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Abstract 

The histone modification H3K27ac is a hallmark of active enhancers. However, 

its role in enhance-specific activity remains obscure. We applied mass spectrometry-

based quantitative interaction proteomics to determine proteins that specifically bind 

H3K27ac. We identified GBAF, a non-canonical GLTSCR1L- and BRD9-containing 

SWI/SNF chromatin remodeling complex. GBAF was further systematically 

characterized in terms of protein composition and chromatin localization. A series of 

ChIP-seq experiments validated the interaction between GLTSCR1L and H3K27ac to 

be BRD9-dependent. Impairment of the H3K27ac recognition function of GBAF 

resulted in the dislocation of GLTSCR1L from its preferred binding sites and the 

genome-wide downregulation, specifically, of enhancer RNA transcription. We show 

that GBAF binds H3K27ac, and is an enhancer-specific chromatin remodeler 

involved in the transcriptional and regulatory activity of enhancers. 
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1. Introduction 

Different organisms bear unique sets of genes encoded in their genomes. After 

cell division, daughter cells share the same DNA sequence. For unicellular 

organisms, the genome itself defines the organism. However, multicellular organisms 

contain many phenotypically distinct cell types that make up diverse tissues and 

organs using essentially the same genome. How is this possible?  

All of the observed cell-type diversity develops from one single cell, the zygote, 

through the processes of cell proliferation and differentiation. Early embryonically 

dividing cells are supplied with maternally stored mRNAs and proteins. At this stage, 

zygotic transcription (the production of RNA molecules from a DNA template) is 

almost absent. After several divisions, maternal mRNA stocks get depleted, and the 

embryo undergoes the so-called maternal to zygotic transition, which is characterized 

by the activation of zygotic transcription (zygotic genome activation). Only at this 

point, does cell differentiation based on the zygote's own genome begin (Tadros and 

Lipshitz, 2009; Lee, Bonneau and Giraldez, 2014). By virtue of different regulatory 

mechanisms, spatially and temporally, coordinated waves of transcription 

differentiate the embryo throughout the development by uniquely expressed sets of 

genes.  

Compaction of eukaryotic DNA into chromatin allows for the segregation of the 

genome broadly into transcriptionally active and inactive regions. These two states of 

chromatin create diverse transcriptional outcomes that define cell phenotypes. 

Transcription of genes happens in chromatin. Thus, the maintenance of chromatin 

conformation and transcription are directly interconnected and are regulated in 

coherence with each other. 

Transcription is an immensely complicated process. RNA polymerase II (RNAP 

II) transcribes most of the genes in eukaryotic organisms. Prior to transcription, the 

RNAP II complex has to assemble correctly at regulatory regions, such as promoters 

and enhancers. Both enhancers and promoters are specific DNA sequences located 

near the transcribed segments of the genome. They contain context-dependent 

transcription factor (TF) binding sites and possess characteristic chromatin features. 
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Despite multiple common properties, transcription from promoter regions results in 

the production of mRNA molecules that are translated into protein. In contrast, 

transcription from enhancer elements produces enhancer RNAs (eRNA), which are 

usually rapidly degraded and not translated. Upon certain stimuli, chromatin 

undergoes structural and biochemical rearrangements which form an open 

conformation at those regulatory regions and bring the gene's promoter and its 

enhancer(s) into proximity.  

An ensemble of transcription and chromatin remodeling factors shape the local 

chromatin environment and enable transcription (Sanyal et al., 2012). Nucleosomes 

(DNA-histone proteins complex), the fundamental units of chromatin, may occlude 

the binding sites for TFs and create a barrier for RNAP II to read through. However, 

nucleosomes can be post-translationally modified to reduce this barrier and serve as a 

docking site for transcription cofactors that position and maintain them at the correct 

location relative to the transcription start site (TSS). Only after these chromatin 

rearrangements have taken place, may efficient and controlled transcription 

commence. 

Among many potential histone post-translational modifications (PTMs), 

acetylation of histone H3 at lysine 27 (H3K27ac) is associated with the regulatory 

activity of enhancers (Creyghton et al., 2010; Ernst et al., 2011; Rada-Iglesias et al., 

2011; Rajagopal et al., 2014). Although the association of H3K27ac with active 

regulatory elements has been known for some time, its role in enhancer function is 

still unclear. It is not clear, for instance, whether H3K27ac influences downstream 

processes of chromatin remodeling or transcription. This thesis focuses on discerning 

the molecular mechanisms associated with the H3K27ac histone mark in enhancer 

function.   

1.1 Transcription 

Transcription is the process of “reading” a stretch of DNA and followed by 

production of the corresponding RNA molecule. Transcribed RNAs can be broadly 

divided into two types: 
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I. Coding or messenger RNA (mRNA) that is translated into proteins 

II. Non-coding RNA (ncRNA) - that does not encode any proteins, but fulfills 

other essential functions, such as:  

1. transport of amino acids to the site of translation - transfer RNA (tRNA) 

2. structural/enzymatic - ribosomal RNA (rRNA)  

3. regulatory - microRNA (miRNA), small interfering RNA (siRNA), small 

nuclear RNA (snRNA), long non-coding RNA (lncRNA), enhancer RNA. 

Eukaryotic transcription occurs in the cell nucleus and is accomplished by 

DNA-dependent RNA polymerases (RNAPs). There are three main types of RNAPs: 

I, II, and III. RNAP I is accountable for almost half of the total RNA production in 

the cell and transcribes all rRNA with the exception of 5S rRNA, which is transcribed 

by RNAP III. RNAP III also produces tRNAs and other small RNA molecules. 

RNAP II transcribes all mRNAs and most of the snRNAs and microRNAs. 

Transcription can occur in the 5′- 3′ direction along the DNA double helix on either 

strand, resulting in sense (+) or antisense (-) transcripts. mRNAs that are the products 

of eukaryotic RNAP II are typically monocistronic with short non-coding stretches 

before the coding region and longer ones after (5′ and 3′ untranslated regions, or 

UTRs). Mature mRNAs (and also long non-coding RNAs) undergo pre-mRNA 

processing: 5′ capping (attachment of 7-methylguanylate cap to the first transcribed 

nucleotide), intron removal, 3′ end formation (polyadenylation) and cleavage. In 

addition, RNAP II is also responsible for the transcription of eRNA. 

RNAP II  
Eukaryotic RNAP II is a 12-subunit holoenzyme complex. The largest subunit 

of RNAP II is RPB1, and it possesses the enzyme's catalytic activity. On its C-

terminus, RPB1 has a motif that is repeated 52 times in mammals, called the “C 

terminal domain” or RNAP II CTD. The CTD motif is a highly conserved 

heptapeptide sequence: YSPTSPS (Egloff and Murphy, 2008) and is involved in the 

regulation of several steps of transcription and mRNA processing (Hirose and 

Manley, 2000; Maniatis and Reed, 2002; Proudfoot, Furger and Dye, 2002). All of 

the RNAP II CTD residues can be enzymatically modified either by phosphorylation 

of tyrosine, threonine, serine, or by isomerization of proline. The pattern of RNAP II 
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CTD modifications changes during different stages of transcription as the nascent 

pre-mRNA maturates (Phatnani and Greenleaf, 2006; Buratowski, 2009; Perales and 

Bentley, 2009). Dynamic modification of the CTD is maintained mostly by kinases 

and phosphatases. The Serine 5 and Serine 2 phosphorylations (Ser5-P and Ser2-P) 

are the most conserved general marks of transcription that regulate RNAP II activity 

and correlate with the position of RNAP II on the transcribed genes. In yeasts and 

mammals, RNAP II phosphorylated at Ser5 generally accumulates at the 5′ end of a 

gene, while Ser2-P gradually increases when polymerase approaches the 3′ end.  

1.1.1 Transcription regulation 
Transcription is controlled at multiple stop- and check-points (De Almeida and 

Carmo-Fonseca, 2010) (Fig. 1):  

1. assembly of RNAP II at the gene promoter (pre-initiation complex (PIC) 

formation) 

2. initiation of RNA synthesis from TSS 

3. abortive transcription 

4. promoter escape 

5. promoter-proximal pausing (transcriptional pausing or early elongation)  

6. elongation along the gene body 

7. termination after RNAP II reaches transcription end site (TES)  

8. reinitiation 
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Figure 1. Transcriptional regulation. Transcription is regulated at several key steps associated with 

different factors (initiation-dark green, elongation-red and orange, termination-blue), that control 

RNAP II (light green) activity and process newly synthesized RNA molecule (orange line). PIC – 

pre-initiation complex. TSS – transcription start site. TES – transcription end site. 

Initiation 
Transcription initiation is preceded by the formation of PIC, which is composed 

of general transcription factors (GTFs) TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and 

TFIIH; the Mediator complex; and RNAP II itself. Gene promoters contain specific 

sequences that facilitate the binding of GTFs and assembly of RNAP II at the TSS of 

a gene (Carninci et al., 2006; Farnham, 2009). 

 After the PIC is assembled, RNAP II creates an open complex by unwinding 

~14bp of the DNA double helix resulting in the production of short transcripts (~2-

10bp long). This so-called abortive transcription (Goldman, Ebright and Nickels, 

2009) continues until RNAP II escapes the promoter, Ser5 at the CTD gets 

phosphorylated by CDK7 (a component of the TFIIH), and the elongation phase 

begins.  

Elongation 
The phosphorylation of Ser5 at the CTD attracts 5′ mRNA capping enzymes, 

and the nascent mRNA strand gets modified at the 5′ end (5′ cap or 7-

methylguanosine cap/m7G-cap). The elongation phase starts after RNAP II departs 

from the promoter sequence leaving certain GTFs behind, transcribes a short stretch 
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of the coding sequence (CDS, 20-65 bp), and stops. This phenomenon is called 

transcriptional pausing (Gilmour and Lis, 1986; Rougvie and Lis, 1988; Weake and 

Workman, 2010). The paused state of RNAP II is the transition state between early 

and productive elongation and is thought to facilitate controlled immediate gene 

expression upon stimuli (Muse et al., 2007; Zeitlinger et al., 2007). Numerous 

genome-wide studies in higher eukaryotes show that most of the genes bound by 

RNAP II reside in a poised state for several minutes prior to productive elongation 

(Henriques et al., 2013, 2018; Buckley et al., 2014; Chen et al., 2015). 

Two main protein complexes are responsible for transcriptional pause control: 

DRB sensitivity-inducing factor (DSIF) and the negative elongation factor (NELF) 

(Renner et al., 2001). DSIF consists of two proteins SPT5 and SPT4, that directly 

interact with RNAP II and NELF, connecting them. The NELF complex is a major 

mediator of transcriptional pausing. The phosphorylation pattern of CTD is 

dynamically changed during transcription elongation. The release from 

transcriptional pausing is possible only after CDK9 (a component of the pTEF-b1: 

positive transcription elongation factor-beta that consists of CDK9 and 

CyclinT1/T2/K heterodimer; Peng et al., 1998; Fu et al., 1999) phosphorylates 

NELF, SPT5, and Ser2 at the CTD of RNAP II. Phosphorylation of SPT5 and NELF 

leads to the dissociation of the latter from RNAP II. Release from NELF turns DSIF 

into a positive transcription elongation factor, which remains bound to RNAP II until 

the end of a particular transcription round. Both Ser2-P and Ser5-P of the CTD are 

recognized by the RNA splicing machinery. Splicing is a co-transcriptional process of 

pre-mRNA editing that removes introns and joins exons together, resulting in mature 

mRNA (Allemand, Batsché and Muchardt, 2008; Pandit, Wang and Fu, 2008; Luco et 

al., 2011). 

Ser5-P is important for 5′ mRNA capping (Schwer and Shuman, 2011); thus, it 

peaks at the 5′, then gets gradually dephosphorylated by phosphatases towards the 3′ 

end of the gene. Ser2-P levels increase towards the 3′ end and begin to saturate close 

to 600 nucleotides (nt) downstream of the TSS, then sharply decrease at around 100 

                                              
1 Active pTEF-b associates with large protein complexes like Super elongation complex (SEC) or BRD4-containing 
elongation complex (BEC) (Bacon and D’Orso, 2019). 
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nt downstream of the poly(A) addition site (PAS) (Mayer et al., 2010). A transition 

from Ser5-P to Ser2-P is observed at about 450 nt downstream of the TSS. Ser2-P 

interacts with a large complex of cleavage and polyadenylation specificity factors 

(CPSFs) that generate the 3′ end of the mRNA.  

Termination   
RNAP II-transcribed genes vary in length from a few hundred bp to more than 

100 kbp for small nuclear RNA (snRNA) and protein-coding genes, 

respectively. RNAP II is a highly processive and efficient enzyme. Thus its 

termination mechanisms need to be robust and reliable. Transcription termination 

failure may lead to severe consequences for the cell. Briefly, termination begins when 

the elongating RNAP II reaches the PAS. CPSFs cleave the nascent RNA strand, and 

a template-independent poly(A) polymerase adds ~200 adenine nucleotides to the 

newly synthesized RNA molecule. Then the mature mRNA is transported through 

nuclear pores to the cytoplasm and translated. 

1.1.2 Enhancers drive specific gene expression program 
Eukaryotic genomes contain diverse sets of cis-regulatory elements, such as 

enhancers, promoters, silencers, and insulators, which integrate cellular history 2 and 

extracellular environmental signals to mediate correct usage of the genetic 

information. Among these regulatory elements, enhancers drive cell type-specific 

gene expression, confer spatio-temporal specificity, and orchestrate gene expression 

patterns in response to environmental or developmental stimuli (Lam et al., 2014). 

Enhancer elements are more numerous, and their expression patterns are more diverse 

and cell-type-specific as compared to coding regions and promoters (Bulger and 

Groudine, 2011; Ong and Corces, 2011). However, most of them are kept in a silent 

or poised state until an activating signal is received (Rada-Iglesias et al., 2011). 

Strictly speaking, active enhancers possess two activities (Andersson and Sandelin, 

2020):  

                                              
2 Cells of the organism have to ‘remember’ which cell type they belong to. Cellular memory or ‘epigenetics’ has been 
defined as ‘heritable changes in genome function that occur without changes in the DNA sequence’ (Russo, Martienssen 
and Riggs, 1996). 
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1. Regulatory – they modulate the transcription of the target promoters from a 

distance.  

2. Transcriptional – enhancer flanking regions are transcribed and, as a result, so-

called enhancer RNA produced. 

Enhancers modulate transcription of their target genes at distances ranging from 

a few to hundreds of kilo base-pairs (Bulger and Groudine, 2011; Ong and Corces, 

2011, 2012). Furthermore, multiple enhancers can act on a single promoter, and one 

enhancer can control multiple promoters. Both enhancer and promoter regions 

contain transcription factor binding sites (TFBS), which, if recognized by TFs, 

stimulate transcription either through direct or indirect (coactivator-mediated) 

contacts with RNAP II. In most cases, however, TFs recruit chromatin remodeler 

proteins that shape the local chromatin structure appropriate for PIC formation and 

transcription initiation (Li, Carey and Workman, 2007; Weake and Workman, 2010; 

Bell et al., 2011; Spitz and Furlong, 2012).   

1.2 Chromatin and gene expression 

Although transcription is a complex process with multiple stop- and check-

points, it is quite pervasive (Birney et al., 2007). It has been shown that cryptic, non-

coding transcripts can originate from nucleosome-free regions (NFR), although they 

do not seem to have any function and flood the transcript pool of a cell (Jensen, 

Jacquier and Libri, 2013). So, despite the RNAP II activity being tightly regulated, 

cells use another essential level of transcriptional regulation, which is provided by the 

chromatin. 

1.2.1 Chromatin – from discovery to regulatory significance 
After DNA and histone proteins were first purified from the cell nucleus 

(Miescher-Rüsch, 1871), Flemming introduced the term “chromatin” (Mayr, 1982). 

Later, in the first half of the 20th century, ideas about chromosome function, 

organization and replication started to appear. Kolcov proposed one of the first 

thoughts that resembled the complementarity principle known today in 1926 

(Morange, 2011): “omnis molecula ex molecula”, which meant that each daughter 
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cell would need at least one copy of the chromosomes to replicate itself. Due to the 

simplicity of DNA (alphabet of four letters) and the complexity of proteins (alphabet 

of 20 letters), the idea that DNA can carry any hereditary information was rejected 

(Stedman and Stedman, 1947). In the 1940s and 50s, however, it became clear that 

DNA, but not proteins, is the carrier of genetic information (Avery, 1944; Hershey, 

1952). Finally, the structure of the DNA double helix was discovered in 1953, and the 

complementarity principle was established explaining how genetic information could 

be stored, replicated, and inherited (Franklin and Gosling, 1953; Watson and Crick. 

F. H. C., 1953). In a way, the pendulum had swung back, and it seemed that the DNA 

sequence holds all the answers.  

Histones tightly bind and condense the DNA, which makes the underlying DNA 

sequence inaccessible to RNA polymerases and other DNA-interacting proteins. It 

was initially believed that histones serve only structural purposes, such as 

folding/packaging/condensing of DNA, and are inhibiting DNA-dependent processes 

such as transcription and replication (Stedman and Stedman, 1950; Huang, 1962). 

However, in the 70s, it was shown that transcription from the DNA-histone complex 

was possible and histones were no longer considered to be the ultimate obstacle, but a 

means of transcriptional regulation (Cedar and Felsenfeld, 1973). Since then, 

histone–DNA interactions have been extensively studied, and are now quite well 

understood (Kornberg and Thonmas, 1974; Gina Arents et al., 1991; Arents and 

Moudrianakis, 1993; Luger et al., 1997). The current view that chromatin fulfills both 

structural and complex regulatory functions in the mammalian cell has been 

developed after a plethora of protein complexes, which modulate conformational, 

dynamic, and covalent changes of chromatin were discovered (Clapier and Cairns, 

2009). 

1.2.2 The nucleosome as basis for gene expression control 
The human cell nucleus (about 10 μm in diameter) fits about 2 meters of DNA, 

which requires sophisticated compaction into chromatin. The nucleosome – a 

repeating unit of chromatin, is a complex of an octamer of four different histone 

proteins (two dimers of H2A-H2B, and a tetramer of H3-H4) and about 200 base 
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pairs of DNA (Kornberg and Thonmas, 1974) assembled in vivo in a stepwise 

fashion.  

Histones are hydrophilic, basic proteins. The majority of the histone mass is an 

α-helical domain (histone fold domain), which forms a spool-like structure that is 

wrapped by DNA with 1.67 left-handed super-helical turns or ~150 bp long DNA 

(Richmond and Davey, 2003; Campos and Reinberg, 2009). Histones alone compact 

overall DNA volume by a factor of 5-10. Nucleosome arrays are organized as beads-

on-a-string (10 nm fiber) with internucleosomal spacing of about 60 bp (Prieto and 

Maeshima, 2019).  

Another type of histone proteins – linker histones (such as histone H1) which 

are not a part of the nucleosome, immobilize the nucleosome preventing it from 

sliding along the DNA and help to fold chromatin into higher-order structures (the so-

called 30 nm fiber) (Thomas, 1984; Bednar et al., 2017). The total compaction factor 

of highly ordered chromatin with histone H1 is ~50 (Brown, 2003). Compaction of 

the DNA into chromatin prevents cryptic transcription and protects DNA from the 

damage.  

 Inaccessibility of the DNA packaged into chromatin may seem like an obstacle 

for gene expression and transcription. However, mechanisms for chromatin 

regulation turn it into an advantage, facilitating controlled access to DNA. Chromatin 

remodeling is a process of altering DNA accessibility by altering positioning or 

physicochemical properties of nucleosomes and, consequently, the structure of the 

chromatin fiber by means of histone PTMs, ATP-dependent chromatin remodeling, 

histone variants and nucleosome turnover (Fig. 2). The interplay between these 

mechanisms ensures controlled access to DNA despite the protective nature of 

chromatin and is integral to every aspect of genome function.  
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Figure 2. Mechanisms of chromatin regulation. DNA in black. Nucleosome octamer is depicted as 

spool, where histones in shades of yellow, dark orange, brown, and red. Post-translational 

modifications are visualized as small colored circles on histone tails. Histone variants are depicted as 

green and blue histones. The regulation of NFR length is depicted in orange. 

Histone post-translational modifications 
In the early 1960s, Vincent Allfrey and colleagues found that histones were 

modified by post-translational acetylation and methylation, and proposed that these 

modifications correlate with the control of gene expression (Allfrey, Faulkner and 

Mirsky, 1964). Most of the histone modifications reside at the so-called histone tails. 

Histone tails (Fig. 3A) comprise up to 38% of the histone mass and are seemingly 

unstructured (G. Arents et al., 1991; Luger et al., 1997). Initially, histone tails were 

defined by their sensitivity to proteases (Böhm and Crane-Robinson, 1984). These 

domains reside at the N-termini of all four core histone proteins and additionally for 

H2A at the C-terminus. The tails of histones H4 and H3 are evolutionarily highly 

conserved sequences and contain multiple lysine and arginine residues, which make 

them positively charged and facilitate their interaction with DNA. When fully 

extended, they protrude far beyond the DNA in the nucleosome (Fletcher and 
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PTMs are acetylation, methylation, ubiquitination of lysines, and phosphorylation of 

serine and threonine residues (Kouzarides, 2007). Histone PTMs are introduced by 

different enzymes (PTM “writers”), such as kinases, histone acetyltransferases 

(HATs), and histone methyltransferases (HMTs). The vast majority of histone PTMs 

are reversible and are removed by the so-called “eraser” enzymes: phosphatases, 

histone deacetylases (HDACs), lysine demethylases (KDMs). The coordinated action 

of these PTM “writers” and “erasers” with other regulatory mechanisms ensures 

correct genome function through the cell cycle based on cellular memory3 and in 

response to external cues.  

Histone tail PTMs occur at specific positions (Fig. 3B). Despite a wide variety 

of modifications, they can occur only in a limited number of combinations. The 

resulting patterns of histone tail PTMs are associated with different biological 

processes (for example, acetylation of histone H3/H4 is associated with 

transcription). It has been suggested that multiple PTMs act sequentially or 

combinatorially to regulate specific biological outcomes. Hence, combinations of 

histone modifications that are not mutually exclusive have the potential to form a so-

called ‘histone code’ (Turner, 1993; Strahl and Allis, 2000). 

