017)

argued that the local wind stress curl pattern sub-

stantially affects the EGC, which results in variability

in the net volume transport of the combined branches

across the Kögur transect on interannual time scales.

They did not, however, find a clear response of the

NIJ or the NIIC to changes in the wind stress curl.

By contrast, in the numerical model used by Zhao et al.

(2018), the wind stress southwest of Iceland impacted

the transport of Atlantic Water in the NIIC. Further-

more, Pickart et al. (2017) argued that interannual

changes in salinity of the NIIC and NIJ are linked

through the wind stress curl in the subpolar gyre.

Changes in wind stress curl have also been tied to

varying sources of dense water advected into Denmark

Strait. In the model study of Köhl (2010), strong pos-

itive wind stress curl around Iceland caused the EGC

to be the main source of overflow water to Denmark

Strait, whereas the Iceland Sea was the dominant

source when the wind stress curl was weakly positive.

De Jong et al. (2018) suggested that the strong wind

stress curl during their RAFOS float deployment pe-

riod may have been the reason why the NIJ appeared

weak or absent in the float trajectories.

To investigate the effect of wind on interannual time

scales, we identified surveys with consistently strong

or weak NIJ transport and assessed the corresponding

wind stress curl fields around Iceland, following the

approach of de Jong et al. (2018, see their Fig. 9). In

particular, we determined the occupations with above-

median and below-median transports for each survey.

(Themedian transport was used at each transect to account

for the general increase in transport toward Denmark

Strait.) Only one survey could be considered to have an

overall weak NIJ (February 2011, where all five tran-

sects had transports below the median). Conversely,

only two surveys had a relatively strong NIJ (February

2013 and August 2009, where four of five transects had

transports above the median). All three surveys were

conducted during periods of wind stress curl near its

climatological mean value according to the atmospheric

time series of de Jong et al. (2018), so we do not see a

difference inwind stress curl between surveyswith aweak

and a strong NIJ, and, most often, there was no overall

weak or strong NIJ. As such, our observations clearly do

not support the hypothesis that the wind stress curl con-

trols the strength of the NIJ on interannual time scales.

c. Internal variability

It has long been known that the overflow at Denmark

Strait is highly variable on periods of a few days

to a week (Aagaard and Malmberg 1978; Ross 1978;

Macrander et al. 2007; Jochumsen et al. 2017;

von Appen et al. 2017). Different configurations of

the overflow have been identified, including the large

boluses mentioned above, as well as another com-

mon scenario where the overflow layer thins and ac-

celerates (referred to as pulses; von Appen et al.

2017). It has been argued that the dominant driver of

this high-frequency variability is baroclinic instability

(Smith 1976; Spall et al. 2019). Upstream of the sill,

Håvik et al. (2017b) showed that the EGC is subject

to baroclinic instability in winter, and suggested that

this may be a source of the high-frequency variability in

Denmark Strait. Regarding the NIJ, Harden and Pickart

(2018) demonstrated that energetic topographic Rossby

waves, with a dominant period of 3.6 days, are present at

the Kögur site. They argued that the source of the

waves is the meandering separated EGC seaward of

the NIJ. Huang et al. (2019) calculated a significant

conversion of potential energy from the mean to the

eddies at the same site, indicative of baroclinic in-

stability. Using our shipboard data, we now consider

internal variability of the NIJ.

1) BAROTROPIC INSTABILITY

Barotropic instability is generally caused by strong

horizontal velocity gradients, although it can be sup-

pressed by steep bathymetry (von Appen et al. 2016).

Eddies resulting from these instabilities extract kinetic

energy from the mean flow and transport momentum

down the lateral velocity gradient (Spall et al. 2008). A

necessary criterion for barotropic instability to occur

is that b 2 (›2u/›y2) changes sign somewhere in the

domain (e.g., Cushman-Roisin and Beckers 2011). The

topographic b effect is represented byb52(f/H)(›H/›y),

where f denotes the Coriolis parameter andH depth. The

bathymetric slopes in our study area yield relatively large

values of b5O(1028). We compared this to uyy5 ›2u/›y2

for each current core. For example, at the Hornbanki

transect west of the Kolbeinsey Ridge, the along-stream
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velocity u is on average 16 cm s21 with current widths of

order 16 km. This means that uyy is of the same order of

magnitude as b. The same result holds for the majority

of the transects. Therefore, the necessary—but not suf-

ficient—condition for barotropic instability is fulfilled

for the NIJ.

2) BAROCLINIC INSTABILITY

Baroclinic instability is generally facilitated by strong

vertical shear of the horizontal velocity, whereas it can

be suppressed by a strong stratification (vonAppen et al.

2016). Resulting eddies extract the available potential

energy from the mean field and transport this energy

down themean lateral density gradient (Spall et al. 2008).

A necessary condition for baroclinic instability to occur is

that the horizontal gradient of the total potential vorticity

changes sign with depth (e.g., Spall et al. 2008). The Ertel

potential vorticity is the sum of the planetary stretching

term, the relative vorticity, and the tilting vorticity (e.g.,

Pickart et al. 2005; Spall et al. 2008). We find that the

stretching term is the dominant contribution to the total

potential vorticity. As such, we can simplify the Ertel

potential vorticity (PV) to PV ’ 2(f/r0)(›r/›z), where

r0 is the background potential density. The vertical sec-

tions of PV for the individual occupations of the different

transects yield the consistent result that the horizontal

gradient of PV reverses sign with depth. Therefore,

the necessary criterion for baroclinic instability is also

fulfilled for the NIJ.

These results imply that some of the observed variability

in structure and transport of theNIJmay be due to internal

variability in the form of both barotropic and baroclinic

instability. We note that such high-frequency fluctuations

could make it more difficult to infer responses of the NIJ

to atmospheric forcing; continued measurements of

the current will hopefully make this easier. The internal

variability in the NIJ requires further investigation and

will be the subject of future work.

7. Summary and conclusions

In this study we used high-resolution hydrographic/

velocity measurements from 13 surveys along the slope

north of Iceland to characterize and quantify the prop-

erties and transport of the NIJ for the first time along

its entire path. The current emerges northeast of Iceland

and crosses the Kolbeinsey Ridge, an extension of the

mid-Atlantic Ridge north of Iceland. Near Denmark

Strait the NIJ merges with the separated EGC, and from

that point onward it cannot be distinguished as a distinct

current. Our results demonstrate that the NIJ represents

an important contribution to the Denmark Strait overflow.

The current displays a double-core structure that is

present both east and west of the Kolbeinsey Ridge

at roughly 50% of all occupations. The inner core is

generally found at the 600-m isobath, while the outer

core is located farther downslope at the 800-m isobath.

It is presently unclear whether the outer core is a sepa-

rate component of the current or if it is related to eddies

or wave activity. Harden and Pickart (2018) demon-

strated that topographic Rossby waves on the Iceland

slope cause high-frequency variability in the NIJ signa-

ture at the Kögur site, but whether these or other waves
also exist farther upstream remains to be determined.

Here we considered the outer core to be an integral part

of the current and included it in the transport estimates.

The volume transport of overflow water in the NIJ,

which comprises on average 90% of the total transport

of the current, increased by approximately 0.4 Sv per

100 km along the current’s path until the Hornbanki

transect, roughly 300 km upstream of Denmark Strait.

