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Abstract

Methods of commutability assessment is an ongoing discussion in the field of laboratory
science. Commutability of control materials is roughly defined as control materials having the
same numerical behaviour as patient samples. Opinions regarding which methods being suit-
able are polarized. Lack of caution concerning the linear model assumptions is often the case.
Consequently, many of the currently used methods show deceitful from a statistical aspect.
Transformations are frequently used as a go-to solution when the linear model assumptions
are unsatisfied. Unfortunately, ’healing’ model assumptions using transformations typically
result in the opposite outcome for most instances, reducing the acceptance rates for the linear
model assumptions rather than increasing them. Therefore, we would like to implement new
methods that are the most independent of strict model assumptions. That way, we would
have a more general procedure for commutability assessment. However, too few assumptions
are not favorable because of the complexity of the resulting models. The art of balancing
model assumptions and model complexity concerning their application in commutability
assessment is crucial. A perfect balance for every situation does not exist, so a statistical
approved decision algorithm or protocol for external quality assessment and internal quality
assessment is vital. In some cases it is also of interest to apply commutability evaluation for
certified reference materials. However, this will not be elaborated upon in this text. We find
that commutability assessment procedures used today (e.g., Bland-Altman transformation
combined with ordinary least squares regression, and Deming Regression) are sufficient in
most cases. However, if non-linear patterns arise, parametric methods are typically inadequate.
Henceforth we examine non-parametric evaluation methods such as Smoothing splines and
Kernel Regression. Assuming equally distributed and independent error terms and sufficiently
many clinical samples and replicated measurement, these non-parametric methods proved
to be robust against non-linearity. We discovered that smoothing splines estimator were the
most appropriate of the two because of fewer unavoidable subjective decisions and relatively
stable uncertainty bands. Besides, smoothing splines with Bland-Altman transformed data
proved much more suitable to interpret visually and reduce variability in x-direction. Thus,
the combination of Bland-Altman transformation and smoothing splines is considered the
most robust choice dealing with non-linearity.
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Chapter 1

Introduction

This thesis’s primary purpose is to utilize statistical models applied in the classification of
control materials. The primary focus is on the practical use of the statistical methods, and
consequently, in-depth detail regarding the underlying theory is not presented. A modest
overview of the estimators is presented briefly as a necessary supplement to their application.
In Chapter 1, an implementation of the discussion of the commutability concept and corre-
sponding definitions are presented. In Chapters 2 and 3, we will review parametric regression
models’ theory and apply them as part of the commutability assessment. In Chapters 4 and
5, an examination of alternative regression models (non-parametric regression models) and
their performance is presented.

1.1 Commutability - The concept

The Commutability of control materials concerning comparisons of multiple (≥ 2) measure-
ment procedures is the central theme in this text. From the VIM3: International Vocabulary
of Metrology, a measurement procedure is defined as follows:

Definition 1.1.1. - Measurement procedure
A detailed description of a measurement according to one or more measurement principles

and a a given measurement method, based on a measurement model, including any calculation
to obtain a measurement result.

We will restrict ourselves to consider two measurement procedures at the time. [Vore,
2014] defines commutability as follows:

Definition 1.1.2. - Commutability (of a control material)
Property of given control material, demonstrated by the closeness of agreement between

the relation among measurement results for a stated quantity in this material, obtained
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according to two measurement procedures, and the relation obtained among the measurement
results from clinical samples.

In an everyday speech, one might say that commutability is a property of a control
material where the control material acts ’similar’ to clinical materials concerning two or more
measurement procedures. It is essential to stress that commutability is a control material
feature. Commutability is consequently not comparability. This is a misconception we want
to avoid. [Braga and Panteghini, 2019] argues that the commutability of control materials
appears overlooked. Especially for some decades ago, commutability was barely mentioned.
The reason for little acknowledgment may be due to not realizing its importance.

However, in recent years people have started to see the potential of the commutability
property. The commutability property is the most crucial property a control material pos-
sesses [G. W. Miller, Jones, Horowitz, and Weykamp, 2011]. Holding commutable control
materials provides useful applications. First of all, [Braga and Panteghini, 2019] states that
commutable control materials are essential for analytical quality assessment. Roughly speak-
ing, evaluation of measurement procedures in laboratories concerning given standards, such as
satisfactory precision and accuracy of the measurement procedures. Matrix effects will result
in enlarged variability within clinical samples. They may also enlarge the difference between
clinical samples and control material samples, which frequently provide non-commutable
control materials or misclassified control materials. Non-commutable control materials re-
flect that the producer of the control materials has inappropriate measurement procedures
concerning relevant performances. The definition used in this text for matrix effects is the
same as given in Nomenclature for automated and mechanized analysis (Recommendations
1989);

Definition 1.1.3. - Matrix effect
The combined effect of all components of the sample other than the analyte on measuring

the quantity.

Matrix effects commonly affect the precision and accuracy of the measurement procedures.
See Section 1.3 for definitions. Consequently, the presence of matrix effects may result in
erroneous medical decisions. Knowing the reference range of the measurand in question
and performing several replications of each sample, we can disclose the clinical samples’
precision. [Solberg, 1993] defines reference interval by:

Definition 1.1.4. - Reference range
The reference interval is an interval constructed by the central 95% of a reference popula-

tion.
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Obtaining the accuracy of the clinical samples is done explicitly by comparing clinical
samples with control material samples. We can then tell if measurement values propose
disease and other irregularities in a patient with increased trustworthiness. In opposition,
non-commutable control material will leave us with potential erroneous medical decisions
because of poor precision and accuracy. Diagnostic mistakes are likely to be highly dangerous.
Avoiding the before-mentioned hazards is an essential argument for attaining commutable
control materials.

How does one go forth assessing the commutability property of control materials? Ac-
cording to [W. G. Miller et al., 2018] there are strict guidelines regarding the assessment of
commutability;

1. Obtain appropriate control materials.

2. Collect representative and fresh clinical samples.

3. Measure the clinical samples and control material samples by using several pairs of
measurement procedures.

4. Apply a commutability evaluation method on all pairs of measurement procedures and
report with all outcomes concerning a chosen acceptance criterion.

The first three points are more practical guidelines than theoretical. A complete discussion of
these three points is beyond this text’s scope and is consequently assumed to be performed
correctly. Thus, the main focus will be on the fourth point, which is about statistical com-
mutability assessment methods. Data from the first three points are either provided by the
EQA-organisation Noklus or simulated in this text. However, even though the main focus is
not on the three first steps, it will be interesting to discuss them in light detail. Both EQA-
and IQA-organisations follow the list above. Obtaining control materials is usually done in
laboratories, and the goal is to make the control materials similar to patient materials. In the
case of external quality assessment, when the control materials are finished and measured,
they are shipped to an EQA-organisation, which measures the clinical samples and control
material samples themselves. Then results are reported back to the control materials’ makers,
and their equipment’s performance is evaluated. Control materials are required to fulfill the
following conditions to remain representative in the whole analytical process:

1. Homogeneity

2. Durability

3. Stability
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4. Appropriate Volume

5. Affordable

6. Adequate analyte concentration

Control materials typically do not satisfy all these points and are typically processed
to satisfy them, which comes with a price. Processed control materials may no longer act
like clinical samples, which they were initially meant for, frequently due to matrix effects.
Ultimately, processed control materials may be misclassified in the commutability assessment
analysis.

When collecting clinical samples, it is crucial to ensure that clinical samples provide
measurements scattered along and preferably beyond the reference range. The clinical samples’
uniform dispersion is essential because some sample space regions indicate that a medical
decision is necessary. Control materials in regions where clinical samples are few might lead
to falsely accepting commutability because the applied acceptance criterion used in this text
relies on sensible analytical precision.

Moreover, fresh and representative clinical samples are vital. Storage, transport, and other
factors may process the clinical samples. Processed clinical samples are likely to be different
from the fresh samples, often due to unwanted matrix effects. The clinical samples’ matrix
effects could again lead to a wrongly classified control material regarding the commutability
property.

After obtaining control materials and collecting clinical samples, it is time to measure
them. It is crucial to minimize unexplained analytical errors in the measurement phase and
the transportation phase. Unexplained analytical variability, in addition to the explained
analytical variation, enlarge the acceptance region for commutability, which is why matrix
effects are important to control.

Classification of analytical variability is an essential part of the assessment of the com-
mutability concerning control materials. AV is the primary source of the total variability.
However, this is not the only source of variability one might consider in a commutability
assessment approach. For instance, [W. G. Miller et al., 2018] uses biological variability
when determining the limits of acceptance for the commutability property.

The total analytical variation contains variance connected to the measurement procedures
and potential variance produced by processed clinical samples’ matrix effects. Naturally, AV is
minimized by minimizing the clinical samples’ matrix effects, and one might, with minimized
AV, correctly conclude whether commutability is accepted or else is not. By estimating the AV,
which is assumed to exhibit negligible variance connected to matrix effects, regression models
are applied together with the uncertainty of measurement procedures as limits of acceptance.



1.2 Weaknesses of current evaluation methods 5

In the discussion of variability, it is essential to declare that we have two main types of
variances, denoted by deterministic and random variance. Note that random variation is not
necessarily the same as an unexplained variation. The majority of the analytical variability
is considered deterministic and will solely be applied to construct the limits of acceptance
regarding a control material’s commutability property.

If random variability is desired to be implemented, methods to estimate both random and
deterministic variation exists. Henceforward one could estimate the total analytical variation
defined as the sum of deterministic and random variation. Nevertheless, the random variation
is small compared to the deterministic variation by experience. Hence, no further interest is
taken concerning appending the analytical variance’s random component into our acceptance
criterion.

1.2 Weaknesses of current evaluation methods

Currently, there exist several methods concerning the assessment of the commutability prop-
erty of control materials. The problem, however, is that every one of them possesses weak-
nesses. Depending upon the model, weaknesses may vary. To this day, we apply models such
as linear regression models potentially combined with well-behaving transformations. The
problems typically arise when considering the linear model assumptions and any transfor-
mation of non-linear data patterns. These linear model assumptions sometimes appear too
stringent for the clinical samples and are rejected on several occasions for our purposes.

We could, however, claim that a suitable transformation will help satisfy the model
assumptions. See Section 2.3 and Section 2.4) for details concerning the transformation
approaches. Nonetheless, if these transformations meet the linear model assumptions, they
carry several additional requirements on their own, which may not be satisfied. The main
point is that independently of how many smart and elegant transformations we do, the result
will not produce a general and perfect assessment procedure for commutability. Besides, if
the underlying clinical samples pattern regarding the measurement procedures is non-linear, it
is sensible to avoid linear models altogether. In any measurement comparison procedure, we
expect the relationship between the measurement procedures to be linear in theory. In reality,
weak non-linear trends typically arise. To this day, we rarely use methods for dealing with
non-linearity without transformations or any assumptions regarding the normal distribution.
Assuming that our error terms are normally distributed and adequately linear is something
we would like to relax. Henceforth, it will be of interest to look into non-parametric methods
as part of the commutability evaluation. Such methods are discussed in Chapters 4 and 5.
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Currently, most used methods of evaluation of control materials are parametric and some
examples are presented in the list below:

1. Ordinary least squares regression models

2. Errors-in-variables regression models (e.g., Deming regression)

3. Log-log transformations

4. Bland-Altman transformations (See Section 2.4 for elaboration)

5. Piece-wise regression models

The estimators obtained from 1, 3, 4, and 5 exclusively rely on variability in one of the
two measurement procedures. All five models require a linear relationship with regards to
the raw or transformed clinical samples. In other words, the clinical samples must be capable
of constructing a model in the form below, either directly by using them raw or by employing
a transformation.

Y|X = Xβ + ϵ. (1.1)

Above, X is the design matrix, and β is the vector of the theoretical regression coefficients.
Ignorance of the two-dimensional variability appears unwise because it is unrealistic. Conse-
quently, it appears naive using either 1, 3, or 5. Especially when we are not using a measure-
ment procedure with high analytical precision, notice that we do not mention the Bland-Altman
transformation as part of the naive approaches. The reason is that the Bland-Altman transfor-
mation will significantly reduce the variability in x-direction and is consequently appropriate
when the variability in x is excluded from the statistical analysis.

A natural expansion is to include variation in both measurement procedures. Errors-in-
variable models formally denote linear regression with two-dimensional variability. Depend-
ing on the information regarding the direction and magnitude of errors, we use a unique
errors-in-variables model. There exist several versions of these kinds of models. Nevertheless,
we will only use Deming Regression in this text.

1.3 Precision, accuracy, and other relevant definitions

When studying measurement errors and analytical variation, it is prudent to introduce several
definitions, mainly precision and accuracy. In everyday speech, these two statistical terms
appear to describe the same phenomena; nevertheless, there is a meaningful difference
between the two in the fields of statistics and laboratory science. A definition of precision is
displayed as presented in the VIM3: International Vocabulary of Metrology:
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Definition 1.3.1. Measurement precision is the closeness of agreement between indications
or measured quantity values obtained by replicate measurements on the same or similar
objects under specified conditions.

According to Definition 1.3.1, measurement precision is measurable and estimated for
specific measurement procedures and measurands. There exist several estimators for precision.
Two of them that we will stick to are SD and CV, the estimated standard deviation and estimated
coefficient of variability. Considering replicated measurements done on a specific sample
i = I; {MPIr} with r ∈ {1, . . . , R}, we define

SDI =

√√√√ 1

R− 1

R∑
r=1

(
MPIr − MPI

)2
(1.2)

CVI =
SDI

MPI

. (1.3)

The analytical precision may be estimated by summing the estimated standard deviations for
all n clinical samples. An essential advantage of using CV is that it is scale-independent,
which implies that it is more comprehensive than SD in most cases. Accordingly, whenever
it is possible, the CV will be applied. Moreover, note that precision says nothing about the
closeness of agreement to the true quantity value, and this is where accuracy comes in:

Definition 1.3.2. Measurement accuracy is the closeness of agreement between a measured
quantity value and a measurand’s true quantity value.

Thus, measurement values near the true quantity value of a measurand will enhance the
accuracy and, in opposition, will decrease when measurement values are distant from the
true quantity value of the measurand. In opposition to precision, accuracy is not measurable
because the true quantity value is latent. However, estimated measurement errors reflect
accuracy to some extent. A comprehensive definition of measurement errors is provided
below.

Definition 1.3.3. Measurement errors (ME) is the difference between a measured quantity
value and a reference quantity value. We decompose measurement errors into both random
and systematic measurement errors. That is

ME = RME + SME. (1.4)

Random measurement error (RME) is a type of measurement error that varies unpredictably.
Systematic measurement error (SME) is a type of measurement error that is either fixed or
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predictable. The estimate of the systematic measurement error is called the measurement
bias.

1.4 Formal tests

In this thesis, we will use formal tests when making decisions regarding model assumptions
and commutability acceptance. However, in Chapter 3, we will discuss the use of plots
as assessment. The reasoning behind this is to get a solid idea of how the commutability
assessment procedure works in principle. In Section 3.6 and Section 5.5 we will singu-
larly use objective methods as evaluation. The same goes for model premises, especially
linearity—Shapiro-Wilk tests, Breusch-Pagan tests, and Durbin-Watson tests linear model
assumptions. We present a slightly detailed discussion of these three diagnostic tests in this
section. For automatic commutability assessment, we will use our own R-functions. Their
description and scripts are found in Appendix A.

1.4.1 Shapiro-Wilk test

Commonly we use the residuals extracted from model summaries to check for normality.
This is equivalent to testing the actual data for normality because of linearity. The residuals
are denoted by {eir} with i ∈ {1, 2, . . . , n}, and r ∈ {1, . . . , R}. For one specific sample
i = I and within one specific replication r = K, the corresponding residual is defined by

eIK = MPIK − ĝ(MPIK). (1.5)

ĝ is the fitted model. The corresponding order statistics is denoted by {e(i)}. We formulate
the hypotheses of interest:

h0 : {eir} are from a normal distribution (1.6)

h1 : {eir} are not from a normal distribution (1.7)

We formulate the following test statistic.

W =

[ n∑
i=1

R∑
r=1

aire(ir)
]2

(N − 1) · SD
(1.8)

Typically, we reject normality for extreme values of W . Values far from 0 are considered
extreme.
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1.4.2 Breusch-Pagan test

Investigating whether the regression residuals is dependent on the explanatory makes the
foundation of this test. In other words, the Breusch-Pagan test checks whether the residuals are
heteroscedastic. Let {MPir} with i ∈ {1, 2, . . . , n} and r ∈ {1, . . . , R} be the measurement
values of the measurement procedure acting as the explanatory variable. With the residuals
denoted as in Equation (1.5) we formulate the hypotheses of interest:

h0 : {eir} is homoscedastistic

h1 : {eir} is heteroscedastistic

The following theoretical regression model is estimated:

e2ir
SD2 = β0 + β1 · MPir + ϵir. (1.9)

From ordinary least squares we may estimate Equation (1.9). We denote the estimated

estimator of Equation (1.9) by ê2ir
SD2 . With the assumption that E

[
e2ir
SD2

]
= 1 and the estimated

model of Equation (1.9) we find that:

SST =
n∑

i=1

R∑
r=1

( e2ir
SD2 − 1

)2
SSR =

n∑
i=1

R∑
r=1

( e2ir
SD2 − ê2ir

SD2

)2
. (1.10)

We may define the test statistic for the formulated hypotheses as

LM =
1

2

(
SST − SSR

)
. (1.11)

As proven by Breusch and Pagan LM ∼ χ2
1 asymptotically. Consequently, extreme estimates

for LM propose rejecting the null-hypothesis given that we have a satisfactory large N .

1.4.3 Durbin-Watson test

The Durbin-Watson test is a formal assessment for the presence of auto-correlation in our
data. Roughly speaking, the test uses pair-wise successive residuals and check for a cor-
relation between them. Consequently, the text does not say much about the error terms’
global dependence, ’ one of the linear model assumptions. However, the presence of auto-
correlation means that we have at least some dependent error terms, which implies that global
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independence will be somewhat doubtful. We formulate the following hypotheses for the
Durbin-Watson test:

h0 : Auto-correlation is not present (ρ = 0)

h1 : Auto-correlation is present (ρ ̸= 0)

When using the notation as in Equation (1.5), we define the test statistic d by

d =

N∑
j=2

(ej − ej−1)
2

N∑
j=1

e2j

, (1.12)

where ej = ρej−1 + ϵj . For small values of d, the error terms are auto-correlated positively,
and for large values of d, the error terms are auto-correlated negatively. Moderate values of d
(around d = 2) propose that no auto-correlation is present.