Such chromatin states can be maintained stably through cell divisions, and 

histone PTMs are carriers of this cellular memory3. They also have to be flexible to 

allow changes in transcriptional programs during development or differentiation. 

Breakdown of any of these two properties is a characteristic feature of many diseases, 

such as cancer. 

 

 

                                              
3 Histone variants and PTMs, as well as DNA methylation (not discussed here) can affect transcriptional outcome and can 
be heritably transmitted through mitosis or meiosis (Bird, 1978; Ng. and Gurdon, 2008; Hathaway et al., 2012), and 
therefore serve as mediators of epigenetic/cellular memory. However, since the definition of ‘epigenetics’ implies that 
particular state or mark that defines cell identity has to be heritable and maintained, not all of the histone PTMs can be 
defined as ‘epigenetic’ marks (Berger et al., 2009; Audergon et al., 2015; Ragunathan, Jih and Moazed, 2015; Henikoff and 
Greally, 2016). 
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Histone acetylation  
Acetylation is a process of transfer of the acetyl group from Acetyl-coenzyme A 

to an amino acid residue side chain. There are two types of protein acetylation: N-

terminal (that may happen at any amino acid if it is at the N-termini of the protein) 

and N-ε-lysine acetylation. Histones are subject to both types of acetylation. N-

terminal acetylation is an irreversible co-translational modification, whereas N-ε-

lysine acetylation is a reversible and dynamic PTM. Only a few studies have so far 

addressed the function of the N-terminal acetylation of histone proteins, and its role is 

yet unclear. Thus, I will focus only on the N-ε-lysine acetylation henceforth.  

Histone proteins were the first proteins discovered to be acetylated. 

Figure 4. Lysine acetylation. Histone N-ε-lysine acetylation is conducted by histone acetyl-

transferase (HAT) enzymes. The positive charge of lysine, provided by its amine group (in red) is 

neutralized by transfer of the acetyl group (green) from Acetyl-CoA. Lysine acetylation is reversible 

and conducted by histone deacetylases (HDAC), releasing acetate (blue). 
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Histones contain multiple lysines and arginines (about 30% of all amino-acid 

residues), which are positively charged amino acids that facilitate DNA-histone 

interaction. Both histone tails and core regions are subject to lysine acetylation 

(Peterson and Laniel, 2004). Histone lysine acetylation (Fig. 4) is performed by 

HATs and reversed by HDACs. 

Histone lysine acetylation neutralizes the positive charge of lysine, reducing the 

strength of internucleosomal interactions which relaxes the chromatin fiber (Tse et 

al., 1998; Annunziato and Hansen, 2000; Shogren-Knaak et al., 2006; Robinson et 

al., 2008), DNA-histone interaction (Oliva et al., 1990; Bresnick, John and Hager, 

1991; Widlund et al., 2000), and consequently relieves the overall nucleosomal 

barrier for transcription with little effect on the physical stability of the nucleosome. 

Histone acetylation was also shown to enhance the disassembly of the nucleosome by 

the histone chaperone Nap1, which facilitates the generation of NFR and, 

consequently, transcription initiation (Sharma and Nyborg, 2008).   

Many chromatin interacting proteins that modulate nucleosome dynamics, maintain 

or alter histone modifications, conduct chromatin remodeling, and promote 

transcription can bind histone tails (and nucleosomes in general). Several protein 

domains, such as the Bromodomain, the YEATS, and some PHD fingers, are specific 

‘readers’ of acetylated lysines in histones. These domains are often combined with 

other chromatin-binding and enzymatic domains in multidomain proteins or protein 

complexes (Mujtaba, Zeng and Zhou, 2007; Li et al., 2014; Fujisawa and 

Filippakopoulos, 2017). In many of the chromatin-interacting proteins that contain a 

Bromodomain, it appears more than once. Thus these proteins are capable of binding 

more than one acetylated residue. Histone tails frequently bear several acetylation 

marks (Schwämmle et al., 2014), and spacing between lysines in histone tails appears 

to be strikingly regular (Fig. 5). Multiple lysine-acetylations on histone tails can 

enhance the interaction with Bromodomains (for example, di-acetylation stabilizes 

the interaction of a single Bromodomain with a histone tail; Morinière et al., 2009). 
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Figure 5. Regularity of lysines in histone H3.1 and H4 N-terminal tails. Sequences of H3.1 and H4 

N-terminus and positions of the lysines (red). In Histone H3.1 lysines are regularly spaced with 3 or 

4 residues (black numbers above top brackets) which also forms a pattern of lysines that are spaced 

with the step of 8 residues (black numbers below bottom brackets). Histone H4 has simple spacing of 

3 residues between lysines. 

Histone H3 is mostly acetylated at three sites: H3K14, H3K18 and H3K23 

(Schwämmle et al., 2014). These acetylated sites are enriched in euchromatin and are 

found in broad acetylation regions. Broad acetylation hinders chromatin folding into 

highly compact structures (Garcia-Ramirez, Rocchini and Ausio, 1995; Tse et al., 

1998), making it accessible for interacting proteins (Hebbes et al., 1994; Krajewski 

and Becker, 1998). Albeit broad histone acetylation marks transcriptionally active 

chromosome regions, it is not tightly correlated with transcription per se, but 

considered as a general marker of euchromatin. 

In contrast to broadly acetylated chromosome patches, regulatory and 

transcriptionally active regions such as promoters and enhancers, are labeled 

additionally by localized, targeted acetylation (Brown et al., 2000; Forsberg and 

Bresnick, 2001; Litt et al., 2001).  

Even though general mechanisms of histone acetylation-dependent transcription 

activation are clear, specificity towards different regulatory regions of the targeted 

acetylation, its gene regulatory outcomes, and significance are far from being 

understood. 
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Histone variants 
The eukaryotic genome contains multiple copies of histone genes, and their 

expression is tightly controlled (Marzluff, 2005; Kurat et al., 2014). Canonical 

histone proteins are only produced during the S phase of the cell cycle and deposited 

across the genome in a replication-dependent manner. However, there are histone 

protein variants (paralogues) that have specific functions in different processes such 

as transcription, cell division, and DNA repair (Talbert and Henikoff, 2010). In 

contrast to canonical histones, synthesis of histone variants is cell cycle-independent 

and their deposition is targeted to specific sites, which differentiate the chromatin. 

Histone variants change the properties of nucleosomes they reside in, due to sequence 

variations at structurally and functionally important regions. Replacement of 

canonical histones by histone variants alters the chromatin landscape, affecting 

nucleosome dynamics and interaction with chromatin remodelers.  

One of the most striking examples of how histone variants differentiate 

chromatin is CENP-A, a histone H3 variant that facilitates centromeric region 

formation and plays an essential role in chromosome segregation. CENP-A contains a 

histone fold and N-terminal tail domain; however, it shares only about 50% of 

sequence identity with conventional H3 and has different structural and PTM features 

(Sharma et al., 2019). Another H3 variant H3.3 is deposited at transcriptionally active 

chromatin (Filipescu, Müller and Almouzni, 2014). H3.3 differs in only four residues 

from canonical H3.1, and three of those are explicitly meant for replication-

independent (RI) deposition. Actively transcribed chromatin requires RI histone 

replacement since elongating RNAP II disassembles nucleosomes (Dion et al., 2007), 

and chromatin reassembly itself changes the dynamics of chromatin (Schwartz and 

Ahmad, 2005). Also histone H2A has several variants that are associated with 

different processes. H2A.Z, similarly to H3.3, is observed at highly transcribed loci 

and regulatory regions. This histone variant reduces the stability of nucleosomes and 

thus lowers the transcriptional barrier (Weber, Henikoff and Henikoff, 2010). 

Histone variants as well, as their canonical paralogues, are subjects to numerous 

PTMs. Those that are similar to their canonical counterparts, such as H3.3, bear both 

similar and variant-specific modifications (McKittrick et al., 2004; Chang et al., 
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2015), the diverged histone variants, such as H2A.Z and CENP-A, have only variant-

specific PTMs. 

Nucleosome turnover 
Nucleosomes are exchanged several times throughout the cell cycle (Dion et al., 

2007; Deal, Henikoff and Henikoff, 2010; Radman-Livaja et al., 2011). During 

replication, transcription, and DNA repair, chromatin is disassembled and 

reassembled both with newly synthesized and parental nucleosomes. Although 

parental nucleosomes are transducers of cellular memory and chromatin 

differentiation, replication dilutes previously deposited histone variants and PTMs 

(Venkatesh and Workman, 2015). After DNA replication, old nucleosomes are 

reinstated close to their original positions, which preserves parental local chromatin 

state and possibly stimulates chromatin-modifying enzymes and remodelers to 

propagate similar PTMs and histone variants (Reverón-Gómez et al., 2018). 

Replication dependent chromatin assembly pathway involves the action of numerous 

histone chaperones (such as chromatin assembly factor 1 (CAF-1) and anti-silencing 

function 1 (ASF1)) that can interact only with newly synthesized histone H3.1-

containing nucleosomes. These nucleosomes are specifically acetylated at the H3K56 

position, which makes them unstable and creates loosely packed chromatin, which is 

susceptible to inappropriate, cryptic transcription initiation and requires further 

differentiation by the chromatin remodelers (Li et al., 2008; Li, Burgess and Zhang, 

2012).  

Extensive chromatin remodeling and control over the nucleosome turnover is 

required in all stages of transcription to grant RNAP II, and cofactors temporally 

appropriate access to the DNA and reassemble the chromatin (Williams and Tyler, 

2007). Active transcription sites have elevated rates of nucleosome turnover, 

facilitated by the passage of RNAP II, site-specific histone variants (such as H2A.Z 

and H3.3), and acetylated nucleosomes (Lai and Pugh, 2017). 

ATP-dependent Chromatin remodeling  
Nucleosome remodeling is the process of altering histone-DNA interactions by 

disrupting, assembling, or moving nucleosomes along the DNA. Due to the intrinsic 
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stability of the nucleosomes, chromatin remodeling reactions require ATP hydrolysis. 

ATP-dependent remodelers are multi-subunit, large molecular complexes that 

regulate chromatin architecture (Wu, Lessard and Crabtree, 2009; Kadoch and 

Crabtree, 2015; Masliah-Planchon et al., 2015). These complexes contain DNA 

translocases that hydrolyze ATP and alter histone-DNA interactions in bound 

nucleosomes. As the main catalytic unit, they all contain SNF2-related ATPase 

domain, which is related to a larger group of nucleic acid helicases (Flaus et al., 

2006; Flaus and Owen-Hughes, 2011). SNF2 family helicases bind double-stranded 

DNA and move along one strand separating the double helix. Nucleosome 

remodelers, however, are DNA translocases that move along the DNA without 

separating the double helix (Saha, Wittmeyer and Cairns, 2006; Gangaraju and 

Bartholomew, 2007). According to sequence similarities of Snf2p-related ATPase-

domains (Flaus and Owen-Hughes, 2011) chromatin remodelers can be divided into 

four major families: the switch/sucrose non-fermenting (SWI/SNF), inositol requiring 

80 (INO80), the imitation switch (ISWI), and chromodomain helicase DNA-binding 

(CHD/M2). 
 

Table 1. Families of ATP-dependent chromatin remodelers, their remodeling activity and biological 

context. 

Source: 1-Whitehouse et al., 1999; 2-Mizuguchi et al., 2004; 3-Lorch, Zhang and Kornberg, 1999,4-Bruno et al., 

2003; Yang et al., 2007, 5-Hamiche et al., 1999; Längst et al., 1999,6-Winger et al., 2018; 7-Kassabov et al., 2003, 8-

Eustermann et al., 2018; 9-Clapier et al., 2017. 

Remodeler 
Family 

ATP-ase 
subunit 

Remodeling activity Biological context 

SWI/SNF 
 

Brg1 or BRM 
(SMARCA2/4) 

Nucleosome sliding1, DNA 
unwinding7, dimer ejection4 and 
octamer eviction3.  

Transcription - NFR spacing, 
chromatin accessibility. DNA 
replication fork progression, DNA 
damage repair, recombination9. 

ISWI SNF2L or 
SNF2H 

Nucleosome sliding5.  Transcription - NFR spacing, 
chromatin accessibility9. 

CHD/M2 CHD1-9 Nucleosome sliding6. Transcription - NFR spacing, 
chromatin accessibility, and editing 
(incorporating histone H3.3)9. 

INO80 INO80, Tip60, 
SRCAP 

Nucleosome sliding8, histone 
dimer exchange2.  

Transcription - NFR spacing, histone 
variant exchange. DNA replication 
fork progression, DNA damage repair, 
recombination9. 
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Members of each family frequently share particular domains and features other 

than the ATPase domain. For example, SWI/SNF family complexes contain 

Bromodomains that “read” acetylated lysine marks of histone and non-histone 

proteins, and CHD/M2 family members contain methylated lysine “reader” 

chromodomains (Yap and Zhou, 2011), and ISWI family contains SANT-SLIDE 

domains that bind the unmodified histone H3 tail (Boyer, Latek and Peterson, 2004). 

The histone PTM “reader” domains recognize histone PTMs or variants and modulate 

the activity of ATPase (Paul and Bartholomew, 2018). 

ATP-dependent nucleosome remodeling mechanisms (Fig. 6A) may affect all 

levels of chromatin organization (Fig. 6B): 

1. Nucleosome assembly or disassembly 

2. Nucleosome sliding 

3. Nucleosome unwinding 

4. Nucleosome or histone dimer ejection 

5. Nucleosome or histone dimer exchange 

 

Figure 6. Chromatin remodeling mechanisms and outcomes. A. ATP-dependent chromatin 

remodeling mechanisms: DNA showed in black, Histone proteins in orange and bordo, histone 

variant in red, TSS in green. B. Some of the remodeling outcomes. 
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These five mechanisms result in de novo nucleosome assembly, histone 

eviction, nucleosome positioning, spacing, and histone variant exchange, which 

facilitates chromatin folding, specialization, and regulates DNA accessibility. One of 

their main functions is to remodel nucleosomes at regulatory regions such as 

promoters and enhancers, to allow for the establishment of gene expression programs 

while maintaining the integrity of the chromatin fiber. 

Specification of the ATP-dependent remodeling complexes, their cofactors, and 

preference towards certain nucleosome substrates can define the outcome of 

chromatin remodeling reactions (Dann et al., 2017). Despite many similarities, 

members within the same family of chromatin remodelers, can have distinct targets 

and functions due to a large number of paralogs among their subunits. The subunit 

composition of these complexes is frequently tissue-specific, and despite the 

transience of the reactions they catalyze, they can be involved in the formation and 

maintenance of stable (epigenetic) chromatin states (Becker and Workman, 2013). 

Probably the most versatile remodeling complex is mSWI/SNF, which is involved in 

regulating diverse gene expression programs (Hota et al., 2019; Witwicka et al., 

2019). 

SWI/SNF complex 
The SWI/SNF complex was the first ATP-dependent chromatin remodeling 

complex to be discovered (Stern, Jensen and Herskowitz, 1984). It has been shown to 

play a vital role in the regulation of gene expression during animal development 

(Archacki et al., 2009; Clapier and Cairns, 2009; Ho and Crabtree, 2010). 

Mammalian SWI/SNF (mSWI/SNF) is a family of large (1 to 1.5 MDa) 

heterogeneous, combinatorically assembled complexes. About 30 gene products 

generate diversity in the composition of mSWI/SNF complexes that have specialized 

functions in tissue-specific gene regulation during development (Wang et al., 1996; 

Lessard et al., 2007). mSWI/SNF complexes can function both as transcriptional 

activators or repressors. The same complex can even switch between two opposite 

modes of action at the same gene locus (Gkikopoulos et al., 2011). Tissue-specific 

mSWI/SNF complexes interact with various transcription factors in different cell-

types allowing these complexes to fulfill context-dependent functions (Shi et al., 
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2013; Murakami et al., 2017). Mutations of mSWI/SNF complex subunits are 

implicated in a wide range of diseases from cancer to neurological disorders (Kadoch 

et al., 2013; Lopez and Wood, 2015; Bögershausen and Wollnik, 2018). 

Mammalian SWI/SNF complexes are thought to be organized in a modular 

fashion consisting of a core module (SMARCC14, SMARCD1/2/3, SMARCE1), 

complex-specific subunits, and a catalytic ATPase module (SMARCA2/4, 

BCL7A/B/C, ACTL6A) (Mashtalir et al., 2018). The function of the catalytic module 

is to exert translocation of DNA bound by nucleosome, while the rest of the modules 

probably regulate (accelerators/brakes), or sense the DNA to allosterically regulate 

nucleosome mobilization (Paul and Bartholomew, 2018).  

mSWI/SNF remodelers contain multiple DNA, protein-protein, and histone tail 

interaction domains. mSWI/SNF-DNA interactions are sequence-independent and 

thought to enhance nucleosome binding (Mohrmann and Verrijzer, 2005). 

mSWI/SNF contains multiple histone recognition domains, such as 

Bromodomain (PBRM1, BRD7, BRD9, SMARCA2/4) and PHD finger (DPF1/2/3, 

PH10), which facilitate nucleosomal interactions. Histone tails are required for 

efficient recruitment of mSWI/SNF complexes to the chromatin and regulation of its 

remodeling activity. Different histone tail PTMs are found to either enhance or block 

nucleosome remodeling by SWI/SNF (Corona et al., 2001; Ferreira, Flaus and Owen-

Hughes, 2007; Chatterjee et al., 2011). SWI/SNF can recognize acetylated 

nucleosomes, displace, or partially unwrap nucleosomal DNA, enabling transcription 

(Lorch and Kornberg, 2015).  

The main catalytic subunit of all mSWI/SNF complexes is one of the two DNA-

dependent ATPases, SMARCA4 (Brahma-related gene 1- BRG1) or SMARCA2 

(Brahma - BRM). Apart from the ATPase domain SMARCA2/4 contain multiple 

other domains that facilitate protein-protein interactions (HSA domain and QLQ 

domain; Trotter et al., 2008), acetylated nucleosome binding (Bromodomain; 

Tamkun et al., 1992), and nonspecific DNA binding (AT-hook domain; Singh, 

D’Silva and Holak, 2006). Despite being highly similar proteins (86% similarity; 

                                              
4 Gene names of SWI/SNF family members stand for SWI/SNF related, matrix associated, actin-dependent regulator of 
chromatin, subfamily X, member Y - SMARC 
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Muchardt and Yaniv, 2001), they have both overlapping and specific targets in 

chromatin and can have distinct or similar effects on gene expression. The difference 

in N-terminal amino acid sequences between SMARCA2 and SMARCA4 allows 

interaction with distinct transcription factors and might be the reason for the observed 

differential targeting in chromatin (Kadam and Emerson, 2003; Raab et al., 2017). 

These subunits are mutually exclusive in assembled complexes. The knockout of 

SMARCA4 is lethal, whereas SMARCA2 is dispensable for viability. SMARCA4 

was found to be required for the zygotic gene activation (Bultman et al., 2006) at the 

developmental stage when embryonic transcription begins. Furthermore, the 

SWI/SNF complex stays bound to RNAP II to evict nucleosomes during elongation 

(Schwabish and Struhl, 2007). 

Three distinct types of mSWI/SNF complexes have been reported, and they can 

be divided further into many cell-type-specific assemblies. Two of the most studied 

canonical types of SWI/SNF assemblies are BAF (Brahma Associated Factors) and 

PBAF (Poly-Bromo, Brahma Associated Factors) (Ho and Crabtree, 2010). Recently 

another, a non-canonical BAF complex has been independently reported as GBAF by 

Alpsoy and Dykhuizen, 2018 and this work, and ncBAF by Mashtalir et al., 2018.   

PBAF is homologous to RSC (Remodeling the Structure of Chromatin) 

complex in yeast (Cairns et al., 1996). The defining components of this complex are 

ARID2, PHF10, BRD7, and, most importantly, PBRM1 (Protein polybromo-1). 

PBAF can utilize both SMARCA4 or SMARCA2 as the catalytic subunit (Simpson et 

al., 2015). This complex has clear transcription activating functions in yeast. It 

occupies about 10% of all genes during normal conditions but is indispensable for 

transcription activation during stress response (Sudarsanam et al., 2000; Shivaswamy 

and Iyer, 2008; Dutta et al., 2014; Lorch and Kornberg, 2017). RSC in yeast is 

involved in the control of NFR architecture at the gene promoter, which is flanked by 

firmly positioned +1 and −1 nucleosomes, with the transcription start site typically 

10–15 bp inside the +1 nucleosome. RSC binds to NFR, attaches to +1 nucleosomes, 

and translocates DNA to slide or eject the +1 promoter nucleosome to extend NFR 

further and expose TSS and facilitate transcription (Ye et al., 2019). In addition, RSC 

is involved in numerous other chromosomal processes which require the same 
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fundamental activities of DNA unwrapping and DNA translocation. These processes 

include DNA repair, chromosome segregation, and other chromosomal DNA 

transactions. 

The composition of the BAF complex is species-specific. In mammals, the BAF 

complex is more abundant than PBAF, may contain either SMARCA4/2 as the 

catalytic subunit, and several other complex-specific subunits, such as ARID1A/1B, 

DPF1/2/3, and SS18/18L (Simpson et al., 2015). So far, it is not clear how and 

whether the catalytic activity of this complex differs from PBAF. Nevertheless, the 

BAF complex is involved in a wide range of chromatin-associated processes similar 

to PBAF, with opposing or overlapping functions. 

GBAF complex is the smallest SWI/SNF assembly (Alpsoy and Dykhuizen, 

2018; Mashtalir et al., 2018; this work). It lacks DNA interaction domains and has 

Bromodomains only in SMARCA2/4 and BRD9 subunits. This feature makes GBAF 

potentially highly dependent on acetylated lysine recognition for targeting to the 

nucleosomes. However, the functions of this complex remain elusive. 