This gradual increase is consistent with themodel results

of Våge et al. (2011) which suggest that the current is

fed by sinking of dense water along the entire north

slope of Iceland. The water transported by the NIJ is

mainly of Arctic origin, with the coldest and densest

portion banked up against the continental slope. The

bulk of the volume transport is confined to a small area

in Q–S space centered near 20.298 6 0.168C in temper-

ature and 35.0756 0.006gkg21 in salinity, corresponding

to a density of su 5 28.05kgm23. The hydrographic

properties of this transport mode do not change signifi-

cantly along the current’s path, which indicates that the

mode is largely unaffected by entrainment of warmer,

ambient waters. This densest portion of the NIJ most

likely stems from the Greenland Sea, where sufficiently

dense waters are regularly formed (Brakstad et al. 2019).

However, the exact pathways between the Greenland

and Iceland Seas remain unknown.

Comparing the volume transport of the NIJ to the

transport estimated from the year-long mooring array

at the Kögur transect (1.00 6 0.17 Sv; Harden et al.

2016), we found a higher mean transport of 1.3 6 0.2 Sv

for both the conservative and inclusive estimates. Some

of this discrepancy is likely due to the different types

of measurements (multiple realizations per day for a

year versus our 10 occupations over 13 years) and the

different methods of estimating transport (the differ-

ent approach for assigning current boundaries and the

consideration of net flow versus equatorward flow). Ex-

tracting periods from the gridded mooring sections when

the NIJ is clearly distinct from the EGC, we found a

transport of 1.7 6 0.2Sv. This result agrees well with the

transport of the NIJ at the Hornbanki transect farther

upstream, where it is at least 1.86 0.3Sv and more likely
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2.26 0.4 Sv according to the conservative and inclusive

estimates, respectively. This suggests that when the

currents are distinct at the Kögur transect, the contri-

bution from the NIJ is higher than when the currents

have merged and some of the NIJ transport may have

been entrained into the separated EGC, appearing to

lower the NIJ transport. We therefore argue that the

contribution of water from the NIJ to the Denmark

Strait overflow is higher than previously envisaged.

The variability in volume transport between and within

the surveys was substantial. On short time scales, no direct

link between the variability of the NIJ and the local wind

could be identified. While a current reversal observed

in the moored record at the Hornbanki transect coin-

cided with anomalously strong southerly wind through

Denmark Strait, no consistent response to similar atmo-

spheric patterns was found. Similarly, no clear seasonal

variability of the NIJ was detected, in agreement with

previous observational and modeling results (Harden

et al. 2016; Behrens et al. 2017).

On longer time scales, it has been hypothesized that

the wind stress curl around Iceland affects the strength

of the NIJ (Köhl 2010; de Jong et al. 2018). However,

no clear link between the wind stress curl and the

strength of the NIJ could be established from our ob-

servations. The most likely explanation for the vari-

ability in our transport estimates is internal forcing,

as the necessary conditions for both barotropic and

baroclinic instability are fulfilled in the NIJ.

This study, by characterizing and quantifying the along-

stream evolution of the NIJ, provides the basis for future

dynamical investigations addressing the formation and

variability of the current. Our comprehensive dataset has

definitively confirmed that the NIJ emerges northeast of

Iceland, is fed by a continuous supply of dense water

along the current’s entire pathway, and is a main source of

DSOW into Denmark Strait. The NIJ thus constitutes a

fundamental component of the overturning in the Nordic

Seas that needs to be accounted for when considering

the response of the AMOC to varying climate forcing.
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Dense water from the Nordic Seas passes through the Faroe Bank Chan-

nel and supplies the lower limb of the Atlantic Meridional Overturning

Circulation, a critical component of the climate system. Yet, the up-

stream pathways of this water are not fully known. Here we present

evidence of a previously unrecognised deep current following the slope

from Iceland toward the Faroe Bank Channel using high-resolution, syn-

optic shipboard observations and long-term measurements north of the

Faroe Islands. The bulk of the volume transport of the current, named

the Iceland-Faroe Slope Jet (IFSJ), is relatively uniform in hydrographic

properties, very similar to the North Icelandic Jet flowing westward to-

ward Denmark Strait. This suggests a common source for the two ma-

jor overflows across the Greenland-Scotland Ridge. The IFSJ accounts

for approximately half of the total overflow transport through the Faroe

Bank Channel, thus constituting a significant component of the overturn-

ing circulation in the Nordic Seas.
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Introduction

The Nordic Seas, comprising the Norwegian, Greenland, and Iceland Seas, are a

critical region at the northern extremity of the Atlantic Meridional Overturning

Circulation (AMOC). Warm and saline Atlantic Water flowing northward across

the Greenland-Scotland Ridge into the Nordic Seas releases heat to the atmosphere

and helps maintain the temperate climate of northwest Europe1;2. Transformation

to colder, fresher, and denser water masses occurs both in the interior basins and

within the boundary current system around the Nordic Seas3–5. These dense water

masses return southward at depth as overflow plumes through gaps in the ridge

(Fig. 1a). The plumes contain water denser than σΘ = 27.8 kg m−3, hereafter re-

ferred to as overflow water6. Overflow water formed in the eastern part of the Nordic

Seas is referred to as Atlantic-origin water, while that formed in the interior of the

western basins is referred to as Arctic-origin water, which is the densest contributor

to the lower limb of the AMOC3;7. Recent studies have focused primarily on Den-

mark Strait between Greenland and Iceland, which is the second-deepest passage

(approximately 650 m) through the ridge and has the largest volume transport of

overflow water8–12. The Atlantic-origin overflow in Denmark Strait is supplied by

two branches of the East Greenland Current8;13, while the Arctic-origin overflow is

advected by the North Icelandic Jet (NIJ)7;8;14 originating northeast of Iceland7;15.

The densest Arctic-origin overflow water emanating from the Nordic Seas passes

through the approximately 850 m deep Faroe Bank Channel (FBC)12;16 and is sub-

ject to extensive mixing and entrainment south of the Greenland-Scotland Ridge17–19.

The magnitude of the FBC overflow has been monitored continuously since 1995; the

most recent estimate of its volume transport is 1.9± 0.3 Sv12;20 (1 Sv≡ 106 m3 s−1).

The bulk of this transport is composed of intermediate and deep water masses16;18.

These water masses are most likely ventilated during winter in the Iceland and

Greenland Seas, with a contribution from the Arctic Ocean17;21.

Before reaching the FBC sill, the overflow waters pass through the Faroe-Shetland

Channel (Fig. 1a). While the hydrographic properties of the water masses in the

channel and their interannual variability are well documented12;20;22, the dense-water

pathways feeding this passage are as of yet not fully determined. Previous studies

suggested that the FBC is fed by water emanating from the interior Norwegian

Sea17;23, whereas other data have indicated the presence of a deep flow directed

toward the channel along the northern side of the Iceland-Faroe Ridge24;25.

2
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Here we provide direct evidence of a deep current following the northern slope

of the Greenland-Scotland Ridge from Iceland toward the Faroe Islands. This is

the first concrete documentation of the existence of this bottom-intensified cur-

rent, which we name the Iceland-Faroe Slope Jet (IFSJ). The IFSJ transports water

matching the densest water observed in the FBC and appears to supply approxi-

mately half of the total FBC overflow. As such, the IFSJ constitutes a significant

component of the overturning in the Nordic Seas and is therefore of key importance

to the AMOC26;27. To predict the AMOC’s response to a changing climate, it is

imperative to identify the origin and pathways of the dense water supplying its lower

limb.