1.4.4 The interpretation of the formal tests

The formal tests above will have several outputs in R, that is, both estimated test statistics
and corresponding p-values. However, exact p-values will not be of importance. Degrees of
significance is rather used when reporting the test results. The classical notation for statistical
significance is used:

Significance degree p-value Symbols
Significant >0.05 *
Very significant >0.01 **
Extremely Significant >0.001 ***

For the acceptance of the formal tests, we accept when p-value≥ 0.05. The reason for
greater or equal is because of the hypotheses formulations given above.



Chapter 2

Parametric methods of assessment

2.1 Current methods of evaluation

After considering the definition of commutability regarding control materials and cautions
regarding errors, it is time to discuss parametric commutability evaluation methods. There
exist several methods for assessing commutability. A simple and straightforward commutabil-
ity evaluation method for control material samples is to plot clinical samples and control
material samples concerning two different measurement procedures upon each other. Control
materials are commutable if they fit the regression line - constructed by clinical samples - well,
whereas the patient-dependent regression line should ideally follow y = x. Otherwise, there
is some difference concerning the measurement procedures in question or some unwanted
matrix effects. However, this comparability issue will not be critical because the utilized
acceptance criterion for commutability is independent of comparability.

2.2 Ordinary least squares

Ordinary least squares regression may be used as part of the commutability acceptance
criterion. Particularly, the rule for accepting a control material’s commutability property is to
check whether a control material sample lies within the (1− α/m) · 100% prediction bands
where m is the number of control materials found in the particular data set. Hence, when
analyzing five control materials simultaneously, we must check whether the control material
samples lie within the 99% prediction bands constructed by the clinical samples. The data
sets considered in Chapter 3 holds five control materials; accordingly, 99% will be the applied
level for the estimated prediction bands. Incorrect conclusions concerning commutability
acceptance are classified into two main components: type I error and type II error. These
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types of errors are defined as:

Type I error = P(Rejecting commutability for a CM | The CM is commutable)

Type II error = P(Accept commutability for a CM | The CM is not commutable). (2.1)

CM is shorthand for control material. The first error may be controlled by choosing a
suitable value for α. A typical choice is Type I error ≈ α with α = 0.05. The second
error is harder to control but is frequently reduced with suitably large sample sizes. With
Equation (2.2), an analytical expression for the prediction bands is straightforward to obtain.
Let i ∈ {1, 2, . . . , n} be the sample index, and let r ∈ {1, . . . , R} be the replication index.
Then, the ordinary least squares model is defined as

MPAir|MPBir = a+ b · MPBir + ϵir, ϵir ∼ N (0, σ2
A). (2.2)

We assume that the random variables {ϵir} are independent and identically distributed. This
assumption implies that the error terms must be independent and possess equal variances
(homoscedasticity). Moreover, the data patterns are required to be approximately linear since
Equation (2.2) is a linear model. The proper usage of ordinary least squares regression is
accordingly dependent on the following conditions:

1. Independent error terms

2. Equal variances of all error terms

3. Linearity of observations

4. Normality of error terms.

The error terms must satisfy all these four assumptions to obtain trustworthy ordinary least
squares estimators. Holding unreliable estimators may produce unreliable prediction bands,
which is problematic concerning our acceptance criterion for commutability. Consequently,
we may not use ordinary least squares regression as part of the commutability assessment
criterion. The linear model assumptions are denoted by the four requirements listed above.
Assuming that the linear model assumptions are satisfied, it is straight forward to show that
the 99% prediction bands can be estimated explicitly by

PI = MP∗
B ± z0.995 · SDA

√
1 +

1

n
+

(MP∗
B − MPB)2

SBB

, (2.3)
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Figure 2.1 – This figure reflects the visual commutability assessment scheme used in this text.

where

SBB =
n∑

i=1

(MPBi − MPB)
2.

A large sample size signifies that the prediction bands’ width will be approximately the same
as the corresponding confidence bands. In other words, the prediction bands will be narrower
when possessing more numerous clinical samples. On the contrary, large SDA increases the
width of the prediction bands, which increases the probability of making a type II error. A
visualization of how the acceptance criterion for commutability functions is displayed in
Figure 2.1. Figure 2.1 proposes that the visual commutability assessment procedure is simple
in practice. However, control materials positioned at the boundaries may be hard to classify.
As part of the linear model assumptions assessment, visual tests like residual versus fitted
plots and quantile-quantile plots are used. Alternatively, one might use formal tests such as
those formulated in Section 1.4 or gvlma() in R. For subjective interpretation purposes, visual
tests regarding linear model assumptions are best to avoid. However, the visual tests will be
used and discussed in some detail when testing the parametric methods in Chapter 3. How
to interpret visual plots are assumed to be known to the reader and will not be elaborated
further.
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The real and simulated data are in this text nested. Mainly, each sample is measured
several times. Replicated measurements on the samples naturally induce auto-correlation,
and a discussion on the handling of replicates will be an element of the discussion. The
analysis of ordinary least squares regression as part of the commutability evaluation require a
discussion on disclosure of typical faults. As already touched upon, ordinary least squares
regression has stringent model assumptions that must be satisfied.

Moreover, ordinary least squares regression ignores variability in x. One might, therefore,
conclude that this commutability assessment method is somewhat unrealistic. In some
instances, clinical samples may not follow a linear pattern, which results in poor model fits.
The suggested solution to this may be some transformation of the observations.

2.3 Log-log transformation

If the clinical samples seem to follow a non-linear curve, an alternative approach is preferred.
A typical approach to deal with a non-linearity is to transform the response and the predictor
by applying the natural logs. The goal of doing this is to achieve a linear relationship. The
appropriate transformation requires the application of the logarithm, of any base, on both
measurement procedures. In this text, the natural base will be used. The log-log transformation
will only produce linear relationships if the raw pattern of the clinical samples follows a curve
of the form

MPA = K[MPB]
β1 , (2.4)

where K and β1 are constants. By this constraint, not all non-linear patterns will convert into
a straight line using the log-log transformation. For instance, the only satisfactory intercept
is 0, and only one-term polynomials are accepted. An illustration of this is displayed below.
Taking natural logs on both sides of Equation (2.4) produces

loge(MPA) = β0 + β1 loge(MPB), (2.5)

where β0 = loge(K). It is evident that Equation (2.5) is a linear relationship as desired,
because it is in the appropriate form. After log-log transforming the response and prediction,
ordinary least squares or any other linear on estimators may be used to estimate β0 and β1.
To reveal the potential problems concerning the log-log transformed data, an illustration of
the use of log-log transformation for several data patterns is included:

• m1 : y = 1.2 · x3

• m2 : y = 50 + 1.2 · x3
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• m3 : y = x2 + exp(x)

Log-log transformations of the simulated data constructed from the equations above produced
the curves presented in Figure 2.2.
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Log−log transformation of models

Figure 2.2 – This figure illustrates the log-log transformations of the three models defined above. As
expected, only m1 resulted in a linear curve. Regard that we need significant intercept coefficients for
it to cause problems.

From statistical theory, log-log transforming our data may result in more symmetrical data,
and heteroscedasticity may no longer be a problem. However, the log-log transformation is no
guaranteed fix for the linear model assumptions. It even happens that more model assumptions
are left unsatisfied for the transformed clinical samples. Accordingly, we may argue that the
log-log transformation should only be used when the underlying distribution is approximately
log-normal. Moreover, the clinical samples should follow Equation (2.4) well. Unfortunately,
the log-log transformation, combined with ordinary least squares, will not register variability
in x-direction. However, it is possible to combine the log-log transformation with Deming
regression, which accounts for variability in both measurement procedures. More on Deming
regression is presented in Section 2.5. Another approach dealing with variability in x is
to Bland-Altman-transform the data. The Bland-Altman transformation does not directly
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account for two-dimension variability but reduces it to some extent. This transformation will
be discussed in more detail in the next section.

2.4 Bland-Altman transformation

Another scheme for evaluating the commutability property of a control material is the so-called
Bland-Altman approach. The assessment scheme of commutability relies on the Bland-Altman
transformation, which is defined by the logarithmic difference between the measurement
procedures as the response (i.e., MPA and MPB) and the average measurement values between
them as the predictor. According to [W. G. Miller et al., 2018], a plot visualizing the Bland-
Altman transformed clinical samples will be favorable. The reason is that our measurement
procedures’ modeling bias reveal hard-to-detect trends concerning measurement magnitudes
between two measurement procedures. Moreover, the Bland-Altman transformation reduces
the variability magnitude in x, which is favorable when ignoring variability in x-direction. In
the simulation section, we will look into this in more significant detail.

In similarity to log-log-transformations, we transform both response and predictor, as
formulated above. Let i ∈ {1, 2, . . . , n}. The Bland-Altman transformation with a logarithmic
difference is then given by

Responsei = loge(MPAi)− loge(MPBi) (2.6)

Predictori =
MPAi + MPBi

2
. (2.7)

The goal of these transformations is to transform all samples so that, ideally, they follow a
horizontal line. Clinical samples following a horizontal line mean that the log-difference
of measurements between the procedures is constant. Samples following the line y = 0,
therefore, indicates agreement between the relevant measurement procedures. However, from
a commutability aspect, data following a straight line is not of notable importance since
the acceptance criterion used is independent of deviations from linearity. To see how the
Bland-Altman transformation works, it will be of interest to define the relationships proposed
below for data patterns according to four underlying models. The essential point of this is to
visualize how the Bland-Altman transformation deals with the different types of relationships.
Figure 2.3 visualizes this.

• m1 : y = x+N (0, 0.25)

• m2 : y = 2x+ 0.01x2 +N (0, 0.25)

• m3 : y = 2x+ 0.001x3 +N (0, 0.25)
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• m4 : y = 20 + 2x+N (0, 0.25).
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Figure 2.3 – Raw data and Bland-Altman transformed data for the four models given is visualized.
Note how the Bland-Altman transformed data differs from the different raw data.
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From Figure 2.3 we see that the first pattern, that is y = x +N (0, 0.25), was transformed
into a horizontal line. This is because of

loge(y)− loge(x) = loge(x+N (0, 0.25))− loge(x). (2.8)

The probability of this difference to be close to zero is large because the expected value of
the random noise is equal to zero and possesses relatively small variance. Besides, non-zero
intercepts, as implemented in m4, results in large deviations from linearity in the start, but
the pattern is approximately linear as the predictor values increase. By experience, there is
merely a handful of measurement procedure comparison studies resulting in a horizontal line.
Interestingly, non-linear patterns is frequently expected in the Bland-Altman plots because of
the ’revealing’ property. A natural approach is to model potential non-linear patterns with
polynomial regression. After transforming the data, the theoretical model below is estimated
by estimating the corresponding regression coefficients:

Responsei|Predictori =
p∑

j=0

βj · Predictorji + ϵi. (2.9)

In Equation (2.9), ϵi ∼ N (0, σ2
Response). We will estimate the polynomial regression curve

(with degree p− 1) using ordinary least squares. p is currently chosen manually concerning
what seems like a good fit for the data. However, p = 4 and p = 5 are often satisfactory
choices. Choosing p is generally dependent upon our data, which implies that a general
method for choosing p may be of interest. There exist functions in R, e.g., stepAIC(), which
obtain such p by using a step-wise algorithm dependent on the models’ estimated Akaike
information criterion. Applying ordinary least squares with linearity in the regression coeffi-
cients, estimating the corresponding prediction bands is straight forward. Hence, it follows
that the same acceptance criterion principle is utilized as in Figure 2.1).

The IFCC group is well known to use the Bland-Altman transformations. However, how
they apply it as a commutability assessment is quite different from what this text suggests. This
difference is due to the that the IFCC group typically does commutability and comparability
tests simultaneously. Therefore, [W. G. Miller et al., 2018] operates with fixed boundaries
that are independent of measurement procedures compared. They suggest using the clinical
samples’ mean bias as the golden standard, whereas we use the estimated regression line and
the estimated prediction bands constructed by the clinical samples. Note that the clinical
samples mean bias is equivalent to our approach if p = 0 is selected. Applying the prediction
bands as part of the acceptance criteria will induce slightly different requirements for every
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pair of measurement procedure comparisons. In opposition, they recommend the same, fixed
requirements in every comparison procedure.

2.5 Deming regression

In previous methods, it was assumed no error in the x-direction. In reality, this assumption is
rarely satisfied. There will be errors in both x- and y-direction. In practical terms, analytical
variability is expected in both measurement procedures, which are realistic and intuitive.
There exist methods taking care of this supplementary variability. One such method is
Deming regression, which is the generalization of orthogonal regression. Generally speaking,
the orthogonal regression estimator is a linear regression estimator where we minimize the
orthogonal projections to obtain the estimated regression coefficients. With i ∈ {1, 2, . . . , n},
[Dunn, 1989] defines the system of linear equations as:

MPBi = τi + δi

MPAi = c+ bτi + ϵi (2.10)

Moreover, the two error-term components are assumed to be normally distributed, that is[
ϵi

δi

]
∼ N

([
0

0

]
,

[
σ2
A 0

0 σ2
B

])
∀ i (2.11)

Furthermore, assume that {δi} and {ϵi} are independent. As imposed in Equation (2.11),
the covariance between the two error terms must be equal to zero. It is crucial to note that
τi and c + bτi are the true but latent values within a clinical sample i concerning the two
measurement procedures. The latent values within the clinical samples are assumed to be
fixed realizations of a random variable. Consequently, the magnitudes of c and b determine
the linear relationship between the measurement procedures. In the real world, however, it is
natural to generalize Equation (2.10) as

MPAi = τi + δi

MPBi = f(τi) + ϵi (2.12)

for any real function f . The reasoning of this statement relies on the likely possibility of
measurement procedures having non-linear relationships. However, for the Deming models
presented in this chapter, it is assumed that the underlying relationship between the measure-
ment procedures is linear. In Section 3.6, we assume {τi} to be realized values of the random
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variable
U ∼ U(α, β). (2.13)

What differs Deming regression from orthogonal regression is that

λ =
V ar[ϵi]

V ar[δi]
=

σ2
A

σ2
B

(2.14)

not necessarily are equal to 1. Hence, the variance in one measurement procedure might be
larger or smaller than the other measurement procedure variance. To successfully estimate
the regression coefficients, information on λ is required. In most cases, the true value of
λ is unknown and is rarely fixed. Since the Deming regression model is dependent on
knowing λ, constructing an estimator of λ will be vital. From Equation (2.10) and the fact
that {ϵi}

d
= {−ϵi} and {δi}

d
= {−δi} it follows that the theoretical Deming regression model

takes the form
MPAi|MPBi = β0 + β1(MPBi + δi) + ϵi. (2.15)

From Equation (2.15), it is clear why {ϵi} and {δi} are required to be independent. Alterna-
tively, it would be necessary to include a covariance term into the variance of Equation (2.15).
Holding n clinical samples measured by two measurement procedures and by applying the
method of moments results in

β̂1 = b1 =
SAA − λSBB +

√
(SAA − λSBB)2 + 4λS2

BA

2SBA

(2.16)

β̂0 = b0 = MPA − b1 · MPB.

This set of estimators assumes that either λ is known or that both σ2
A and σ2

B are known [Gillard,
2010]. At least, we need some trustworthy preliminary information on this ratio of variances.
A sufficiently large sample size and a suitable number of replicates provide this information,
which results in a reliable estimator for λ. The estimated covariances are defined as

SBB = n−1 ·
n∑

i=1

(MPBi − MPB)
2

SAA = n−1 ·
n∑

i=1

(MPAi − MPA)
2

SBA = n−1 ·
n∑

i=1

(MPBi − MPA)(MPAi − MPA). (2.17)
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As formulated by [Dhanoa et al., 2011], the estimation scheme relies on first estimating σ2
A

and σ2
B and calculating their ratio. That is

λ̂ =
σ̂2
A

σ̂2
B

. (2.18)

[Dhanoa et al., 2011] estimates the variability components σ2
A and σ2

B as

σ̂2
A =

1

N − n

n∑
i=1

R∑
r=1

(MPAir − MPAi)
2

σ̂2
B =

1

N − n

n∑
i=1

R∑
r=1

(MPBir − MPBi)
2 (2.19)

Note that MPAi and MPBi are the means of replicates within clinical sample i concerning
our specified measurement procedures. The variability between replicates should reflect
the precision of the measurement procedures solely. Equation (2.19) requires several (≥ 2)
replicates, or else there is little or nothing to say about the variation within the samples. After
estimating the variance concerning the two error terms and apply them to derive the estimate
of λ, we can estimate the slope and intercept using Equation (2.16) by substituting λ with λ̂:

b1 =
SAA − λ̂SBB +

√
(SAA − λ̂SBB)2 + 4λ̂S2

BA

2SBA

b0 = MPA − b1 · MPB. (2.20)

Accordingly, our estimated linear Deming regression model is given by

ĝ(MPBi) = b0 + b1 · MPBi. (2.21)

Since variability is accounted for in both x and y-direction, it may seem like a challenging
job constructing prediction bands for the fitted regression lines. Luckily, it is possible to
construct these uncertainty bands analytically. Components from [Fuller, 2009] are applied to
construct the 99% prediction bands for our fitted Deming regression models. For conventional
purposes, we define

MPB =

[
1 1 . . . 1

MP∗
1 MP∗

2 . . . MP∗
M

]T
(2.22)
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with {MP∗
j} theoretical predicted values, where

MP∗
B =

[
MP∗

1 MP∗
2 . . .MP∗

M

]
. (2.23)

Furthermore we define I as the M ×M identity matrix and V as the estimated covariance
matrix for b0 and b1.

̂Var(ĝ(MPB)|MP∗
B) = diag

(
MPT

BVMPB

)
+ (σ̂2

A + b21 +Var[b1] · σ̂2
B)I

= (aij) ∈ RM×M . (2.24)

Lastly, we define

̂SD(ĝ(MPB)|MP∗
B) = (

√
aij) ∈ RM×M

1M×1 =
[
1 · · · 1

]T
, (2.25)

which provide the estimated 99% prediction bands:

PI = ĝ(MP∗
B)± t0.995,n−2 · ̂SD(ĝ(MPB)|MP∗

B)1M×1. (2.26)

The estimated ratio of variances, λ, will include the risk of sparse estimation if the advised
assumptions are not met regarding our samples; the number of clinical samples, n, should
ideally be more extensive than 50 [Gillard, 2010]. The real data sets presented in Chapter 3
typically contain between 20 and 25 clinical samples. Henceforward, there is still room for
enhancement concerning the study design. The obvious solution to this problem is to adjust
the study design suitably. However, it is challenging and costly to get hold of adequately many
clinical samples for our studies. It is more effortless to increase the number of replicated
measurements because replicated measurements come from the same clinical sample.