1.2.3  Organization of chromatin in 3D  
The genome is not randomly folded in the interphase nucleus. Each chromosome 

occupies a particular volume termed chromosome territory (Fig. 7) (Cremer and 

Cremer, 2010), overlapping with other chromosomes only at the borders of 

chromosome territories (Branco and Pombo, 2006). Chromosome territories are 

radially positioned in the cell nucleus, where gene-rich chromosome regions reside at 

the center and gene-poor at the periphery (Bolzer et al., 2005). The radial 

arrangement of the chromosome territories allows spatio-temporal regulation of the 

cell nuclear processes (Bickmore and Van Steensel, 2013). Chromosome territories 

can be further divided into two main compartments (A and B) depending on 

chromatin compaction. Compartment A consists of accessible, transcriptionally active 

chromatin, whereas compartment B consists of dense, inactive chromatin 

(Lieberman-Aiden et al., 2009; Rao et al., 2014; Dixon et al., 2015). Compartments 

A and B can be further subdivided into five principal types of chromatin (two types 

of the accessible and three types of the dense chromatin) that are conserved among 

metazoans and defined by unique yet overlapping combinations of bound proteins 
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and histone PTMs (Filion et al., 2010). Compartment partitioning is cell type-specific 

and switches throughout cell differentiation (Dixon et al., 2015). Compartments 

consist of several thousands of topologically associated domains (TADs) - 

fundamental units of genome organization (Nora et al., 2012; Dekker and Heard, 

2015; Dixon, Gorkin and Ren, 2016). 

  

Figure 7. Chromatin organization in the nucleus. A. Individual chromosomes occupy confined space 

within the nucleus - chromosome territories. Chromosome territories are further split broadly into 

two compartments A and B, which contain active chromatin and repressed chromatin, respectively. 

B. Compartments are further organized into TADs, which confine locally interacting chromatin. 

Interactions are visualized by the dotted line. 

In mammals, TADs are chromosomal domains with a median size of 880 kb 

(Dixon et al., 2012). Positions of TADs are evolutionarily conserved (Dixon et al., 

2015), and each TAD represents a separate replication domain (Pope et al., 2014).  

The frequency of genomic interactions within the same TAD is much higher than 

between different TADs. Gene regulatory elements, such as enhancers and their 

target promoters, are mostly located within the same TAD to ensure the specificity of 

gene expression by limiting undesired inter-TAD contacts. TADs have clear 
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boundaries, which are enriched with multiple features such as enrichment of highly 

transcribed genes, H3K36me3 and H3K4me1 histone marks, TSSs, housekeeping and 

tRNA genes, CTCF (CCCTC-binding factor) binding sites and some other factors 

(Dixon et al., 2012). It is highly likely that CTCF and transcription are both involved 

in TAD formation (van Steensel and Furlong, 2019). Currently, there are two 

hypothetical models of TAD formation: 

1. The loop extrusion model suggests that TADs emerge as a result of pushing 

chromatin fiber loop through Cohesin containing protein complex that 

resembles an eye of a needle (Sanborn et al., 2015; Fudenberg et al., 2016; 

Vian et al., 2018). 

2. The multivalent transcription factor model - highly similar to the loop 

extrusion model, but the role of the eye of a needle is taken by TFs that can 

interact with each other (Brackley et al., 2016). 

In both cases, it is not clear: 

i. which molecular mechanisms are pushing the DNA through 

ii. is loop formation an active process and whether it requires additional motors 

besides transcribing RNAP II. 

Active RNAP II concentration is not uniform in the cell nucleus (Iborra et al., 

1996), which influences the nuclear spatial organization of genes (Sutherland and 

Bickmore, 2009). Recent studies suggest that transcription elongation itself stimulates 

loop formation (Cook and Marenduzzo, 2018; Rowley and Corces, 2018). 

If TAD boundaries are disrupted, aberrant interactions between different 

domains lead to inappropriate enhancer-promoter pairs and, as a consequence, ectopic 

gene expression (Lupiáñez et al., 2015; Hnisz et al., 2016). Modular organization of 

chromosomes in the cell nuclei spatially organizes thousands of genes and regulatory 

regions, providing a framework to restrict an action of regulatory elements within the 

correct range. 
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1.3 Enhancer chromatin 

Different cell-types acquire specific profiles of chromatin accessibility and 

histone PTMs configuration, which define regulatory regions (Thurman et al., 2012; 

Stergachis et al., 2013). 

Two main hallmarks define active enhancers: the production of non-coding 

RNA transcripts known as enhancer RNAs (Kim et al., 2010; Ørom et al., 2010; Hah 

et al., 2011; Wang et al., 2011) and elevated Histone 3 lysine 27 acetylation 

(H3K27ac) levels (Creyghton et al., 2010). Upon activation, enhancers physically 

interact with target promoters. It has been reported that eRNAs can promote looping 

between enhancers and promoters through recruitment of cohesin (Li et al., 2013; 

Hsieh et al., 2014), increase chromatin accessibility (Mousavi et al., 2013), and 

recruit the mediator complex to promoters (Lai et al., 2013). At poised genes, eRNAs 

can promote the release of paused RNAP II into the gene body (Schaukowitch et al., 

2014). Consistently, depletion of eRNAs inhibits transcription from enhancer-

associated genes (Kim et al., 2010; Lai et al., 2013; Li et al., 2013; Melo et al., 2013; 

Mousavi et al., 2013).     

Enhancer-promoter interactions mostly occur within confined space of the 

genome since higher-order chromatin structure in the cell is quite static (Jin et al., 

2013), and do not change significantly during development (Ghavi-Helm et al., 

2014). 

Various combinations of chromatin marks have been associated with different 

states of enhancer activity (Table 2). 

 
Table 2. Enhancer associated chromatin marks 

 

Enhancer state Associated chromatin mark 

Repressed/poised H3K4me1/H3K27me3 (Rada-Iglesias et al., 2011; Bonn et al., 2012) 

Primed H3K4me1/no acetylation (Zentner, Tesar and Scacheri, 2011) 

Active  H3K4me1/H3K27ac (Rada-Iglesias et al., 2011; Zentner, Tesar and Scacheri, 
2011) 
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However, these marks are not exclusive to enhancers (e.g., H3K4me1 can also 

be found at insulators and H3K27ac at promoters), and not all of the enhancers can be 

identified based on these marks. For example, a distinct class of active enhancers in 

Drosophila and mice have no H3K27ac (Bonn et al., 2012; Pradeepa, 2017). 

Although highly correlated with enhancer activity it is not, currently, clear 

whether these marks and chromatin properties are functionally required for enhancer 

activity or are just the consequence of it. 

It is well established that active enhancers are depleted of nucleosomes; 

however, not all NFRs are enhancers (Thurman et al., 2012). Also, while located at 

NFR and being active in one cell type, the same enhancer may be inactive in other 

cell types, still residing in the same NFR (Zentner, Tesar and Scacheri, 2011; 

Andersson, Gebhard, et al., 2014). 

Both active promoters and enhancers are flanked by nucleosomes enriched with 

H3K4me1 and H3K4me3 marks. The H3K4me1/me3 ratio was found to be higher at 

enhancers than at promoters. This observation was later refined, suggesting that 

despite H3K4me1 being observed at many enhancers, it does not distinguish between 

active and inactive enhancers (Bonn et al., 2012; Andersson, 2015). Furthermore, it 

has been demonstrated that replacement of Mll3/Mll4 (proteins that deposit the 

H3K4me1 mark) with their catalytically dead mutants, is dispensable, whereas their 

presence is required for enhancer activity (Dorighi et al., 2017). 

Enhancers regulate the activity of their target promoters by attracting co-

activator proteins such as acetyltransferases, CREB binding protein (CBP), and P300. 

These proteins are typically recruited by transcription factors, but also contain a 

Bromodomain, which enables them to bind acetylated nucleosomes on their own. 

CBP/p300 has multiple acetylation targets such as histones, transcription factors, and 

RNAP II (Schröder et al., 2013). These proteins generally lead to transcription 

activation via the emergence of highly acetylated nucleosome regions (Roh, 

Cuddapah and Zhao, 2005; Roh et al., 2007).  CBP-mediated acetylation facilitates 

TF recruitment and promoter escape of RNAP II (Stasevich et al., 2014). Enrichment 

of p300 at chromatin sites has been used as a signature feature of enhancers and 

resulted in the identification of highly cell-type-specific enhancers (Heintzman et al., 
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2007, 2009). Targeting the p300-HAT domain alone to enhancers utilizing 

deactivated Cas9 nuclease (dCas9) and enhancer-specific guide RNAs (gRNAs) 

increases the expression of enhancer target genes (Hilton et al., 2015). Furthermore, 

CBP has been shown to interact with eRNA, which, in turn, activates acetyl-

transferase activity (Bose et al., 2017). This may constitute a positive feedback loop 

at active enhancers. One of the major CBP/p300 histone targets is acetylation of 

H3K27, which is known to enriched at active enhancers (Tie et al., 2009; Creyghton 

et al., 2010; F. Jin et al., 2011). Interestingly, the treatment of p300 with a selective 

Bromodomain inhibitor led to the abolishment of H3K27ac deposition preferentially 

at enhancers and, consequently, reduction of eRNA transcription and enhancer 

activity. Unlike the H3K4me mark, impairing processes that maintain H3K27ac 

levels lead to inappropriate gene expression (Raisner et al., 2018). However, the 

molecular mechanisms underlying this phenomenon are largely unknown. 
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1.4 Post-translational modification of H3K27 is a switch 
between active and silent chromatin 

 

 

Figure 8. H3K27 position in a nucleosome (PDB code 1KX5) and the –ARKS- motif. A. The 

position of the H3K27 in a nucleosome. H3K27 labeled with red. B. N-terminal amino acid 

sequences of histone H3.1, H3.Y, and H3.X .N-terminal tail. -ARKS- motifs are labeled with yellow. 

Scissors represent histone clipping sites. Different methylation states of H3R8 and H3R26 are labeled 

with green oval and phosphorylation of H3S10 and H3S28 with the blue oval. Residues that differ 

from canonical H3.1 are labeled with red. 
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H3K27 is one of the closest lysine residues to the DNA in the nucleosome (Fig. 

8A). Methylation and acetylation of this residue has been found to have opposing 

effects on chromatin states (Wiles and Selker, 2017).  

Acetylated H3K27 is found in open, transcriptionally active chromatin, and is 

one of the targeted acetylation sites specifically enriched at active enhancers. It is 

deposited by the CBP/p300, which is recruited by different transcription factors. 

Acetylation of the H3K27 neutralizes lysine's positive charge, which is disruptive to 

the DNA-histone tail interaction. Since the histone H3 protein resides at the DNA 

entry point of the nucleosome, H3K27ac may also affect nucleosome stability, lower 

the transcription activation barrier, facilitate chromatin remodeling, and serve as an 

important binding site for chromatin remodeling and transcription coactivator 

proteins that contain acetyl-lysine recognition modules. It is still not clear what 

specific “reader” proteins recognize this mark and what regulatory mechanisms are 

triggered to influence enhancer function. 

Methylation of H3K27 is strongly associated with inactive, silent chromatin and 

introduced by the methyltransferase Enhancer of Zeste Homolog 2 (EZH2), a subunit 

of the polycomb5 repressive complex 2 (PRC2). H3K27me3 is a binding site for 

various heterochromatin-associated proteins, such as PRC1/2. 

It has been argued that H3K27ac is simply an H3K27me3 antagonist and does 

not have a function on its own (Pengelly et al., 2013). It is difficult to directly address 

the role of H3K27 modifications by mutation of that site, since, in higher eukaryotes, 

the histone H3 gene has multiple copies and variants. Even the brilliant approach 

taken by Pengelly et al., who replaced all wild-type histones copies with mutant 

variants (H3.3K27R, H3.1K27R) in Drosophila, could not avoid the presence of 

heterogeneous nucleosomes containing both mutated and wild-type histone proteins, 

                                              
5 Polycomb-group proteins (PcG) are a family of transcriptional repressors, first described in Drosophila (Slifer, 1942; 
Lewis, 1947), and named after adult males that had extra sex combs on the second and third pairs of legs, whereas wild-type 
only on the first pair. Later, after other mutants with developmental abnormalities had been discovered, it was proposed that 
impaired genes were global repressors of the homeotic (Hox) genes (Gellon and McGinnis, 1998), that drive development 
and differentiation (Lewis, 1978). This hypothesis initiated the search for positive regulators of Hox genes, which were 
found shortly after and now known as the Trithorax group (TrxG) genes (Ingham and Whittle, 1980; Capdevila and Garcia-
Bellido, 1981; Forquignon, 1981; Ingham, 1981). The PcG and TrxG play a repressive and activating role in cellular 
memory, respectively. The TrxG contains multiple transcription activators such as SWI/SNF and Mediator subunits that 
maintain the ‘on’ state of the chromatin as opposed to PRC1/2 that maintains the ‘off’’ state of the chromatin (Kingston and 
Tamkun, 2014). 
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due to maternally supplied wild-type histone proteins. Yet, this study demonstrated 

that flies with the K27R mutation die during the developmental stage because of 

impaired heterochromatin formation and PRC2 mediated silencing.  

Another mutation of that residue, H3K27M is observed in >70% of pediatric 

gliomas with dominant PRC2 loss of function, and was reported to account for the 

cancerous phenotype formation and developmental perturbations (Schwartzentruber 

et al., 2012; Wu et al., 2012; Bender et al., 2013; Funato et al., 2014; Herz et al., 

2014). Unfortunately, none of these studies, including the latest study that applied 

single-cell transcriptomic analysis of H3K27M glioma cells (Filbin et al., 2018), 

addressed the effects of this mutation on enhancer function. Notably, H3K27M in 

diffuse intrinsic pontine glioma cells is associated with increased levels of H3K27ac 

and the majority of the heterotypic H3K27M-K27ac nucleosomes were enriched with 

Bromodomain (BRD2/4) proteins at the actively transcribed loci. Moreover, the 

authors show that the application of BET family Bromodomain inhibitors efficiently 

inhibits tumor progression, which opposes previous conclusions about the dominant 

role of impaired heterochromatin function in cancer development (Piunti et al. 2017). 

It has also been shown that PRC2 is still able to recognize and bind H3K27M 

containing heterotypic nucleosomes and does not change the amount of PRC2 bound 

to chromatin (Tatavosian et al., 2018). 

Overall, this data implies that H3K27 fulfills an important function, regulating 

both silencing and activation of transcription by employing mechanisms that 

antagonize each other, and hence creating a a switch between active and silent 

chromatin. 

The ARKS repeated motif 
H3K27 resides in a motif of four amino acids ARKS that is found twice on the 

histone H3 tail: around K9 (N-terminal repeat) and K27 (C-terminal repeat) (Fig. 8B).  

Multiple proteolytic cleavage sites surround the N-terminal ARKS motif. When 

clipped at these sites, the histone H3 N-terminal tail is shortened, reducing the 

number of important docking sites for histone binding proteins (Tvardovskiy et al., 

2015). In that case, the C-terminal ARKS tail motif may still provide a binding site 

for essential interacting proteins. Indeed, PTMs of both ARKS motifs are correlated 
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with somewhat similar context and often have similar “readers” and “writers” (Table 

3). 

 
Table 3. Modifications of the ARKS motif. 

Source: 1-Saksouk, Simboeck and Déjardin, 2015; 2-Campos and Reinberg, 2009; 3-Lachner et al., 2001; 4-Fischle et al., 
2003; 5-Cao et al., 2002; 6-Rada-Iglesias et al., 2011; 7-Bonn et al., 2012; 7-Zhang, Cooper and Brockdorff, 2015; 8-
Zentner, Tesar and Scacheri, 2011; 9-Li et al., 2014; 10-Karmodiya et al., 2012 ; 11-Sawicka and Seiser, 2012;12-Hendzel 
et al., 1997; 13-Sawicka et al., 2014; 14-Tie et al., 2009; 15-Q. Jin et al., 2011; 16-Pal et al., 2004; 17-Bedford and Clarke, 
2009;*(Bernstein et al., 2006; Vermeulen et al., 2010; Kaustov et al., 2011; Eberl et al., 2013; Tardat et al., 2015) 

Three out of four amino acids originating from -ARKS- repeat may be subject 

to PTM. High density and diversity of possible PTMs at these repeats provide a 

framework for the “histone code” to modulate the activity of effector proteins and, 

consequently, biological outcome. Interestingly, primate-specific variants of H3 

(H3.Y and H3.X) bear variations in ARKS repeat residues (Fig. 8B) (Filipescu, 

Müller and Almouzni, 2014), which could affect binding specificity of PTM readers 

Histone 

Mark 

Associated 

chromatin 

Regulatory 

regions 

PTM 

writers 

PTM 

readers 

Crosstalk 

N-terminal ARKS repeat 
H3R8me Unclear Repressed promoter 

regions17 
PRMT516  Prevented by any 

modification of H3K916 

H3K9me2/3 Heterochromatin 
(constitutive)1 

Bulk heterochromatin SUV39H3 HP13, 
PRC1* 

Mutually exclusive with 
H3K27me3 and 
H3K9ac7 

H3K9ac  Euchromatin Active promoters6,8,10 GCN5/PCAF15 SEC 
(YEATS)9 

Promoted by 
H310/28ph11 

H3S10ph Heterochromatin 
(pericentromeric)1

2 

Regulatory regions of 
inducible genes11,13 

Aurora-B11 14-3-311 Reduces 
H3K9me3/H3K27me311 

C-terminal ARKS repeat 
H3R26me Unclear Unclear CARM117  Prevented by any 

modification of H3K2717 

H3K27me2/3 Heterochromatin 
(facultative)1 

Poised 
enhancers/promotes 
(in combination with 

H3K4me1/3)6,7 

EZH2 5 (PRC2) PRC14 

EED 
(PRC2)5 

Mutually exclusive with 
H3K9me3 and 
H3K27ac7 

H3K27ac  Euchromatin Active enhancers6,8 CBP/p30014 SEC 
(YEATS)9 

Promoted by 
H3S10/S28ph11 

H3S28ph Heterochromatin 
(pericentromeric)1 

Regulatory regions of 
inducible genes11,13 

Aurora-B11 14-3-311 Reduces 
H3K9me3/H3K27me311 
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or histone tail clipping. One of the examples of the crosstalk between PTMs of the 

ARKS repeats is the so-called “methyl-phospho switch” (Sawicka and Seiser, 2012). 

In brief, phosphorylation of H3S10 and H3S28 abrogates binding to H3K9me3 and 

H3K27me3 respectively, which leads to the de-repression of transcriptionally silent 

chromatin by promoting acetylation of H3K9 and H3K27 (Fischle, Wang and Allis, 

2003; Fischle et al., 2005; Gehani et al., 2010; Lau and Cheung, 2011a, 2011b).  

Despite sharing many common features between PTMs of ARKS repeat 

residues, H3K9 and H3K27 are deposited by different complexes and are associated 

with different types of chromatin and regulatory regions (Table 3). H3K9me3 is a 

typical mark of constitutive6 heterochromatin, whereas H3K27me3 marks facultative 

heterochromatin generated by PRC2 (Saksouk, Simboeck and Déjardin, 2015). 

Acetylation of H3K9 is associated with active promoters (Karmodiya et al., 2012), 

whereas H3K27ac is enriched at active enhancers (Creyghton et al., 2010). Despite 

this observed specificity, neither of these acetylation marks are exclusive and can be 

enriched at both types of regulatory regions (Karmodiya et al., 2012).  

Due to apparent similarities between promoters and enhancers (Andersson, 

2015; Andersson and Sandelin, 2020), it comes as no surprise that promoters and 

enhancers have similar activation requirements and protein interacting environments. 

However, impairment of p300 acetylation function and subsequent reduction in levels 

of H3K27ac was observed to affect only enhancer, but not promoter function 

(Raisner et al., 2018). This fact underscores that despite similarities between 

promoters and enhancers, the cell has mechanisms that differentiate and conduct 

regulatory region-specific functions. On this basis, it is essential to find out how 

H3K27ac influences enhancer chromatin and function. 
 

 

 

                                              
6 Constitutive and facultative heterochromatin are the two best-studied heterochromatin types. Constitutive chromatin is 
gene-poor, consists of different satellite repeats and transposon repeats that need to be silenced throughout the cell cycle. 
Facultative heterochromatin is gene-rich and consists of silenced genes that were active or yet to be expressed. 
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2. Aim of the study 

  

So far, H3K27ac is the PTM, which is most strongly correlated with active 

enhancers. We hypothesize that the enhancer function of the H3K27ac may arise 

from its interaction with specific reader proteins. Selective inhibition or knock 

out/down of such a “reader” could lead us to identify the role of the H3K27ac.  

The overall aim of the current study has, therefore, been to explore the 

underlying mechanisms of the H3K27ac histone mark in enhancer function.  

A genetic approach for identifying the function of this mark is unattainable 

since mutation of H3K27 would perturb the action of H3K27me3 in transcription 

silencing and confounded by the presence of heterotypic nucleosomes that contain 

both mutant and wild-type H3.  

To identify candidate H3K27ac-reader proteins, we decided to apply a histone-

peptide pulldown approach based on quantitative proteomics (Vermeulen, 2012). 

Depending on the nature of the identified candidate proteins, their authenticity as 

H3K27ac-binding should be validated and further characterized by chromatin 

profiling, biochemical, and functional studies. 
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3. Summary of the results  

The cell is a complex system, and enhancers are vital mediators of cell-type and 

context-specific gene expression patterns. Although H3K27ac is associated with 

active enhancers, the role of this histone modification in enhancer function and 

whether it differentiates enhancer elements from promoters is still not clear.  

In the current study, we aimed to identify specific reader(s) of H3K27ac that 

may account for specificity towards enhancer function, and could further help us 

understand how this PTM influences gene expression. 