Results and Discussion

Pathway and transport of the IFSJ

Using high-resolution hydrographic/velocity measurements from a September 2011

shipboard survey28–31 (Fig. 1b), we identified a spatially coherent eastward flow

between northeast Iceland and the Faroe Islands. Vertical sections of absolutely

referenced geostrophic velocity (Fig. 2), which were constructed from the combined

shipboard hydrographic and velocity data (see the methods section for details), show

that the IFSJ has a consistent hydrographic and kinematic structure. The narrow

current is bottom-intensified and comprises two cores of overflow water, which ap-

proximately follow the 750 and 1100 m isobaths, respectively. It is composed of

cold, dense water that is banked up against the slope (Supplementary Fig. 1, 2).

An extensive collection of hydrographic measurements from the Nordic Seas32 con-

firms the persistent presence of anomalously dense water on the upper slope north of

Iceland and the Iceland-Faroe Ridge. This isopycnal structure supports the bottom-

intensified IFSJ flowing eastward toward the entrance of the Faroe-Shetland Chan-

nel, from where the dense water enters the FBC. It is also consistent with the

NIJ flowing westward toward Denmark Strait, which is middepth-intensified as the

isopycnal tilt reverses again in the upper 300 m of the water column7;15. East of

the Kolbeinsey Ridge, the extension of the mid-Atlantic Ridge north of Iceland, the

IFSJ and NIJ are in close proximity (Fig. 1a). While it is well documented that the

NIJ emerges northeast of Iceland7;15, the origin of the IFSJ remains unknown. Re-

cent work suggests that both currents are supplied by dense water emanating from

the Greenland Sea that subsequently flows southward through the Iceland Sea along

3
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the Kolbeinsey Ridge32. Eastward flow of dense water through the Spar Fracture

Zone may also supply the IFSJ (Fig. 1b).

The mean volume transport of overflow water in the IFSJ, estimated from the

high-resolution hydrographic/velocity sections, is 1.0± 0.1 Sv. The uncertainty re-

flects instrument and processing errors of the velocity measurements and is taken

to be independent for each section (see the methods section for details). The mean

transport estimated from the 2011 survey suggests that the IFSJ supplies approx-

imately half of the total overflow through the FBC (1.9± 0.3 Sv)12;20. The contri-

bution of the deep core to the total transport of the IFSJ generally exceeds the

contribution of the shallow core (Fig. 3a). On two sections (B and C) the deep

core was not completely bracketed by the observations, resulting in an underesti-

mated transport of the IFSJ. The increase in transport between sections C and D

may additionally be caused by entrainment of ambient water from the Norwegian

Basin, while the low transport at section E likely results from a mesoscale feature

suppressing the 27.8 kg m−3 isopycnal (Fig. 2). The volume transport was conser-

vatively estimated only for depths shallower than 850 m, the approximate depth of

the FBC sill. However, water may be lifted from greater depths by aspiration and

supply the overflow33. If the depth restriction is removed, the total contribution of

the IFSJ to the FBC overflow, according to the 2011 shipboard survey, could be as

high as 1.4± 0.2 Sv.

The bulk of the IFSJ’s volume transport is confined to a small range in Θ-S space

(Fig. 3b). The locus of the Θ-S classes with the highest transport, which we refer to

as the transport mode, is centred near -0.52± 0.11 ◦C and 35.075± 0.003 g kg−1 in

temperature and salinity, respectively (see the methods section for details). While

the upper part of the IFSJ becomes warmer and more saline as it progresses east-

ward, due to mixing with Atlantic Water near the Faroe Islands, the hydrographic

properties of the transport mode are not significantly modified along the current’s

pathway. The density of the transport mode is σΘ = 28.06 kg m−3. This is not sig-

nificantly denser than the transport mode of the NIJ (σΘ = 28.05 kg m−3), which

has a higher temperature (-0.29± 0.16 ◦C) but the same salinity15. The similarity

of these transport modes suggests that the water masses in the two currents have

the same origin. Waters of sufficient density are regularly ventilated in the Green-

land Sea during winter34, and the density difference between the mixed layers there

and the two transport modes can be as small as 0.005 kg m−3, which corresponds

to differences of 0.1 ◦C or 0.007 g kg−1 for temperature or salinity at this density,
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respectively32. As such, the Greenland Sea can supply the densest portions of the

two major overflows across the Greenland-Scotland Ridge. Changes in dense-water

formation in the Greenland Sea, which are expected in a warming climate due to the

retreat of sea ice leading to reduced wintertime air-sea heat fluxes in the region35,

may thus affect both pathways.

As is the case for the IFSJ, the NIJ is often composed of separate cores15. In

particular, northeast of Iceland the slightly warmer NIJ tends to flow toward Den-

mark Strait along the 600 and 800 m isobaths, while the slightly colder IFSJ flows

toward the FBC approximately along the 750 and 1100 m isobaths. Notably, the

600 and 750 m isobaths are close to the sill depths of Denmark Strait and the FBC,

respectively. This implies that hydraulic control occurring at the two passages33;36;37

may be influencing the shallow core of each current.

Data from past studies have hinted at a deep flow along the northern side of the

Iceland-Faroe Ridge. Four moorings deployed during 1988–1989 along the 1000 m

isobath recorded a deep, bottom-intensified current24. This pathway was also iden-

tified in a two-layer numerical model with realistic bathymetry38. Deep currents in

this region are thus suggested to be strongly guided by the bathymetry, which is

further supported by estimates from a simplified dynamical model39. Moreover, a

subset of RAFOS floats deployed at 600–800 m depth northeast of Iceland in 2013

and 201440, and near the Faroe Islands in 200425, drifted southeastward along the

slope between Iceland and the Faroe Islands. In the latter case, all but one of the

nine floats deployed over isobaths shallower than 1750 m followed the bathymetry

southeastward into the Faroe-Shetland Channel, where the floats’ trajectories be-

came more chaotic before approaching the Shetland slope and exiting across the sill

into the North Atlantic. This behaviour was explained in the context of a large-scale

pressure gradient dominating the topographic control and adjusting the potential

vorticity of the flow25. An alternate explanation is that the floats underwent turbu-

lent entrainment into the deep Faroe-Shetland Channel Jet, located at the foot of

the Shetland slope41, and were subsequently advected into the FBC.

To investigate whether the water in the IFSJ may follow this pathway and feed

the overflow through the FBC, we compared the IFSJ’s properties and volume trans-

port to those of the overflow in the -1–0 ◦C temperature class33, which encompasses

the IFSJ transport mode. This indicates that the transport of the IFSJ can account

for 92 % of the total overflow through the FBC within this temperature class (65 % if

the IFSJ’s transport below sill depth is excluded; Fig. 3c). Despite the slight differ-
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ence in salinity, which may be caused by the extensive mixing in the Faroe-Shetland

Channel18;33, the hydrographic properties of the IFSJ are in close agreement with

the properties of the FBC overflow for this temperature class (Fig. 3d). This cor-

roborates the notion that the IFSJ is a major contributor to the overflow through

the FBC. The flow dynamics between section N and the entrainment into the Faroe-

Shetland Channel Jet, however, warrant more dedicated scrutiny.