From the fact that n ≥ 50 is unsatisfied for most instances, it will be essential to review if
any other estimators for β0 and β1 is more appropriate than Equation (2.20). If β0 is taken for
granted to be known, [Gillard, 2010] debates for the use of

b1 =
MPA + β0

MPB

(2.27)

as the slope estimator, directly deduced from the second equation in Equation (2.20). When
comparing measurement procedures, β0 is intuitively expected to be zero. However, this is not
certainly supported statistically because significant non-zero intercepts are obtained in most
Deming models. Typically, dependent on the clinical samples, few or none measurements
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lie near zero. Consequently, there is no trustworthy evidence that β0 = 0 is appropriate to
assume in the light of commutability assessment. Nevertheless, a sufficiently large sample
size typically diminishes the magnitude of the bias of Equation (2.27).

[Gillard, 2010] formulates that there exist two additional alternative estimators. These
two estimators rely on knowledge of observed variability in x- or y-direction. Firstly, if the
information on σ2

A is satisfactory, the regression slope coefficient may be estimated by

b1 =
SAA − n · σ2

A

SBA

. (2.28)

Secondly, holding sufficiently enough information on σ2
B permits estimation of the slope

estimator by
b1 =

SBA

SBB − n · σ2
B

. (2.29)

These estimators are suitable if possessing prior information on one of the measurement
procedures. Providentially, we can estimate one of the measurement uncertainties and use
Equation (2.28) or Equation (2.29) to estimate the slope using replicated measurements.
Nevertheless, [Dunn, 1989] affirms that applying Equation (2.29) implements a more reliable
slope estimator opposed to Equation (2.28). However, the latter slope estimates should be
treated with caution. Usually, for small sample sizes (typically n < 40), Equation (2.28)
is underestimated, whereas Equation (2.29) is overestimated. If prior information on the
analytical variability is negligible, it appears unwise to utilize two latter estimators. The
conclusion is that the three alternative estimators for the regression slope are unlikely superior
to the original one; thus, Equation (2.20) will be used in the rest of this text.

2.6 Parametric regression splines

A single regression line might not be enough to describe the entire pattern provided by the
clinical samples. In these unfortunate cases, we have an opportunity to partition our data-set
into intervals and fit regression lines for these sections separately. In other words, we have
more than one regression line as part of our model. We must, nevertheless, demand that the
fitted lines connect such that the overall curve is continuous. Also, we impose that the first
and second derivatives of the model be continuous for a smooth fit. The locations where the
regression lines connect are called breakpoints or knots. Splines are the general name of this
regression approach. A piece-wise regression like this is appropriate when modeling abrupt
changes in the relationship between predictors and response, that is if relationships between
measurement procedures suddenly shift drastically. Even when relationships alternate slightly,
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it could be advantageous to use splines in favor of a global fit. This is typical because splines
are more flexible and do not require a model fitted by an enormous polynomial degree
[James, Witten, Hastie, and Tibshirani, 2013]. Generally, if the two comparable measurement
procedures exhibit distinct relationships concerning different clinical samples’ measurement
values, regression splines will be competent. [James et al., 2013] defines the theoretical
model for regression splines model (with K knots and polynomial degree j) by

MPAik|MPBi =

j∑
l=0

βlkMPl
Bi + ϵi, (2.30)

with k ∈ {1, 2, . . . , K} and i ∈ {1, 2, . . . , n}. Fixing a clinical sample, e.g, i = I and
considering k = κ, Equation (2.30) produces the j degree polynomial fitted value in the
region between the knots κ− 1 and κ. We impose that

ϵi ∼ N(0, σ2
A), i ∈ {1, 2, . . . , n}. (2.31)

The error terms are independent and identically distributed. Thus, we assume homoscedas-
ticity and independence as before. We also require linearity in the regression coefficients,
as usual. Later we will try to avoid assumptions regarding distributions such as the normal-
assumption presented in Equation (2.31). However, choosing to constrain ourselves with the
normality assumptions, estimates of prediction errors, model errors, and more are provided for
free in the specified regions. For the model fitting in this text, we apply polynomial regression
with degree j = 3 (natural cubic model fits) between successive knots, estimated with the
ordinary least squares method. The linear model assumptions are obliged to be satisfied,
therefore we may apply Equation (2.3). Note that we require the linear model assumptions
to be true for every single fitted regression line. The partition of the sample space implies
that we have fewer observations for the local fits. Consequently, the test statistics for the
linear model assumptions may be wrongly estimated. The Splines packages will be used in R.
Particularly; we will use lm() with ns() to fit natural cubic splines models.





Chapter 3

Applying Commutability Assessment
with Parametric Methods

We have been through some of the commutability assessment methods used today. The theory
and possible faults of every method have been discussed. Accordingly, it will be interesting to
discuss each method’s actual performance using real data gathered by Noklus or simulation.
See Section 3.6 and Section 5.5 for the latter.

3.1 The data sets

In this section, five different data sets will be considered. Table 3.1 summarizes the collection
of data sets.

The data sets are similar, and every one of them is built up as presented in Table 3.2.
Every data set includes 25 clinical samples and five control material samples with three

replicates. All but one of the data sets contain NA-values, which results in fewer clinical
samples. To get a conception of how the methods presented in Chapter 2 work in practice, they

Table 3.1 – Here is a rough description of the real data sets used in this text. MP is shorthand for
measurement procedure.

Name Analyte Measurement units Number of MP’s

EPK Erythrocytes 1012/L 4
HB Hemoglobin g/dl 4

LPK Leukocytes 109/L 4
MCV Mean Erythrocyte Volume fl 4
TPK Thrombocytes 109/L 4
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Table 3.2 – This table describes the structure of the data sets. PS is shorthand for patient samples or
clinical samples, and CM is shorthand for control materials. The specified numbers following PS are
the particularized clinical samples that are manifested as NA-values.

Data set Number of PS’s Number of CM’s NA samples

EPK 25× 3 5× 3 PS: 1, 7
HB 25× 3 5× 3 PS: 1, 15

LPK 25× 3 5× 3 PS: 15, 19, 20
MCV 25× 3 5× 3 PS: 4, 16
TPK 25× 3 5× 3 None

will be tested separately and as part of a step-wise algorithm where the most suitable method
is selected. The commutability assessment approaches are first considered separately, where
shortcomings and strengths are discussed by turn. This design is executed by investigating
the MCV data set, which resembles a relatively large variability in the clinical samples. An
offset plot with all measurement procedure comparisons of the clinical samples is presented
to get a rough idea of how the data set looks. See Figure 3.1.

Note that the offset plot also includes estimated Pearson correlation coefficients, which is
interpreted as the strength of the two particularized measurement procedures’ linear relation-
ship. However, this estimator states nothing regarding the comparability of the measurement
procedures [Bland and Altman, 2010]. Besides, the estimated densities for every measure-
ment procedure comparisons are included and are at least approximately gaussian.

3.2 Commutability assessment with Ordinary least squares
regression

Before going forth with the commutability assessment using the ordinary least squares esti-
mator, it is vital to test the model residuals regarding the normality assumption. The densities
displayed in Figure 3.1 suggests that the clinical sample measurements are approximately
normally distributed. Even though the observations seem normally distributed, it is good
practice to test the normality requirement for the model residuals. It is not straightforward to
state something substantial regarding the rest of the linear model assumptions from Figure 3.1.
Thereupon, the residuals vs. fitted plots constructed using ordinary least regression models
are presented. The residual vs. fitted plots explain what to expect from the formal evaluation
tests performed subsequently. See Figure 3.2. There are no apparent indications that we
are dealing with heteroscedasticity, dependent error terms, or non-linearity in Figure 3.2.
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Figure 3.1 – An offset plot that presents a full overview of the patterns of the clinical samples in the
MCV data set. Note that density estimates are implemented as well as Pearson correlation coefficients
with corresponding test significances.
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Figure 3.2 – Residual vs. fitted plots for all six ordinary least squares regression models.

However, to get an objective interpretation, the formal tests described in Section 1.4 will be
used. Table 3.3 outlines the outcomes of the linear model assumption tests.

From Table 3.3, one observes that auto-correlation is a significant problem. Again, this is
not uncommon because replicated measurements are utilized in every sample, which induces
auto-correlation. Thus, using the mean of replicated measurements is the most natural way to
obtain trustworthy estimators. In the rest of this chapter, only MOR will be used because of
the persistent auto-correlation issue. The only place we have practical use of the replicates
is when estimating the ratio of variances, λ, for Deming regression. However, the mean of
replicates is also the best guess on the true value of the analyte. See Figure 3.3 for residuals vs.
fitted plots for the analogous MOR-models: There is no apparent difference among the two
sets of residual plots than, of course, fewer points. However, the linear model assumptions
are now satisfied. See Table 3.4.

Accordingly, one might proceed with the commutability assessment since all the linear
model assumptions are satisfied for all the measurement procedure comparisons. Conse-
quently, the combination of MOR and ordinary least squares regression is adequate as part of
the commutability assessment approach. The prediction bands’ estimation is done by imple-
menting Equation (2.3). The commutability assessment plots are exhibited in Figure 3.4 and
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Table 3.3 – Linear model assumptions of ordinary least squares with AR. The green fields are accepted
linear model assumptions, whereas the red fields are discarded linear model assumptions. The stars
signify the degree to which the assumptions are rejected.

Linear model assumptions MCV

OLSR + AR Normality Homoscedasticity Auto-correlation Linearity

ABX Micros ES vs. Advia 2120i ** ***

ABX Micros ES vs. Cell Dyn Sapphire * ***

ABX Micros ES vs. Sysmex XN ***

Advia 2120i vs. Cell Dyn Sapphire ***

Advia 2120i vs. Sysmex XN ***

Cell Dyn Sapphire vs. Sysmex XN * ** ***
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Figure 3.3 – Residual vs. fitted plots for all six ordinary least squares regression models employing
the mean of the replicates.
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Table 3.4 – Evaluation of the linear model assumptions of ordinary least squares constructed by means
of replicates.

Linear model assumptions MCV

OLSR + AR Normality Homoscedasticity Auto-correlation Linearity

ABX Micros ES vs. Advia 2120i

ABX Micros ES vs. Cell Dyn Sapphire

ABX Micros ES vs. Sysmex XN

Advia 2120i vs. Cell Dyn Sapphire

Advia 2120i vs. Sysmex XN

Cell Dyn Sapphire vs. Sysmex XN

Figure 3.5. The control material samples with yellow fill are concluded as non-commutable.
By looking at Figure 3.4 and Figure 3.5, it is clear that LQ is concluded as non-commutable
for five of the six measurement procedure comparisons. Besides, 2CPD is concluded as not
commutable in the measurement procedure comparison between Advia 2120i and Cell Dyn
Sapphire. The ordinary least squares approach appears to be appropriate concerning the
MCV data set. However, variability in the x-direction is neglected, which is the main fault of
this evaluation method.

The log-log and Bland-Altman transformations combined with ordinary least squares
regression as part of the commutability assessment design are presented in the next section.
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Figure 3.4 – Visual commutability assessment evaluation using ordinary least squares regression
constructed by mean of replicates.
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3.3 Commutability assessment with transformation com-
bined with linear and polynomial regression

We observed that the ordinary least squares regression worked fine on the MCV data set. The
linear model assumptions were satisfied for the replicates’ mean, and it was appropriate to
apply the ordinary least squares regression model as part of the commutability assessment.
Nevertheless, the MCV data set is re-evaluated by utilizing the two transformation approaches
as part of the commutability assessment. An offset plot consisting of measurement procedure
comparisons of the clinical samples that are log-log transformed is presented:
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Figure 3.6 – An offset plot, which represents an overview of the log-log transformed patterns of the
clinical samples.

There are no apparent departures from linearity observed in Figure 3.6. The resulting
scatter plots appear quite similar in shape to the raw data, which implies that everything
seems adequate. Likewise, an offset plot for the Bland-Altman transformations is given by;
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Figure 3.7 – An offset plot, with an overview of the Bland-Altman-transformed patterns of the clinical
samples. LD and MM is shorthand for logarithmic differences and means of measurement procedures,
respectively.

There is no pressing deficiencies or obvious non-linearity issues, concluded from Fig-
ure 3.7. Hence, it appears unnecessary to use polynomial regression on these Bland-Altman
transformed clinical samples. The dashed horizontal lines follow the Bland-Altman trans-
formed clinical samples adequately. Residual vs. fitted plots for both log-log and Bland-
Altman models are constructed below. Recollect that we will use MOR here, as illustrated as
good practice in the previous section.
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Figure 3.8 – Residual versus fitted plots for all six proposed ordinary least squares models constructed
by the log-log transformed clinical samples—no clear evidence of the residuals’ heteroscedasticity or
dependence are present.



38 Applying Commutability Assessment with Parametric Methods

Table 3.5 – Linear model assumptions of log-log transformed clinical samples fitted by ordinary least
squares. The mean of replicates is applied.

Linear model assumptions MCV

LLT + OLSR + MOR Normality Homoscedasticity Auto-correlation Linearity

ABX Micros ES vs. Advia 2120i

ABX Micros ES vs. Cell Dyn Sapphire

ABX Micros ES vs. Sysmex XN

Advia 2120i vs. Cell Dyn Sapphire

Advia 2120i vs. Sysmex XN

Cell Dyn Sapphire vs. Sysmex XN *
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Figure 3.9 – Residual versus fitted plots for all six proposed ordinary least squares models constructed
by the Bland-Altman-transformed clinical samples. There is no clear evidence of heteroscedasticity or
dependence of the residuals.

The linear model assumption tests outlined in Section 1.4 are applied, and their results
are displayed in Table 3.5.

Homoscedasticity is not satisfied with the two last measurement procedures compared.
Therefore, parametric methods, such as ordinary least squares or Deming regression, may
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not be used to evaluate the control materials. At least not with log-log- and Bland-Altman
transformed clinical samples. Nevertheless, as formulated in the preceding section, ordinary
least squares of the raw data could be applied, considering that this led to accepted linear
model assumptions. Firstly, commutability assessment will be executed by using log-log
transformation with ordinary least squares. Secondly, Bland-Altman transformation combined
with ordinary least squares is utilized.
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Figure 3.10 – Visual commutability assessment using log-log transformed clinical samples combined
with ordinary least squares regression. The means of replicates are used.
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Figure 3.11 – Visual commutability assessment using log-log transformed clinical samples combined
with ordinary least squares regression. The means of replicates are used.

As observed in Figure 3.10 and Figure 3.11, the same conclusion is drawn regarding
commutability acceptance of the control materials, as with raw clinical samples combined
with ordinary least squares regression. The Bland-Altman transformation with ordinary
least squares regression could preferably be applied. Considering that the Bland-Altman
transformation reduces the x-direction variability, this transformation might be slightly more
realistic and favorable. In this case, p = 1 is selected.



3.3 Commutability assessment with transformation combined with linear and polynomial
regression 41

0.00

0.04

0.08

0.12

80 90 100

Mean of procedures

Sample

1CPD

1EDTA

2CPD

2EDTA

LQ

CA BAT + OLSR

0.00

0.05

80 90 100

Mean of procedures

Sample

1CPD

1EDTA

2CPD

2EDTA

LQ

CA BAT + OLSR

−0.05

0.00

0.05

80 90 100

Sample

1CPD

1EDTA

2CPD

2EDTA

LQ

CA BAT + OLSR

−0.06

−0.04

−0.02

0.00

80 90 100

Sample

1CPD

1EDTA

2CPD

2EDTA

LQ

CA BAT + OLSR

Mean of procedures Mean of procedures

Lo
g 

di
ff

er
en

ce
 o

f p
ro

ce
du

re
s

Lo
g 

di
ff

er
en

ce
 o

f p
ro

ce
du

re
s

Lo
g 

di
ff

er
en

ce
 o

f p
ro

ce
du

re
s

Lo
g 

di
ff

er
en

ce
 o

f p
ro

ce
du

re
s

Figure 3.12 – Visual commutability assessment using Bland-Altman-transformed clinical samples
combined with ordinary least squares regression. The means of replicates are used.



42 Applying Commutability Assessment with Parametric Methods

−0.050

−0.025

0.000

80 90 100
Mean of procedures

Lo
g 

di
ff

er
en

ce
 0

f p
ro

ce
du

re
s

Sample

1CPD

1EDTA

2CPD

2EDTA

LQ

CA BAT + OLSR

Figure 3.13 – Commutability assessment using Bland-Altman transformed clinical samples and
ordinary least squares regression

Regard that the Bland-Altman transformation linked with ordinary least squares regression
concluded differently to what log-log transformation did. The basis for this may be due to
the Bland-Altman transformation inhibits relatively larger prediction errors because of the
lack of statistical significance for the estimated slope coefficients. Only the intercepts showed
statistically significant. Therefore the bands must be too large here. Simultaneously, as
[Bland and Altman, 2010] describes, the prediction bands are underestimated because the
replicates’ mean is used, implying that the prediction bands should be even more expansive
than proposed.

3.4 Commutability assessment with Deming regression or
Parametric Regression splines

When the linear model assumptions are satisfied for the raw data, the ordinary least squares
regression estimator was concluded to be appropriate as part of the commutability assessment
with the MCV data set. However, as discussed in Section 3.2, the ordinary least squares
regression model is not estimated accounting for the variability in x-direction. Therefore
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Deming regression could have been applied because Deming regression relies on the same
linear model assumptions as ordinary least squares. As proposed, these assumptions were
satisfied for the ordinary least squares estimator. The calculation of the Deming regression
coefficients is estimated by Equation (2.20). The resulting assessment plots are displayed in
the two succeeding figures below.
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Figure 3.14 – Commutability assessment using Deming regression fitted by the mean of the replicates.
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Figure 3.15 – Commutability assessment using Deming regression fitted by the mean of the replicates.