3.1 The H3K27ac interactome  

We investigated the interactome of the H3K27ac histone mark via Stable 

Isotope Labeling by Amino acids in Cell culture (SILAC) coupled with Histone 

Peptide PullDown (HPPD) quantitative mass spectrometry (MS). HPPD-MS has 

been successfully applied in multiple studies to identify specific readers of 

methylation marks (Vermeulen et al., 2007, 2010) as well as several acetylated marks 

of histone H3 (Vicent et al., 2009). 

As ‘bait,’ we used biotinylated, synthetic histone-peptides derived from histone 

H3 (residues 15-36) acetylated at K23, K27, or both. As the control ‘bait,’ we used an 

unmodified histone peptide with the same amino acid sequence. For the HPPD-MS, 

we used HeLa and mESC cells as the source of nuclear extracts. Human cancer cells 

(HeLa) and mouse ESCs, represent aberrant and normal cell background, 

respectively. Binding was measured as SILAC ratios between peptide with the PTM 

of interest and the unmodified peptide.  

Due to the known specificity of Bromodomains for acetylated lysines, we 

expected to see Bromodomain containing proteins and their associated proteins. Prior 

to our study, the primary candidate for the specific recognition of the H3K27ac was 

the BRD4 protein that contains a tandem pair of bromodomains (BD1 and BD2) (Dey 

et al., 2000). BRD4 has previously been reported to be enriched at super-enhancers 

(Lovén et al., 2013). BRD4 interacts with active CDK9 (forming so-called BRD4 

containing Elongation Complex – BEC; Bacon and D’Orso, 2019), which promotes 
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RNAP II pause release into productive elongation through subsequent RNAP II CTD 

Ser2 phosphorylation (Moon et al., 2005).  

Despite being associated with the H3K27ac mark, we could not detect BRD4 

protein in any of our HPPD-MS experiments. The majority of the identified 

interactome of H3 acetyl-lysine consisted of proteins that originate from two 

chromatin-interacting complexes, The Super Elongation Complex (SEC) (Luo, Lin 

and Shilatifard, 2012) and the SWI/SNF family complexes (PBAF and GBAF). The 

SEC components ENL, AFF1/4, and AF9, were identified as H3K27ac interactors in 

HeLa cells and additionally CDK9 in mESC with diacetylated histone peptide as bait. 

All known subunits of PBAF (in HeLa were identified with every histone-peptide 

tested; in mESC with H3K23ac and H3K23K27ac histone peptides). The complete 

GBAF complex was identified in HeLa with H3K27ac and H3K23K27ac; in mESC 

with every histone-peptide tested. Additionally, we detected NuA4 complex 

components DMAP1 and YEATS4 (Doyon et al., 2004) and several subunits of the 

general transcription factor TFIID (Dynlacht, Hoey and Tjian, 1991). All these 

complexes contain known acetyl-lysine recognition domains, such as YEATS and 

Bromodomains. 

Unexpectedly, GLTSCR1L, a poorly characterized protein, but not its paralog 

GLTSCR1, showed a clear binding preference towards H3K27ac containing peptides. 

The SEC components and the GLTSCR1L showed the highest SILAC ratios and 

were assigned as the strongest interactors of H3K27ac (Manuscript, Fig. 1b-c; 

Supplementary Fig. 1b-c). Moreover, the PBAF complex subunits showed a clear 

preference for the H3K23ac mark (Manuscript, Fig. 1a; Supplementary Fig. 1a).  

Albeit we did not detect BRD4 as H3K27ac interacting protein, we identified 

the SEC that utilizes a similar CDK9-mediated mechanism for RNAP II CTD Ser2 

phosphorylation (Moon et al., 2005) and subsequent RNAP II pause release into 

productive elongation. However, SEC can interact with both H3K9ac and H3K27ac 

histone marks (Li et al., 2014; Erb et al., 2017). Hence both enhancers and promoters 

might use a common SEC-mediated RNAP II pause release mechanism. In the further 

work, we focused on GLTSCR1L and GBAF since GLTSCR1L protein has shown 

clear H3K27ac interaction preference in HPPD-MS (Manuscript, Fig. 1d; 
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Supplementary Fig. 1d), thus potentially could account for enhancer-specific 

activities. 

 

3.2 GBAF complex composition 

At the time our initial HPPD-MS experiments were conducted, the GBAF 

complex was unknown and we had to find out which complex GLTSCR1L belongs 

to. To test this, we developed transgenic HeLa-FRT cell lines with inducible 

expression of GFP-tagged GLTSCR1L protein, and used them in a series of immuno-

precipitation experiments combined with quantitative mass spectrometry-based 

proteomics (IP-MS) experiments.  

The observed interaction partners of full-length GLTSCR1L protein were 

SWI/SNF core proteins SMARCC1, SMARCD1, Bromodomain containing BRD9 

protein, BCL7C, SS18 subunits, and ATPase SMARCA4 (Manuscript, Fig. 2a).  

To validate identified interacting partners we developed similar transgenic HeLa 

FRT cell lines expressing GFP-tagged BRD9, SMARCD1 and SMARCC1 and 

performed reciprocal IP-MS experiments to corroborate that GLTSCR1L is a bona 

fide subunit of a new SWI/SNF complex named GBAF (Manuscript, Fig. 2b-c; 

Supplementary Fig. 3a). IP-MS also allows for relative abundance quantification of 

analyzed proteins. The measured abundancy of GLTSCR1 or GLTSCR1L 

immunoprecipitated with SMARCD1 and SMARCC1 was below 2% (Manuscript, 

Fig. 2f; Supplementary Fig. 3f). 

Taken together, conducted IP-MS experiments validate GLTSCR1L as a 

component of a novel SWI/SNF family complex, which we term GBAF. According 

to our data, GBAF is less abundant as compared to canonical BAF or PBAF 

complexes. 

GLTSCR1L-mediated interactions and the GLTSCR domain 
Next, we isolated and expressed, in a similar fashion as described above, the 

GLTSCR1 (GiBAF) domain, the most conserved region of the GLTSCR1L 

(Manuscript, Supplementary Fig. 2). We performed IP-MS experiments and found 
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that this domain precipitated all GBAF subunits and, additionally, BRD4 and AFF1 

(Manuscript, Fig. 2d). Further investigation by immunofluorescence imaging showed 

that it is also responsible for the nuclear localization of the GLTSCR1L protein 

(Manuscript, Supplementary Fig. 3b).  

IP-MS experiments with the GiBAF domain deletion mutant resulted in no 

significant SWI/SNF interactions. However, we detected the GiBAF domain deletion 

mutant to interact with TAF6 and TAF4, components of the TFllD complex were 

observed (Manuscript, Supplementary Fig. 3c).  

Taken together, our data suggest that the GiBAF domain interacts with the 

GBAF complex subunits and additionally able to interact with BRD4 and AFF1 

proteins (components of BEC/SEC). The deletion mutant of the GiBAF domain was 

found to interact only with TFllD complex components. 

 

3.3 GBAF localizes preferentially at intergenic/intronic 
regions enriched with H3K27ac  

We performed chromatin immunoprecipitation followed by sequencing (ChIP-

seq) to verify if the GBAF complex components (GLTSCR1L and BRD9) co-localize 

with H3K27ac in chromatin. We applied multiple bioinformatics approaches to 

validate their genomic colocalization with H3K27ac, other chromatin marks, and 

factors associated with enhancer activity in chromatin, and to annotate their genomic 

locations.  

We observed a high degree of overlap between GLTSCR1L, BRD9, H3K27ac, 

chromatin marks, and factors associated with active chromatin (H3K4me1/me2/me3, 

P300, RNAP II, H3K9ac) (Manuscript, Fig. 3b, c). About 75% of the detected 

GLTSCR1L and BRD9 peaks reside within intronic/intergenic regions (Manuscript, 

Fig. 3d), which are known localization places of a large proportion of enhancer 

elements (Gerstein et al., 2007; Khalil et al., 2009; Chorev and Carmel, 2012). We 

also performed an analysis of enrichment of known transcription factor motifs and 

observed enrichment analysis of multiple transcription factor motifs such as JunB and 

CTCF (Appendix A-B). 
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Taken together, our data suggest that the GLTSCR1L-containing GBAF 

complex is enriched at enhancer regions in chromatin and sites that overlap with the 

H3K27ac histone mark. 

3.4 Effects of H3K27ac recognition inhibition by GBAF on 
histone peptide binding specificity and chromatin 
localization  

To probe the role of H3K27 acetyl-lysine binding by GBAF complex in 

chromatin, we impaired this function with a selective inhibitor of BRD9 

Bromodomain (I-BRD9) (Theodoulou et al., 2016) and performed HPPD followed by 

immuno-blotting, and a series of ChIP-seq experiments.  

We observed a pronounced effect of I-BRD9 in vitro: GLTSCR1L interaction with 

acetylated H3 histone peptides was almost abrogated, whereas BRD9 lost specificity 

(the BRD9 signal was the same for all acetylated histone peptides tested) of 

interaction with histone peptides in HPPD (Manuscript, Fig. 3a). Treatment of HeLa 

cells with I-BRD9 in vivo induced changes in genomic occupancy of GLTSCR1L and 

BRD9. Interestingly, localization of BRD9 was only mildly affected, as compared to 

an almost complete abrogation of GLTSCR1L binding to chromatin. Following I-

BRD9 treatment, we also observed that remaining GLTSCR1L peaks overlapped 

mostly with promoter-associated histone marks (H3Kme3, H3K9ac) and TSS regions 

(Manuscript, Fig. 3c, d). Thus inhibition of GBAF H3K27ac recognition by I-BRD9 

leads to a loss of BRD9's specificity towards H3K27ac, dissociation of GLTSCR1L 

from chromatin, and most likely, disruption of GBAF complex assembly. 

3.5 Effects of GBAF H3K27ac recognition inhibition on 
transcription  

Since the SWI/SNF family of chromatin remodelers are implicated in 

transcription regulation and we observed enrichment of the GBAF complex at 

enhancer-associated genomic regions marked with H3K27ac, and dissociation of the 

GLTSCR1L from chromatin upon I-BRD9 treatment, we decided to check how I-
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BRD9 treatment affects transcription. Enhancer transcription is correlated with 

enhancer regulatory activity and together with H3K27ac, is the best predictor of 

active enhancers (Melgar, Collins and Sethupathy, 2011; Wang et al., 2011; 

Andersson, Refsing Andersen, et al., 2014; Henriques et al., 2018; Mikhaylichenko et 

al., 2018; Rennie et al., 2018).  

First, we measured expression levels of the human epidermal growth factor 

(hEGF) inducible NR4A1 gene and its known enhancer (~80 kb downstream of the 

NR4A1 gene locus) in HeLa cells by RT-qPCR. NR4A1 and its enhancer are 

immediate early genes (IEG) that can be induced by hEGF (Lai et al. 2015). 

Measurements were taken before and at 30 minutes after treatment of the cells with 

hEGF in the presence or absence of I-BRD9 (applied for 6 hours before hEGF 

induction). We also performed ChIP-qPCR to validate that GLTSCR1L and BRD9 

bind the NR4A1 TSS and enhancer, and to monitor how the induction of HeLa cells 

with hEGF affects this interaction in the presence or absence of I-BDR9. 

ChIP-qPCR indicated that BRD9 is enriched at the NR4A1 enhancer compared 

to the TSS region. Upon hEGF induction, we detected a 2-fold increase in the BRD9 

signal at the enhancer and, to a lesser extent, at the TSS region. GLTSCR1L was 

weakly associated with both NR4A1 TSS and enhancer, but upon hEGF induction, 

we observed an almost 10-fold increase of GLTSCR1L signal at NR4A1 enhancer 

and to a lesser extent at TSS region. Upon I-BRD9 treatment, we observed abrogation 

of GLTSCR1L binding to chromatin in both, hEGF induced and non-induced HeLa 

cells (Manuscript, Supplementary Fig. 5a). Thus, GLTSCR1L and BRD9 were 

recruited to the induced NR4A1 enhancer element in BRD9 bromodomain dependent 

fashion. 

Furthermore, we observed that, upon I-BRD9 treatment and hEGF induction, 

the expression levels of NR4A1 promoter were slightly increased, while enhancer 

transcription was strongly downregulated as compared to non-treated with I-BRD9 

cells (Manuscript, Supplementary Fig. 5b). Thus, impairment of GBAF’s ability to 

bind to H3K27ac inhibits transcription of the NR4A1 enhancer, but not the promoter. 

To assess the global effects on transcription of the GBAF and H3K27ac 

interaction inhibition by I-BRD9, we performed a series of Cap Analysis of Gene 
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Expression (CAGE) experiments, and in parallel, Assay for Transposase-Accessible 

Chromatin-sequencing (ATAC-seq) to focus on true transcription initiation events at 

open chromatin loci. With a combination of methods for the detection of histone 

marks, chromatin accessibility, and genome-wide assays that measure RNA levels, 

the activity of enhancer elements can be measured quite accurately. The 

measurements for the CAGE and ATAC-seq were taken at 0, 30, 60, and 240 minutes 

after hEGF treatment. 

Consistent with the RT-qPCR results, we observed little or no effect on the 

NR4A1 gene and downregulation of its corresponding enhancer transcription upon I-

BRD9 treatment. Compared aggregated fold change of NFR (nucleosome free region) 

expression across all hEGF time points revealed selective transcription 

downregulation of intronic/intergenic regions, whereas transcription from other 

genomic loci was not affected by I-BRD9 treatment (Manuscript, Fig. 4b). 

Furthermore, we compared NFR transcriptional events measured at each time point 

separately in control cells, and in I-BRD9 treated cells. We observed differential 

expression of both TSS and intronic/intergenic regions. However, a reduced fold 

change of expression between I-BRD9 treated and untreated cells was observed only 

at intronic/intergenic regions (Manuscript, Fig. 4c). Thus, inhibition of GBAF 

binding to H3K27ac by I-BRD9 leads to a preferential downregulation of enhancer 

transcription throughout time course after treatment of HeLa cells with hEGF. 

Although upon I-BRD9 treatment, GLTSCR1L disassociated from all genomic 

regions tested, we observed the downregulation of transcription exclusively at 

intronic/intergenic regions that lost GLTSCR1L, but no downregulation at those 

regions that retained GLTSCR1L (Manuscript, Fig. 4d). The ATAC-seq also revealed 

minor, but significant decrease in chromatin accessibility 7 at GLTSCR1L-depleted 

enhancers (Manuscript, Supplementary Fig. 5e). Due to the observed differential gene 

expression after I-BRD9 treatment, using publically available Hi-C data derived from 

HeLa cells, we asked whether downregulated genes reside within the same TADs as 

downregulated enhancers or not. Remarkably, TADs that contain at least one 

                                              
7 However, it has to be noted that in order to be confident in this result, ATAC-seq experiments should be performed at least 
as triplicates, which is not the case with the current data. 
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downregulated enhancer showed significant downregulation of promoter transcription 

as compared to TADs with no downregulated enhancers (Manuscript, Fig. 4e). 

Taken together, HeLa cells treated with I-BRD9 showed selective downregulation of 

transcription at enhancers, which coincided with the dislocation of GLTSCR1L and 

reduced chromatin accessibility. 
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4. Discussion 

In the work described above we have identified two protein complexes, SEC 

and GBAF, that both specifically recognize H3 histone peptides with the H3K27ac 

mark, the hallmark of active enhancers. It is likely that SEC facilitates eRNA 

transcription, while GBAF remodels nucleosomes in enhancer chromatin. Below I 

discuss the approach taken and the implications of our findings in the light of recent 

publications in the field.  

4.1  Identifying H3K27ac interacting proteins 

4.1.1 Histone-peptide pulldown MS vs ChIP-MS 
So far, several studies have addressed the identification of H3K27ac-interacting 

proteins using chromatin immunoprecipitation, followed by mass-spectrometry 

(ChIP-MS) (Engelen et al., 2015; Ji et al., 2015). These studies have detected 

numerous transcription factors, chromatin remodelers, RNAP II, and other chromatin 

interacting proteins to be enriched at H3K27ac-marked genomic regions. As for 

ChIP-seq and ChIP-qPCR, ChIP-MS relies on the purification of crosslinked, sheared 

chromatin with pre-existing protein complexes that are pulled down with an antibody 

raised against a histone PTM or a chromatin-bound protein. None of these methods 

allows for identification of proteins that specifically bind the histone mark of interest. 

There are two main reasons for this: 1. the antibody recognizes the PTM, which is 

supposed to be bound by the interacting proteins, and 2. the crosslinked chromatin is 

left with bound sequence-specific TFs which can attract and lead to co-precipitation 

of different remodelers and other chromatin interacting proteins. Thus we cannot 

discern the contribution of H3K27ac mark alone in a DNA-independent context. To 

overcome these problems, we applied a histone peptide pulldown MS approach that 

does not rely on crosslinking chromatin and the use of the antibodies to enrich for the 

target chromatin regions bearing PTM of interest. Histone peptide pulldown has been 

successfully applied in multiple studies to identify specific readers of histone 

methylation marks (Vermeulen et al., 2007, 2010) as well as several acetylation 

marks of histone H3 (Vicent et al., 2009). The next step in this approach is the 
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demonstration of colocalization of candidate proteins with the PTM of interest by 

ChIP-seq. 

4.1.2 H3K27ac is recognized by SEC and GBAF 
Unexpectedly, we did not observe BRD4 in the interactome of any investigated 

acetyl-lysine marks. Instead, we identified several SEC complex subunits. The 

canonical SEC contains AF4/FMR2 family members 1 or 4 (AFF1/4), eleven-

nineteen Lys-rich leukemia (ELL) proteins ELL1/2/3, the YEATS domain-containing 

MLLT3 (AF9) or ENL (MLLT1) proteins, and associates with a pTEF-b module 

(CDK9, CyclinT1/2) (Luo, Lin and Shilatifard, 2012). The SEC subunits detected in 

HPPD-MS indicate that fully active SEC (only CyclintT1/T2/K were undetected) can 

be attracted by H3K27ac containing nucleosomes. The YEATS domain of AF9 has 

previously been demonstrated to bind H3K9ac, H3K18ac, and H3K27ac8 (Li et al., 

2014). Also, the interaction between SEC and H3K27ac has been described in the 

context of a negative feedback regulatory loop with H3R26me (Zhang et al., 2017). 

Therefore, one of the possible roles of the H3K27ac is to facilitate SEC mediated 

RNAP II elongation pause release, at both promoters and enhancers, a feature thus 

universal for both regulatory regions. 

Another complex that indicated specificity towards H3K27ac containing 

peptides in our HPPD-MS assay is the GBAF complex, which was only recently 

characterized (Alpsoy and Dykhuizen, 2018). GBAF belongs to the SWI/SNF family 

of chromatin remodelers that have a diverse range of functions related to DNA-

dependent processes in the cell nucleus. The GBAF is a non-canonical BAF complex 

defined by the presence of BRD9 and one of the paralogues GLTSCR1 or 

GLTSCR1L proteins. Interestingly GBAF, unlike canonical SWI/SNF complexes, 

does not contain any known DNA-interaction modules (except in SMARCA2/4), 

which is likely to make it more dependent on binding to acetylated lysines for 

interaction with chromatin or other target proteins. Several studies have identified 

numerous SWI/SNF proteins associated with H3K27ac (Engelen et al., 2015; Ji et al., 

2015; Zhang et al., 2017), but none of them have detected GLTSCR1L. Interestingly, 

                                              
8 However, the interaction with H9K9ac was significantly favored over H3K27ac. 
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only GLTSCR1L, but not GLTSCR1 protein, was observed to interact with H3K27ac 

in our study, which leads us to conclude that the GBAF complex might have different 

functions or targets depending on which of the GLTSCR1 paralogs reside in the 

complex. 

4.1.3 Specificity of H3K27ac recognition 
Since our screen had been performed in two different cell lines, we were able to 

observe a possible cell-type-specific effect of H3K27ac recognition. In HeLa cells, 

the SEC was the main interactor of the H3K27ac mark alone, and the GBAF 

interaction was more profound with di-acetylated H3K23acK27ac histone peptide. In 

mESC, we observed the opposite, as the histone peptide with H3K27ac alone was 

interacting with GBAF, whereas the strongest interactor for diacetylated 

H3K23acK27ac histone peptide was found to be SEC. The cell-type-specific 

H3K27ac recognition may arise from variations of protein abundances or differential 

(maybe posttranslational) regulation of the complexes. However, technical limitations 

of the mass-spectrometry, such as sensitivity in the quantification of low abundant 

peptides in complex samples, cannot be ruled out as a source of differences between 

cell types. 

HPPD SILAC ratios of H3K27ac alone were generally lower compared to 

H3K23ac mark alone or to diacetylated H3K23acK27ac (Manuscript, Fig. 1b-d; 

Supplementary Fig. 1b-d), which suggests that H3K27ac is probably deposited and 

recognized in concert with other PTMs (Schwämmle et al., 2016). 

As mentioned earlier, H3K27ac resides in a sequence motif (ARKS) that 

appears twice on the N-terminal tail of histone H3.1. Furthermore, H3K9ac and 

H3K27ac show conserved negative crosstalk (Schwämmle et al., 2016). Interestingly, 

similar HPPD-MS and HPPD-WB (PAGE-immunoblotting) experiments have 

detected preferential binding of PBAF complex to H3K9ac, rather than H3K27ac 

(Vicent et al., 2009; Slaughter et al., 2018). Hence it is possible that H3K9/K27 

acetylation provides overlapping transcription stimulating functions as well as 

distinct features on promoters and enhancers, which might be exploited by PBAF and 

GBAF, respectively. 
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4.2  GBAF complex composition 

4.2.1  GBAF – a non-canonical BAF complex   
Our series of IP-MS experiments have demonstrated that GLTSCR1L is part of 

a SWI/SNF type complex since most of the detected interacting proteins are known 

subunits of that chromatin remodeler family. However, it was not clear whether the 

observed complex composition is complete since, initially, different assemblies of 

PBAF and BAF were known to exist, and we have not detected SMARCB1 and 

SMARCE1 (core SWI/SNF subunits), ARID1A/B/2 (PBAF and BAF core subunits), 

or PBRM1 (BAF180 - PBAF core subunit), which all contain DNA interaction 

domains (Mashtalir et al., 2018). After subsequent reciprocal pulldown MS analysis 

with BRD9 and SMARCD1, it became apparent that we are looking at a new and 

relatively low-abundant assembly of SWI/SNF complex in HeLa cells, the 

GLTSCR1/1L containing BAF: GBAF. GBAF is defined by the presence of 

GLTSCR1 or GLTSCR1L and BRD9 proteins. 