While the shipboard survey constitutes a snapshot of the IFSJ between Iceland

and the Faroe Islands during autumn 2011, eight additional surveys were conducted

northeast of Iceland between 2011 and 2018 that have previously been used in a

study focusing on the NIJ15. At Slétta and Langanes NE (Fig. 1b) the bottom-

intensified IFSJ core at 750 m depth was present in seven and four of the nine

occupations, respectively. In the September 2011 survey, the transport of the 750

m core at Slétta was slightly larger than the average over all the surveys where

the IFSJ was detected, while that at Langanes NE was slightly smaller than the

average. (The deep IFSJ cores were not sampled at these transects.) However, there

was considerable variability in the strength and the width of the current between

the surveys. Similarly, the transport of the NIJ is quite variable, which has been

attributed to internal variability rather than large-scale atmospheric conditions 15.

Inferences from shipboard hydrographic time series

To shed more light on the structure of the IFSJ, we analysed a collection of 120

repeat hydrographic transects along section N directly north of the Faroe Islands

(Fig. 1), spanning the last 30 years. While the station spacing of 10 nautical miles

is too coarse to properly resolve the IFSJ, we considered the isopycnal structure

near the upper slope to identify occupations where particularly dense water (σΘ ≥
28.03 kg m−3) was present at the bottom of station 4 (referred to as the “elevated

isopycnal” state, which includes 38/120 surveys). We note that only the most ex-

treme occurrences of dense water banked up on the slope are captured due to the

large distance between stations. As such, more moderate banking of dense water

cannot be resolved (i.e., the remaining surveys with a “relaxed isopycnal” state show

very little isopycnal slope, but this does not imply that the IFSJ was not present).

The composite mean of the elevated isopycnal state is shown in Fig. 4.

The surface layer consists of warm, saline water transported by the Faroe Cur-

rent. Beneath this surface layer, the isopycnal tilt reverses, and cold, dense water

is banked up against the slope (Fig. 4a–b). This is characteristic of the IFSJ (Sup-
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plementary Fig. 1, 2), and the elevated isopycnal composite section of geostrophic

velocity relative to the 28.0 kg m−3 isopycnal illustrates the bottom-intensified flow

near the slope, directed toward the Faroe-Shetland Channel (Fig. 4c). The deep cur-

rent is located between stations 4 and 5, which encompass the isobaths of both cores

of the IFSJ farther upstream. (The combination of the steep continental slope and

coarse resolution along section N makes it impossible to resolve separate IFSJ cores.)

As such, the elevated isopycnal state qualitatively resembles the bottom-intensified

structure and properties of the IFSJ farther upstream.

In autumn 2011 section N was sampled 18 days before and 46 days after the

nearest high-resolution upstream section. The isopycnals were elevated during the

former survey, but not during the latter. In general over the 30-year period, the

variability is high, and elevated isopycnal sections were identified in most years

and every season, but without clear interannual and seasonal signals or long-term

persistence indicating influence by large-scale atmospheric patterns.

Vertical structure and variability from moored measurements

To investigate the vertical structure and variability of the IFSJ, we analysed moored

records of direct current velocities at section N. From June 2017 to May 2018, two

moorings were deployed at depths of 960 m and 1210 m (Fig. 4c). These were shore-

ward and seaward, respectively, of the deep IFSJ core (1100 m) identified in the

high-resolution shipboard data farther upstream. A combined mean along-stream

velocity profile constructed from the two moorings reveals bottom-intensified flow

directed toward the FBC (Fig. 5a). The structure and magnitude of the flow is con-

sistent with the IFSJ (Fig. 2). The mean velocity in the strongest part of the current

(below the dashed line in Fig. 5a) was 6.7 cm s−1 (Fig. 1b). This is likely an under-

estimate due to sidelobe reflections from the bottom (see the methods section for

details). Short, intermittent periods of negative (northwestward) velocities (Fig. 5d)

may be due to lateral meandering of the deep IFSJ core. The mean hydrographic

properties closest to the mooring from section N match those of the IFSJ’s transport

mode (Fig. 5b–c). Taken together, there is strong evidence of a bottom-intensified

current resembling the IFSJ at section N.

The inshore mooring in Fig. 4c is part of a long time series of velocity measure-

ments designed to monitor the Atlantic Water transport in the surface-intensified

Faroe Current. However, the mooring’s depth range extends sufficiently deep to cap-

ture the upper portion of the IFSJ (Fig. 5a). Encouragingly, the measurements from
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the overlapping depth range of the inshore and offshore moorings are well correlated

(r= 0.63). Furthermore, the variability in the strongest part of the IFSJ from the

offshore mooring (below the dashed line in Fig. 5a) is also well correlated (r= 0.59)

with the uppermost portion of the IFSJ from the inshore mooring (570–675 m).

Both correlations are statistically significant at the 99 % confidence level (see the

methods section for details). As such, measurements from the inshore mooring may

be considered a longer-term proxy for the variability in the IFSJ.

We examined a 7-year long subset of the inshore mooring velocity record (2006–

2013) when the mooring was deployed at approximately the same bottom depth

(956± 5 m). There is nothing remarkable about the period of the 2011 survey in

terms of magnitude and variability in this record. Comparing the deepest veloci-

ties, which extend into the upper portion of the IFSJ, to the elevated and relaxed

isopycnal states of the section N occupations, the elevated isopycnals appear to be a

sufficient, but not necessary condition for eastward velocities in the upper portion of

the IFSJ (not shown). This indicates that the hydrographic occupations of section

N are not well suited to infer the strength of the IFSJ.

From the 7-year long mooring record we can determine the dominant variability

of the along-stream velocity by computing empirical orthogonal functions (EOFs).

The two leading modes explain 68 and 25 % of the velocity variance, respectively

(Fig. 6). The first EOF represents a barotropic mode, where the Faroe Current

and the IFSJ are in phase, while the second EOF is a baroclinic mode in which the

strengths of the Faroe Current and IFSJ vary out of phase.

A periodogram of the principal component time series of the first EOF mode

exhibits variability on seasonal time scales, while that of the second mode is domi-

nated by variability on a 2–3 week period (not shown). Interestingly, the NIJ has no

such seasonal signal8;15;42;43. Since the IFSJ has similar properties, likely the same

source waters, and is located even deeper in the water column, a seasonal signal in

the IFSJ northeast of Iceland was not expected. While the offshore mooring record

from section N is too short to resolve a seasonal cycle, the velocities toward the

Faroe-Shetland Channel appear to be enhanced from November to January com-

pared to July and August (Fig. 5d), consistent with the long-term proxy of the IFSJ

from the inshore mooring. We note that the energetic Faroe Current, which is in

close proximity to the IFSJ near section N, has the same seasonality44 (Fig. 6).
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Wider implications

In conclusion, we have provided compelling evidence of a current transporting dense

water from northeast Iceland toward the FBC overflow, using four independent

observational data sets with different spatial and temporal resolutions. The current

is named the Iceland-Faroe Slope Jet (IFSJ). While previous studies have hinted at

the existence of such a flow, the data employed here are extensive and multi-faceted,

including the first high-resolution observations of the IFSJ. The current is bottom-

intensified and comprises two cores centred on the 750 and 1100 m isobaths along

the Iceland-Faroe Ridge. The bulk of the transport is confined to a small range in

temperature-salinity space, centred near -0.52± 0.11 ◦C and 35.075± 0.003 g kg−1.