Remark that the control material 2CPD now is commutable regarding our acceptance
criterion. This fact must imply that the Advia 2120i vs. Cell Dyn Sapphire comparison’s
prediction bands are more extensive than for the ordinary least squares estimator. The
enlargement source is most likely linked with the inclusion of two-dimensional variability,
which is directly deduced from Equation (2.26). The regression coefficients estimators
Equation (2.20) are probably overestimated because of too few clinical samples and replicates
in our data sets. If the latter is the primary source of enlargement, it would arguably be
better to use ordinary least squares regression. In Section 3.6, it is proposed that the ratio of
variances is approximately overestimated by 6− 7% concerning our data sets. False-positive
classification of the commutability property may have drastic consequences, as formulated in
Chapter 1. As part of the commutability assessment, parametric regression splines may meet
the corresponding linear model assumptions. In that instance, the following commutability
assessment plots are provided:
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Figure 3.16 – Visual commutability assessment using parametric regression splines. Natural cubic
splines are used as the basis, and the mean of the replicated measurements are employed to construct
to model. The gray lines are the locations of the three knots. Three knots implies that we get four
models across the global range.
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Figure 3.17 – Commutability assessment using parametric natural cubic splines with mean of replica-
tions.

The same conclusions are drawn regarding commutability, as for ordinary least squares
when parametric regression splines are used. Compared to the Deming regression approach’s
outcomes, the only difference is that 2CPD was accepted as commutable. In contrast, it is
not accepted for parametric regression splines and the ordinary least squares approach.

3.5 Step-wise commutability assessment with parametric
methods

With all methods discussed in magnificent detail, it is time to evaluate control materials as
part of a step-wise algorithm. A data set containing strong linear relationships between the
measurement procedures are considered. The EPK data set is such a data set. The strength of
the linear relationships regarding the different measurement procedure comparisons is power-
ful. After investigating the data set visually, and looking into the linear model assumptions,
the most reliable assessment method for commutability is applied. As given above, the analyte
units in the EPK data set are the number of erythrocytes per liter. Measurements of the true
quantity within the clinical samples are expected to lie between 4 · 1012/L and 6 · 1012/L.
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The EPK data set contains 25 clinical samples and five control material samples. Because
of NA-values, two of the clinical samples (1 and 7) are dropped, which results in n = 23

remaining clinical samples. As with the other data sets, EPK contains the four measurement
procedures:

• ABX Micros ES

• Advia 2120i

• Cell Dyn Sapphire

• Sysmex XN

An offset plot investigates the relationships of the different measurement procedures and is
consequently included. The estimated correlation coefficients with corresponding significance
degrees are included as well as the density estimates.
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Figure 3.18 – An offset plot that is visually describing the six relationships between the four specified
measurement procedures in the EPK data set. Density estimates and Pearson correlations are also
implemented.

As observed in Figure 3.18, there seems to be a close to perfect linear pattern among
every measurement procedure. The Pearson correlation coefficients confirm this by estimates
near one and three stars of significance degree. Thus, linearity is definitively provided here.
Furthermore, if the rest of the linear model assumptions are satisfied, parametric estimators
may be used as part of the commutability assessment. The formal tests from Section 1.4
are applied to appraise the linear model assumptions. Linearity is evaluated by the glvm()
function in R. The results are given in
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Linear model assumptions EPK

OLSR + MOR Normality Homoscedasticity Auto-correlation Linearity

ABX vs. Advia **

ABX vs. Cell **

ABX vs. Sysmex **

Advia vs. Cell

Advia vs. Sysmex **

Cell vs. Sysmex ***

The table above results suggests that Deming Regression and Ordinary least squares
regression on raw data is applicable for only one measurement procedure comparison (Advia
2120i vs. Cell Dyn Sapphire). Heteroscedasticity is a critical issue for this data set, and
accordingly, the subsequent step is to apply the Bland-Altman transformation scheme to trans-
form the clinical samples. If the linear model assumptions still are unsatisfied concerning the
Bland-Altman transformed clinical samples combined with ordinary least squares regression,
the log-log transformation is an alternative. Parametric regression splines could also be
applied because this estimator is likely to dampen heteroscedasticity present because of
flexibility. Before anything else, the Bland-Altman transformation is used to fix the persistent
heteroscedasticity issues potentially.

Linear model assumptions EPK

BAT + OLSR + MOR Normality Homoscedasticity Auto-correlation Linearity

ABX vs. Advia *

ABX vs. Cell ***

ABX vs. Sysmex

Advia vs. Cell

Advia vs. Sysmex **

Cell vs. Sysmex

As implied by the table above, the Bland-Altman transformation fixed most assumptions
but broke the normality assumption for one, which implies that trustworthy least squares
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estimators may not be obtained for three of the six measurement procedure comparisons.
Utilizing log-log transformation results in:

Linear model assumptions EPK

LLT + OLSR + MOR Normality Homoscedasticity Auto-correlation Linearity

ABX vs. Advia *

ABX vs. Cell

ABX vs. Sysmex

Advia vs. Cell

Advia vs. Sysmex

Cell vs. Sysmex

The log-log transformation, combined with ordinary least squares regression, resulted in
the most fulfilled linear model assumptions. Thus one might conclude that the combination of
log-log transformation and Deming regression is suitable. However, caution must be practiced
because [Gillard, 2010] recommends n > 50 to use the method of moments estimators defined
in Equation (2.20). After removing the NA-values, only n = 23 clinical samples remain,
which induces the overestimation of the variances’ ratio, λ. The normality assumption is
unfulfilled in the first measurement procedure, ABX Micros ES vs. Advia 2120i, hence we
are forced to drop it from the commutability assessment:
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Figure 3.19 – Visual commutability assessment for EPK data set employing the log-log transformation
combined with Deming regression. The means of replicates are used to construct the models.

From Figure 3.19, the estimated prediction bands enclose all control material samples for
all measurement procedure comparisons presented. Thus all control materials are commutable
regarding our acceptance rule. The figure below, Figure 3.20, shows that the last measurement
procedure comparison results in all control materials’ commutability.
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Figure 3.20 – Visual commutability assessment for the EPK data set using log-log transformed data
combined with Deming regression constructed employing the replicates’ mean.

The plots conclude commutable control materials regarding the determination of the
commutability assessment procedure. The discarding of the normality assumption for ABX
Micros ES vs. Advia 2120i is a strong motivation for the implementation of non-parametric
assessment methods as part of the commutability assessment. Another data set, which is the
LPK data set, is considered to strengthen the motivation for alternative approaches regarding
the commutability assessment. LPK contains measurement procedure comparisons that are
weakly non-linearly related. See the offset plot below for an illustration of the non-linear
patterns of the clinical samples:
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Figure 3.21 – An offset plot that is visually describing the six relationships between the four specified
measurement procedures in the LPK data set.

Note that the degree of non-linearity is not drastic. However, some non-linear tendencies
are observed. The estimated densities propose that the measurements are approximately log-
normal in shape; hence the log-log transformation combined with either Deming regression or
ordinary least squares is expected to be suitable. Because of data gaps in the upper regions of
the measurement range, it is difficult to state anything trustworthy regarding the measurement
patterns. In theory, the pattern may take any shape in such gaps. The log-log transformation
reduces the absolute width of proposed data gaps; thus, the basis of selecting the log-log
scheme is solid. Below an offset plot of the log-log transformed clinical samples are included.
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Figure 3.22 – An offset plot that is visually describing the six relationships, where the clinical samples
are log-log transformed.

Note that the degree of non-linearity is not drastic. However, some non-linear tendencies
are observed. The estimated densities propose that the measurements are approximately
Gaussian in shape; hence the log-log transformation combined with either Deming regression
or ordinary least squares appears suitable. Because of data gaps in the upper regions of the
measurement range, it is difficult to state anything trustworthy regarding the measurement
patterns. In theory, the clinical sample patterns may take any shape in these gaps. The log-log
transformation reduces the absolute width of proposed data gaps, which indicates that the
basis of selecting the log-log scheme is factual. The linear model assumptions below are
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Table 3.6 – Evaluation of linear model assumptions of raw data and log-log transformed data fitted
by ordinary least squares. The mean of the replicated measurements is applied.

Linear model assumptions LPK

OLSR + MOR Normality Homoscedasticity Auto-correlation Linearity

ABX Micros ES vs. Advia 2120i

ABX Micros ES vs. Cell Dyn Sapphire **

ABX Micros ES vs. Sysmex XN *

Advia 2120i vs. Cell Dyn Sapphire

Advia 2120i vs. Sysmex XN

Cell Dyn Sapphire vs. Sysmex XN *

Linear model assumptions LPK

LLT + OLSR + MOR Normality Homoscedasticity Auto-correlation Linearity

ABX Micros ES vs. Advia 2120i **

ABX Micros ES vs. Cell Dyn Sapphire **

ABX Micros ES vs. Sysmex XN ***

Advia 2120i vs. Cell Dyn Sapphire

Advia 2120i vs. Sysmex XN

Cell Dyn Sapphire vs. Sysmex XN

tested using the gvlma() function provided by the gvlma package in R. See Table 3.6 for
displayed results.

The log-log transformation did not really help us regarding linearity. Note that the rest
of the linear model assumptions are satisfied. Therefore it would be nice to have a method
that did not depend on linearity. This is another motivation for implementing non-linear
non-parametric methods for commutability evaluation. Since we may only use three of the
six possible comparisons, we choose not to take it further for the moment.

3.6 Simulation studies

It is time to consider some simulated data to be evaluated by parametric assessment procedures
for commutability. Before anything else, it is vital to discuss the premises upon which our
simulations were dependent. CV will be desirable in opposition to SD. This decision comes
from the fact that CV is scale-independent, whereas SD is not. Consequently, the CV will
be a more comparable measure of dispersion, essential for these sections’ purposes. Log-
log transformation will naturally already have a scale-independent standard deviation (that
is, if the log-log transformed data are approximately normally distributed), so we should,
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accordingly, transform the standard deviation of the log-transformed data to the CV of the
raw data by:

CVA ≈
√

exp
[
SD2

loge

]
− 1. (3.1)

Here SDloge is the estimated standard deviation of the log-transformed measurements. The
standard deviation of the logarithmic difference of the Bland-Altman transformed clinical
samples is also scale-independent, and the same relationship between the CV of raw data,
and this standard deviation holds:

CVA ≈
√

exp
[
SD2

LD
]
− 1. (3.2)

In these simulation studies and the simulation studies for the non-parametric methods,
we will simulate K = 100 to K = 1000 data sets for every simulation step. There will be
several hundreds of these simulation steps; consequently, many of the simulations studies are
computationally demanding. Parallel programming will, therefore, be applied. We generate
the true values of the quantity within analytes from a uniform probability distribution with
boundaries α and β:

τAi ∼ U(α, β) (3.3)

In all our simulations we will apply that α = 3.5 and β = 11. Regard that this is the reference
range of the number of leukocytes per Liter in human adults. Adopting the same sample space
for all simulations to come, we may isolate the differences (defects and strengths) between
assessment methods. Besides, for non-linearity purposes, we will restrict the relationship
between τAi and τBi to be parabolic:

τBi = f(τAi) = a · τ 2Ai + b · τAi + c. (3.4)

a, b, and c will be unconstrained parameters for us to choose whether we want to discuss
linear relationships (a = 0) or else non-linear relationships (a ̸= 0). In the real world, data
following a perfect parabola is rare. However, we are interested in any non-linear pattern that
we may control by specified parameters. Parabola curvatures will accordingly suffice in this
text. For the uncertainty in measurement procedures, we will add some normal noise, which
earlier established. Thus, if we fixate sample i = I with replications r ∈ {1, . . . , R} yields

MPAIr = τAI +N (0, σ2
A)

MPBIr = τBI +N (0, σ2
B).
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In the simulations, σA = 0.1 and σB = 0.2. Thus the corresponding theoretical coefficients
of variation is given by

CVA ≈ 0.014

CVB ≈ 0.028

Subsequently, simulated measurements within sample i = I will be a little different, as in
reality. We must stress that differences in replicated measurements will be more complicated
than the proposed normally distributed. Nevertheless, the gaussian distribution assumption on
the error terms will suffice. The table below describes the details concerning the simulations
done in this section.

Table 3.7 – Descriptive details of the simulation studies.

Simulation details Parametric methods

CA method Simulated data sets Simulation steps LMA simulations CA simulations Other

OLSR 1000 500 1 3 0

LLT + OLSR 1000 50 3 3 0

BAT + OLSR 1000 500 6 3 1

DR 100 50 1 3 1

3.6.1 Ordinary least squares regression - Simulation

We will first look at the most simple commutability assessment procedure, the ordinary least
squares regression method. Here we are to test how robust the method is concerning different
underlying adjustments. Firstly, the linear model assumptions are examined for different
non-linearity coefficients. The acceptance rates of linear model assumptions are expected to
be ≈ 86% because multiple tests are done (assumed independent) with α = 0.05. Secondly,
the control materials are set as commutable, and we will observe how often the ordinary least
squares estimator will conclude with commutability when the truth is commutable. 99% is
expected because we use one control material sample and a significance level of α = 0.01.
Acceptance rates of commutability much below 99% are considered to be concerning.

In this section, the generation of clinical samples and control material samples is done
using simulate.data(). See Appendix A for details on this function. An advantage of simulating
data is that we actually know the true values, and thus, the quality of the methods is see-
through. The acceptance rates of linear model assumptions are studied by implementing
different magnitudes of non-linearity upon the clinical sample measurements. The linear
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model assumptions are expected to reduce as the non-linearity coefficient, a, increases. The
set of considered values of a is given by

{ai} = {0, 0.0003, . . . , 0.14997, 0.15}. (3.5)

The breakpoint is defined as the simulation variable’s approximate value when the acceptance
rates of commutability or linear model assumptions are 50%.
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Figure 3.23 – The accepting rates with various degrees of non-linearity.

We can also see how much we must alter the different coefficients of a, b, and c for this
evaluation method to reject all control materials’ commutability. Particularly, the defined
relationships between clinical samples and control material samples are presented as

apatients = acontrols + 0.0001 · q
bpatients = bcontrols − 0.5 + 0.002 · q
cpatients = ccontrols − 0 + 0.04 · q,

where each q ∈ {1, . . . , 500} is considered as a simulation step, where 1000 data sets are
simulated.
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Figure 3.24 – Different choices of a,b, and c for the clinical samples and their corresponding com-
mutability acceptance rate while a,b, and c for control material samples are unchanged. The violet
dashed lines outline the values of a, b, and c for the control material samples.
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3.6.2 Log-log transformation - Simulation

The log-log transformation approach as part of the commutability assessment, proved to have
several requirements on its own. Consequently, it will be interesting to analyze the dynamics
of the acceptance rates of both commutability and model adequacy tests as the non-linearity,
slope intercept coefficients increase. In contrast to Section 3.6.1, two additional simulation
studies is performed on the linear model assumptions in this section. The different coefficients
impact on the linear model assumptions are considered. Particularly, the following simulation
steps are applied:

{ai} = {0, 0.001, . . . , 0.049, 0.05}
{bi} = {0.5, 0.52 . . . , 1, . . . , 1.48, 1.5}
{ci} = {−5,−4.8, . . . , 4.8, 5.0}

These simulation steps yielded the results in Figure 3.25
A notable difference between the log-log transformation and the ordinary least squares

is that the log-log method is somewhat unstable regarding accepting the linear model as-
sumptions. Large deviations surfaces, as we see in Figure 3.25 (red line). Note also that the
acceptance rates are significantly lower than what we saw for ordinary least squares regression,
even for acceptable choices of a, b, and c. Thus, we have found a more severe weakness of
the log-log transformation evaluation method. Let us examine the log-log method’s strictness
regarding various alterations of a, b, and c concerning the patients. Strictness regarding
commutability assessment is now of interest. In order to examine this, we simulate 1000

data-sets for every q ∈ {0, 1, . . . , 50} such that

apatients = acontrols + 0.001 · q
bpatients = bcontrols − 0.5 + 0.02 · q
cpatients = ccontrols − 1 + 0.4 · q. (3.6)

Note that we chose the specifications above to get convenient and visible results. In that sense,
it is not relevant how the relationships between controls and patients are specified. Ideally,
we would like to reject the commutability property if the relationship between patients and
controls are sufficiently extreme. Particularly, we prefer that acceptance rates of commutability
decrease as deviations between patients and controls increase. Note also that this is entirely
dependent on the sample space specified in the simulation studies. We use that α = 3.5 and
β = 11 here. We would need different alterations if α and β were defined differently.
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Figure 3.25 – Acceptance rates of the linear model assumptions when changing a, b, and c for log-log
transformed observations fitted by ordinary least squares.
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Figure 3.26 – How much change in a, b, and c are necessary to reject the commutability property for
the log-log transformed observations fitted by ordinary least squares.
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We observe that the log-log evaluation method will reject commutability for less extreme
deviations between control materials and patients than with ordinary least squares regression.
However, this observation is positive. This implies that the log-log transformation is more
stringent than just using ordinary least squares regression. However, it was a big fault that the
linear model assumptions acceptance rates went down when we did the log-log transformation.
An Acceptance rate of around 50% is far from good enough. Besides, the variability of the
acceptance rates concerning the linear model assumptions seems relatively vast compared to
the other methods. We may therefore conclude that LLT with OLSR is somewhat incapable
as a commutability assessment method.

3.6.3 Bland-Altman Transformation - Simulation

It is time to consider a simulation study regarding the Bland-Altman transformation evalua-
tion method. As illustrated in Section 2.4, the Bland-Altman transformation combined with
ordinary least squares regression, is suitable for exposing weak non-linearity and moderate
non-zero intercepts in the clinical samples. Furthermore, we recognized that the prediction
bands of these types of transformations yielded were relatively extensive. Far-reaching predic-
tion bands are questionable because they may accept control materials’ commutability when
they are not in reality. See Figure 3.13. Also, using Bland-Altman regression with ordinary
least squares regression is only appropriate if the estimated coefficients are statistically signif-
icant and were not the status in Section 3.5. A vicious obstacle concerning this assessment
procedure is manually choosing the polynomial degree used in the approach. Therefore
different polynomial degrees are applied, particularly p = 1 and p = 4. As discussed briefly,
the Bland-Altman transformation is associated with handling the variability in x-direction by
reducing its magnitude and ergo its influence. Estimating the reduction in x-variability in
percent is a legitimate interest. Therefore K = 100 data sets are simulated, which are applied
to estimate the coefficients of variation with and without Bland-Altman transformations. This
simulation step is replicated 100 times, where the calculated ratio of coefficients of variances
is returned. The standard formula calculates the estimated coefficient of variation of the raw
clinical samples. In contrast, the equivalent converted CV is calculated by Equation (3.2).
The results are presented in Figure 3.27.

The x-variability is lessened by approximately 30%. The 95% percentile confidence
interval is calculated to be

CI = [29.72%, 30.35%]. (3.7)

As a rule of thumb, one might say that (1− 1√
2
) ·100% variability in x-direction is diminished

when Bland-Altman transformation is applied. The next point of interest is investigating how
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raw data in x?