Recent studies have also described the composition of the GBAF complex 

(Alpsoy and Dykhuizen, 2018; Mashtalir et al., 2018). Both studies used SWI/SNF 

subunits for initial IP and glycerol gradient sedimentation to separate SWI/SNF 

complexes of different sizes. In particular, the first study described the GBAF 

complex as a distinct non-canonical BAF complex (Alpsoy and Dykhuizen, 2018). 

After these authors confirmed GLTSCR1 to be a true subunit of catalytically active, 

non-canonical BAF complex, they performed a series of knockdown experiments to 

investigate whether the GLTSCR1 and GLTSCR1L proteins are interchangeable. It 

was found that upon GLTSCR1 knockdown, GLTSCR1L is able to substitute its 

paralog. Interestingly, this led to an increase of SMARCA4 in GBAF containing 

glycerol fractions, suggesting that GLTSCR1L containing GBAF forms more stably 

associated complexes than GLTSCR1 (Alpsoy and Dykhuizen, 2018). It has also 

been shown, using sequential salt extraction assay, that GBAF (containing 

GLTSCR1) interacts with chromatin as strongly as the BAF complex subunit 

ARID1A (contains DNA binding module), but slightly weaker than PBRM1 in 
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PBAF. Thus, even without multiple DNA interaction modules, the interaction of 

GBAF with chromatin is at least as strong as that of canonical BAF. 

In our study, GLTSCR1L (but not GLTSCR1) and BRD9 were identified in the 

context of H3K27ac binding, which suggests an enhancer-specific function for these 

proteins. Due to the absence of DNA binding domain-containing proteins in GBAF, 

we hypothesize that targeting of GBAF to chromatin is more reliant on the 

recognition of acetylated histones (namely H3K27ac) or other acetylated lysine-

containing proteins, as compared to canonical SWI/SNF complexes that all contain 

DNA-binding domains. Such domains can promote interaction with nucleosomal 

DNA, activate SMARCA2/4 ATPase activity, and induce chromatin remodeling 

(Phelan et al., 1999; Sen et al., 2017).     

To conclude, our study is in agreement with recently published GBAF complex 

composition data (Alpsoy and Dykhuizen, 2018; Mashtalir et al., 2018). Due to 

atypical composition with the presence of unique components, such as GLTSCR1/1L 

and BRD9, and multiple targeting mechanisms (discussed below), the function of the 

GBAF complex is likely to be different from canonical SWI/SNF family members. 

4.2.2 GLTSCR1L-mediated interactions and the GiBAF domain   
GLTSCR1 is a large (150kDA) protein, which was previously associated with 

the development of oligodendrogliomas (Yang et al., 2005). GLTSCR1 has been 

previously detected in multiple proteomic analyses of the SWI/SNF chromatin 

remodeling complex but has never been validated as a SWI/SNF complex subunit 

(Ho et al., 2009; Middeljans et al., 2012; Hein et al., 2015). GLTSCR1 was also 

found to interact with the ET domain of BRD4 protein (Rahman et al., 2011).  

GLTSCR1 and its paralog GLTSCR1L both contain a conserved GiBAF 

(GLTSCR) domain of an unknown function, that shares 63% sequence similarity 

(Alpsoy and Dykhuizen, 2018). GiBAF domain was earlier found to interact with 

SH3 containing proteins (Wu et al., 2007). The function of the rest of the protein is 

unknown. Computational analysis of the protein sequence indicates that it contains 

several segments of highly disordered nature (as predicted by IUPred; Dosztányi et 

al., 2005) (http://iupred.enzim.hu).  
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We performed IP-MS experiments with the isolated the GiBAF domain and 

observed enrichment of all GBAF subunits and additionally BRD4 and AFF1 

(components of BEC and SEC complexes, respectively). Very similar results (apart 

from detected BRD4 and AFF1 interaction) were obtained in the study conducted by 

Michel et al. (2018). Although these experiments were performed with the whole C-

terminal half, it was impossible to determine the exact GiBAF domain interaction 

profile.  

Unlike GLTSCR1 (Han et al., 2019), GLTSCR1L does not contain any known 

nuclear localization signal sequence, but it is still able to translocate to the nucleus. 

We have shown by IF microscopy, that the GiBAF domain is responsible for that 

function. Hence we suggest, that the GiBAF domain might be recognized and 

transported to the nucleus by a nuclear localization signal-independent mechanism 

(Fagotto, Glück and Gumbiner, 1998). It is an interesting question of why and how 

GLTSCR1L lost its NLS sequence and which proteins help to transport it into the 

nucleus. 

Since IP-MS with a GiBAF domain deletion mutant protein did not enrich any 

SWI/SNF subunits, we propose that it can serve as the core scaffold for the GBAF 

complex. Interestingly, we detected multiple TFllD complex components, such as 

TAF4 and TAF6, which link GLTSCR1L to the transcription initiation complex 

(Louder et al., 2016) and reveals a possible interplay between chromatin remodeling 

by GBAF and transcription initiation.  

Apart from the GiBAF domain, GLTSCR1/1L contains multiple intrinsically 

disordered regions, which is common for transcription factors. Active transcription 

sites have recently been associated with phase separation transition (Palikyras and 

Papantonis, 2019). Highly disordered regions in proteins may play an essential role in 

this process since they can undergo phase transitions in response to various stimuli 

(Ruff et al., 2018). Phase separation and largely unexplored properties of 

unstructured chromatin interacting proteins may be a key mediator of spatial and 

temporal control over the diverse nuclear processes. 
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4.2.3 BRD9-mediated GBAF targeting to chromatin 
BRD9 is one of the defining GBAF subunits. BRD9 contains a Bromodomain - 

a well established acetylated lysine interaction module, and a DUF3512 domain of 

the unknown function (probably protein-protein interaction). BRD9 is related to 

BRD7, which is PBAF specific subunit. Hence, it is tempting to speculate that PBAF 

and GBAF might have either similar or opposing functions. 

In this work, we provide evidence that the GBAF complex specifically 

recognizes H3K27ac on chromatin. We show that the BRD9 Bromodomain mediates 

this interaction. Since, when this domain is blocked by the specific inhibitor (I-

BRD9), GBAF can no longer bind to acetylated histone peptides (Manuscript, Fig. 

3a). Recent studies have, however, suggested several alternative chromatin targeting 

mechanisms for BRD9 (Gatchalian et al., 2018; Wei et al., 2018). First, the use of I-

BRD9 has been reported to result in concentration and time-dependent decrease in 

cell proliferation, pointing to a Bromodomain-dependent role for BRD9 in 

maintaining naive pluripotency of murine ESCs (Gatchalian et al., 2018). In that 

study, BRD9 was shown to recognize an acetylated form of BRD4, which is thought 

to target GBAF to some of the BRD4 enriched sites on chromatin. This interaction 

was affected by inhibition of BRD9 Bromodomain with the I-BRD9 compound, 

which suggests that this interaction is also BRD9 Bromodomain-dependent. 

Interestingly BRD4 has been shown to have acetyltransferase activity (Devaiah et al., 

2016), which may deposit histone lysine-acetylation targets for BRD9. As a study by 

Wei et al. (2018) demonstrated that, BRD7/9 Bromodomains recognize acetylated 

lysine K91 of vitamin D receptor (VDR). This interaction facilitates the association 

of the PBAF and GBAF complexes in a ligand-dependent fashion to VDR target sites 

and modulates expression of the critical inflammatory response genes in human 

induced pluripotent stem (iPS) cell-derived B-like cells. VDR K91ac is located in the 

T-box domain (Quack et al., 1998), which is juxtaposed to its DNA-binding zinc 

fingers. This proximity of an acetylation target to the DNA binding domain of the 

transcription factor VDR is reminiscent of acetylation targets on nucleosomal histone 

tails. Many other transcription factors have acetylated lysines near their DNA binding 

domains (Sterner and Berger, 2000; Choudhary et al., 2009; Sykes et al., 2009; Xie et 
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al., 2011). It is tempting to speculate that BRD7/9 requires, if not recognizes, a DNA 

context as well as an acetylated lysine in order to efficiently interact with chromatin. 

Interestingly, calcipotriol (cal) - a synthetic ligand of VDR receptor (vitamin D 

analog), when applied, reduces the BRD9-VDR interaction, which points to an 

important function of BRD9 in the regulation of unliganded VDR target gene 

expression. Inhibition of BRD9-binding with I-BRD9 as well as depletion of BRD9 

by knockdown allowed re-localization of PBAF complex on previously BAF-

occupied loci, and increased association of VDR with the PBAF complex and PCAF, 

which resulted in prolonged transcriptional activation (Wei et al., 2018). 

Taken together, recognition of H3K27ac or other acetylated lysines in histones, 

VDR, or BRD4 by BRD9, may substitute/compensate for the stimulating effect 

mediated by canonical DNA-binding SWI/SNF subunits.  

 

4.3 GBAF localization in chromatin 

4.3.1 GBAF localizes preferentially at enhancers 
We performed a series of ChIP-seq experiments that showed overlap between 

genomic regions enriched with BRD9, GLTSCR1L, H3K27ac, and a panel of active 

chromatin marks (Manuscript, Fig. 3). Our finding of localization bias of GBAF to 

the intronic/intergenic region also supports our initial hypothesis that GBAF possibly 

facilitates an enhancer-specific function on chromatin. Our analysis of ChIP-seq data 

also indicated an enrichment of the enhancer-associated histone mark H3K4me1 

rather than promoter-associated H3K4me3 (Manuscript, Fig. 3c). Several recent 

studies have reported similar ChIP-seq data and analyses of GBAF complex 

components. The study by Michel et al. (2018) also shows a significant overlap 

between binding sites of BRD9 and GLTSCR1 protein. However, these authors 

suggest that the GBAF complex is mostly associated with gene promoters and CTCF 

sites. Although we also observed enrichment to CTCF sites (Appendix A-B), our data 

show that GBAF is enriched at enhancers, rather than promoters. CTCF is a protein 

known to mark the TAD boundaries. It has also been shown that CTCF and TAD 
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boundaries are mostly located in intergenic regions (Cuddapah et al., 2009), which 

may account for at least a fraction of the GBAF-bound intergenic loci. Nevertheless, 

our data differ from some of the data of Michel et al. (2018), which suggests 

promoter localization of the GBAF complex. Michel et al. (2018) and Gatchalian et 

al. (2018) have both performed annotation of BRD9-bound chromatin regions with 

chromatin marks: H3K4me1 (enhancer-associated), H3K4me3 (promoter-associated), 

H3K27ac (active transcription-associated). Recent studies have surprisingly shown 

that most of the active enhancers harbor H3K4me3 rather than H3K4me1. 

Furthermore, the level of H3K4 methylation corresponds to the transcription intensity 

at a given locus (Henriques et al., 2018) and does not distinguish active enhancers 

from promoters. Based on the enrichment of those marks, both studies claim that 

BRD9 is associated with promoters. It has to be noted, however, that these chromatin 

marks are associations, not transcriptionally validated promoters or enhancers 

(Andersson, 2015).  

On the other hand, a study conducted with sarcoma cell lines by Brien et al. 

(2018), who used genomic annotations, assigned most of the BRD9 peaks (65%) to 

intergenic/intronic regions, in agreement with our data. Interestingly, following I-

BRD9 treatment, we observed a reduction of BRD9-bound intronic/intergenic regions 

and most of the GLTSCR1L peaks to remain at promoter regions. These observations 

support the idea that the GBAF complex is involved in chromatin remodeling activity 

when promoters and enhancers are interacting. The observed loss of GLTSCR1L 

from enhancers upon BRD9 bromodomain inhibition indicates that GBAF is 

specifically bound to enhancers while remaining bound unspecifically to promoters. 

Due to a large number of paralogs, SWI/SNF family remodeling complexes 

might, in theory, form about ~1500 different assemblies (Mashtalir et al., 2018). 

Some of the subunits that contain DNA/histone interaction domains (for example, 

SMARCA2/4) are universal for all of the SWI/SNF assemblies. This leads to the 

partial colocalization not even between different assemblies of the same type (for 

example, PBAF and nPBAF), but also between different types (PBAF partially 

overlaps with BAF) of the SWI/SNF complexes. On the other hand, type-specific 

subunits, which contain DNA/histone or other chromatin targeting domains, could 
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differentiate their activity. Moreover, the same subunits can endow different 

localization patterns depending on which type of SWI/SNF complex they reside in. 

For example, SMARCB1 - a subunit that is shared between both BAF and PBAF, has 

been shown to affect promoter-distal (enhancer) localization of BAF, but not the 

PBAF complex (Nakayama et al., 2017). No systematic genome-wide study to map 

and differentiate localization of different types of SWI/SNF assemblies have yet been 

performed. Recent studies suggest, however, that different types of SWI/SNF 

complexes have specialized roles and complex-specific localization (Ho, Lloyd and 

Bao, 2019). 

4.3.2 Inhibition of H3K27ac recognition by BRD9 diminishes GBAF 
localisation in chromatin 

By impeding the H3K27ac recognition of GBAF with the selective inhibitor of 

BRD9 (I-BRD9), we did not destroy the GBAF complex itself, as would have 

happened with a knockdown/out. Thus when using I-BRD9, we did not impair the 

possible structural role of that complex. 

Our HPPD-WB data indicates that upon I-BRD9 treatment, GLTSCR1L 

binding to histone-peptides is severely diminished. Interestingly we still detected the 

interaction of acetylated histone peptides with BRD9, but the specificity towards 

H3K27ac recognition was lost. These data have led us to draw two conclusions: 

1. BRD9 can form a partial assembly with the ATPase module of SWI/SNF 

(Mashtalir et al., 2018), that can interact with histone peptides in a BRD9 

Bromodomain-independent fashion 

2. upon H3K27ac binding, BRD9 may undergo a conformational change that 

facilitates GLTSCR1L-binding and the formation of the active GBAF 

complex. Alternatively, I-BRD9 may evoke a conformational change that 

inhibits BRD9`s ability to interact with GLTSCR1L and non-ATPase 

subunits such as SMARCD1(BAF60a) and SMARCC1(BAF155) 

Supporting data was obtained by ChIP-qPCR at the NR4A1 locus and globally 

by ChIP-seq. We observed abrogation of GLTSCR1L interaction with chromatin 

upon I-BRD9 treatment, whereas BRD9 remained on chromatin. Other inhibitors of 
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the BRD9 Bromodomain have shown similar effects on BRD9 (Hohmann et al., 

2016). The study by Brien et al. (2018) performed systematic analyses of BRD9 

inhibitors and mutational inactivation of its Bromodomain and DUF3512 domains in 

different cancer cell lines and arrived at similar conclusions.  

Our observed defects of GBAF assembly upon I-BRD9 treatment, suggest that 

acetyl-lysine recognition is essential for GBAF integrity. Acetyl-lysine recognition 

has been shown to induce a conformational change in the Bromodomain of the RSC 

complex (Skiniotis, Moazed and Walz, 2007) and proposed to stabilize certain 

interactions within the complex, which is a prerequisite for subsequent remodeling 

activity. Also, the Bromodomain of CBP/P300 was found to be involved in H3K27 

acetylation regulation (Park et al., 2017). Furthermore, impairment of H3K18 acetyl-

lysine recognition by P300-specific Bromodomain inhibitor (GNE-049) severely 

reduced H3K27ac levels and, consequently, enhancer-specific activity (Raisner et al., 

2018). Regarding the previously observed incomplete dislocation of BRD9 from 

chromatin upon I-BRD9 treatment, BRD9 may bind to chromatin in a Bromodomain-

independent manner. Furthermore, it may be possible that GBAF is sequentially 

assembled on chromatin, whereas recognition of H3K27ac (or other acetylated 

lysines) leads to the conformational change of BRD9 that facilitates the formation of 

fully active GBAF complex. Interestingly, Alpsoy and Dyukhuiz (2018) have also 

observed that knockdown of GLTSCR1 or GLTSCR1L proteins reduced the BRG1-

associated BRD9 levels, which suggests that BRD9 alone is not able to assemble 

catalytically active complex. Further structural analyses are needed to identify if 

BRD9 undergoes structural rearrangements upon acetyl-lysine recognition, which 

could facilitate signal-dependent protein assembly/activity regulation. 

Altogether, our HPPD-WB and ChIP-seq data have shown that the recognition 

of H3K27ac by the Bromodomain of BRD9 is essential not only for targeting GBAF 

but also for the assembly of the complex. 
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4.4 Transcriptional effects of H3K27ac recognition 
inhibition in GBAF 

Enhancer-promoter interactions are known to be regulated by the three-

dimensional genome structure. These interactions typically reside within large 

chromosome TADs (Dixon et al., 2012; Nora et al., 2012), which are limited by 

boundaries (also-called insulator elements) formed by CTCF and cohesin (Parelho et 

al., 2008; Wendt et al., 2008), and which prevent interdomain contacts (Narendra et 

al., 2015). 

 About 70% of CAGE-defined enhancers were validated in reporter assays 

(Andersson, Gebhard, et al., 2014). The remaining fraction of transcribed elements 

may have other functions. Transcription has been reported not only for promoters and 

enhancers but also for insulators (Melgar, Collins and Sethupathy, 2011) and 

accessible DNA in general (Young et al., 2017). We show that GBAF was found to 

co-localize with CTCF; thus, observed significant downregulation of 

intronic/intergenic transcription rates might at least partially arise from CTCF sites 

(insulators). 

Apart from downregulated intronic/intergenic transcripts, we also observed 

differential expression of mRNA genes. Despite that the global level of transcription 

from intronic/intergenic regions was significantly reduced, transcription from TSS’s 

was not affected by I-BRD9 treatment. To summarize, inhibition of the GBAF 

H3K27ac recognition impairs the correct gene expression globally through the 

downregulation of eRNA at transcribed enhancers. 

While global mRNA expression levels were not affected by I-BRD9, 

transcription from TSS of genes residing within TADs with downregulated enhancers 

tended to be downregulated. However, at our model locus, NR4A1, the 

counterintuitive effect of I-BRD9 was observed. eRNA expression at the NR4A1 

enhancer was severely downregulated while the NR4A1 promoter was upregulated 

following I-BRD9 treatment (Manuscript, Supplementary Fig. 5b). An increase in 

NR4A1 promoter upon I-BRD9 treatment might result from the formation of 

alternative DNA loops by the promoter within the TAD it resides in (Long, Prescott 

and Wysocka, 2016). As reported by Lai et al., 2015, the NR4A1 locus has several 



 56 

enhancers and promoters. When multiple promoters and enhancers are shared, 

enhancer-promoter targeting might be not additive, but sub-additive due to 

competition for the promoter(s) (Bothma et al., 2015).  

Furthermore, upregulation of promoter transcription and partial co-localization 

of GBAF and factors such as CTCF and cohesin in chromatin imply that the GBAF 

complex might be involved in the fine-tuning 3D organization of the NR4A1 TAD or 

smaller insulating chromatin loops within the TAD (Hao, Shearwin and Dodd, 2019; 

Kim et al., 2019) ensuring the correct level of the expression of that gene.  

However, it may also be that functionalities of enhancer and promoter in the 

case with NR4A1 locus may not be interdependent (Arnold et al., 2017; Catarino, 

Neumayr and Stark, 2017; Dao et al., 2017; Diao et al., 2017; Mikhaylichenko et al., 

2018). Another possibility is that enhancer-independent signaling by hEGF directly to 

the promoter was sufficient to drive the NR4A1 gene expression under our 

experiments’ conditions. If that was the case, it is reasonable to question the 

significance of enhancer transcription in target gene regulation and prompt the search 

for other non-trivial functions of eRNA expression. Nevertheless, at the NR4A1 

locus, we show that GBAF is involved exclusively in enhancer transcription 

modulation. 

Global transcription levels measured by CAGE, coupled with ATAC-seq 

(mostly for validating transcriptional events), have led us to conclude that the GBAF 

complex has enhancer-specific function noted by downregulation of eRNA 

transcription and corroborated by a minor, but significant decrease in chromatin 

accessibility at GLTSCR1L-depleted enhancers in I-BRD9-treated HeLa cells. 

However, the minor decrease in chromatin accessibility might also be explained by 

reduced transcription rates and not the activity of GBAF itself. 

Taken together, we propose that GBAF is essential for both enhancer 

transcription and enhancer regulatory activity to drive distal transcription. 
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4.5 Possible role of H3K27ac in enhancer 

According to our data, both the SEC and the GBAF complexes can recognize 

H3K27ac. These two complexes facilitate two processes, transcription elongation 

pause release and ATP-dependent chromatin remodeling. Moreover, we have found a 

link between these two processes: GiBAF domain of GLTSCR1L protein interacts 

with AFF1 from SEC, and BRD4 that, similarly to SEC, promotes CDK9 mediated 

RNAP II pause release. Hence, we suggest that transcription elongation pause release 

and ATP-dependent chromatin remodeling might be interconnected. 

The SEC components AF-9 and ENL can recognize both H3K9ac and H3K27ac 

histone marks. However, both of these proteins preferentially associate with H3K9ac 

rather than H3K27ac (Li et al., 2014; Erb et al., 2017). Although H3K9ac and 

H3K27ac have been reported to be mutually exclusive chromatin marks on histone 

tails (Schwämmle et al., 2016), both of them can be found at active enhancers and 

promoters (Karmodiya et al., 2012). Since both of these regulatory elements are 

transcriptionally active, SEC-mediated promotion of transcription elongation can be 

utilized by both. However, the preference of the SEC towards H3K9ac binding could 

explain higher transcription rates at promoters than enhancers (Mikhaylichenko et al., 

2018).  