This transport mode has a density of σΘ = 28.06 kg m−3, consistent with the densest

waters in the FBC overflow. Long-term repeat shipboard observations north of

the Faroe Islands suggest the presence of the IFSJ through dense water banked up

along the slope, thus supporting the results of the high-resolution synoptic survey.

Direct current measurements corroborate the existence of the IFSJ, and a long-term

velocity record indicates a link between the variability in the surface-intensified

Faroe Current and the uppermost part of the IFSJ. Our measurements suggest that

the IFSJ transports approximately 1 Sv of overflow water toward the FBC, which

can account for half of the total transport through the passage. As such, the current

is a major pathway of dense water to the easternmost overflow ventilating the deep

North Atlantic.

Recent studies emphasise the importance of dense-water formation in the Nordic

Seas in sustaining the lower limb of the AMOC26;27. A basic understanding of the

origin and the circulation of this dense water mass is thus required for accurate pre-

dictions of the future state of the AMOC. The processes and locations of dense-water

formation are changing32;35;45;46, which in turn could affect the composition and the

pathways of the dense waters contributing to the overflow across the Greenland-

Scotland Ridge. The IFSJ is one of these pathways, and our findings highlight its

significance for the overturning circulation and thus the climate system.

Methods

High-resolution hydrographic/velocity survey

The high-resolution hydrographic/velocity survey, which included eight transects

north of Iceland (Fig. 1b), was conducted on R/V Knorr in September 2011. The
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hydrographic data were acquired using a Sea-Bird 911+ conductivity-temperature-

depth (CTD) instrument, which was mounted on a rosette with 24 Niskin bottles.

Water samples were obtained to calibrate the conductivity sensor, and the final ac-

curacy of the CTD measurements was estimated to be 0.001 ◦C for temperature,

0.002 g kg−1 for salinity, and 0.3 dbar for pressure15. Velocities were measured using

upward and downward-facing lowered acoustic Doppler current profiler (LADCP)

instruments. The velocity measurements were processed using the LADCP Process-

ing Software Package from the Lamont-Doherty Earth Observatory 47;48. An updated

version of a regional inverse tidal model49 was used to solve for the eight main tidal

constituents; these barotropic tidal currents were then subtracted from the current

velocities.

Vertical sections of Conservative Temperature (temperature), Absolute Salinity

(salinity), and potential density anomaly (density) were constructed using Laplacian-

spline interpolation50, with a grid spacing of 2 km in the horizontal and 10 m in the

vertical. Absolutely referenced geostrophic velocities normal to each transect were

calculated as follows: The cross-track ADCP velocities were interpolated onto the

2 km by 10 m regular grid. At each grid point the reference-level velocity, (i.e., the

difference between the depth-averaged ADCP velocity and the depth-averaged rela-

tive geostrophic velocity computed from the hydrography) was added to the relative

geostrophic velocity. To avoid undue influence from surface and bottom boundary

layers, the top and bottom 50 m were excluded from the depth averages. Positive

along-stream direction is toward the Faroe-Shetland Channel. The volume transport

of the IFSJ was calculated from the absolutely referenced geostrophic velocity fields.

We estimated the uncertainty of the transport from instrument and processing er-

rors scaled by the cross-sectional area of the current. The combined error of the

LADCP instrument and the processed velocity data was estimated to be 3 cm s−1,

while the inaccuracies in the tidal model are 2 cm s−1 north of Iceland7. The total

uncertainty, determined as the root-sum-square of the instrument/processing and

tidal model errors, is 3.6 cm s−1. This uncertainty does not reflect the temporal

variability at each transect, which cannot be assessed from a single survey. The

transport estimate from each section is taken to be independent: On average, the

sections were obtained 1.6 days apart, which exceeds the autocorrelation of the ve-

locity time series at the deep, offshore mooring of 1.3 days. Furthermore, it would

take more than two weeks for a water parcel to cover the distance of over 100 km

between sections at a typical speed of 7.5–10 cm s−1.
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The transport mode of the IFSJ was determined following a similar approach as

for the NIJ15: For each transect, the volume transport in each grid cell of both IFSJ

cores was binned into temperature and salinity classes of 0.075 ◦C and 0.003 g kg−1,

respectively. (The extent of the classes does not affect the results significantly.) Each

Θ-S matrix was normalised by its maximum transport, such that each transect was

given equal weight. The transport matrices were then added, and grid cells with

transports below the e-folding scale of the maximum transport were ignored. The

transport-weighted average of the remaining Θ-S classes determines the locus of the

main transport, i.e., the properties of the transport mode.

Monitoring hydrographic stations

The seven hydrographic stations from the standard monitoring section N north of

the Faroe Islands along 6.083 ◦W (Fig. 1b) are spaced 10 nautical miles apart and

were typically occupied three to four times per year between 1987 and 2018. The

accuracies of the temperature and salinity measurements are better than 0.001 ◦C

and 0.005 g kg−1 from 1997 onwards44. Laplacian-spline interpolation was used to

construct vertical sections of temperature and salinity, with a grid spacing of 5 km

by 10 m. The wide station spacing and steep slope between stations 4 and 5 led to

a large “bottom triangle”. This was filled using measurements from the bottom of

station 4 prior to interpolation, which helped conserve the structure of the dense

water banked up on the slope. Gridded sections of relative geostrophic velocities

referenced to the 28.0 kg m−3 isopycnal were computed from the hydrographic data.

Moored ADCP measurements

We used one year (June 2017 to May 2018) of current measurements from ADCP

instruments on section N at 62.95 ◦N and 62.92 ◦N (separated by 3.1 km). The moor-

ings were located at bottom depths of 1210 m and 960 m and measured current speed

and direction in ranges of approximately 515–1185 m and 125–675 m, respectively. A

lowpass filter of 36 hours was applied to the velocity time series, originally recorded

every 20 min, before daily averages were computed. The velocities were rotated to

align with the direction of the mean flow of the strongest part of the IFSJ below

975 m, which is 105◦ clockwise from true north.

The velocity measurements of the bottom-mounted ADCP at the offshore moor-

ing are affected by interference from sidelobe reflection. This typically occurs in

11

63



the lowest 200–300 m and results in a strong artificial velocity bias toward zero 51;52.

The following procedure was used to determine the cut-off depth of the contam-

inated measurements, which were removed prior to further analysis: We selected

daily profiles with a bottom-intensified structure characteristic of the IFSJ (66 % of

all profiles for a velocity maximum above 4 cm s−1; the results are not very sensitive

to this choice). We then identified the depth of the velocity maximum for each of

these profiles (1065 m on average) and the depths where the maximum is reduced to

95 %. The upper value of this range (1036 m) is taken to be the limit of the strongest

part of the IFSJ (dashed line in Fig. 5a). The lower value of this range (1096 m) is

the cut-off depth, and measurements of all profiles below this threshold were disre-

garded. The limit is a compromise between removing too many measurements and

keeping profiles that underestimate the true velocity at depth due to the sidelobe

interference.