3.6 Simulation studies 65

stable the acceptance rates of linear model assumptions are when the clinical samples have
different patterns. As before, the expected percent of accepted linear model assumptions is
approximately 86%. Acceptance rates significantly lower than this is considered alarming.
The alterations of the patient samples executed by using various combinations of a, b and c,
are defined below:

apatients = 0.0001 · q
bpatients = −0.5 + 0.002 · q
cpatients = −1 + 0.004 · q, (3.8)

for every q ∈ {0, 1, . . . , 500}. The results of the alterations in Equation (3.8) are presented in
Figure 3.28. Generally, Figure 3.28 suggest that the three separate plots’ acceptance rates are
inappropriately near the breakpoints for most of the adjustments presented in Equation (3.8).
In the plots, one might observe peculiar relationships. For instance, the acceptance rates are
declining as the non-linearity coefficient reaches approximately 0.02, but then the acceptance
rates rise again. Using the same simulations, using a polynomial degree 4 produces the plots
in Figure 3.29.

The results in Figure 3.29 are much better than the results in Figure 3.28. The acceptance
rates for a = 0, b = 1 and c = 0 increased by from near breaking point to above 70%.
However, it is implausible that all five coefficient estimators are significant. Thus, we cannot
be sure whether the results of Figure 3.29 are reliable from a statistical perspective. For
models where the five coefficient estimators are significant, we could securely move on
with the commutability assessment. Since we cannot be certain here, it appears prudent to
avoid the Bland-Altman transformation connected with parametric models, such as ordinary
least squares or Deming. Lastly, the commutability acceptance rates are considered for
various choices of a, b, and c. The acceptance rates for commutability are expected to be
approximately 99% as usual. Figure 3.30 displays that results for the alterations presented in
Equation (3.9)

apatients = acontrols + 0.0001 · q
bpatients = bcontrols − 0.5 + 0.002 · q
cpatients = ccontrols − 1 + 0.004 · q, (3.9)

for every q ∈ {0, 1, . . . , 500}. Figure 3.30 produced similar results to what the log-log
transformation scheme did. In conclusion, the Bland-Altman transformation is superior to
the log-log transformation from the following basis; Bland-Altman transformation reduces



66 Applying Commutability Assessment with Parametric Methods

30

35

40

45

50

0.00 0.01 0.02 0.03 0.04 0.05
Non−linearity coefficient

A
cc

ep
ta

nc
e 

ra
te

 o
f L

M
A

 in
 %

Acceptance of LMA for different non−linearity coefficients

40

45

50

55

0.50 0.75 1.25 1.501.00
Slope coefficient

A
cc

ep
ta

nc
e 

ra
te

 o
f L

M
A

 in
 %

Acceptance of LMA for different slope coefficients

40

50

60

−1.0 −0.5 0.5 1.00.0
Intercept coefficient

A
cc

ep
ta

nc
e 

ra
te

 o
f L

M
A

 in
 

%

Acceptance of LMA for different intercept coefficients

degree 1

Figure 3.28 – Acceptance rates for the linear model assumptions when increasing a, b, and c. The
simulated Bland-Altman-transformed clinical samples are fitted by ordinary least squares regression.
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Figure 3.29 – Acceptance rates for the linear model assumptions when increasing a, b, and c. The
simulated Bland-Altman-transformed clinical samples are fitted by polynomial regression with p = 4.
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Figure 3.30 – The assent rates of commutability for various choices of a, b, and c relative to the
control materials for the simulated Bland-Altman transformed clinical samples fitted by polynomial
regression with p = 4. The dashed violet lines are the corresponding values of a, b, and c for the
control materials
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variability in x by approximately (1− 1√
2
) · 100% and the rates of acceptance regarding linear

model assumptions were more significant for the Bland-Altman transformed clinical samples.
The drawback is potentially non-significant regression estimators, which may enlarge the
prediction bands too much.

3.6.4 Deming Regression - Simulation

Deming regression is unique among the parametric assessment methods. As earlier estab-
lished, we saw that Deming regression considered the variability in both x- and y-direction.
Therefore it was argued to be more realistic. We will do a somewhat more significant simula-
tion study regarding DR. The main reason for this is that the DR model is more detailed than
the four other evaluation methods. Firstly let us consider the acceptance rate of the linear
model assumptions for different specifications of non-linearity coefficients. We expect this
simulation results to be similar to what we got for ordinary least squares regression. The
relationship between the linear model assumptions’ acceptance rates for the range of selected
non-linearity-coefficient magnitudes (same as in Section 3.6.1) is provided in Figure 3.31.
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Figure 3.31 – The linear model assumptions’ acceptance rates when increasing a for simulated clinical
samples fitted by Deming regression.
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A notable alteration is required to discard more than 50% of the linear model assumptions.
Linear model assumptions are frequently satisfied for non-linearity coefficients up to 0.025.
Regarding the commutability assessment acceptance rates, the Deming regression estimator is
expected to be somewhat less stringent because of the implementation of variability in x. See
Figure 3.14 and Figure 3.15 for an illustration. Accordingly, more considerable differences
between control materials and clinical samples are required to reach the breakpoint. More
significant alterations of a, b, and c are required to reject control materials’ commutability
than the transformation approaches. As described in Section 2.5, there may be problems
regarding the use of Equation (2.20) when possessing few clinical samples. Consequently, the
impact of having n = 25 samples instead of the recommendation n > 50 will be investigated.
Analyzing a true λ = 2, we consider the estimated λ for different choices of sample sizes and
the number of replications. See Figure 3.33 for the portrayed results.
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Figure 3.32 – The commutability accepting rates for various a, b, and c, where the simulated clinical
samples are fitted by Deming regression.
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The data sets considered in the previous sections contained n = 25 clinical samples and
three replicates for every clinical sample. From Figure 3.33 λ is typically overestimated by
approximately seven percent. Note that using five or six replicates yielded approximately
the same precision as having n = 50 clinical samples with three replicates. The relative
bias is approximately two percent for the latter. Since increasing the number of replicated
measurements is much less costly than increasing the number of clinical samples, it seems
prudent to use five or six replicated measurements if Deming Regression is utilized.

3.6.5 Results

These simulation study results are provided in Table 3.8.
The log-log transformation, combined with the ordinary least squares estimator, is pro-

posed as the most strict approach to accepting commutability. In opposition, the Deming
regression estimator is the least stringent. The transformation strategies did not handle the
linear model assumptions well. Arguably, this is a motivation for avoiding transformations as
a general commutability assessment procedure. Therefore, a possible conclusion is that only
the raw clinical samples should be used for the parametric regression estimators to secure
satisfactory acceptance rates for the linear model assumptions.
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Table 3.8 – The table summarizes the results from the simulation studies done in this section concerning
the acceptance rates of the linear model assumptions and control materials’ commutability property.

OLSR BAT + OLSR

LMA break point CA break point p LMA break point CA break point p

Non-linearity coefficient 0.097 0.008 1 Non-linearity coefficient 0 NA 1

Slope coefficient NA 0.93 or 1.03 1 Slope coefficient NA NA 1

Intercept coefficient NA -0.54 or 0.53 1 Intercept coefficient NA NA 1

LLT + OLSR

LMA break point CA break point p LMA breakpoint CA break point p

Non-linearity coefficient NA 0.0065 1 Non-linearity coefficient >0.05 0.007 4

Slope coefficient NA 0.95 or 1.05 1 Slope coefficient NA 0.93 or 1.06 4

Intercept coefficient NA -0.35 or 0.35 1 Intercept coefficient NA -0.37 or 0.35 4

DR

LMA break point CA break point p

Non-linearity coefficient 0.095 0.017 1

Slope coefficient NA 0.87 or 1.12 1

Intercept coefficient NA -0.93 or 0.93 1

3.7 Alternative acceptance criteria for commutability

In Section 3.5, we used the (1− α
m
) · 100% prediction bands (alone) as the acceptance rule for

commutability. We considered the mean of the replications in control material samples and
checked whether this quantity (the mean) was inside the clinical samples’ prediction bands.
Evaluations like this ignore the variability of the control materials. As with the patients’
samples, we can estimate the variability within control materials when possessing several
replicates. Firstly, in this section, we will implement the variation of control material to
evaluate commutability and alter our present criterion from this addition.

3.7.1 Confidence regions for control materials

Instead of evaluating commutability concerning a specific point’s location, we may assess
whether a, say, 90% confidence region lies inside the prediction bands. We may use the
variability within the control material samples to gather confidence intervals for both x and
y-direction. This will result in the so-called confidence regions. Then we have three possible
outcomes:

1. A confidence region concerning a control material is entirely inside the prediction
bands

2. A confidence region concerning a control material is partly inside the prediction bands



3.7 Alternative acceptance criteria for commutability 75

3. A confidence region concerning a control material is fully outside the prediction bands.

From these three outcomes, we may formulate different assessment criteria for commutability.
For example, we may conclude that control material samples satisfying 1 and 2 are com-
mutable, whereas control materials satisfying 3 are not commutable. Or else we say that
point 1 is good enough for assessing commutability, whereas 2 makes us unable to conclude
anything. The latter is seen to be too stringent so that we would use the first one mentioned.

3.7.2 Range regions for control materials

Another way to describe the control materials’ variability is to set the variability’s limits to
the maximum and minimum of the replications. Too see what this means, let us consider
three replicated measurements mA1 < mA2 < mA3 from measurement procedure A and
mB1 < mB2 < mB3 from measurement procedure B. Then the range region for a specific
control material samples with replicated measurements specified above is given by

RR = {(x, y) : (x, y) ∈ [mB1,mB3]× [mA1,mA3]..} (3.10)

1. A range region concerning a control material is entirely inside the prediction bands

2. A range region concerning a control material is partly inside the prediction bands

3. A range region concerning a control material is fully outside the prediction bands.

As formulated for confidence regions, one might blueprint the acceptance criterion for com-
mutability by employing 1 or 2 as acceptance limits. Alternatively, one can use 1 as the only
acceptable and by defining 2 as a gray-zone where one cannot classify the control material,
and lastly, 3 as ensured non-commutable.





Chapter 4

Non-parametric assessment procedures

In Chapter 3, we saw that all currently used evaluation methods of control materials’ com-
mutability depended on the linear model assumptions. Besides, some of the methods had
more requirements than this. In our discussion, faults regarding many of these procedures
concerning the linear assumptions’ acceptance rates were established. The acceptance rates
for the transformation approaches were particularly alarming. See Section 3.6 for the details.
Fortunately, alternative methods, so-called non-parametric methods, do not depend on the
underlying distribution’s shape. In most cases, we will still require independence of error
terms and homoscedasticity if weights are not applied. In this chapter, we will consider the
theory behind suitable non-parametric methods. After that, the discussed models and their
prediction bands will be used as part of the commutability assessment criterion.

4.1 Thiel - Sen Regression

Thiel-Sen regression is a non-parametric estimation procedure of the theoretical model

MPAi|MPBi = β0 + β1MPBi + ϵi = g(MPBi) + ϵi (4.1)

where {ϵi} are independent random variables with mean zero. The function g evaluated
at MPBi consists of the two regression coefficients we need to estimate: the regression
slope and intercept. The benefit of using the Thiel-Sen estimator relies on the liberation of
the homoscedasticity requirement. Moreover, these estimators are less affected by outliers
and skewed data, which often is problematic in parametric regression. Robustness against
skewed data implies robustness against the absence of normality. Thiel-Sen is consequently
considered to be a robust regression model. However, we require a linear relationship of
the clinical samples; thus, the Thiel-Sen estimator will not suffice at non-linear modeling.
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Besides, the Thiel-Sen estimator will not account for variability in x-direction. Let

∆ = {∆(ij)} (4.2)

where {∆(ij)} is the ordered sample of

{∆ij} =
|MPAi − MPAj|
|MPBi − MPBj|

∀ {i, j} ∈ {1, . . . , n} × {1, . . . , n}. (4.3)

With n as the number of clinical samples then, [Wilcox, 1998] defines the slope estimator as

b1 =
∆
⌊
1
4
(n(n− 1) + 2)

⌋
+∆

⌈
1
4
(n(n− 1) + 2)

⌉
2

. (4.4)

Note that ⌊·⌋ and ⌈·⌉ are the floor and ceiling operators, respectively. As one might notice
is that Equation (4.4) is just the median of all the possible slopes between every pair of
observations. Furthermore, when b1 is obtained, the intercept is estimated by

b0 =
Ξ
⌊
1
2
(n+ 1)

⌋
+ Ξ

⌈
1
2
(n+ 1)

⌉
2

, (4.5)

where Ξ is the ordered sample of {MPAi − b1MPBi} with respect to i. In other quarters, this
is just the median of {MPAi − b1MPBi}. Combining Equation (4.4) and Equation (4.5) for
i ∈ {1, 2, . . . , n} produces the Thiel-Sen estimator of the expectation of Equation (4.1);

ĝ(MPBi) = b0 + b1MPBi. (4.6)

4.2 Smoothing Splines

In circumstances where we drop assumptions regarding the shape of underlying distribution
and linearity, smoothing splines will show to be very competent. The smoothing splines
estimator is a non-parametric piece-wise regression estimator. That is, in opposition to
Section 2.6, smoothing splines does not require a normal distribution between successive
knots. [Craven and Wahba, 1978] defines the theoretical model as

MPAi|MPBi = g(MPBi) + ϵi (4.7)

where the {ϵi} are independent and identically distributed error terms with mean equal to
zero. [James et al., 2013] declares that fitting a model for Equation (4.7) relies on minimizing
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the penalty dependent residual sum of squares

RSS + Penalty =
n∑

i=1

(
MPAi − g(MPBi)

)2
+ λ

∫ [d2g(t)
dt2

]2
dt (4.8)

with respect to g. The resulting minimum, ĝ(MPBi), is then the smoothing splines estimator.
Note that Equation (4.8) implies that g is a cubic fit. [Opsomer and Breidt, 2011] extends to
the p-degree polynomial fit by

RSS + Penalty =
n∑

i=1

(
MPAi − g(MPBi)

)2
+ λ

∫ [dp−1g(t)

dtp−1

]2
dt. (4.9)

In Equation (4.8) and Equation (4.9), λ is a so-called tuning parameter or smoothing parameter,
and g is the smoothing function because g guarantees that the fitted models are smooth. Now,
how do we obtain λ? In other words, how do we estimate λ? [James et al., 2013] utilizes the
leave-one-out procedure for estimation of λ. This cross-validation method (LOOCV) relies
on leaving out one of the MPBi so that we get the corresponding leave-one-out fit ĝ(MPBi)

(−i)

for every i ∈ {1, 2, . . . , n}. In this case, the leave-one-out cross validation method seeks the
λ that minimizes

RSSCV(λ) =
n∑

i=1

(
MPAi − ĝ(MPBi)

(−i)
)2 (4.10)

for all n fits. This type of calculation is a numerical mathematical problem and is somewhat
computationally demanding. Therefore, we will apply ?? in R using appropriate packages. We
use the npreg package for this, where it is possible to specify which cross-validation procedure
seems adequate. The sm() function’s method parameter specification option is set to LOOCV
(CV in R). Another method is the general cross-validation (GCV), but these two alternatives
yield very similar results; hence we will stick to the one defined in Equation (4.10).

In Section 2.6, the knots were placed manually. This fact demanded visual knowledge
regarding the data before we could settle where the knots should be. We argued that a general
rule of thumb is to place the knots between successive control material samples. Now, we are
not to bother with this cumbersome manual placement of the knots. The reason is that the
smoothing splines procedure uses every value of the mean of replicated measurements along
the x-axis as knots. This automatic knot placement will not result in an overfit because the
penalty term in Equation (4.9) reduces the effective degrees of freedom [James et al., 2013].
There exist built-in functions in R to estimate the corresponding uncertainty bands for the
model estimates. However, the packages do not include the estimation of prediction bands of
the smoothing splines estimator. However, tolerance bands are implemented, which are very
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similar to the corresponding prediction bands. Even though smoothing splines seem robust
as a commutability assessment procedure, smoothing splines does not account for variability
in the x-direction. As explained in Section 2.4, using the Bland-Altman transformation
reduced the variability in x-direction. Thus, combining smoothing splines and Bland-Altman
transformation seems preferable instead of estimating the raw data’s relationship. It is
important to note that an evaluation of auto-correlation and homoscedasticity is required
before implementing this procedure.

4.3 Kernel Regression

Kernel regression is another non-parametric regression scheme, somewhat related to the
smoothing splines method. As previously, the goal is to determine the best fit for the theoretical
relationship

MPAi|MPBi = g(MPBi) + ϵi, i ∈ {1, 2, . . . , n}, (4.11)

where {ϵi} are independent and identically distributed error terms with mean zero and variance
σ2
A(MPB). Taking expectations produces

E[MPAi|MPBi] = g(MPBi), i ∈ {1, 2, . . . , n}, (4.12)

which is the regression that is of interest to estimate [Racine, 2007]. In the estimation
procedure, we use kernels allegedly to obtain ĝ(MPBi). Kernels are non-negative real-valued
integrable functions. For most purposes, kernel functions, Kλ, are obliged to meet the
following conditions [Racine, 2007]:

• 0 ≤ Kλ(u) < ∞,

•
∫∞
−∞ usKλ(u)du < ∞ ∀ {s : s ∈ N},

•
∫∞
−∞ Kλ(u)du = 1 (normalization),

• Kλ(a) = Kλ(−a) ∀ a ∈ R (symmetry).

For example, the Epanechnikov kernel may be defined by

Kλ(u) =
3

4
[1− u2], |u| ≤ 1, (4.13)

satisfies these requirements for sure. Note that the subscript λ defines the bandwidth for
the particular kernel function. Several kernel functions are currently used. We will in this
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text-only use the Gaussian kernel and the epanechnikov kernel, which are defined by:

Kλ(x0 − MPBi) =
1√
2π

exp
[
− 1

2

(x0 − MPBi

λ

)2]
(4.14)

Kλ(x0 − MPBi) =
3

4

[
1−

(x0 − MPBi

λ

)2]
, |x0 − MPBi

λ
| ≤ 1. (4.15)

Equation (4.14) and Equation (4.15) ultimately tells us that larger weights are assigned for
small x0 − MPBi. This fact implies that larger deviance between x0 and MPBi will result in
less assigned weight. Moreover, larger bandwidths will flatten the graph of the kernel and
vice versa. See illustration below:
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The gaussion kernel function with different bandwidths

Figure 4.1 – An overview of the Gaussian kernel for four different bandwidths.