In contrast, GBAF has been found to interact with H3K27ac only. The GBAF 

complex has only recently been described (Alpsoy and Dykhuizen, 2018; Brien et al., 

2018; Gatchalian et al., 2018; Jefimov et al., 2018; Mashtalir et al., 2018; Michel et 

al., 2018), and there is so far little data that can shed light on mechanisms employed 

by this complex. Our data shows that GBAF has enhancer-specific functions, but the 

exact mechanisms are yet to be elucidated. 

Taken together, we propose a dual role for the H3K27ac. First, H3K27ac can 

recruit GBAF and facilitate ATP-dependent chromatin remodeling, preferentially at 

enhancers. Secondly, this mark promotes transcription elongation pause release by 

SEC/BEC mediated RNAP II CTD Ser2 phosphorylation. 
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5. Concluding remarks and future perspectives 

Modern advances in methods for investigating chromatin biology have the 

potential to reveal the regulatory mechanisms of chromatin. In the current study, we 

have used a combined proteomic and functional genome-wide approaches to provide 

new insights into the role of the H3K27ac chromatin mark in enhancer function. In 

search of specific binders for the H3K27ac, we detected the GBAF complex that 

connects histone acetylation, chromatin remodeling, and enhancer-specific activities. 

By impeding H3K27ac recognition by GBAF with the selective inhibitor of BRD9 (I-

BRD9), we induced transcriptional defects preferentially at enhancer elements and 

observed effects on gene expression. This indicates the enhancer-specific regulatory 

activity of the GBAF complex. 

Although we have uncovered an important role of H3K27ac and GBAF in 

enhancer regulatory function, new questions arise. First of all, it is not clear exactly 

how GBAF exerts its enhancer-specific function and whether it takes part in the 

establishment of productive enhancer-promoter communication. It is, therefore, of 

great interest to analyze how the dysregulation of GBAF activity influences the 3D 

chromosome organization. It is of high importance to follow up this study by methods 

that can detect nucleosome remodeling activity, such as ATAC-seq, to assess how 

GBAF affects chromatin accessibility for TFs and other regulatory factors. 

Furthermore, identification of structural rearrangements in BRD9 upon acetyl-lysine 

binding could lead to a better understanding of the signal-induced activity of 

chromatin remodelers since it is likely a common regulatory mechanism.  

Regulation of gene expression is a dynamic and continuous process. High-

throughput methods, such as genome-wide chromatin profiling and proteomics, have 

significantly contributed to the recent advances in our understanding of gene 

regulation. However, due to a limited number of time points of measurements and 

scattered datasets from different model systems, we are still far from a holistic view 

of how mechanisms of gene expression regulation work. Further development, 

combination, and integration of different methods of molecular biology should pave 

the way for sophisticated and versatile analyses of chromatin-mediated gene 
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expression regulation. Optimization of already existing ChIP-seq and other 

chromatin-profiling protocols will be required to obtain a higher time-resolution to 

observe the dynamics of these processes. A combination of proteomics and 

chromatin-conformation capture techniques would also allow revealing the protein 

content of communicating chromatin regions. An integration of different types of 

datasets may facilitate the establishment of the link between different molecular 

events that have been previously elusive. This should lead us to a qualitative leap in 

our understanding of chromatin-mediated regulatory mechanisms. 
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Abstract 
H3K27ac is associated with regulatory active enhancers, but its exact role in 
enhancer function remains elusive. Using mass spectrometry-based interaction 
proteomics, we identified the Super Elongation Complex (SEC) and GBAF, a non-
canonical GLTSCR1L- and BRD9-containing SWI/SNF chromatin remodeling 
complex, to be major interactors of H3K27ac. We systematically characterized the 
composition of GBAF and the conserved GLTSCR1/1L ‘GiBAF’-domain, which we 
found to be responsible for GBAF complex formation and GLTSCR1L nuclear 
localization. Inhibition of the bromodomain of BRD9 revealed interaction between 
GLTSCR1L and H3K27ac to be BRD9-dependent and led to GLTSCR1L dislocation 
from its preferred binding sites at H3K27ac-associated enhancers. GLTSCR1L 
disassociation from chromatin resulted in genome-wide downregulation of enhancer 
transcription while leaving most mRNA expression levels unchanged, except for 
reduced mRNA levels from loci topologically linked to affected enhancers. Our 
results indicate that GBAF is an enhancer-associated chromatin remodeler important 
for transcriptional and regulatory activity of enhancers. 
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Regulatory events at gene promoters and transcriptional enhancers modulate cell-

type specific gene activities and allow cells to respond to external cues (Heinz et al. 

2015; Beagrie & Pombo 2016; Lenhard et al. 2012). Several processes take part in 

these actions, including ATP-dependent chromatin remodeling, transcription factor 

(TF) and co-activator binding, and the recruitment of general transcription factors 5 

(GTF) and RNA polymerase II (Pol II) (Vernimmen & Bickmore 2015). Integral to the 

activation of gene transcription is a favorable chromatin environment. Gene 

transcriptional activity is associated with permissive histone post-translational 

modifications (PTMs) (Li et al. 2007) and a three-dimensional folding of the genome 

that brings enhancers in close proximity with gene promoters (Sanyal et al. 2012; 10 

Rao et al. 2014), thereby allowing the regulation of target genes.  

 

Genome-wide charting of histone PTMs has identified chromatin signatures 

associated with repressive and transcriptionally permissive states as well as 

enhancer activity (Jenuwein 2001; Heintzman et al. 2009; Kundaje et al. 2015). 15 

However, the mechanisms by which many histone PTMs exert their putative 

functions are elusive. These may include the modulation of nucleosome-DNA 

interaction strength or recruitment of protein complexes that execute specific 

functions (Kouzarides, 2007). Among many potential histone PTMs, acetylation of 

histone H3 at lysine 27 (H3K27ac) is associated with regulatory activity of both gene 20 

promoters and enhancers (Creyghton et al., 2010, Ernst et al., 2011, Rajagopal et 

al., 2014, Rada-Iglesias et al., 2011). H3K27ac is deposited by acetyltransferases 

CBP and P300 (Tie et al. 2009). Targeting of P300 fused with nuclease-null dCas9 

has been reported to elevate H3K27ac levels and activate transcription from 

promoter-proximal as well as distal regulatory regions (Hilton et al. 2015). 25 

  

Although the association of H3K27ac with active regulatory elements is known, its 

potential role in enhancer function is still unclear. Given its recognition by acetyl-

lysine reader domains, such as BROMO and YEATS, it is possible that H3K27ac 

attracts effector proteins to enhancers. Previous work to identify H3K27ac-interacting 30 

proteins has relied on chromatin immunoprecipitation followed by identification of co-

purified proteins by mass-spectrometry (ChIP-MS) (Engelen et al. 2015; Ji et al. 

2015). Unfortunately, due to experimental setup (purification of sheared, crosslinked 

chromatin with pre-existing protein complexes), it is hard to discern the contribution 
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of H3K27ac to enhancer function from DNA-dependent activities, such as TF 

binding. 

 

Here, we applied a SILAC-based histone-peptide pulldown approach to identify 

proteins interacting with H3K27ac in mouse embryonic stem cells and HeLa cells, 5 

also in combination with H3K23ac. These experiments revealed Super Elongation 

Complex (SEC) and BRM/BRG1 Associated Factors (BAF) as major interactors of 

H3K27ac. Furthermore, we identified GLTSCR1L protein to be a part of a H3K27ac-

specific BAF complex, recently identified as GBAF (Alpsoy & Dykhuizen 2018), and 

we characterized the interaction partners of the GLTSCR1L protein and its 10 

conserved protein-interaction domain. Our findings led us to further investigate the 

function of the GLTSCR1L-BRD9 containing GBAF complex in transcription. Upon 

treatment with a BRD9 bromodomain inhibitor, we observed enhancer-specific 

transcriptional abnormalities, indicating an important role for GBAF in enhancer 

transcription and regulatory activity. 15 

Results 

SWI/SNF and Super Elongation Complex are major acetyl-
lysine interacting complexes  
We applied an established SILAC histone peptide pulldown approach (Vermeulen et 

al. 2007) to identify proteins that specifically bind to H3K27ac (Methods). To 20 

discriminate proteins that bind specifically to H3K27ac from proteins with a general 

affinity for acetyl-lysine-containing histone peptides, we performed the same 

experiment with peptides associated with the highly abundant (Sidoli et al. 2015; 

Tvardovskiy et al. 2015) H3K23ac mark (Fig. 1a,b). In addition, we included an 

experiment with histone peptides diacetylated at both H3K23 and H3K27 residues 25 

(Fig. 1e,f), since these acetylations frequently colocalize and are associated with 

active transcription (Wang et al. 2008). To understand how the recognition of 

H3K27ac compares across mammals and whether there are any differences 

between pluripotent and terminally differentiated states, we used both HeLa cells 

and mouse embryonic stem cells (mESCs) as sources of nuclear extracts for the 30 

pulldown experiments. Each peptide pulldown experiment resulted in the 
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identification of more than 2,000 proteins, of which 10 to 30 showed significant 

acetyl-lysine specific binding (Fig. 1a-c, Supplementary Fig. 1a-c, Supplementary 

Data 1). Our experimental design allowed us not only to identify acetyl-lysine binding 

complexes, but also to estimate their binding preferences (H3K27ac versus 

H3K23ac). We averaged forward and reverse SILAC ratios of each individual 5 

pulldown separately and applied hierarchical clustering. Proteins from the same 

complexes were found to cluster together (Fig. 1d, Supplementary Fig. 1d). The 

majority of identified histone H3 acetyl-lysine interacting proteins are members of two 

distinct protein complexes: the SEC and the SWI/SNF family of chromatin 

remodeling complexes (Wang et al. 1996; Lin et al. 2010). In addition, we detected 10 

NuA4 complex components DMAP1 and YEATS4 (Doyon et al. 2004) and 

components of the general transcription factor TFIID (Dynlacht et al. 1991).  

 

The SEC complex is important for the activation of transcription by release of paused 

Pol II (Lin et al 2010; Luo et al, 2012). Although many SEC complex components 15 

were identified in pulldowns with all acetylated histone peptides, we observed 

differences in SILAC ratios between nuclear extracts. The highest SILAC ratio for the 

SEC complex subunits was observed with monoacetylated H3K27ac histone peptide 

with HeLa and diacetylated H3K23acK27ac peptide with mESC nuclear extracts. In 

HeLa cells, we were able to detect the presence of AF9, AFF4, AFF1 and ENL, but 20 

not ELL family proteins nor P-TEFb (Fig. 1b), important mediators of SEC and Pol II 

interaction (Luo et al, 2012; Knutson et al, 2016). In mESCs, we detected nearly all 

SEC complex subunits, including AF9, AFF4, ELL3 and CDK9 (Supplementary Fig. 

1c). AF9 contains a YEATS-domain that is able to recognize histone modifications 

and has previously been found to bind H3K9ac and H3K27ac (Li et al, 2014). 25 
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mESC nuclear extracts. The complete PBAF complex, represented by ARID2 

(BAF200), PHF10 (BAF45A), PBRM1 (BAF180) and BRD7, was found to prefer 

interaction with H3K23ac-containing peptides (both mono-acetylated H3K23ac and 

di-acetylated H3K23acK27ac peptides) (Fig. 1a,c, Supplementary Fig. 1a,c). 

However, known BAF complex specific subunits (ARID1A/1B (BAF250A/B), 5 

DPF1/2/3 (BAF45B/C/D)) were absent from these pulldowns. Instead, we observed 

BRD9 and GLTSCR1L (BICRAL)1 proteins, subunits of the GBAF complex (Alpsoy & 

Dykhuizen 2018). These proteins predominantly interact with H3K27ac-containing 

peptides. GLTSCR1L was the most enriched interactor of monoacetylated H3K27ac 

in mESCs and one of the most enriched H3K23acK27ac interactors in HeLa cells 10 

(Fig.1c, Supplementary Fig. 1b). 

 

Taken together, mass spectrometry-based interaction proteomics experiments 

identified SWI/SNF and SEC as major acetyl-lysine readers, which is consistent with 

earlier findings (Li et al. 2014; Chandrasekaran & Thompson 2007; Chandy et al. 15 

2006). Additionally, we identified GBAF components GLTSCR1L and BRD9 as 

prominent H3K27ac-interacting proteins. 

GLTSCR1L is a subunit of a distinct non-canonical BAF 
complex 
Due to the observed preferential binding of the GLTSCR1L protein to H3K27ac-20 

containing histone peptides, we decided to identify GLTSCR1L-interacting proteins 

by quantitative interaction proteomic methods. We generated a HeLa cell line stably 

expressing doxycycline-inducible GFP-tagged GLTSCR1L and performed label-free 

GFP pulldowns followed by liquid chromatography-MS (LC-MS/MS, Methods) (Smits 

et al. 2013). The full length GFP-GLTSCR1L protein interacted with core SWI/SNF 25 

subunits including SMARCD1 (BAF60a), SMARCC1 (BAF155), SMARCA4 (BRG1), 

and BAF-specific subunit SS18 (Fig. 2a). One of the strongest GFP-GLTSCR1L 

interactors was BRD9, which also clustered together with GLTSCR1L in our histone 

peptide pulldown analysis (Fig. 1d, Supplementary Fig. 1d). Additionally, BCL7C was 

                                                
1 GLTSCR1L and GLTSCR are paralogs of a group of proteins found in vertebrates. They are also 
known by the names BICRAL and BICRA (UniProt IDs Q6AI39 and Q9NZM4, respectively). 
GLTSCR1L and GLTSCR contain a highly conserved domain, which we refer to as ‘GiBAF’ 
(GLTSCR1/1L domain interacting with BAF complex; Supplementary Fig. 2). 
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followed by SMARCD1 (BAF60a) and BRD9 pulldowns (Supplementary Table 1). 

Additionally, GLTSCR1L was detected as an interactor of each of these three bait 

proteins (Fig. 2b,c, Supplementary Fig. 3a). We also observed a nearly complete 

overlap of interactors in the GFP-BRD9 and GFP-GLTSCR1L pulldowns (Fig. 2a,b), 

suggesting that these two proteins frequently co-occur in the same sub-complex. 5 

Interestingly, the homologous protein GLTSCR1 also appeared in all reciprocal 

pulldown experiments but not in pulldowns with GLTSCR1L, indicating that 

GLTSCR1 and GLTSCR1L proteins bind to SWI/SNF complexes in a mutually 

exclusive manner. 

 10 

The observed binding of both GLTSCR1 and GLTSCR1L to SWI/SNF complexes led 

us to investigate the role of their shared, conserved domain in mediating the 
interaction with SWI/SNF family members. We refer to the domain as ‘GiBAF’, for 

GLTSCR1/1L domain interacting with BAF complex. First, we produced a TY1-

tagged GLTSCR1L protein containing an in-frame deletion of the GiBAF-domain. By 15 

means of immunofluorescence microscopy (IF) with FL and domain deletion mutant 

proteins, we found that the GiBAF-domain is responsible for the nuclear localization 

of GLTSCR1L (Supplementary Fig. 3b). Next, we generated two other HeLa cell 

lines with doxycycline-inducible GFP-tagged GLTSCR1L protein mutants expressing 

only the GiBAF-domain or the full-length protein lacking the domain (▲GiBAF-20 

domain). In pulldowns with the GiBAF-domain only, we observed all full length GFP-

GLTSCR1L protein interactors in addition to some other BAF complex components 

(BCL7A/B/C, ACTL6A, SMARCA2, SS18/L1/L2) (Fig. 2d). GiBAF-domain interaction 

with BAF155, BAF60a and BRD9 was also confirmed by immunoblotting 

(Supplementary Fig. 3g) (Alpsoy & Dykhuizen 2018). Additionally, we detected an 25 

interaction between the GiBAF-domain from GLTSCR1L protein and BRD4, in line 

with previous work demonstrating an interaction between GLTSCR1 and the BRD4 

ET-domain, which contributes to transcriptional regulation of BRD4 target genes 

(Rahman et al. 2011). We also observed interaction with INO80E (Chen et al. 2011) 

from the INO80 (Jin et al. 2005) chromatin remodeling complex, which has 30 

previously been shown to interact with SWI/SNF complex components (Cai et al. 

2007; Yao et al. 2008). AFF1, a SEC complex subunit, was also found to interact 

with the GiBAF-domain of GLTSCR1L. Similar analysis performed with the GiBAF-

domain deletion mutant of GLTSCR1L protein (▲GiBAF-domain) resulted in no 
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significant interactions with BAF complex subunits (Supplementary Fig. 3c), further 

supporting a role for the GiBAF-domain in mediating interactions with other SWI/SNF 

subunits. Instead, we observed a significant enrichment of TAF6 and TAF4 TFIID 

components co-purified with ▲GiBAF-domain, indicating that other parts of the 

GLTSCR1L protein may be responsible for non-SWI/SNF protein interactions.  5 

 

Label-free GFP pulldowns allowed to use the intensity-based absolute quantification 

(iBAQ) algorithm (Schwanhäusser et al. 2011) to calculate the relative abundance 

(stoichiometry) of observed proteins. Stoichiometry values from the FL GLTSCR1L 

and GiBAF-domain pulldowns (Supplementary Fig. 3d-e) confirmed a strong 10 

association between GLTSCR1L and BRD9. Interestingly, analyses of reciprocal 

pulldown-MS with BAF complex components SMARCD1 and SMARCC1 revealed 

very low levels of GLTSCR1L protein abundance (Fig. 2f, Supplementary Fig. 3f; 

~1,6% of SMARCD1 and 0,066% of SMARCC1 are found together with 

GLTSCR1/1L), indicating that GLTSCR1L is either a transient interactor or a 15 

component of a rare BAF complex in HeLa cells. Taken together, these results 

suggest that GLTSCR1L is a subunit of a distinct SWI/SNF chromatin remodeling 

subcomplex, whose interactions with SWI/SNF subunits and its nuclear localization 

is mediated by the GiBAF-domain. 

Selective inhibition of the BRD9 bromodomain leads to 20 

disassembly of GLTSCR1L but not BRD9 from chromatin 
Since the GLTSCR1L protein does not contain any known DNA/chromatin-binding 

domain, we hypothesized that, due to the interaction between GLTSCR1L and 

BRD9, the latter might facilitate targeting of GBAF to chromatin. In order to validate 

the association between GLTSCR1L, BRD9 and H3K27ac, we performed histone-25 

peptide pulldown assays using I-BRD9 (Theodoulou et al. 2016), a specific inhibitor 

of the BRD9 bromodomain. I-BRD9 does not impair any other function of BRD9 

beyond its acetyl-lysine recognition, making it a suitable tool to investigate the role of 

H3K27ac binding by the BRD9 bromodomain with limited secondary effects. Both 

GLTSCR1L and BRD9 were found to follow the trend of acetyl-lysine recognition 30 

observed in histone-peptide pulldown MS (H3K23ac<H3K27ac<H3K23acK27ac) 

(Fig. 1d). After treatment with I-BRD9, we detected a loss of specificity of BRD9 

.CC-BY 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/445148doi: bioRxiv preprint 



11 

binding to H3K27ac-containing peptides. Although BRD9 still showed interaction with 

histone peptides while its bromodomain was blocked by I-BRD9, GLTSCR1L binding 

to H3K27ac-containing histone peptides was completely abrogated (Fig 3a).  

 

 5 
Figure 3. Inhibition of the bromodomain of BRD9 leads to disassembly of GLTSCR1L 
from chromatin. a Histone peptide pulldown assay using biotinylated histone H3 peptides 
(aa 15-36) and nuclear extract from HeLa-FRT-GFP-GLTSCR1L cells in the absence and 
presence of BRD9 bromodomain inhibitor I-BRD9. Unmodified (H3) and modified peptides 
were used. Input and affinity purified fractions were analyzed after SDS-PAGE by 10 
immunoblotting. PBRM1 and CBX4 serve as controls for I-BRD9 specificity. M: protein 
molecular weight standard. b Histogram attribute (upset) plot of ChIP-seq peak intersections 
between GLTSCR1L and BRD9 with and without I-BRD9. Vertical axis gives the frequency 
of overlaps between combinations of peak calls specified on the horizontal axis. c Heatmap 
of the overlap percentages between GLTSCR1L and BRD9 ChIP-seq peaks (bold) and 15 
ENCODE-called peaks of factors and chromatin marks associated with transcription. Each 
cell shows the percentage of ChIP-seq peaks for factors and marks in rows overlapping with 
ChIP-seq peaks for factors and marks in columns. d Genomic annotation of GLTSCR1L and 
BRD9 ChIP-seq peaks based on GENCODE-inferred (v19) genomic annotation biotypes.  
 20 

To validate our histone-peptide pulldown results and to investigate whether 

GLTSCR1L, BRD9 and H3K27ac colocalize on chromatin, we performed chromatin 

IP of GLTSCR1L and BRD9 followed by high-throughput sequencing (ChIP-seq). We 

used a HeLa FRT cell-line expressing GFP-tagged GLTSCR1L and antibodies to 

GFP and wtBRD9, due to the unavailability of a ChIP-seq grade GLTSCR1L 25 
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antibody. In parallel, we conducted similar ChIP-seq experiments with I-BRD9 

treated cells. A total of 22,559 and 9,155 peaks were called (Irreproducible 

Discovery Rate < 0.05) for BRD9 and GFP-GLTSCR1L, respectively. We observed a 

strong colocalization between BRD9, GLTSCR1L, and H3K27ac (Supplementary 

Fig. 4a; permutation test, P < 1x10-4 for BRD9 and GLTSCR1L). In agreement with 5 

the histone-peptide binding assay, selective inhibition of the BRD9 bromodomain 

with I-BRD9 led to only a mild reduction of BRD9 binding to chromatin (22,559 

versus 17,366 peaks for DMSO and I-BRD9, respectively), but severely abrogated 

GLTSCR1L chromatin binding (9,115 vs 1,639 peaks for DMSO and I-BRD9, 

respectively) (Fig 3b). 10 

 

We observed a large degree of overlap of BRD9 and GLTSCR1L binding sites with 

ChIP-seq peaks of cohesin (SMC3ab) and active chromatin marks, especially 

H3K4me1/2, H3K27ac, and H3K9ac (Fig. 3c, 70-85% of GLTSCR1L and BRD9 

peaks). GLTSCR1L and BRD9 was also associated with Pol II, with 70% of Pol II 15 

peaks overlapping with those of BRD9 and 35% with GLTSCR1L, suggesting a role 

for GBAF in the control of Pol II activity. Reassuringly, we detected chromatin 

colocalizations of both GLTSCR1L and BRD9 with core SWI/SNF subunits (~32% of 

BAF155 and SMARCA4 peaks overlapped with GLTSCR1L peaks and ~65% with 

BRD9). A small degree of colocalization was also observed between AF9 protein (a 20 

H3K9/K27ac reader), GLTSCR1L, and BRD9 (~20% of peaks for both proteins). 