The correlations between the strongest part of the IFSJ from the offshore mooring

and the uppermost portion of the IFSJ from the inshore mooring (r= 0.59) and

between the overlapping depth range of the inshore and offshore moorings (r= 0.63)

are statistically significant at the 99 % confidence level, taking the autocorrelations

of the time series into account.

We used a 7-year long record (2006–2013) of the inshore mooring at section N.

The mooring at this location has been continuously deployed since 1997. However,

the exact location and bottom depth varied over the period; it was on average

located at the 925 m isobath44. We selected the longest continuous subset with the

deepest available measurements that were collected at a consistent bottom depth

(956± 5 m, with velocities measured between 120 and 670 m depth), such that the

ADCP bins extending into the upper portion of the IFSJ could be used without

interpolation in the vertical. The chosen 7-year record does not differ markedly

in terms of interannual variability of the velocity at depth when compared to the

full record. As for the single-year deployments, a lowpass filter of 36 hours was

applied to the velocity time series, originally recorded every 20 min, before daily

averages were computed. To be consistent with the single-year deployments, the

velocity was rotated to align with the mean flow of the strongest part of the IFSJ

below 975 m from the offshore, deeper mooring, which is 105◦ clockwise from true

north. To determine the dominant variability of the velocity, we computed empirical

orthogonal functions (EOFs). Before decomposing the velocity time series into its

eigenmodes of variability and the corresponding principal component time series, we
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linearly interpolated the gaps of two to four weeks every summer when the mooring

was serviced. Different interpolation methods gave quantitatively similar results in

the EOF analysis.
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Figure 1: Bathmetry and circulation near the Greenland-Scotland Ridge.
a) Schematic pathways of the inflow of Atlantic Water (red arrows) and the out-
flow of dense water (purple arrows). The acronyms are: FC = Faroe Current;
NIIC = North Icelandic Irminger Current; sb EGC = shelfbreak East Greenland
Current; sep EGC = separated East Greenland Current; NIJ = North Icelandic Jet;
IFSJ = Iceland-Faroe Slope Jet; FBC = Faroe Bank Channel; SFZ = Spar Fracture
Zone. b) Depth-integrated transport of overflow water (σΘ ≥ 27.8 kg m−3) per grid
point across the high-resolution shipboard transects used in the study. The shallow
and deep IFSJ cores are marked in red and black, respectively, the NIJ is marked
in yellow, and the remaining transport in grey (see legend for scaling). The seg-
ments of the transects shown in Fig. 2 are highlighted in green. The three western-
most transect names are abbreviated as: KR = Kolbeinsey Ridge, SL = Slétta, and
LN = Langanes Northeast. The mean velocity in the strongest part of the IFSJ from
the year-long offshore mooring record at section N is shown by the dark red vector.
Stations 4 and 5 at section N are indicated by white dots. The coloured shading
in a) and b) is the bathymetry from ETOPO153; the 750 and 1100 m isobaths are
highlighted in grey.

71



Figure 2: Vertical sections of velocity across the IFSJ. Absolutely referenced
geostrophic velocity (colour) and density (thin grey lines) for the green segments of
the shipboard transects in Fig. 1b. The thick white line is the 27.8 kg m−3 isopycnal.
The black inverted triangles indicate the locations of the hydrographic profiles, which
are 2.5–10 km apart, depending on the steepness of the slope. For each transect the
origin (distance y= 0 km) was placed at the shelf break (for sections north of Iceland)
or the point where the slope gradient starts to increase (for sections north of the
Iceland-Faroe Slope). Positive velocities are directed toward the Faroe Islands. The
red and black boxes outline the shallow and deep cores, respectively. The NIJ is
indicated in yellow (cf. Fig. 1b). The abbreviated names in parentheses are used as
labels in Fig. 1. The bathymetry is from the ship’s echosounder.
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Figure 3: Transport of overflow water (σΘ ≥27.8 kg m−3) in the IFSJ. a)
Volume transport for each transect of the high-resolution shipboard survey. The
estimates are broken down by core and relation to sill depth (see legend). Dark
grey bars represent deep cores that were not completely bracketed by observations
(Fig. 2). The error bars reflect the uncertainty of the transport from the combined
instrument and processing errors scaled by the cross-sectional area of the current
(see the methods section for details). b) Mean volume transport with respect to
temperature and salinity properties of both cores from all transects (the red and
black boxes in Fig. 2). The grey contours are density. The transport mode of
the IFSJ (NIJ) is marked in grey (black); the error bars indicate one standard
deviation. c) Volume transport and d) mean hydrographic properties of the IFSJ
(including and excluding flow below the sill depth) and at the FBC overflow sill for
temperatures between -1 and 0 ◦C. The error bars in c) and d) are determined as
in a) and b), respectively. In d) the transport modes of the IFSJ (determined from
all hydrographic properties) and the NIJ from panel b) are shown in addition for
reference.
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Figure 4: Composite of a subset of vertical sections north of the Faroe
Islands. Mean temperature (a), salinity (b), and relative geostrophic velocity (c) for
the elevated isopycnal state (see text for details). The 28.03 kg m−3 isopycnal used
to identify this subset of sections is marked in white, and the 27.8 kg m−3 isopycnal,
which defines the top of the overflow layer, is the thick black contour. Positive
velocities relative to the level of no motion are directed eastward toward the Faroe-
Shetland Channel. The station numbers are indicated along the top. The vertical
grey lines in c) mark the locations and depth ranges of direct velocity measurements
from moorings (Fig. 5a).
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Figure 5: Year-long moored records and hydrographic profiles from sec-
tion N. a) Mean along-stream velocity profiles from moorings deployed from June
2017 to May 2018 at section N at a bottom depth of 960 m (green) and 1210 m
(brown; Fig. 4c). The along-stream direction is defined as 105◦ clockwise from true
north (see methods section for details). The dashed line indicates the upper limit
for the velocity depth average in d). b) and c) show mean profiles of temperature
(red), salinity (blue), and density (purple) near the offshore mooring from 120 re-
peat occupations of section N. The properties of the IFSJ transport mode from the
high-resolution transects (Fig. 3b) are marked by vertical lines. The shaded areas
in a)–c) indicate one standard deviation (the standard error is very small for all
profiles). d) Time series of the depth-averaged velocity in the deepest portion of the
IFSJ, below the dashed line in a).
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Figure 6: Dominant variability of the along-stream velocity from the in-
shore moored record at section N (2006–2013; 2533 profiles). a) Empirical
orthogonal function (EOF) modes 1 (blue) and 2 (red), explaining 68 and 25 % of
the variance, respectively. b) Mean along-stream velocity profile (thick solid purple
line) and velocity profiles (blue: mode 1, red: mode 2) for times when the principal
components for mode 1 and 2 are positive (solid) and negative (dashed) one stan-
dard deviation. c) and d) Principal component time series for mode 1 (PC1) and
mode 2 (PC2). The units are normalised by the standard deviation.
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Supplementary Figure 1: Vertical sections of temperature across the
IFSJ. Temperature (colour) and density (thin grey lines) for the green segments
of the shipboard transects in Fig. 1b. The thick black line is the 27.8 kg m−3 isopy-
cnal. The black inverted triangles indicate the locations of the stations. The red
and black boxes outline the shallow and deep cores, respectively. The abbreviated
names of the transects are used as labels in Fig. 1. The bathymetry is from the
ship’s echosounder.