The bandwidth is also interpreted as the smoothing-parameter. This is because the band-
width is directly related to the variability and the smoothness of our fitted kernel regression
model. Small λ indicates wiggly fits (potential overfitting and large variance), whereas
large λ proposes smooth fits (potential underfitting and large bias) [Hastie, Tibshirani, and
Friedman, 2009]. It is imperative to obtain a value for λ that balances both variance and
bias. These smoothing parameter interpretations are equivalent to what we pronounced for
smoothing splines in Section 4.2. One might question why we need kernels. Kernels work
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as a tool for calculating weights for all data points concerning a reference point x0. That
is, each data point will be assigned a weight between 0 and 1 depending on how close each
point is to x0. Since we want values from 0 to 1, it is clear that probability functions are
favorable as kernels. When a kernel is chosen we use it to estimate the conditional expectation
E[MPAi|MPBi = MPBi] = g(MPBi). For instance, Nadaraya and Watson proposes the point
estimator for g evaluated at x0 as

ĝ(x0) =

n∑
i=1

Kλ(x0 − MPBi)MPAi

n∑
i=1

Kλ(x0 − MPBi)
. (4.16)

Given a specific kernel (e.g., the Gaussian kernel), several utilized estimators exist for the
expectation of the theoretical relationship between the response variable and explanatory
variables. Another popular estimator is the Gasser–Müller kernel estimator, which [Hastie
et al., 2009] defines by

1

λ

n∑
i=1

y(i)

∫ ti

ti−1

Kλ

(x0 − y

λ

)
dy. (4.17)

Unfortunately, there is no analytical approach to estimate the prediction bands, so variability
bands will now be used. Variability bands are defined by

VB = ĝ(x)± 3 · SD(x). (4.18)

With this definition in mind, we regard a commutability assessment procedure concerning
measurement procedures Sysmex XN and Advia 2120i:
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Figure 4.2 – Nadaraya-Watson estimator constructed by clinical samples and the Gaussian kernel.
The optimized bandwidth is calculated by CV and is the so-called optimal.

As we demonstrated before, we saw that a small λ would result in wiggly fits, which
significantly increases the model’s variance. The fitted values’ standard error was much
larger than presented in Figure 4.2. However, we restricted the variability between 0 and
20 by convenience. In reality, the most massive standard errors were as significant as 1040.
Thus, the issue regarding choosing an insufficient λ will have drastic consequences. Let us,
therefore, explore the possibilities concerning the choice of λ. In the succeeding assessment
plot, we have increased the bandwidth to 1.
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Figure 4.3 – Nadaraya-Watson estimator constructed by clinical samples and the Gaussian kernel.
Using manually chosen bandwidth - λ = 1.

By choosing a more substantial bandwidth, we see that we get a considerably smoother
fit, which diminished the prediction errors significantly at the cost of model bias. In this case,
the rise in bias is considerable. The bias-variance trade-off is the reason for this because
the trade-off relationship is close to quadratic. Since λ = 1 is approximately seven times
larger than λOPT ≈ 0.14, the bias measured by MSE will be a little less than 49 times larger
than the optimal bias. See the simulation studies in Section 5.5.2 for further details on this
relationship.

One might debate whether the variability bands are adequate as accepting criterion
regarding the control materials’ commutability property. We perceive that some clinical
samples are exceeding the variability bands. Bootstrapping confidence intervals is another
procedure we can implement. Alternatively, we could apply the asymptotic properties of
Equation (4.16) (the Nadaraya-Watson estimator).

4.3.1 Confidence and prediction bands

Constructing prediction intervals are essential in this text because our assessment acceptance
criteria rely on these. Let us firstly consider how we can construct asymptotic confidence
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intervals and extend these to prediction intervals. [Racine, 2007] defines the approximate
variance and bias of Equation (4.16) as

Var
[
ĝ(x)

]
≈ σ̂2(x)

nλ · f̂(x)

∫
Kλ(z)

2dz

B
[
ĝ(x)

]
≈ λ2

2

d2ĝ(x)

dx2

∫
z2Kλ(z) dz + λ2

df̂(x)
dx

· dĝ(x)
dx

f̂(x)
. (4.19)

These are accurate approximations for sufficiently large n. How many observations are needed
are not certain. However, we will go into this in more detail in the simulation studies of the
next section. Moreover, σ̂2(x) and f̂(x) are the estimated conditional prediction errors and
estimated marginal density of X which [Muller, 1998] defines by:

σ̂(x)2 =

n∑
i=1

Kλ

(
MPBi−x

λ

)
ẽ2i (x)

n∑
i=1

Kλ

(
MPBi−x

λ

)
f̂(x) =

1

nb

n∑
i=1

Kb

(MPBi − x

b

)
. (4.20)

It then follows directly from Equation (4.20) that we can approximate the estimated confidence
bands by exploring the asymptotic distribution of ĝ(x):

ĝ(x)− E[ĝ(x)]√
Var[ĝ(x)]

=
ĝ(x)− g(x)− B[ĝ(x)]√

Var[ĝ(x)]

d∼ N (0, 1). (4.21)

Equation (4.21) results from the central limit theorem via Lindeberg’s condition. A proof of
Equation (4.21) will not be presented in this text. See [Ould-Saïd and Lemdani, 2006] for
details concerning the proof. By looking at the approximation

P
(
zα/2 ≤ ĝ(x)− g(x)− B[ĝ(x)]√

Var[ĝ(x)]
≤ −zα/2

)
≈ 1− α, (4.22)

one might derive that the approximate (1− α) · 100% point-wise confidence intervals are
given by

CI(x) ≈ ĝ(x)− B[ĝ(x)]± zα/2
√

Var[ĝ(x)]. (4.23)
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As expressed in [De Brabanter, De Brabanter, Suykens, and De Moor, 2011], the approximated
(1− α) · 100% prediction intervals are given by:

PI(x) = ĝ(x)− B[ĝ(x)]± zα/2
√
Var[ĝ(x)] + σ̂2(x). (4.24)

As a general rule, we ignore the bias term in Equation (4.23) and Equation (4.24) when
possible. However, if we use larger bandwidths than the optimal bandwidth, it is clear that
the prediction bands are overestimated because of ignoring the bias term. Therefore, it will
be of interest to estimate this bias. Nevertheless, doing this in a precise analytical form is
a challenging task. Consequently, we will use a bootstrap resampling technique to get the
point-wise estimates of the bias. We may use that

̂B(ĝ(MPBi)) =
1

B

B∑
j=1

ĝj∗(MPBi)− ĝ(MPBi), ∀ i ∈ {1, 2, . . . , n} (4.25)

Moreover, we will implement an R-function that calculates the prediction bands utilizing
Equation (4.24). See Appendix A for a description. Furthermore, we will bias correct the
prediction bands using Equation (4.25). However, the bias correction will only work properly
when using MOR. So, we will primarily stick to MOR. We have to stick to MOR either way
because of induced auto-correlation of replicated measurements, so this is nothing new. Note
that using MOR will have a dramatic consequence; We get fewer data points, which means that
n may not be large enough for achieving accurate estimates using Equation (4.24). As recently
mentioned, we can also bootstrap confidence intervals. This estimation is, however, more
onerous and will be impractical in the simulation studies to come. Furthermore, confidence
intervals are not sufficient in a commutability assessment situation. Consequently, it will
be no use in discussing this further. As with smoothing splines, Kernel regression does not
account for variability in x-direction either. However, we may Bland-Altman transform the
clinical samples so that the variability in x is reduced moderately. Thus a combination of
Bland-Altman transformation and Kernel regression seems prudent here as well.

4.4 Kernel regression with two - dimensional variability

In the previous section, kernel regression was considered an alternative non-parametric
assessment procedure for evaluating the control materials’ commutability property. However,
the much-discussed flaw was persistent for this method as many others, which only account
for variability in y-direction. Modern research within econometric theory has developed
estimators for the expectation of Equation (4.11) that include variability in x-direction. The
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reader is referred to [Dabo-Niang and Thiam, 2019] for details regarding this research. In
light of this being modern research, no useful methods for constructing model prediction
bands yet exist. Besides, manual choosing of the bandwidths will still be required as part of
commutability assessment. In future research, it will be interesting to discuss this article in
further detail.





Chapter 5

Applying Commutability Assessment
with Non-Parametric Methods

5.1 Data

Let us test our recently developed methods for commutability evaluation. The data sets we use
are the very same as in Section 3.1. We will analyze the same data sets we considered before
and compare the new results with the old results. We will also compare the performance of
smoothing splines and Kernel regression as commutability assessment procedures. The two
data sets EPK, and LPK are of interest. We will compare the outcomes of the commutability
assessment and see how well our non-parametric assessment methods work.

5.2 Commutability assessment with Thiel-Sen Regression

We remember that the EPK data followed a linear pattern considerably. Nevertheless, recall
that the linear model assumptions were troublesome to satisfy. Normality and heteroscedas-
ticity remained a recurring problem. Therefore the next step could be to use Thiel-Sen
Regression. As addressed in Section 4.1, heteroscedasticity is less of a problem for Thiel-Sen
fitted models. Furthermore, we are not assuming any specific distribution. Even though
auto-correlation will be less of a problem here, it is still best to avoid modeling with it. As
we see in Section 3.4 we get that auto-correlation is no query for this data set when using
MOR. Therefore we may proceed and draw the corresponding six commutability assessment
plots. See the figures below for the assessment plots. See Figure 5.1 and Figure 5.2 for
commutability assessment plots. We discern that the prediction bands are tight for these
measurement procedure comparisons. We see that LQ lies beyond the prediction bands, and
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Figure 5.1 – Visual commutability assessment with clinical samples fitted by the Thiel-Sen regression
model. The means of replicates are used.
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Figure 5.2 – Visual commutability assessment with the clinical samples fitted by the Thiel-Sen regres-
sion estimator. The means of replicates are used.

therefore concluded as non-commutable regarding Advia 2120i versus Cell Dyn Sapphire. In
Section 3.4, we concluded that LQ was commutable. The reason might be the variability in
x-direction made us conclude differently concerning the two different approaches. The rest
of the plots all propose acceptance for commutability for all control materials. Relaxation
of the linear model assumptions makes Thiel-Sen Regression robust as a commutability
assessment procedure. The faults are not accounting for variability in x-direction and the
linearity requirement. We will now consider the LPK data set, which is known to possess
non-linear relations. It will be interesting to examine how adequately Thiel-Sen Regression
copes with the non-linearity LPK has to offer. We

The linear model assumptions are mostly acceptable, but we face difficulties regarding
the clinical samples’ linearity for ABX Micros ES versus Cell Dyn Sapphire and Cell Dyn
Sapphire versus Sysmex XN. The break-of for the homoscedasticity property is a minor issue
since Thiel-Sen Regression is considered robust in that way. However, we can only use Thiel-
Sen regression to view four of these measurement procedures as commutability assessments
because of the lack of linearity. Hence, we may not believe the estimated prediction bands,
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Table 5.1 – Evaluation of the linear model assumptions of raw clinical samples fitted by the Thiel-Sen
regression estimator. The means of replicates are used.

Linear model assumptions LPK

TSR + MOR Normality Homoscedasticity Auto-correlation Linearity

ABX Micros ES vs. Advia 2120i

ABX Micros ES vs. Cell Dyn Sapphire **

ABX Micros ES vs. Sysmex XN *

Advia 2120i vs. Cell Dyn Sapphire

Advia 2120i vs. Sysmex XN

Cell Dyn Sapphire vs. Sysmex XN *

resulting in erroneous conclusions regarding the control materials’ commutability property.
After this, we plot the remaining four comparisons with accepted linear model assumptions.
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Figure 5.3 – Visual commutability assessment for the clinical samples in the LPK data set fitted by
Thiel-Sen regression estimators on those comparisons satisfying the linear model assumptions.

We reject the commutability of LQ for multiple measurement procedure associations.
We have learned that non-linearity is a significant issue for Thiel-Sen regression, similar to
parametric regression models. The natural next step is, therefore, to consider non-parametric
methods dealing with non-linearity.
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5.3 Commutability assessment with Smoothing Splines

As we learned in Section 4.2, there exist comprehensive methods dealing with non-linearity
in data. One of these methods is smoothing splines, which is a non-parametric piece-wise
regression scheme. Moreover, we learned that we did not need to specify the locations or
number of knots, as required in Section 2.6. We will use every observation along the x-axis as
knots. This knot-selection procedure will make the fitted model flexible in areas where many
data points are present. Consequently, not as flexible in gaps among data. Using one knot for
every observation implies that we have n knots. Accordingly, we get n− 1 local model fits
when using the minimum and maximum of x-values as boundaries. We argued that we could
not use Thiel-Sen Regression to evaluate the control material samples’ commutability for ABX
Micros ES versus Cell Dyn Sapphire and Cell Dyn Sapphire versus Sysmex XN. The reason
for this was the non-linearity of clinical samples in our measurement procedure comparisons.
However, linearity is no longer an issue using smoothing splines. Thus, we may evaluate the
commutability of the control materials for all measurement procedure comparisons.



5.3 Commutability assessment with Smoothing Splines 95

5

10

15

5 10 15
Advia 2120i

A
BX

 M
ic

ro
s E

S

Sample

1CPD

1EDTA

2CPD

2EDTA

LQ

CA SM + MOR

Analyte − Leukocytes (10^9 / L)

5

10

15

5 10 15
Cell Dyn Sapphire

A
BX

 M
ic

ro
s E

S

Sample

1CPD

1EDTA

2CPD

2EDTA

LQ

CA SM + MOR

Analyte − Leukocytes (10^9 / L)

5

10

15

5 10 15
Sysmex XN

A
BX

 M
ic

ro
s E

S

Sample

1CPD

1EDTA

2CPD

2EDTA

LQ

CA SM + MOR

Analyte − Leukocytes (10^9 / L)

5

10

15

5 10 15
Cell Dyn Sapphire

A
dv

ia
 2

12
0i

Sample

1CPD

1EDTA

2CPD

2EDTA

LQ

CA SM + MOR

Analyte − Leukocytes (10^9 / L)

Figure 5.4 – Visual commutability assessment with clinical samples fitted by smoothing splines
regression estimators. The means of replicates are used.
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LQ is, as anticipated, still concluded as not commutable for most of the measurement
procedure comparisons. LQ is only accepted for ABX Micros ES versus Advia 2120i and
Advia 2120i versus Cell Dyn Sapphire. See Figure 5.5 for the two outstanding assessment
plots.
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Figure 5.5 – Visual commutability assessment with clinical samples fitted by smoothing splines
regression estimators. The means of replicates are used.

It is somewhat difficult to decide from a visual perspective whether 1CPD is inside some
of the plots above. We see that smoothing splines were capable of dealing with non-linearity
with ease. However, we are facing the standard-issue again. We still have variability in x-
direction, which is ignored. As mentioned in Section 4.2, we may Bland-Altman transform the
raw data and use the resulting data to fit a smoothing splines model. As stated in Section 2.4,
this transformation will reduce the variability in x.
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Figure 5.6 – Visual commutability assessment with Bland-Altman transformed clinical samples fitted
by smoothing splines estimators. The means of replicates are employed.
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One immediate observation is that visual interpretation is much easier because the predic-
tion bands are relatively larger than with using raw data. It is difficult to determine whether
1CPD is inside or outside for ABX Micros ES versus Cell Dyn Sapphire and ABX Micros
ES versus Sysmex XN in Figure 5.4. Nevertheless, 1CPD is concluded as non-commutable
when using Smoothing splines with Bland-Altman transformed data. We see that LQ is also
rejected for the remaining two assessment plots:
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Figure 5.7 – Visual commutability assessment with Bland-Altman transformed clinical samples fitted
by smoothing splines estimators. The means of replicates are used.

5.4 Commutability assessment with kernel regression

In the previous sections, we presented methods of fitting a regression model using kernels.
We also implemented an approximation scheme for prediction intervals, which is essential in
our commutability evaluation procedure regarding control materials. We will now use the
theory to see how well kernel regression works as a commutability assessment method. As
before, we use the 99% prediction bands as the acceptance region for the control materials.
We will have a new look at the EPK data set we have worked on before. The EPK data
set measurements are linear, and consequently, it will be interesting to see how well kernel
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regression performs compared to the previously applied assessment methods. The visual
commutability assessment plots for the data set are presented in Figure 5.8. In the plots, one
might notice regions with few clinical samples, which affect the assessment performance
because of vast prediction bands in these regions. The wide width might additionally be
due to having too few clinical samples. As we will see in Section 5.5.2, very large n are
required to classify non-commutable control materials as non-commutable concerning the
applied acceptance criterion. Usually, the sample size is required to be as large as n = 75

for the method to reject control materials three standard deviations from the theoretical
regression line. By considering the LPK data set, the misclassification issue arises because
of non-linearity, poorly scattered data, and too few clinical samples. See Figure 5.9 for visual
evidence for this claim. Recall that LQ was frequently rejected for this data set, which is not
the case when using kernel regression on the mean of replicates with Gaussian kernel and
optimized bandwidth. Note that 1CPD and 2CPD lie within one of the red regions of the
prediction bands, which implies that these control materials’ classification is unreliable. Vast
prediction bands like these are unfortunately typical for kernel regression and are among
the main arguments for avoiding the kernel regression approach. A proposed solution for
reducing the width of the prediction bands is to use larger bandwidths. However, scaling the
optimal bandwidth by scalars larger than 1 typically increases model bias. Growth of model
bias is approximately a quadratic function of the scales, as we will see in Section 5.5.2.

We still end up with a significant problem. Variability in x-direction is not accounted
for, which may provoke untrustworthy fits. To deal with this issue, one might Bland-Altman
transform the clinical samples such that some variability in x diminishes. For amplification,
the reader is referred to Section 4.2 and Section 3.6. For completeness sake, it is essential to
study the combination of Bland-Altman transformation and kernel regression to observe if it
fixes some of the before-mentioned faults. The plots in Figure 5.10 illustrates this approach.
One might observe that the Bland-Altman transformed clinical samples of the Cell Dyn
Sapphire vs. Sysmex XN comparison were much better than the non-transformation approach.
Generally, as stated before, Bland-Altman plots are easier to interpret. Also, four of the
plots resulted in LQ was rejected as commutable. From a visual perspective, Bland-Altman
and kernel regression’s combination appears better than the equivalent non-transformation
approach. To obtain even smoother prediction bands, one could use larger bandwidths than
the proposed optimal, and another kernel could be used. A more detailed discussion on these
choices is described in more detail in Section 5.5.2. We consider two times the optimized
bandwidth as an alternative to the optimal bandwidth.