However, only ~14% of GLTSCR1L and BRD9 peaks were found to overlap with 

H3K27me3 peaks compared to 41% for AF9, further pointing to a role of GBAF in 

transcriptionally active chromatin. Specifically, GLTSCR1L and BRD9 peaks were 

primarily located in intronic or intergenic regions and, to a lesser extent, at gene 25 

promoters. Upon I-BRD9 treatment, BRD9 largely remained at intronic/intergenic 

regions, whereas the greatly reduced binding sites of GLTSCR1L were mostly found 

at active gene TSSs (Fig. 3c,d). Taken together, our results indicate that GBAF binds 

active chromatin and that the bromodomain of BRD9 is responsible for GLTSCR1L 

binding to putative enhancers. 30 

.CC-BY 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/445148doi: bioRxiv preprint 



13 

BRD9 inhibition globally reduces enhancer transcription 
To assess the role of GLTSCR1L and the GBAF complex in transcription, we 

examined I-BRD9 treated HeLa cells stimulated with epidermal growth factor (EGF) 

to induce a rapid transcriptional response. First, we inspected GLTSCR1L and BRD9 

binding as well as RNA expression levels of the EGF-inducible gene NR4A1 and its 5 

known enhancer 80 kb downstream of the NR4A1 gene locus (Lai et al. 2015) by 

qPCR. EGF treatment increased binding of both GFP-GLTSCR1L and BRD9 

proteins at the enhancer, but no increase was observed in I-BRD9 treated cells 

(Supplementary Fig. 5a). I-BRD9 did not affect the induction of NR4A1 gene 

expression by EGF, in line with a non-significant enrichment of GFP-GLTSCR1L and 10 

BRD9 proteins at the NR4A1 gene promoter, but almost completely abrogated 

expression of the enhancer RNA (Supplementary Fig. 5b).  

  

We next performed 5’ end sequencing of capped RNAs, using Cap Analysis of Gene 

Expression (CAGE (Takahashi et al. 2012)), to assess the effect of EGF-induced 15 

transcription initiation events and enhancer activities (Andersson et al. 2014) 

genome-wide. CAGE experiments were performed in parallel with ATAC-seq across 

the EGF-response time course to focus on transcription initiation events at open 

chromatin loci such as enhancers and gene promoters. Using CAGE data in 

combination with ATAC-seq data, we were able to dissect the NR4A1 super-20 

enhancer into a set of five bidirectionally transcribed enhancers in open chromatin 

with similar transcriptional EGF-response patterns, and found all of them to be 

downregulated by I-BRD9 (Fig. 4a, focusing on three enhancer constituents). 

Genome-wide, we next focused on all transcribed nucleosome-free regions (NFRs), 

inferred from ATAC-seq peaks associated with CAGE expression above estimated 25 

background noise level (Methods). Transcribed NFRs corresponded to ~11% 

(23,639 out of 213,017) of all detected open chromatin loci and displayed clear 

differences in expression patterns between I-BRD9 and DMSO-treated samples 

(52% of variance explained) as well as between time points (Supplementary Fig. 5c). 

Time points 30 and 60 minutes displayed different transcriptional activities than time 30 

points 0 and 240 minutes after treatment, indicating that at 240 minutes after EGF 

induction most transcriptional activities had returned to baseline levels. 
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To investigate the effect of I-BRD9 on transcriptional responses, we compared the 

aggregated fold change of NFR expression levels in I-BRD9 treated cells and control 

cells across all EGF time points. Similar to our observation at the NR4A1 enhancer 

locus, the EGF responses of putative enhancers, as indicated by transcribed 

intergenic and intronic loci (75% and 25% of expressed intergenic and intronic 5 

regions overlap with FANTOM5 enhancers (Andersson et al. 2014), respectively), 

were significantly downregulated upon BRD9 inhibition (Wilcoxon signed-rank Test, 

lower tail, P < 2.2x10-16) in contrast to the responses of mRNA promoters, which 

were largely not affected (Fig. 4b). We further compared transcriptional events 

measured at each time point in control and I-BRD9 treated cells (Fig. 4c). Most 10 

downregulated events (log2 FC < -1, FDR adjusted P < 0.05) were detected at one 

hour after EGF induction (Supplementary Fig. 5d) and occurred mostly at intronic or 

intergenic regions (894 out of 1,335 NFRs compared to 336 mRNA promoters). 

Thus, I-BRD9 treatment leads to a preferential downregulation of enhancer 

transcription throughout the HeLa EGF induction time course. Notably, 86% of 15 

downregulated FANTOM5 enhancers were depleted of GFP-GLTSCR1L by I-BRD9. 

Reciprocally, GFP-GLTSCR1L depleted intergenic/intronic NFRs in general 

(Wilcoxon signed-rank test, P = 8.9x10-5 and P = 2.1x10-4 for intergenic and intronic 

NFRs, respectively, Fig. 4d) and FANTOM5 enhancers in particular (Wilcoxon 

signed-rank test, P = 3.7x10-9) were associated with downregulated expression. 20 

These results indicate that transcription of enhancers, but not mRNA genes, is 

affected by H3K27ac-recognition by GBAF through the bromodomain of BRD9. 

 

Although mRNA expression levels were, to a large extent, not affected by BRD9 

inhibition, we hypothesized that downregulation of enhancer expression levels 25 

reflects reduced enhancer regulatory activities. To test this hypothesis, we compared 

expression levels of putative enhancer-promoter pairs contained within the same 

topologically associating domains (TADs) of HeLa cells (Rao et al. 2014). Indeed, 

promoters within TADs containing at least one differentially downregulated enhancer 

showed significantly larger downregulation upon I-BRD9 treatment in all time points 30 

when compared to promoters in TADs not containing any downregulated enhancer 

(Fig. 4e). These results indicate that GBAF is important not only for enhancer 

transcription but also for enhancer regulatory activities. 
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We posited that GBAF may have a role in forming or maintaining permissive 

chromatin at enhancers. At putative intronic/intergenic enhancers associated with 

transcriptional downregulation and GFP-GLTSCR1L depletion by I-BRD9, we noted 

a significant reduction in chromatin accessibility (Wilcoxon signed-rank paired test, P 

= 5.9x10-9, Supplementary Fig. 5e). Taken together, our data indicate that I-BRD9 5 

leads to a reduced rate of eRNA transcription at GLTSCR1L-depleted enhancers 

and a downregulation of their target genes. We hypothesize that this is the 

consequence of reduced GBAF chromatin remodeling activity at enhancers caused 

by disrupted recognition of H3K27ac by BRD9 through inhibition of its bromodomain. 

Discussion 10 

Although H3K27ac is frequently associated with active enhancers, its role in 

enhancer activity and its protein interaction environment have remained elusive. In 

this study, we applied a SILAC histone-peptide pulldown MS approach to identify 

protein complexes that interact with H3K27ac alone and in combination with 

H3K23ac. This approach allowed us to assess acetyl-lysine interaction preferences 15 

and to identify the SEC and GBAF complexes as major interactors of H3K27ac. 

Specifically, we identified H3K27ac interactions with both BRD9 and GLTSCR1L, 

definitive subunits of the GBAF complex (Alpsoy & Dykhuizen 2018), indicating a 

H3K27ac-associated function of GBAF.  

 20 

Our systematic investigation of the subunits of GBAF revealed insights into their 

putative functions. Our data refines the composition of GBAF (Alpsoy & Dykhuizen 

2018) by adding BCL7A/B/C as an additional subunit. Interestingly, none of the 

subunits of the GBAF complex contains known DNA binding domains, unlike those 

of canonical BAF/PBAF complexes (e.g. ARID2/ARID1/1a, PBRM1, SMARCE1, 25 

SMARCB1, PHF10 (Supplementary Table 1)). Hence, the GBAF complex has only 

two functional chromatin interaction domains, the bromodomains of SMARCA2/4 and 

BRD9. Due to this specific feature, we hypothesize that targeting of GBAF to 

chromatin is more sensitive to the recognition of acetylated histones (H3K27ac), than 

the canonical SWI/SNF complexes that contain sequence-independent DNA-binding 30 

subunits. Investigation of the function of the GiBAF-domain of GLTSCR1L revealed 

that it is capable of binding all inferred GLTSCR1L- and BRD9-interacting proteins as 
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well as BRD4 and AFF1. We also found that the GiBAF-domain is responsible for the 

nuclear localization of GLTSCR1L. Other parts of the GLTSCR1L protein may be 

involved in Pol II interactions or pre-initiation complex formation, as indicated by the 

enrichment of TFIID components in GFP pulldown MS results of a GiBAF-domain 

deletion mutant. 5 

 

To investigate the role of acetyl-lysine recognition by BRD9, we made use of I-

BRD9, a selective inhibitor of the BRD9 bromodomain. I-BRD9 is a useful tool since 

it doesn't impair any function of BRD9 beyond its acetyl-lysine recognition 

(Theodoulou et al. 2016). Our histone-peptide pulldown immunoblot experiments 10 

with I-BRD9 revealed that GLTSCR1L chromatin interaction is mediated by the 

bromodomain of BRD9 and is H3K27/23ac dependent. Upon I-BRD9 treatment, 

BRD9 lost specificity in acetyl-lysine recognition but remained bound to histone 

peptides. This is likely due to its participation in several BAF subcomplexes, where 

binding is mediated by acetyl-lysine recognition modules of other BAF subunits, such 15 

as the bromodomain of SMARCA2/4. Concomitantly with these proteomic interaction 

results, GLTSCR1L and BRD9 colocalized at NFRs flanked by H3K27ac. We 

observed an enrichment of BRD9 and GLTSCR1L binding at intronic and intergenic 

NFRs and to a lesser extent at gene promoters, and used I-BRD9 to verify the role of 

the BRD9 bromodomain in the targeting of GBAF complex to chromatin. Upon I-20 

BRD9 treatment, in agreement with our histone peptide pulldown immunoblot results, 

GFP-GLTSCR1L was observed to dislocate from H3K27ac-associated 

intronic/intergenic chromatin and, in particular, from enhancers. 

 

The observed loss of GLTSCR1L from enhancers upon BRD9 inhibition indicates 25 

that GBAF has a specific role at enhancers. This hypothesis is supported by a 

decrease in chromatin accessibility at GLTSCR1L-depleted enhancers and an 

overall downregulation of enhancer transcription initiation events in I-BRD9-treated 

HeLa cells stimulated with EGF. While overall mRNA expression levels were not 

affected by I-BRD9, genes residing within the same TADs as downregulated 30 

enhancers tended to follow the same trend. Therefore, we propose that GBAF is 

important for both enhancer transcription and enhancer regulatory activity. However, 

no downregulation was observed for NR4A1 mRNA expression levels upon 

downregulation of eRNAs from its cognate enhancers by I-BRD9. This may be a 
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consequence of enhancer-independent EGF stimulation of NR4A1 gene expression 

by promoter-proximal events. Nevertheless, as the timing of events in the 

communication between enhancers and promoters are poorly understood, we do not 

rule out that the NR4A1 locus is in an alternative mode of regulation. 

 5 

While several of our experiments point at an enhancer-associated function of GBAF, 

further investigations are needed to assess its exact role and the associated 

mechanisms. Although we observed a minor but significant decrease in chromatin 

accessibility at GLTSCR1L-depleted downregulated enhancers, we cannot rule out 

that this is a consequence of reduced Pol II activity. Precise nucleosome positioning 10 

methods are needed to verify abnormalities in the maintenance of the enhancer NFR 

and nucleosomal occupancy at sites of transcriptional enhancers in the absence of a 

functional GBAF complex. Numerous studies have observed enhancer-specific 

effects of different SWI/SNF complexes, which are mostly related to chromatin 

accessibility (Yu et al. 2013; Hodges et al. 2018; Nakayama et al. 2017; Alver et al. 15 

2017; Wang et al. 2016). Given that GBAF is recruited to H3K27ac-marked 

enhancers, which are frequently associated with open chromatin, it is therefore 

possible that GBAF activity is secondary to chromatin opening and maintenance by 

other remodeling complexes. In line with its association with eRNA transcription, it is 

conceivable that GBAF has a role in the positioning of enhancer TSS-proximal 20 

nucleosomes. The interactions of GBAF with transcriptional regulators (such as 

SEC, BRD4, and TFIID) indicate that GBAF may have additional roles at enhancer 

TSSs in Pol II pre-initiation complex formation or in the recruitment or assembly of 

factors needed for pause release and transcriptional elongation. Due to the critical 

importance of correct enhancer activities in development and tissue homeostasis, we 25 

anticipate that dysfunction of GBAF or its targeting to chromatin may be connected 

with developmental abnormalities or complex diseases such as cancer. 
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Methods 
Cell culture and inducible cell-line generation 
For histone peptide pulldowns, HeLa S3 cells (ATCC) and IB10 mESCs (ATCC) 

were grown in DMEM SILAC medium without Lys and Arg (Silantes, 280001300), 

with dialyzed FBS (Silantes, 281000900) and supplemented either with light (R0K0) 5 

or heavy (R10K8) isotopes of lysine and arginine (Silantes, 282986440 Lys-0:HCl, 

211604102 Lys-8:HCl, 282986444 Arg-0:HCl, 201604102 Arg-10:HCl). Additionally, 

IB10 mouse embryonic stem cells were cultured in the presence of 2i compounds as 

described (Kloet et al. 2016). For GFP pulldowns, ChIP-seq, and CAGE 

experiments, HeLa S3 cells were cultured in DMEM with 10% FBS, supplemented 10 

with glutamine and Pen-Strep. For induction and inhibition experiments, hEGF 

(Sigma-Aldrich, E9644; PeproTech, AF-100-15) was added to the culture medium at 

a concentration of 100 ng/ml and I-BRD9 (Tocris Bioscience, 5591) was added at a 

concentration of 10 μM. 
 15 

To generate inducible cell lines, 3*10^5 HeLa S3 cells containing an integrated FRT 

site (van Nuland et al. 2013) were seeded on 6-well plates and transfected after 24 h 

with two vectors: 1) pOG44 expressing FLP recombinase under the control of human 

cytomegalovirus (CMV) promoter and carrying blasticidin selection marker; 2) 

pcDNA5/FRT containing a hygromycin selection marker, FRT recognition sites, and 20 

an N-terminal GFP fusion protein in frame with the gene of interest (GLTSCR1L, 

BRD9, BAF60a, BAF155, GLTSCR1L GiBAF-domain, or GLTSCR1L with GiBAF- 

deleted under the control of a doxycycline-inducible (TET-ON) CMV promoter. 16 h 

after transfection, selection media supplemented with 3 μg/ml blasticidin (Sigma) and 

100 μg/ml hygromycin (Invitrogen) was applied to cells. Single colonies that 25 

remained after 10 days of selection were picked and propagated in single 30 mm 

plates and subsequently tested for the expression of desired proteins after induction 

with doxycycline (1 μg/ml). 
 

  30 
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Nuclear extract and whole cell lysate preparation 
Nuclear extracts were prepared according to (Dignam et al., 1983). Cells were 

trypsinized, harvested, washed twice with PBS, and centrifuged at 400 g for 5 min at 

4 °C. Resuspended cell pellets were incubated for 10 min at 4 °C in five volumes of 

buffer A (10 mM HEPES-KOH, pH 7.9, 1.5 mM MgCl2, and 10 mM KCl), then 5 

pelleted at 400 g for 5 min at 4 °C. Cells were resuspended in two volumes of buffer 

A supplemented with protease inhibitors and 0.15% NP-40. Cells were homogenized 

by 30–40 strokes with a type B pestle in Dounce homogenizer. After 

homogenization, lysates were spun at 3,200 g for 15 min at 4 °C. Nuclear pellet was 

washed once with PBS and spun at 3,200 g for 5 min at 4 °C. Pellet was 10 

resuspended in two volumes of buffer C (420 mM NaCl, 20 mM HEPES-KOH, pH 

7.9, 20% (v/v) glycerol, 2 mM MgCl2, and 0.2 mM EDTA) with 0.1% NP-40, protease 

inhibitors, and 0.5 mM dithiothreitol and incubated with rotation for 1 h at 4 °C, then 

spun at 20 000 g for 30 min at 4 °C. The supernatant (nuclear extract) was aliquoted 

and stored at −80 °C until further use.  15 

 

Whole cell extracts were prepared by adding 5 cell pellet volumes of lysis buffer 

(0.5% NP40, 150 mM NaCl, 50 mM Tris pH 8.0, 10% Glycerol and 1 × Complete 

Protease Inhibitors). Cells were vortexed for 30 s and then incubated for 2 hr on a 

rotation wheel. Samples were then centrifuged at 4,000 g in a swinging bucket rotor 20 

for 30 min, after which soluble whole extracts were aliquoted and stored at -80 °C 

until further use. 

 

Histone-peptide pulldowns 
Histone peptide pulldowns were performed as described in (Vermeulen 2012), with 25 

minor modifications. Briefly, biotinylated (modified and non-modified) histone H3 

peptides (aa 15-36) were purchased from BIOSYNTAN GmbH. 50 μg of histone 

peptide per pull-down was incubated with 75 μl of MyOne Streptavidin C1 

Dynabeads (Thermo Fisher, 65002) for 20 min at RT in peptide binding buffer (150 

mM NaCl, 50 mM Tris–HCl, pH 8.0, 0.1% (v/v) NP40). Beads were washed three 30 

times with 1 ml protein binding buffer [150 mM NaCl, 50 mM Tris-HCl pH 8.0, 1% 

NP40, 0.5 mM DTT, 10 mM ZnCl2 and complete protease inhibitors – EDTA free 

(Roche)]. 350-700 μg of nuclear extract (diluted to 0.6 mg/ml) was incubated with 
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immobilized histone peptides in protein binding buffer for two hours at 4 °C on a 

rotation wheel. Beads were washed five times with 1 ml of protein binding buffer 

containing 400 mM NaCl and finally twice with 1 ml of protein binding buffer. Beads 

from both pull-downs (with non-modified and modified peptide) were pooled, and 

bound proteins were eluted and visualized on 4 %–12 % SDS-PAA gradient gels 5 

(Invitrogen) by colloidal blue staining (Invitrogen). Lanes corresponding to Forward 

(heavy - modified peptide pulldown; light - non-modified peptide pulldown) and 

Reverse (light - modified peptide pulldown, heavy - non-modified peptide pulldown) 

experiments were divided into 6-8 pieces, sliced into small (~ 1 mm) fragments and 

then subjected to in-gel trypsin digestion essentially as described in (Shevchenko et 10 

al. 2007). Antibodies used for detection of histone peptide binding proteins from 

HeLa-FRT-GFP-GLTSCR1L nuclear extracts after SDS-PAAG using immunoblotting 

(Fig 3a; cells grown in non-SILAC medium) are listed in Supplementary Table 2.  
 
Mass spectrometry and data analysis of histone peptide pulldowns 15 

After trypsin digestion of gel slices, peptides were extracted, desalted using 

StageTips (Rappsilber et al., 2003), and separated using an EASY-nLC (Proxeon) 

connected online to a LTQ-Orbitrap Fusion Tribrid mass spectrometer (Thermo 

Fisher Scientific). Scans were collected in data-dependent top speed mode with 

dynamic exclusion set at 60 seconds. Raw data were analyzed using MaxQuant 20 

version 1.5.1.0 with default settings and searched against the Uniprot mouse and 

human proteomes, release 2015_12. Analysis was performed using Perseus 1.5.5.3. 

After filtering, the mean value was calculated on the ratios from both forward and 

reverse experiments. Missing values were imputed with a normal distribution 

(settings: downshift = 1, window = 0) and scatter plots were made using R. 25 

Hierarchical clustering was used to generate heatmaps based on Euclidean distance 

(settings: linkage = average, number of clusters = 300, processing = k-means, 

iterations = 10, restarts = 1). 

 

  30 
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GFP affinity purification mass spectrometry (AP MS-MS) 
Nuclear extracts (NE) or whole cell extracts (WCE) from doxycycline-induced (for 16 

hours) and non-induced cells were subjected to GFP-affinity enrichment using GFP 

nanotrap beads (Chromotek) in triplicate. For each pull-down, 1 mg of NE or 3 mg of 

WCE was incubated with 7.5 μl beads in incubation buffer (300 mM NaCl, 0.1 % NP-5 

40, 0.5 mM DDT, 20 mM HEPES–KOH pH 7.9, 50 μg/ml ethidium bromide) in a total 

volume of 400 μl. Beads were washed twice with incubation buffer containing 0.5 % 

NP-40, twice with 1X PBS containing 0.5 % NP-40 and finally twice with 1X PBS. 

Affinity purified proteins were subject to on-bead trypsin digestion as described 

previously (Baymaz et al. 2014). Tryptic peptides were acidified and desalted using 10 

StageTips (Rappsilber et al. 2007) and separated with an online Easy-nLC 1000 

(Thermo Scientific). Mass spectra were recorded on an LTQ-Orbitrap QExactive 

mass spectrometer (Thermo Fisher Scientific), selecting the top 10 most intense 

precursor ions for fragmentation, or on an LTQ-Orbitrap Fusion Tribrid mass 

spectrometer (Thermo Fisher Scientific). Scans were collected in data-dependent top 15 

speed mode with dynamic exclusion set at 60 seconds. 