78 Paper II



Supplementary Figure 2: Vertical sections of salinity across the IFSJ.
Same as Supplementary Fig. 1 except for salinity.
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Chapter 6

Concluding discussion

The NIJ, IFSJ, and NIIC are integral components of the overturning in the Nordic Seas
and the northern extremity of the AMOC. Based on a multitude of observational data
sets, this thesis provides novel insight into the pathways and evolutions of these currents
and thus enhances our understanding of the circulation along the Greenland-Scotland
Ridge. In particular, three research questions were posed in Chapter 1:

• How does the NIJ evolve along the Iceland slope toward Denmark Strait? (Paper I)
• How does overflow water progress toward the Faroe Bank Channel? (Paper II)
• How is the NIIC modified along the north Iceland shelf? (Paper III)

These questions are addressed in the papers that constitute this thesis (Chapter 5). Since
our observations are limited in time and space, definite answers are elusive, and each
advancement raises new questions. In the following, I will present some of these future
research questions, which have emerged from this thesis.

The importance of high-resolution observations

While the Icelandic waters have been monitored by hydrographic surveys since 1950, it
took nearly 50 years for the narrow NIJ to be discovered with the advent of direct veloc-
ity measurements on the north Iceland slope (Jónsson, 1999; Jónsson and Valdimars-
son, 2004). Densely sampled transects are crucial to resolve the hydrographic and kine-
matic structure of the current (Paper I). Similarly, the monitoring section N north of the
Faroe Islands has been surveyed for more than three decades, and moorings record-
ing current velocities have been in place for over 20 years, although primarily focused
on the upper-layer flow (Hansen et al., 2015). The narrow, bottom-intensified cores of
the IFSJ have previously gone unnoticed due to the coarse station spacing (Paper II).
Despite the extensive costs related to high-resolution shipboard surveys, these intense
observational programs are indispensable for an understanding of regional current sys-
tems that may influence the large-scale circulation – in the Nordic Seas (Håvik et al.,
2017, Papers I–II) or elsewhere (Pickart et al., 2005; Corlett and Pickart, 2017). Au-
tonomous measuring devices such as sea gliders and floats are an excellent complement
and facilitate data acquisition in regions that are otherwise scarcely accessible, as dur-
ing the harsh weather conditions in the western Nordic Seas in winter or under the sea
ice.
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The transport mode and its ramifications

The comprehensive data set used in Paper I, which comprises 13 high-resolution hy-
drographic/velocity surveys across the northern slope of Iceland, enabled us to robustly
elucidate the properties, structure, and transport of the NIJ (Paper I). In particular, we
defined the transport mode of the NIJ as the small area in hydrographic space that ac-
counts for the bulk of the current’s transport. As these properties are not modified
along the NIJ’s pathway, they indicate the source of these densest waters in the NIJ:
Observational evidence suggests that waters with properties corresponding to the trans-
port mode of the NIJ are regularly formed during winter in the Greenland Sea (Huang
et al., accepted). This agrees with Våge et al. (2015, in prep.) who argued for a nowa-
days diminished role of the Iceland Sea for the formation of the densest water in the
NIJ, diverging from earlier hypotheses (Jónsson and Valdimarsson, 2004; Våge et al.,
2011).

Noticeably, the transport modes of the NIJ and the IFSJ are not significantly differ-
ent (Paper II). As such, also the IFSJ appears to originate in the Greenland Sea (Huang
et al., accepted, Paper II). This implies that the densest waters supplying the two major
overflows across the Greenland-Scotland Ridge are likely formed in the Greenland Sea,
highlighting the importance of deep convection in this area (Huang et al., accepted, Pa-
per II). Changes in the location and process of dense-water formation in the Greenland
Sea may influence the properties and pathways of both the NIJ and the IFSJ and may
thus alter the properties and composition of the overflows. Therefore, this relation be-
tween the Denmark Strait and Faroe Bank Channel overflows needs to be explored in
future observational and modelling studies.

Pathways between the Greenland and Iceland Seas

The exact pathways and transports of the dense water from the Greenland Sea to
the north Iceland slope are not yet determined. Huang et al. (accepted) argued that
the water broadly follows the Mohn, Kolbeinsey, and Jan Mayen Ridges southward
(Fig. 2.2), and high-resolution hydrographic/velocity measurements from two ship-
board surveys along these submarine ridges suggest that the dense water enters the
Iceland Sea through several of the gaps in the ridges (A. Brakstad, personal communi-
cation, 2020). A tracer release experiment indicated that rapid export of dense water
from the Greenland to the Iceland Sea is possible (Messias et al., 2008). As such,
identifying the exact pathways is important for determining the timescale for newly
ventilated water to progress from the formation region to the overflows. The interior
Iceland Sea may be considered a transit region for the densest overflow water only, as
we recently have shown that it is not the main source region of either the NIJ or the
IFSJ, at least in the present climate (Våge et al., in prep.).

Ocean dynamics northeast of Iceland

Near the Iceland slope it remains unclear how the dense water becomes entrained into
the NIJ and the IFSJ and what the dynamics of the currents’ formation are. The slope
northeast of Iceland is very complex due to the proximity and potential interplay of the
NIIC, NIJ, and IFSJ (Papers I–III). The dense water from the Greenland Sea appears to
feed both the westward-flowing NIJ and the eastward-flowing IFSJ supplying the major
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overflows (Papers I–II). An understanding of the mechanisms underlying this partition
requires investigations of the basin-shelf exchange of dense water and the role of topog-
raphy, including the influence of the different sill depths of the overflows and upstream
effects of hydraulic control. These processes may also explain why dense water banks
up along the entire northern Greenland-Scotland Ridge (Jónsson and Valdimarsson,
2004; Våge et al., 2011, Papers I–II) and why both the NIJ and IFSJ are composed,
at least at times, of two cores (Pickart et al., 2017, Papers I–II). High-resolution nu-
merical models of the western Nordic Seas, along with idealised numerical models
representative of the northern slope of the Greenland-Scotland Ridge that include the
deep overflows, will constitute ideal tools for this analysis.

A fundamental difference between the NIJ and the IFSJ northeast of Iceland is that
the NIJ emerges and increases in transport along its pathway (Paper I), while the IFSJ
appears to be a fully developed current that does not vary much in transport between
Iceland and the Faroe Islands (Paper II). As such, different processes are likely impor-
tant for the formation of the currents. The earliest hypothesis regarding the formation
of the NIJ included the NIIC as the upper limb of a local overturning circulation and
water mass transformation in the Iceland Sea (Våge et al., 2011). This hypothesis has
subsequently been questioned, in particular in terms of the supply of the densest por-
tion of the NIJ (Pickart et al., 2017; Ypma et al., 2019). However, it is peculiar that
the NIJ emerges exactly where the bathymetry of the Iceland slope steepens and eddies
detach from the NIIC (Paper III). This indicates that the co-located disintegration of
the NIIC and emergence of the NIJ northeast of Iceland may, after all, be dynamically
linked. Further work is necessary to elucidate the instability processes and quantify the
effect of this local diversion of heat and salt off the northeast Iceland shelf.