100 Applying Commutability Assessment with Non-Parametric Methods

0

3

6

9

2 3 4 5
Advia 2120i

A
BX

 M
ic

ro
s E

S

Sample

1CPD

1EDTA

2CPD

2EDTA

LQ

ABX Micros ES vs. Advia 2120i

Analyte − Erythrocytes (10^12/L)

0.0

2.5

5.0

7.5

10.0

2 3 4 5
Cell Dyn Sapphire

A
BX

 M
ic

ro
s E

S

Sample

1CPD

1EDTA

2CPD

2EDTA

LQ

ABX Micros ES vs. Cell Dyn Sapphire

Analyte − Erythrocytes (10^12/L)

0.0

2.5

5.0

7.5

10.0

2 3 4 5
Sysmex XN

A
BX

 M
ic

ro
s E

S

Sample

1CPD

1EDTA

2CPD

2EDTA

LQ

ABX Micros ES vs. Sysmex XN

Analyte − Erythrocytes (10^12/L)

−2.5

0.0

2.5

5.0

7.5

10.0

2 3 4 5
Cell Dyn Sapphire

A
dv

ia
 2

12
0i

Sample

1CPD

1EDTA

2CPD

2EDTA

LQ

Advia 2120i vs. Cell Dyn Sapphire

Analyte − Erythrocytes (10^12/L)

0.0

2.5

5.0

7.5

10.0

2 3 4 5
Sysmex XN

A
dv

ia
 2

12
0i

Sample

1CPD

1EDTA

2CPD

2EDTA

LQ

Advia 2120i vs. Sysmex XN

Analyte − Erythrocytes (10^12/L)

0

4

8

2 3 4 5
Sysmex XN

C
el

l D
yn

 S
ap

ph
ir

e

Sample

1CPD

1EDTA

2CPD

2EDTA

LQ

Cell Dyn Sapphire vs. Sysmex XN

Analyte − Erythrocytes (10^12/L)

Figure 5.8 – Visual commutability assessment with clinical samples from the EPK data set fitted by
kernel regression estimators where optimal bandwidths and Gaussian kernels are used. The means of
the replicates are used.
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Figure 5.9 – Visual commutability assessment with clinical samples from the LPK data set fitted by
kernel regression estimators where optimal bandwidths and Gaussian kernels are used. The means of
the replicates are used.
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Figure 5.10 – Commutability assessment with Bland-Altman transformed clinical samples from the
LPK data set fitted by kernel regression with Gaussian kernels and optimal bandwidths.
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5.5 Non-parametric evaluation methods - Simulation

It is again time to do some simulation studies. The core will be slightly different from what
we had in Section 3.6. The method of generating data is moderately the same as before.
However, different levels of non-linearity will not be of importance here. Preferably, data
sets are simulated, such that the clinical samples follow either a straight line or a particular
non-linear curve. We will qualitatively test whether a non-linear curve will result in more
inadequate assessment procedures for commutability than a linear pattern. As our non-
parametric methods are meant to handle non-linearity well, it will be adequate to compare
the two different pattern cases suggested in Figure 5.11. In these simulation studies, the
measurements of the clinical samples following a straight line will be simulated by

MPBir = τAi +N (0, σ2
B),

MPAir = f(τAi) = a+ b · τAi +N (0, σ2
A). (5.1)

Equation (5.1) is defined for r ∈ {1, . . . , R} and i ∈ {1, . . . , N}. When data sets contain
non-linear relationships of the measurement procedures are simulated, the measurements of
the clinical samples are generated by

MPBir = τAi +N (0, σ2
A)

MPAir = f(τBi) = f1(τBi) · 1(τBi < 5.4) + f2(τBi) · 1(τBi ≥ 5.4) +N (0, σ2
A). (5.2)

Where f1 and f2 are defined by

f1(τBi) = −0.1(τBi − 5)2 − 0.1τBi + 5.5

f2(τBi) = 2 + exp(0.2τBi). (5.3)

Let us illustrate the patterns given above:
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Figure 5.11 – The relationships between measurement procedures, from which the data sets were
simulated. The blue line is the linear pattern, and the red line is the non-linear pattern.

In these simulation studies, the clinical samples are generated from the same sample range
as the LPK data set exhibited in Section 3.1. Let τBi ∈ [3.5, 11], which is the reference range
of the number of billions of leukocytes per liter in human adults, for i ∈ {1, 2, . . . n}.

5.5.1 Smoothing splines - simulation

To evaluate the impact of weak non-linear data patterns, we will consider how competently the
smoothing splines estimator handles the before-mentioned non-linear patterns. Particularly,
qualitative and visual tests will suffice, and, therefore, four separate data sets are considered.
Two of them are constructed by clinical samples generated by Equation (5.2), that follow a
non-linear pattern, whereas the last two follow the linear relationship defined in Equation (5.1).
Bland-Altman transformation is applied in two of the cases observed in Figure 5.12.
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Figure 5.12 – Simulated data sets with both linear and non-linear relationships. Two of the four
models are constructed by Bland-Altman transformed clinical samples, whereas raw clinical samples
construct the remaining two models.
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Placement of control materials relative to true lines

Figure 5.13 – The placement of the defined non-commutable control materials. Concretely, the control
materials are located three standard deviations from the two true relationships.

There are no apparent barriers introducing non-linearity in the commutability assessment
when we use smoothing splines estimators. The prediction bands for the non-linear case
were somewhat more expansive than the linear case for the raw data. We are used to seeing
that the linear model results in smaller uncertainties, so this should not be surprising. The
Bland-Altman plots are, however, more comfortable to interpret visually and are consequently
favorable in the cases of visual classification of control materials. This simulation’s main
interest is to review the commutability acceptance rate when possessing a non-commutable
control material. Ideally, acceptance rates should be zero in these cases, but of course, for
statistical reasons, this is not realistic. We define control materials, which are positioned 3σA

away from the "true" lines, and denote these as non-commutable. Consequently, we expect
our commutability assessment acceptance criterion to propose non-commutability for these
control materials. To investigate this further, we will consider n ∈ {10, 11, . . . , 50}, and it
is of interest to observe how the sample size adjustments affect commutability acceptance
rates for both linear and non-linear case. We repeat this simulation part for R ∈ {3, . . . , 6}
to see if the number of replicates affects the commutability acceptance rates. Figure 5.13
demonstrates the control materials’ location relative to the theoretical lines. With this in
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mind, we simulate K = 1000 data sets for every pair of

{n,R} ∈ {10, . . . , 50} × {3, . . . , 6},

where the estimated rate of commutability acceptance of the defined non-commutable control
material is calculated. We will start with the non-linear case.
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Figure 5.14 – Acceptance rates of commutability where the clinical samples are fitted by the smoothing
splines estimators and where the control material is non-commutable as a deviation of 3σA from the
true non-linear curve.

From Figure 5.14, we learn that the number of replicates selected is of importance
regarding unsuitably accepting the control material as commutable when in reality is not. If
we consider n = 25, as we do in Figure 5.14, we see that rate of erroneous conclusions of
the control material falls from approximately 25% to 12% by just appending one replicated
measurement. Generally, the acceptance rate seems to drop when the number of replicates
increases. The last two acceptance-rate-dips are not as significant as the first dip, but certainly
larger than zero. Besides, we observe that increasing n likewise will lead us to conclude
correctly more frequently. For example, increasing the number of clinical samples from 25

to 30 reduces the absolute rate of commutability acceptance (in %) of wrong conclusions
by approximately 2-5%. To minimize erroneous acceptance of the non-commutable control
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material, {n,R : n ≥ 50, R = 6}may be used. Alternatively, if we tolerate that approximately
5% of the instances result in misclassification, the suitable choice of study design is given by
{n,R : n ≥ 25, R = 6}. For the linear case, the situation is slightly changed. The prediction
bands are generally narrower for linear models, yielding lower misclassification rates even
for small n and R. To minimize the misclassification rates, an appropriate study design is
{n,R : n ≥ 25, R ≥ 4}. See Figure 5.15 for portrayed simulation results for the linear case.
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Figure 5.15 – Acceptance rates of commutability where the clinical samples are fitted by the smoothing
splines estimator and where the control material is non-commutable as a deviation of 3σA from the
true linear curve.

5.5.2 Kernel regression - simulation

As we did in Section 5.5.1, We will start to analyze two separate pairs of cases; One where
the underlying data pattern is linear and one where it is not. Also, we consider the use
of the Gaussian kernel and one where we use the epanechnikov kernel. We will include
the prediction bands with(out) bias correction for differences according to model fits when
increasing the bandwidth.
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Figure 5.16 – Gaussian and epanechnikov kernels using optimized bandwidth and two times the
optimized bandwidth when the underlying data pattern is linear.

From Figure 5.16, we recognize that larger bandwidths result in moderately smoother fits.
The leftmost plots are the fitted regression lines where we applied the optimized bandwidth.
The optimization procedure is done by cross-validation and is delivered by npregbw() in
R. The rightmost plots are fitted npreg() models utilizing twice as large bandwidths as the
corresponding optimized bandwidth. Note that breaks in the data patterns imply that we
discontinuous prediction bands because of enormous variability in these regions. Note
also that there are tremendous differences between the estimated prediction bands with bias
correction and those not bias-corrected for the lower right plot.
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Figure 5.17 – Gaussian and epanechnikov kernels using optimized bandwidth and two times the
optimized bandwidth when the underlying data pattern is non-linear.

As anticipated, non-linearity is not a concern for kernel regression. The non-linear patterns
produce smoother fits than the linear ones. This result might, however, be a coincidence. The
results in both Figure 5.16 and Figure 5.17 are equivalent from a commutability assessment
viewpoint. In most cases, the discontinuity of the prediction bands mends by increasing the
bandwidth. How much do we need to scale the optimized bandwidth to get something usable
concerning commutability assessment is a natural question that arises. Larger bandwidths
will enlarge the model bias, which will, consequently, overestimate the prediction bands when
neglecting the bias term in Equation (4.24). Nonetheless, it seems like using two times the
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Figure 5.18 – The relationship between multipliers of an optimal bandwidth and the corresponding
optimal model bias measured by MSE. Note that the relationship is approximately quadratic.

optimized bandwidth is sufficient in light of our simulations. A method for measuring the
relative bias concerning different bandwidths will be important, and the mean square error
(MSE) is a straightforward way to measure model bias. The bias relative to the optimal bias
is defined by

Relative bias =
Enlarged bias

Optimized bias
· 100% =

MSE(a · λopt)

MSE(λopt)
· 100%, (5.4)

where a is the specified scalar multiplied by the optimal bandwidth, which is assumed to be
defined for

a ∈ {1, 1.01, . . . , 3}. (5.5)

This simulation study will include simulations of 100 data sets for every value of a. The
mean relative bias compared to the optimized bias for different multipliers of the optimized
bandwidth has the relationship proposed in Figure 5.18. According to Figure 5.18, using
2 · λOPT will end in model bias of approximately 3.4 · BOPT[ĝ(MPi)]. In other words, the
bias is 3.4 times larger than the optimal bias. Consequently, caution must be practiced when
using manually chosen bandwidths, which is bigger than the proposed optimal. However,
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for small optimal biases, it seems appropriate to two times the optimal bandwidth. Consider
a non-commutable control material as specified in Section 5.5.1. The control material is
positioned 3σA from the true lines, as in Figure 5.13. Assuming that the underlying data
pattern is non-linear and using both Gaussian and epanechnikov kernels, the acceptance
rates of commutability are given as in Figure 5.19. As Figure 5.19 implies for both kernels,
the estimated prediction bands are wider than 3σA even for large n and R, in contrast to
smoothing splines. The next step is to investigate the commutability acceptance rates of the
non-commutable control material when the underlying relationship is linear. The results are
displayed in Figure 5.20. As witnessed in Figure 5.15, the analogous prediction bands were
narrower when the true relationship was linear. Consequently, it will be more secure to use
kernel regression if the true underlying relationship between the measurement procedures
is linear. The drawback is that large sample sizes are required to conclude correctly, and
the number of replicated measurements has no obvious effect. Besides, there are no notable
differences between the Gaussian and epanechnikov kernels regarding performance, making
it hard to determine if one is more preferable than the other. All in all, the performance of
kernel regression is worse than smoothing splines regression. A large number of clinical
samples are needed, and they are required to be evenly distributed to ensure high data density.
Another approach within the Kernel regression field is local linear estimators instead of local
constant estimators, which we use. This one is more robust against low data density, which is
good.
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Figure 5.19 – Acceptance of commutability where the clinical samples are fitted by kernel regression
estimators and where the control material is non-commutable as a deviation of 3σA from the true
non-linear curve.
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Figure 5.20 – Acceptance of commutability where the clinical samples are fitted by kernel regression
estimators and where the control material is non-commutable as a deviation of 3σA from the true
linear line.



Chapter 6

Recommendations and discussion

We have studied several statistical methods for the evaluation of commutability for control
materials. We commenced with parametric assessment methods and moved on to non-
parametric assessment methods. The objective is to find commutability assessment procedures
with few rigorous model assumptions and robust fitted models from a statistical perspective.
As only one of our methods accounts for the whole variability in x (Deming regression), it
appears sensible to implement the Deming regression model as a general estimator. However,
the Deming estimators’ estimation when the ratio of variances is estimated requires at least
50 clinical samples when performing three replicated measurements on every one of them,
which is unsatisfactory for our data sets. As we learned in Section 3.6, five or six replicates
with 25 clinical samples could instead be used to significantly reduce the bias. Employing
Equation (2.20) when possessing fewer than 25 clinical samples and three replicates for
each clinical sample may not get us trustworthy Deming estimators. In addition to slightly
unreliable Deming estimators when the study design is not suitable, we also require the
linear model assumptions’ fulfillment. If the linear model assumptions are not met, we may
not trust the prediction bands’ width. To mend flawed linear model assumptions, log-log
transformation is stated as a common quick-fix. However, as observed in Section 3.6, the
log-log transformation will often break the linear model assumptions instead of fixing them;
if the underlying distribution is not log-normal. The next best thing is to use Bland-Altman
transformation and use either smoothing splines or kernel regression to model the Bland-
Altman transformed clinical samples. These combinations of transformation and regression
models are robust against non-linearity and do not assume the underlying relationship’s shape.
Bland-Altman, combined with kernel regression, unfortunately, yielded extensive variability
at the tails and dramatic unstable predictions at locations with few data points. Besides, we
had to choose the bandwidths manually. The Smoothing splines estimator with cubic natural
splines proved to have controlled variability at the tails and generally fewer jumping variance
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occasions than kernel regression. Besides, we were not required to place the knots manually,
so there is one less decision to make. Every measurement is used as a knot location. We
could do this because the effective degrees of freedom were generally small compared to
n, thus not considered as overfitting. With Bland-Altman, transformation combined with
smoothing splines did not wholly deal with variability in x but reduced its magnitude by
approximately 30%. When using these measurement procedures many times, we could go
forth with a Bayesian approach. We will, however, not discuss this approach in any detail
in this text. For Kernel Regression, modern research has managed to account for variability
in x. Nevertheless, it is challenging to estimate the prediction errors for kernel regression
with two-dimensional variability. Therefore procedures regarding estimation of prediction
bands do not currently exist. Besides, we would be forced to choose appropriate bandwidths
manually, which we typically do not want to do.

6.1 Recommendations

There are many alternatives regarding recommended methods to supplement the acceptance
criterion for commutability. However, from a statistical perspective, we will focus on two
decision algorithms for EQA-organisations. We denote {n,R : n ≥ 50, R = 3} or {n,R :

n ≥ 25, R ≥ 5} as adequate study designs. See the flowchart in Figure 6.1 for the first
suggested decision algorithm.

START
Test linear model assumptions

Linearity satis�ed?

Yes

Homoscedasticity & 
normality satis�ed?

Adequate study
design?

Deming regression

Yes

No

Ordinary least 
squares regression

Thiel-Sen
regression

No

Yes

Homoscedasticity
satis�ed?

No

Bland-Altman +
smoothing splines

No

Kernel regression 
with caution

Yes

Figure 6.1 – The first decision Algorithm, where the "optimal" statistical method is chosen from the
data set properties. It is recommended to do ensure that auto-correlation is satisfied before employing
the suggested evaluation method.
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In the start, an evaluation of the linear model assumptions is of order. The four linear
model assumptions can for instance be evaluated simultaneously by the gvlma() function
in R. The results from these tests are used throughout the decision algorithm implemented.
All commutability assessment approaches will require independent residuals, which implies
that it is important to ensure that auto-correlation is not present from the start. If gvlma()
output proposes sufficient linearity in the data, parametric methods are the most reliable, and
if the data set satisfies homoscedasticity and normality with either {n,R : n ≥ 50, R = 3}
or {n,R : n ≥ 25, R ≥ 5}, Deming regression may be used. In opposition, if the data set
does not satisfy one of the two appropriate study designs, ordinary least squares regression is
used. Having linear data, but normality or/and homoscedasticity not satisfied, Section 4.1
suggests using Thiel-sen regression because of its robustness.

However, if linearity is not satisfied with the particular data set, non-parametric regression
methods are recommended. Depending upon approximately equal variances for observations,
either a smoothing splines estimator or a kernel regression estimator is applied. Note that extra
precaution is necessary if kernel regression proves as the only valid approach. As described
in Section 4.3, the kernel approach showed sensitivity when possessing too few observations
or holes in the data set. More considerable non-linearity curves enlarge the prediction bands
for kernel estimators significantly, as observed in Section 5.5.2. Consequently, the control
materials were prone to be misclassified as commutable if the latter was true. However, if
the data patterns are non-linear but not drastically different from a linear line, one could
use Kernel regression if possessing at least 75 clinical samples. Doing so would minimize
non-commutable control materials’ misclassification rates deviating three standard deviations
from the clinical samples’ underlying curve.

As one might notice, the transformation approaches are little mentioned in Figure 6.1.
The reason for this is elaborated in Section 3.6, where we observed that acceptance of linear
model assumptions was prone to decrease if a transformation was applied to the raw data. For
instance, the log-log transformed clinical samples typically proposed that only 50% of the
linear model assumptions were met. The main difficulty is heteroscedasticity, which arises
when the log-log transformation is used on non-log-normal distributed raw data. Generally,
caution must be practiced concerning transformations if the raw data do not follow a right-
skewed distribution.