 

LFQ peptide analysis and identification 
Thermo RAW files from LFQ AP MS-MS were analyzed with MaxQuant version 

1.5.1.0 using default settings and searching against the UniProt human proteome, 20 

release 2015_12. Additional options for match between runs, LFQ, and iBAQ were 

selected. The msVolcano Shiny application was used to produce volcano plots for 

GFP-affinity purification experiments (Singh et al. 2016). Stoichiometry calculations 

were produced essentially as described (Smits et al. 2013) using Perseus version 

1.4.0.8 and in-house R scripts.  25 

 
Chromatin preparation 
Attached HeLa cells were double cross-linked, first with DSG (ThermoFisher) for 40 

min, then washed with PBS followed by treatment with 1% formaldehyde in PBS for 

10 min at room temperature with gentle shaking. Crosslinking was quenched with the 30 

addition of 1/10 volume 1.25 M glycine. Cells were washed with PBS, then harvested 

by scraping in buffer B (20 mM HEPES, 0.25 % Triton X-100, 10 mM EDTA, and 0.5 

mM EGTA). Cells were pelleted by centrifugation at 600 g for 5 min at 4 °C. Cell 

pellets were resuspended in buffer C (150 mM NaCl, 50 mM HEPES, 1 mM EDTA, 
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and 0.5 mM EGTA) and rotated for 10 min at 4 °C. Cells were pelleted by 

centrifugation at 600 g for 5 min at 4 °C. The cell pellet was then resuspended in 1X 

incubation buffer (0.15% SDS, 1% Triton X-100, 150 mM NaCl, 1 mM EDTA, 0.5 mM 

EGTA, and 20 mM HEPES) at 15 million cells/mL. Cells were sheared in a Bioruptor 

Pico sonicator (Diagenode) at 4 °C with 7 cycles of 30 s on, 30 s off. Sonicated 5 

material was spun at 18,000 g for 10 min at 4 °C, then divided into aliquots and 

stored at −80 °C.  

 

Chromatin immunoprecipitation 
10 million cells were used as an input material. Chromatin was incubated overnight 10 

at 4 °C in 1X incubation buffer (0.15 % SDS, 1 % Triton X-100, 150 mM NaCl, 1 mM 

EDTA, 0.5 mM EGTA, and 20 mM HEPES) supplemented with protease inhibitors 

and 0.1 % BSA. Antibody amounts and catalog numbers are listed in Supplementary 

Table 2. A 50:50 mix of Protein A and G Dynabeads (Invitrogen) were added the 

next day and incubated for 90 min. The beads were washed twice with wash buffer 1 15 

(0.1 % SDS, 0.1 % sodium deoxycholate, 1 % Triton X-100, 150 mM NaCl, 1 mM 

EDTA, 0.5 mM EGTA, and 20 mM HEPES), once with wash buffer 2 (wash buffer 1 

with 500 mM NaCl), once with wash buffer 3 (250 mM LiCl, 0.5% sodium 

deoxycholate, 0.5 % NP-40, 1 mM EDTA, 0.5 mM EGTA, and 20 mM HEPES), and 

twice with wash buffer 4 (1 mM EDTA, 0.5 mM EGTA, and 20 mM HEPES). After 20 

washing steps, beads were rotated for 20 min at room temperature in elution buffer 

(1 % SDS and 0.1 M NaHCO3). The supernatant was de-crosslinked with 200 mM 

NaCl and 100 µg/mL proteinase K for 4 h at 65 °C. De-crosslinked DNA was purified 

with MinElute PCR Purification columns (Qiagen). DNA amounts were determined 

with Qubit fluorometric quantification (ThermoFisher Scientific). 25 

 
Chromatin immunoprecipitation sequencing and data analysis 
Libraries were prepared with a Kapa Hyper Prep Kit for Illumina sequencing (Kapa 

Biosystems) according to the manufacturer's protocol with the following 

modifications. 5 ng DNA was used as input, with NEXTflex adapters (Bioo Scientific) 30 

and ten cycles of PCR amplification. Post-amplification cleanup was performed with 

QIAquick MinElute columns (Qiagen), and size selection was performed with an E-

gel (300-bp fragments) (ThermoFisher Scientific). Size-selected samples were 

analyzed for purity with a High Sensitivity DNA Chip on a Bioanalyzer 2100 system 
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(Agilent). Samples were sequenced on an Illumina HiSeq2000 or NextSeq500. 

Reads were mapped to the reference human genome hg19 with the Burrows–

Wheeler Alignment tool (BWA), allowing one mismatch. Only uniquely mapped reads 

were used for data analysis and visualization. Each ChIP-seq bam file was first 

converted to tag align files using gawk and bedtools and peak calling was performed 5 

using MACS (version 2.1.0). Afterwards, to get a set of confident peaks, only peaks 

with Irreproducible Discovery Rate (IDR) < 0.05 were kept. 

 
CAGE library preparation, sequencing and mapping 
HeLa S3 cells were grown on 60 mm plates and treated with DMSO or I-BRD9 (10 10 

μM ) 6 h prior to induction with EGF (100 ng/ml) for 30 min. Total RNA was isolated 

using TRI Reagent® (Ambion) according to manufacturer’s recommendations. RNA 

from each of the biological triplicates were quality controlled using a Bioanalyzer. 

RIN scores were between 9.6 and 10. CAGE libraries were prepared using the 

protocol by (Takahashi et al. 2012) with an input of 3 μg of total RNA. Prior to 15 

sequencing, four CAGE libraries with different barcodes were pooled and applied to 

the same sequencing lane. Libraries were sequenced on a Illumina HiSeq 2000 at 

the National High-Throughput DNA Sequencing Centre, University of Copenhagen. 

To compensate for the low complexity of 5′ ends in the CAGE libraries, 30% Phi-X 

spike-ins were added to each sequencing lane, as recommended by Illumina. CAGE 20 

reads were assigned to their respective originating sample according to identically 

matching barcodes. Using the FASTX Toolkit, assigned reads were 5′-end trimmed 

to remove linker sequences (9+2 bp to account for the CAGE protocol G-bias), 3′-

end trimmed to a length of 25 bp, and filtered for a minimum sequencing quality of 

Q30 in 50% of the bases. Reads matching to reference rRNA sequences were 25 

discarded using rRNAdust. Mapping to the human genome (hg19) was performed 

using BWA (version 0.7.10). Only the 5’ ends of mapped reads were considered in 

subsequent analyses. 

 

ATAC-seq library preparation and processing 30 

ATAC-seq was performed on approximately 50,000 cells as described in (Buenrostro 

et al. 2015) with three modifications. First, the total volume of the tagmentation 

reaction with in-house made Tn5 enzyme was halved. Second, the tagmentation 

reaction was stopped with 44 mM EDTA, 131 mM NaCl, 0.3% SDS, and 600 μg/ml 
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proteinase K. Lastly, a reverse-phase 0.65× SPRI beads (Ampure) DNA purification 

was done after the first PCR. Libraries were sequenced on an Illumina HiSeq 2000. 

Paired-end 50-bp sequencing reads were aligned to hg19 with BWA (version 0.7.10) 

allowing one mismatch. To produce a consensus set of ATAC-seq peaks, bam files 

were first converted to tag align files using gawk and bedtools and peak calling was 5 

performed on all the samples (pooled and individually) using MACS (version 2.1.0) 

after shifting tag alignments (+4 bp for plus strand and -5bp for minus strand) to 

account for TN5 insertion. Afterwards, narrow peaks were identified from the pooled 

list overlapping at least two individual peak lists by at least 50% of bps (FDR < 1%). 

This resulted in a preliminary list of 229,091 peaks.  10 

 

Open chromatin loci as focus points for transcription initiation and expression 
quantification 
Open chromatin loci (also referred to as NFRs) were used as focus points for 

characterizing transcription initiation events as described elsewhere (Andersson et 15 

al. 2014), with minor modifications. Instead of focusing on DNase-seq signal 

summits, center points were defined from ATAC-seq peak signal summits. Open 

chromatin loci were filtered to not overlap any other open chromatin loci strand-

specifically with respect to these windows. This resulted in a final set of 213,017 

well-defined open chromatin loci. NFR-associated expression were quantified by 20 

counting of CAGE tags in genomic windows of 300 bp immediately flanking ATAC-

seq peak summits. An average of 79% of all CAGE tags were covered by the filtered 

set of open chromatin loci.  

 

For robust assessment of lowly expressed loci, CAGE genomic background noise 25 

levels were estimated as described elsewhere (Rennie et al. 2018). First, the CAGE 

mappability of the hg19 reference genome was calculated by mapping each 25-sized 

subsequence of the reference genome back to itself, using the same mapping 

approach as for real CAGE data. Then, the number of CAGE 5’ ends from each 

CAGE library mapping to each of two strand-specific genomic windows genomic 30 

regions of size 300 bp was quantified, similarly to the expression quantification of 

NFRs (above). Genomic windows were required to be uniquely mappable (as 

determined by the mappability track) in at least 50% of its potential TSS positions 

(unique bps). Regions that were proximal (within 500bp) of GENCODE (v19) gene 
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TSSs, transcript ends, or midpoints of ENCODE DHSs (ENCODE January 2011 

integration data), or overlapping GENCODE gene exons were discarded. Based on 

the empirical distribution of CAGE expression noise from annotation-distal genomic 

regions, the 99th percentile for each library was used as a threshold to call regions 

significantly expressed in subsequent analyses, if fulfilled in at least 2 out of 3 5 

replicates. This resulted in a set of 20,303 and 22,771 open chromatin loci 

expressed in the I-BRD9 and DMSO time courses respectively. 

 

Differential expression analysis was performed on all expressed open chromatin loci 

using DESeq2. To find differential dynamic open chromatin, comparisons were made 10 

between all time points T>0 and T=0. This resulted in a total of 1,709 differentially 

dynamic open chromatin loci (FDR<5%, |log2 FC| > 1) in I-BRD9 and 1,922 in DMSO 

(control) time course. Differential expression analysis was also performed between 

conditions on the same time points, resulting in 5,633 open chromatin loci with 

expression differences in at least one time point, of which 710 were also differentially 15 

dynamic. 

Data availability 
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Supplementary Figure 4. Peak overlap analysis shows strong co-localization of BRD9, 
GLTSCR1L and H3K27ac. Histogram attribute (upset) plot showing the number of 
overlapping peaks between BRD9, GLTSCR1L, and ENCODE HeLa H3K27ac. Two peaks 
were considered overlapping if their intersection is at least 1bp.    
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Supplementary Tables 

Supplementary Table 1. BAF subunits identified as interactors of SMARCC1 (1), 
SMARCD1 (2), BRD9 (3), GLTSCR1L (4), or GLTSCR1L GiBAF-domain (5). 
Gene name BAF subunit Chromatin/DNA interaction domain SWI/SNF Complex Bait 
SMARCA2 BRM DNA-dependent ATPase, bromodomain BAF/PBAF/GBAF 1,2,3,4,5 
SMARCA4 BRG1 DNA-dependent ATPase, bromodomain BAF/PBAF/GBAF 1,2,3,4,5 
SMARCC1 BAF155 No BAF/PBAF/GBAF 2,3,4,5 
SMARCC2 BAF170 No BAF/PBAF 1,2 
SMARCD1 BAF60A No BAF/PBAF/GBAF 1,3,4,5 
SMARCD2 BAF60B No BAF/PBAF 1 
SMARCD3 BAF60C No BAF/PBAF 1 
SMARCB1 BAF47 SNF5 BAF/PBAF 1,2 
SMARCE1 BAF57 HMG box BAF/PBAF 1,2 
ACTL6A BAF53A No BAF/PBAF/GBAF 1,3,5 
BCL7A BCL7A No BAF/PBAF/GBAF 5 
BCL7B BCL7B No BAF/PBAF/GBAF 1,2,3,5 
BCL7C BCL7C No BAF/PBAF/GBAF 1,2,3,5 
PBRM1 BAF180 bromodomain, HMG, zing finger PBAF 1,2 
ARID2 BAF200 ARID/BRIGHT PBAF 1,2 
PHF10 BAF45A zinc finger PBAF 1,2 
BRD7 BRD7 bromodomain PBAF 1,2 
DPF1 BAF45B zinc finger BAF 1,2 
DPF2 BAF45C zinc finger BAF 1,2 
DPF3 BAF45D zinc finger BAF 1,2 
ARID1A BAF250A ARID/BRIGHT BAF 1,2 
ARID1B BAF250B ARID/BRIGHT BAF 1,2 
BRD9 BRD9 bromodomain BAF/GBAF 1,2,4,5 
GLISTR1L BICRAL No GBAF 1,2,3 
GLTSCR1 BICRA No GBAF 1,2,3 
SS18 SSXT No BAF/GBAF 1,2,3,4,5 
SS18L1 CREST No BAF/GBAF 2,5 
SS18L2 SS18L2 No BAF/GBAF 5 
GFP-Pulldown interaction baits:  1-SMARCC1; 2-SMARCD1; 3-BRD9; 4-GLTSCR1L; 5-GiBAF-domain 
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Supplementary Table 2. Antibodies used. 

ANTIBODY SOURCE DILUTION for 
immunoblotting 

Amount per 
ChIP 

anti-BRD9; rabbit 
polyclonal 

Active Motif 61537, 
61538 1:1000 2 μl 

anti-BAF60a; clone 
23/BAF60A, mouse 
monoclonal 

BD Transduction 
Laboratories, 611728 1:1000 - 

anti-
SMARCC1/BAF155; 
rabbit monoclonal 

Cell Signaling, 11956 1:1000 - 

anti-PBRM1; rabbit 
polyclonal Sigma, HPA015629 1:250 - 

MPc2 (T-20) (anti-
CBX4); goat 
polyclonal 

Santa Cruz, sc-19299 1:1000 - 

anti-GFP; rabbit 
polyclonal Abcam, ab290 1:2500 2 μl 

anti-GFP (JL-8); 
mouse monoclonal 

Takara/Living colours, 
632380 1:1000 - 

anti-Ty1 Tag; mouse 
monoclonal 

Diagenode (Thermo 
Scientific), MA5-
23513 

1:5000 - 

Normal Rabbit IgG; 
polyclonal Millipore, 12-370 - 2 μg 
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Supplementary Table 3. Primers used for RT-qPCR 

NR4A1-S-qfor1/eRNA sense (Lai et al 2015) cctccttcctaagcctgaact 
NR4A1-S-qrev2/eRNA sense (Lai et al 2015) tgcttccctggaacagagat 
NR4A1-As-qfor1/eRNA antisense (Lai et al 2015) tttcctcacaaacctcactcc 
NR4A1-As-qrev1/eRNA antisense (Lai et al 2015) ccctccgtcactctcaaatg 
NR4A1 codseq F1/mRNA agaagatccctggctttgct 
NR4A1 codseq R1/mRNA cagggacatcgacaagcaag 
actin-F ctacaatgagctgcgtgtggc 
actin-R caggtccagacgcaggatggc 

Supplementary Table 4. Primers used for ChIP qPCR 

NR4A1 R4 prom F4/promoter region catcagcattacagtcacccctt 
NR4A1 R4 prom R4/promoter region cacgtttgaactgtgtaggtcca 
R_ENH_F/NR4A1 enhancer tgggtgtgcctgtatgtgac 
R_ENH_R/NR4A1 enhancer ctgtgagtgtggcggtgtat 

Supplementary Data legend 
Supplementary Data 1. 
Acetyl-lysine interacting proteins identified by SILAC histone-peptide pulldown MS. All 
proteins that were not found in both (Forward and Reverse) pulldowns were removed. 
Proteins are sorted according to their SILAC H/L ratio in the forward pulldown. Outliers 
are labelled as significant and colored green. Proteins that were close to outliers, and 
potentially interacting with acetylated-lysines are colored yellow. 



12 

Supplementary Methods 
RNA extraction, reverse transcription, qPCR 
HeLa S3 cells were seeded on 6-well plates, treated with DMSO or I-BRD9 (10 µM) for 6 h 
before 30 min induction with EGF (100 ng/ml). Total RNA was isolated using TRI Reagent® 
(Ambion) according to manufacturer’s recommendations. cDNA synthesis was performed in 
50 µl volume from 3-4 µg of total RNA using 100 U M-MuL V Reverse Transcriptase 
(Thermo Scientific) and 200 pmol of Random Hexamers (Thermo Scientific) in the presence 
of 20 U of RiboLock (Thermo Scientific ). For one quantitative PCR reaction in 
LightCycler®96 (Roche Life Science), 2 µl of cDNA and 5x HOT FIREPol®EvaGreen®qPCR 
Supermix (Solis BioDyne) was used. NR4A1 TSS RNA and eRNA values were calculated by 
normalization to Actb, using the comparative CT method. Primers used are listed in 
Supplementary Table 3. 

ChIP-qPCR 
For one chromatin immunoprecipitation sample, nuclear extract (NE) from 15 million HeLa-
FRT-GFP-GLTSCR1L cells after 16 h induction with doxycycline (1 µg/ml) was collected. 
ChIP was performed as described in (Kloet et al. 2016) with minor modifications. Briefly, 
cells were washed twice with 1X PBS; cross-linked for 40 min with 2,5 mM DSG and after 
washing with 1 X PBS, 10 min with 1% formaldehyde. Cross-linking was quenched with the 
addition of 1/10 volume of 2 M glycine. After washing with 1 X PBS, cells were collected in 
Buffer B (20 mM HEPES, 0.25% Triton X-100, 10 mM EDTA, 0.5 mM EGTA), pelleted by 
centrifugation at 600 g for 5 min at 4 °C. Cell pellets were resuspended in buffer C (150 mM 
NaCl, 50 mM HEPES, 1 mM EDTA, 0.5 mM EGTA) and incubated for 10 min with rotation at 
4 °C. Cells were pelleted as before and resuspended in incubation buffer (0.15% SDS, 1% 
Triton X-100, 150 mM NaCl, 1 mM EDTA, 0.5 mM EGTA, and 20 mM HEPES, 1X Roche 
protease inhibitor cocktail) at 15 million cells/ml. Chromatin was sheared with Bioruptor Pico 
sonicator (Diagenode) using 6 times the “30 s ON/30 s OFF” cycle. Sonicated material was 
centrifuged first for 5 min, followed by 15 min centrifugation at 4 °C, 16 000 g. Supernatant 
was stored at -80 °C. 

An aliquot of 1 ml of NE was used as input material and incubated overnight at 4 °C with 2 µl 
of anti-BRD9 (Active Motif, 61538), anti-GFP (Abcam, ab290) or normal rabbit IgG (Millipore, 
12-370) antibodies. A 50:50 mix of Protein A and G Dynabeads was added and incubated
for 90 min at 4 °C with rotation. The beads were washed once with 1,3 ml of wash buffer 1
(0.1% SDS, 0.1% sodium deoxycholate, 1% Triton X-100, 150 mM NaCl, 1 mM EDTA, 0.5
mM EGTA, and 20 mM HEPES), wash buffer 2 (wash buffer 1 with 500 mM NaCl), with
wash buffer 3 (50 mM LiCl, 0.5% sodium deoxycholate, 0.5% NP-50, 1 mM EDTA, 0.5 mM
EGTA, and 20 mM HEPES) and twice with wash buffer 4 (1 mM EDTA, 0.5 mM EGTA, and
20 mM HEPES). DNA-protein complexes were eluted from the beads with 200µl of elution
buffer (100 mM Tris, pH 7.8, 10 mM EDTA, 1% SDS, 400 mM NaCl).  200 µl of water with 20
mg of proteinase K was added to the eluate and de-crosslinking took place for 4 h at 65 °C.
DNA was extracted using phenol/chloroform. qPCR analysis of ChIP DNA was performed
with 5x HOT FIREPol®EvaGreen®qPCR Supermix (Solis BioDyne) on LightCycler® 96
(Roche Life Science). Enrichment values were calculated as percentage of input using
comparative CT method. Primers used are listed in Supplementary Table 4.
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Immunofluorescence 
HeLa-S3 cells were seeded onto glass slides in 6-well plates and transfected with 3 µg of 
pEF1Neo-FL-GLTSCR1L and pEF1Neo-ΔGiBAF-domain constructs using X-tremeGENE 9 
(Sigma-Aldrich) according to manufacturer’s instructions. 48 h post-transfection cells were 
fixed with 4 % ice-cold formaldehyde in 1 X PBS, incubated for 15 min, washed with 1 X 
PBS and permeabilized with 0,25 % TritonX-100 in PBS at room temperature for 15 min. 
After washing with 1 X PBS, cells were blocked with DMEM supplemented with 10 % (v/v) 
FCS at room temperature for 1 h and incubated with primary antibody recognizing TY1 tag 
at 4 °C overnight. Coverslips were washed twice with 0,1 % TritonX-100 in PBS and 1 X 
PBS before 1 h incubation at 4 °C with anti-mouse Alexa Fluor 594 secondary antibody. 
Nuclei were stained with 0,5 µg/ml of DAPI in PBS for 10 min at room temperature and cells 
were washed as previously described. After washing steps Leica DFC350 FX microscope 
was used for imaging. 

Multiple sequence alignment 
Multiple sequence alignment of vertebrate homologs of GLTSCR1 and GLTSCR1L was 
generated with Clustal Omega (Sievers et al. 2013) with default parameters using the 
Jalview environment (Waterhouse et al., 2009). The alignment was color coded with the 
ClustalX coloring scheme (Thompson et al., 1997). 
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Appendix 

As described above, GLTSCR1L and BRD9 co-localize with H3K27ac and 

other regulatory chromatin marks preferentially at intronic/intergenic regions (see 

Results 3.3). Sequence-specific TFs are also known to bind regulatory elements. 

Thus, the possible overlap between GLTSCR1L/BRD9-enriched chromatin sites and 

sequence-specific transcription factor binding motifs could further corroborate our 

hypothesis that GBAF is associated with genome regulatory elements. Known 

transcription factor motif enrichment was performed with the package Homer (Heinz 

et al., 2010) and JASPAR (Fornes et al., 2020) database using default settings on 

THS regions bound by BRD9 (Appendix A) or GFP-GLTSCR1L (Appendix B) and 

using all transcribed THS regions as background. 
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