The East Icelandic Current

The East Icelandic Current likely also interacts with the NIIC northeast of Iceland, yet
we know little about this flow. This surface-intensified current branches off the East
Greenland Current and transports cold, fresh surface water and Atlantic-origin water
into the Iceland Sea (Jónsson, 2007; Macrander et al., 2014). However, the amount of
freshwater in the East Icelandic Current is very small (Macrander et al., 2014), so its ef-
fect on water mass transformation in the Iceland Sea is limited. The pathway of the cur-
rent is unclear. Using historical hydrographic measurements, Casanova-Masjoan et al.
(2020) suggested that the East Icelandic Current approaches the Iceland shelf break
west of the Kolbeinsey Ridge and flows alongside the NIIC before the currents merge
northeast of Iceland. De Jong et al., (2018), however, argued based on trajectories from
RAFOS floats that the East Icelandic Current passes through the Spar Fracture Zone in
the Kolbeinsey Ridge, hypothesising that the flow extends to greater depths than pre-
viously assumed. This implies that the current could provide a potential barrier for the
dense water progressing southward from the Greenland Sea (de Jong et al., 2018), but
evidence to support this hypothesis is still missing. Nevertheless, the East Icelandic
Current may play a role in the cooling and freshening of the NIIC (Casanova-Masjoan
et al., 2020, Paper III). Its transport, extent, variability, and fate in the Norwegian Sea
could be explored in future observational surveys employing shipboard measurements,
sea gliders, or floats.



138 Concluding discussion

The upstream pathways of the Faroe Bank Channel overflow

The recent focus on the upstream pathways of the Faroe Bank Channel overflow has
substantially advanced our knowledge about the supply of dense water to this gap in the
Greenland-Scotland Ridge (Chafik et al., 2020; Huang et al., accepted, Paper II). With
the observational evidence of the IFSJ along the slope between Iceland and the Faroe
Islands (Paper II), a direct pathway of dense water toward the Faroe-Shetland Chan-
nel has been identified. While the observational analysis by Huang et al. (accepted)
corroborated the existence of this dense-water pathway along the Iceland-Faroe Ridge,
they found an additional pathway southward along the Jan Mayen Ridge (Fig. 2.2).
This branch also has properties matching the densest water in the Faroe Bank Chan-
nel overflow (Huang et al., accepted). Based on Lagrangian analysis from a numerical
model, Chafik et al. (2020) suggested that some of the dense water passing north of
the Faroe Islands approaches the Norwegian coast before supplying the Faroe-Shetland
Channel from the east. It seems possible that this indirect pathway is the continuation
of the deep flow along the Jan Mayen Ridge identified by Huang et al. (accepted).

However, it is important to note that these three studies only provide an initial ac-
count of the circulation pattern upstream of the Faroe Bank Channel. Extensive investi-
gations using observations and models, comparable to the focus on the Denmark Strait
overflow in recent years, are required to robustly quantify the transports and variabil-
ity of these pathways and to understand their dynamics. In particular, a mooring array
across the Iceland-Faroe Ridge will shed light on the structure and variability of the
IFSJ, and high-resolution hydrographic/velocity surveys will be central for exploring
the upstream pathways and source regions. Furthermore, it is unclear how the currents
enter the Faroe-Shetland Channel. While Chafik et al. (2020) have demonstrated that
the dense-water flow within the Faroe-Shetland Channel occurs along its eastern slope,
floats entering the channel indicated high eddy activity and mixing (Søiland et al.,
2008). As such, future studies ought to address the entrainment of the upstream dense-
water flows into the current in the Faroe-Shetland Channel, which ultimately feeds the
Faroe Bank Channel overflow.

Impacts of climate change

The warming climate affects many atmospheric and oceanic processes in the Nordic
Seas, and the responses of the complex coupled climate system to these changes are
difficult to predict. In particular, it is crucial to better understand the air-ice-sea inter-
action: The wintertime sea-ice retreat in the western Nordic Seas affects the surface
heat fluxes, which in turn are integral for the formation of dense water (Moore et al.,
2015). While convection in the interior basins weakens, new areas along the bound-
ary currents around the Nordic Seas and parts of the Arctic Ocean that were previously
insulated by sea ice are now in direct contact with the atmosphere and can be further
ventilated and densified (Moore et al., submitted; Våge et al., 2018). This modification
of the boundary currents needs to be quantified and investigated more thoroughly as it
appears to be an important future process for the production of dense water affecting
the composition of the overflow water.

While the properties of the overflows are changing, the volume transport of over-
flow water across the Greenland-Scotland Ridge has been remarkably stable over the
past decades (Hansen et al., 2016; Jochumsen et al., 2017; Østerhus et al., 2019). In



139

the subtropical North Atlantic, however, the AMOC has been in a reduced state since
2008 (Smeed et al., 2018), which reflects the expectation of a weakening AMOC in a
warming climate (IPCC, 2013). At 45 ◦N the overturning strength has recently inten-
sified, but because of the short observational time span, a lead-lag relationship to the
AMOC at 26 ◦N cannot be conclusively established, and the recovery of the subtropical
AMOC is still pending (Moat et al., 2020). So far, the apparent discrepancy between a
stable overturning at high latitudes and a weakened circulation in the subtropical North
Atlantic has not been explained.

Concluding remarks

To better understand the present overturning in the Nordic Seas and beyond and to pre-
dict its future state, a continued monitoring of the exchange flows across the Greenland-
Scotland Ridge is imperative. Furthermore, observations of the upstream pathways and
sources of the overflows are required, especially with respect to interannual variabil-
ity and long-term trends of transports and hydrographic properties. This implies a need
for internationally coordinated, interdisciplinary field campaigns obtaining joint atmo-
spheric, physical, and biogeochemical ocean measurements following the example of
the Iceland Greenland Seas Project (Renfrew et al., 2019). However, a thorough under-
standing can only be reached by combining these observations with substantial mod-
elling efforts encompassing the range from highly idealised to high-resolution regional
and global climate models.

The three papers that constitute this thesis have, from an observational point of
view, advanced our understanding of the circulation along the northern slope of the
Greenland-Scotland Ridge. In particular, the main conclusions are:

• The NIJ emerges northeast of Iceland and its volume transport increases gradu-
ally toward Denmark Strait; the supply to the Denmark Strait overflow is more
substantial than previously envisaged (Paper I).

• The IFSJ is a hitherto unrecognised pathway of overflow water toward the Faroe
Bank Channel and accounts for approximately half of the total overflow transport
through the passage (Paper II).

• The similarity of the transport modes of the NIJ and IFSJ suggests a common
source, which is likely in the Greenland Sea. As such, dense water originating
in the Greenland Sea supplies the two major overflows across the Greenland-
Scotland Ridge (Papers I–II).

• The NIIC cools and freshens considerably along its pathway, yet the formation
of overflow water on the north Iceland shelf is limited and may only sporadically
supply the lighter portion of the NIJ. The NIIC’s volume transport decreases sig-
nificantly northeast of Iceland, where the eddy activity is enhanced, indicating a
dynamical link to the emergence of the NIJ (Paper III).

Collectively, this thesis highlights the significance of the NIJ, IFSJ, and NIIC for the
overturning in the Nordic Seas and their impact on the exchange between the Nordic
Seas and the North Atlantic.
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