An alternative and a more simple step-wise algorithm are Bland-Altman transformations
combined with smoothing splines that are primarily used. See Figure 6.2 for details. This
second algorithm is constructed to be more general at the cost of potential flexibility. If auto-
correlation is not present and our data suggest homoscedasticity, Bland-Altman transformation
combined with smoothing splines are used every time. Moreover, if possessing a satisfactory
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Check homoscedasticity and auto-correlation

Homoscedasticity 
and auto-correlation 
satis�ed?

Bland-Altman +
smoothing splines

Decision algorithm 1

Yes

No

Start

Figure 6.2 – The second decision algorithm. This decision algorithm is less complicated than the
first proposed if homoscedasticity and auto-correlation requirements are satisfied. If one of these two
model requirements are unfulfilled, one uses the first decision algorithm instead.

study design {n,R : 25 ≤ n ≤ 30, R = 6} and these two linear model assumptions are
accepted with α = 0.025 significance level, smoothing splines on the Bland-Altman trans-
formed clinical samples are used. In cases where some of the before-mentioned assumptions
are not met, the other decision algorithm is rather used. For testing homoscedasticity and
auto-correlation, the formal tests of Breusch-Pagan and Durbin-Watson are used at α = 0.025.
The details on these two tests are described roughly in Section 1.4.

For future studies, it will be interesting to dive deeper into non-parametric assessment
methods for commutability. As touched upon in Section 4.4, methods for obtaining kernel
regression estimators with errors-in-variables exist, and thereupon an algorithm for auto-
matically selecting optimal practical bandwidths in this setting is bound to be imperative to
construct. Furthermore, because tolerance intervals are more straightforward to implement
than prediction bands, we could analyze their practical use in commutability assessment
procedures. Also, it is not surprising that measurement procedures are used several times.
It, therefore, appears wise to utilize this fact to our advantage. Methods within the Bayesian
statistics field rely on prior information and may consequently provide more trustworthy
models in the classification of control materials. It is well known and intuitive that models
constructed with much information are more trustworthy than models with less. Regarding
the commutability acceptance criterion, one could argue on how the limits of acceptance
should be established. We have not addressed much about variability in the control materials,
and the commutability acceptance criterion may be altered by implementing the dispersion
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of the control materials as part of the assessment scheme. This was lightly discussed in
Section 3.7, and may be elaborated upon in the future.





References

Bland, J. M. & Altman, D. G. (2010). Statistical methods for assessing agreement between

two methods of clinical measurement. International Journal of Nursing Studies, 47,

931–936.

Braga, F. & Panteghini, M. (2019). Commutability of reference and control materials: an es-

sential factor for assuring the quality of measurements in laboratory medicine. Clinical

Chemistry and Laboratory Medicine (CCLM), 57(7), 967–973.

Craven, P. & Wahba, G. (1978). Smoothing noisy data with spline functions. Numerische

Mathematik, 31(4), 377–403.

Dabo-Niang, S. & Thiam, B. (2019). Kernel regression estimation with errors-in-variables

for random fields. Afrika Matematika, 31.

De Brabanter, K., De Brabanter, J., Suykens, J. A. K., & De Moor, B. (2011). Approximate

confidence and prediction intervals for least squares support vector regression. IEEE

transactions on neural networks / a publication of the IEEE Neural Networks Council,

22(1), 110–120.

Dhanoa, M. S., Sanderson, R., Lopez, S., Dijkstra, J., Kebreab, E., & France, J. (2011).

Modelling nutrient digestion and utilisation in farm animals. Academic Publishers.

Dunn, G. (1989). Statistical evaluation of measurement errors. John Wiley & Sons.

Fuller, W. A. (2009). Measurement error models. John Wiley & Sons.



122 References

Gillard, J. (2010). An overview of linear structural models in errors in variables regression.

REVSTAT–Statistical Journal, 8(1), 57–80.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). Kernel smoothing methods. Springer.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical

learning. Springer New York.

Miller, G. W., Jones, G. R., Horowitz, G. L., & Weykamp, C. (2011). Proficiency testing/ex-

ternal quality assessment: current challenges and future directions. Clinical Chemistry,

57(12), 1670–1680.

Miller, W. G., Schimmel, H., Rej, R., Greenberg, N., Ceriotti, F., Burns, C., . . . Nilsson, G.

(2018). IFCC working group recommendations for assessing commutability part 1:

general experimental design. Clinical chemistry, 64(3), 447–454.

Muller, H.-G. (1998). Local polynomial modeling and its applications. Journal of the Ameri-

can Statistical Association, 93(442), 835–836.

Opsomer, J. D. & Breidt, F. J. (2011). International encyclopedia of statistical science.

Springer Berlin Heidelberg.

Ould-Saïd, E. & Lemdani, M. (2006). Asymptotic properties of a nonparametric regression

function estimator with randomly truncated data. Annals of the Institute of Statistical

Mathematics, 58(2), 357–378.

Racine, J. S. (2007). Nonparametric econometrics: a primer. Foundations and Trends® in

Econometrics, 3(1), 1–88.

Solberg, H. (1993). A guide to IFCC recommendations on reference values. Journal of the

International Federation of Clinical Chemistry, 5(4), 162–165.

Vore, K. D. (2014). Evaluation of commutability of processed samples; approved guide-

line—third edition. Clinical and laboratory Standards Institute, 58.



References 123

Wilcox, R. (1998). A note on the Theil-Sen regression estimator when the regressor is random

and the error term is heteroscedastic. Biometrical Journal, 40(3), 261–268.





Appendix A

R-functions

Simulation of data:
1 simulate_data <-function(samp ,repl=3,abc=c(0,1,0),ran , sdx=0.2,sdy

=0.1)
2 {
3 sams <- runif(samp ,ran[1],ran [2]) ## True values from uniform RV
4 tru <- rep(sams ,each=repl) ## Each sample has the same true value
5 samn <- rep(1: length(sams),each=repl) ## Appropriate structure
6 repn <- rep(1:repl ,times=samp) ## Appropriate structure
7 data.frame(cbind(samn ,repn ,tru)) %>% rowwise () %>%
8 mutate(B=tru + rnorm(1,sd = sdx)) %>%
9 mutate(A= abc[1]*tru^2 + abc[2]*tru + abc[3] + rnorm(1,sd=sdy))

%>%
10 mutate_at(.vars = "samn", .funs = factor) %>% ## Change to factor

.
11 dplyr:: select(-"tru",Sample = "samn",Replicate = "repn")
12 }

Automatic generation of 100 new data valaues from the range of MPB:

1 get_newdata <- function(x)
2 {
3 ran <- range(x)
4 return(seq(from = ran[1], to = ran[2], by = abs(ran[2]-ran [1]) *

0.01))
5 }

Bland-Altman transformation of simulated data set:
1 Bland_Altman_Transform <- function(df)
2 {df %>% mutate(A=log(A/B),B=(A+B)/2)}

Converting from AR to MOR for simulated data sets:
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1 AR_to_MOR <- function(df){
2 df %>% group_by(Sample) %>%
3 summarise(A=mean(A),B=mean(B),.groups = ’drop’)}

Automatic checks of linear model assumptions:

1 LMA_tests <- function(model)
2 {
3 a<-shapiro.test(resid(model))$p.value >=0.05
4 b<-bptest(model)$p.value >=0.05
5 c<-dwtest(model)$p.value >=0.05
6 unname(ifelse(a+b+c==3,TRUE ,FALSE))
7 }

Automatic commutability assessment checks:

1 CA.auto <- function(clin ,contr ,model)
2 {
3 ran <-range(clin$B)
4 pred <-data.table(A=contr$A,predict(object=model ,
5 newdata=list(B=contr$B),interval="prediction",level =0.99)) %>%
6 rowwise () %>% mutate(A = lwr < A && upr > A) %>%
7 mutate(B = contr$B >= ran[1] && contr$B <= ran [2])%>%
8 mutate(AB = A+B == 2) %>%
9 dplyr:: select(c("CA"="AB"))

10 }

Calculation of dispersion measures such as SD and CV

1 calculate_dispersion_measures <- function ()
2 {
3 data <- simulate_data(samp=25,repl=3,abc=c(0,1,0),
4 ran=c(3.5 ,11))
5 BA <- Bland_Altman_Transform(data)
6 raw <- AR_to_MOR(data); trans <- AR_to_MOR(BA)
7 SD_raw <- sd(raw$B); SD_trans <- sd(trans$B)
8 CV_raw <- SD_raw/mean(raw$B)
9 CV_trans <- sqrt(exp(SD_trans ^ 2) - 1)

10 return(c(CV_raw ,CV_trans ,SD_raw ,SD_trans))
11 }

Estimate lambda from replicates:

1 estimate_lambda <- function(y,x, R, n)
2 {
3 N<-R*n
4 df <- data.table(sample = rep(1:R,each=n), replicate = rep(1:n,

times=R), A = y, B = x) %>%
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5 group_by(sample) %>%
6 mutate(mA = mean(A), mB = mean(B)) %>% rowwise () %>%
7 mutate(YmM = (A - mA)^2, XmM = (B - mB)^2)
8 sigma.ee <- (sum(df$YmM)) / (N - n)
9 sigma.uu <- (sum(df$XmM)) / (N - n)

10 return(lambda = sigma.ee / sigma.uu)
11 }

1 #### Deming estimation -- Requires lambda to be estimated before
using this ####

2 #### Inspired by https://gist.github.com/stla/5
fcd959576413798d4cc09e7493e53e9 ##

3 deming_estimate <- function(y,x,lambda)
4 {
5 n <- length(x) ## Number of clinical samples
6 my <- mean(y) ## Mean of MP_A
7 mx <- mean(x) ## Mean of MP_B
8 SSDy <- crossprod(y-my)[,] ## S_AA
9 SSDx <- crossprod(x-mx)[,] ## S_BB

10 SPDxy <- crossprod(x-mx ,y-my)[,] ## S_BA
11 A <- sqrt((SSDy - lambda*SSDx)^2 + 4*lambda*SPDxy ^2)
12 B <- SSDy - lambda*SSDx
13 beta <- (B + A) / (2*SPDxy) ## Slope
14 alpha <- my - mx*beta ## Intercept
15 sigma.uu <- ( (SSDy + lambda*SSDx) - A ) /(2*lambda) / (n-1)
16 s.vv <- crossprod(y-my -beta*(x-mx))/(n-2)
17 ## formula from Gilard & Iles paper ##
18 sbeta2.Fuller <- (SSDx*SSDy -SPDxy ^2)/n/(SPDxy ^2/beta ^2)
19 sbeta.Fuller <- sqrt(sbeta2.Fuller)
20 ## standard error alpha Fuller ##
21 salpha2.Fuller <- s.vv/n + mx^2*sbeta2.Fuller
22 salpha.Fuller <- sqrt(salpha2.Fuller)
23 ## Let us define the covariance matrix for the estimated
24 ## coefficients , V.
25 V <- rbind(c(salpha2.Fuller , -mx*sbeta2.Fuller),
26 c(-mx*sbeta2.Fuller , sbeta2.Fuller) )
27 return(list(alpha=alpha ,beta=beta ,
28 salpha.Fuller=salpha.Fuller , sbeta.Fuller=sbeta.Fuller ,
29 V=V,
30 sigma=sqrt(sigma.uu*(n-1)/(n-2)),lambda=lambda)
31 )
32 }

Prediction of one point of Deming model
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1 #### Predict y from theoretical x ####
2 #### Inspired by https://gist.github.com/stla/5

fcd959576413798d4cc09e7493e53e9 ##
3 deming_predict <- function(y, x, R=3, n=25, xnew , level =0.99){
4 lambda <- estimate_lambda(y=y,x=x,R=R,n=n)
5 fit <- deming_estimate(y=y,x=x,lambda=lambda)
6 sigma <- fit$sigma
7 sigma.uu <- sigma ^2*(n-2)/(n-1)
8 V <- fit$V ## Covariance matrix for estimated coefficients
9 a <- fit$alpha ## Intercept

10 b <- fit$beta ## Slope
11 ynew <- a+b*xnew ## Predicted Y given X
12 Xnew <- as.matrix(c(1,xnew)) ## One row of MP^*
13 sigma.ee <- lambda*sigma.uu
14 t <- qt(1-(1-level)/2, n-2) ## t-score
15 ## predict from an observed xnew ##
16 sd.ynew.Fuller2 <- sqrt(sigma.ee + t(Xnew)%*%V%*%Xnew + (b^2+V

[2,2])*sigma.uu)
17 Lynew.Fuller2 <- ynew - t*sd.ynew.Fuller2
18 Uynew.Fuller2 <- ynew + t*sd.ynew.Fuller2
19 return(data.table(new=xnew , fit=ynew ,lwr=Lynew.Fuller2 ,upr=Uynew.

Fuller2))
20 }

Estimated prediction bands for Deming estimator

1 #### Requires registration of cluster and package doParallel ####
2 deming_predictInterval <- function(y, x, R, n, newdata ,level =0.99){
3 foreach(i=1: length(newdata), .combine = rbind , .export = c("estimate_

lambda","deming_predict","deming_estimate"), .packages = c("dplyr"
,"data.table")) %dopar% deming_predict(y=y, x=x, R=R, n = n, xnew
= newdata[i])

4 }

Simulation of data concerning the non-parametric methods:

1 #### Simulation of data sets for non -parametric simulation studies
####

2 simulate_data_np <- function(samp , repl=3,lin=T,ran ,sdx=0.2,sdy =0.1)
3 {
4 sams <- runif(samp ,ran[1],ran [2]) ## Generating true values
5 tru <- rep(sams ,each=repl) ## Appropriate structure
6 samn <- rep(1: length(sams),each=repl) ## Appropriate structure
7 repn <- rep(1:repl ,times=samp) ## Appropriate structure
8 data.frame(cbind(samn ,repn ,tru)) %>% rowwise () %>%
9 mutate(B=tru) %>%
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10 mutate(A=ifelse(lin==T,B,ifelse(B<5.4 ,-0.1*(B-5) ^2 -0.1*B+5.5 ,2 +
exp (0.2*B)))) %>% ## Relationship between MP’s

11 mutate(B=B+rnorm(1,sd=sdx)) %>% mutate(A=A+rnorm(1,sd=sdy)) %>%
12 mutate_at(.vars = "samn", .funs = factor) %>%
13 dplyr:: select(-"tru",Sample = "samn",replicate = "repn")
14 }

Bias correction magnitudes for prediction bands estimated by bootstrap:

1 #### Will be repeated for every value of B ####
2 npregboot_core <- function(data ,cker ,bw,newd)
3 {
4 ## re -sampling rows from the data frame
5 bdf <- slice_sample (.data=data ,n=nrow(data),replace=TRUE)
6 ## bootstrap model for re-sampled rows in data frame
7 mb <- npreg(bws=bw ,data=bdf ,formula=A~B,ckertype=cker)
8 ## fill list with predictions of the bootstrap data frame
9 return(list(predict(object=mb,newdata=data.frame(B=newd))))

10 }
11

12 #### Bootstrap bias ####
13 npregboot <- function(B=999,bw,npreg_obj ,data ,level =0.99,ran=c

(3.5 ,11),ckertype="gaussian")
14 {
15 ## Obtaining the model frame ##
16 x <- npreg_obj$eval[,1]
17 y <- as.vector(residuals(npreg_obj) + fitted(npreg_obj))
18 ## Generating new data from predictor values ##
19 newx <- get_newdata(x)
20 ## Empty list to be filled and original model ##
21 bpred <- list()
22 m <- npreg(bws=bw,data=data ,formula=A~B,ckertype=ckertype)
23 ## Filling the list with bootstrapped models ##
24 bpred <- foreach(b=1:B,. combine=append ,. export="npregboot_core",.

packages=c("np","dplyr")) %dopar% npregboot_core(data=data ,cker=
ckertype ,bw=bw ,newd=newx)

25 ## Converting from list to data frame ##
26 bpred <- data.frame(bpred)
27 ## The actual bias -calculation returned ##
28 return(rowMeans(bpred) - predict(object = m, newdata=data.frame(B=

newx)))
29 }

Estimated prediction bands using the asymptotic properties of kernel estimators:

1 get_api <- function(npreg_obj ,kernel="gaussian",rbw=F,lvl =0.99)



130 R-functions

2 {
3 ## Obtaining the model frame from model ##
4 x <- npreg_obj$eval[,1]
5 y <- as.vector(residuals(npreg_obj) + fitted(npreg_obj))
6 ## generating new data from predictor values ##
7 new <- get_newdata(x)
8 ## Predicted values and asymptotical prediction errors ##
9 pre <- predict(object = npreg_obj , newdata = data.frame(B = new),

se.fit = TRUE)
10 ## The asymptotic prediction errors ###
11 shat <- pre$se.fit
12 ## The predicted values ##
13 ghat <- pre$fit
14 ## Checks which kernel applied (Gaussian or Epanechnikov) ##
15 cond <- kernel =="gaussian"
16 ## Optimal bandwidth , b, for density estimation given kernel ##
17 mdenb <- ifelse(rbw==F,npudensbw(x,y,ckertype=ifelse(cond ,kernel ,"

epanechnikov"))$bw ,rbw)
18 ## Estimated density with optimal bandwidth calculated above ##
19 fhat <- density(x=x,kernel=ifelse(cond ,kernel ,"epanechnikov"),bw=

mdenb ,n=length(ghat))
20 ## Calculation of integral dependent on kerlen chosen ##
21 k2 <- ifelse(cond ,1/(2*sqrt (2)) ,0.6)
22 ## Asymptotic variance of kernel regression model ##
23 vghat <- (shat * k2) / (length(x) * fhat$y * rbw)
24 ## Quantile -calculation assuming Z ~ N(0,1) ##
25 z <- qnorm(p=(1-lvl)/2,lower.tail = F) ## z-score
26 ## The calculation of the prediction bands ##
27 predf <- data.frame(new=new ,fit=ghat) %>%
28 mutate(lwr = fit - z * sqrt(shat + vghat)) %>%
29 mutate(upr = fit + z * sqrt(shat + vghat)) %>%
30 na.omit()
31 ## For bias correction , subtract bootstrap bias from this result ##
32 return(predf)
33 }

Calculation of bias of chosen bandwidth compared to the bias of the optimal bandwidth:

1 relative_bias <- function(scalar ,data=AR_to_MOR(simulate_data_np(samp
=25,ran=c(3.5 ,11),lin=F)))

2 {
3 ## Obtaining the optimal bandwidth of simulated model ##
4 obj_bw <- npregbw(data=data ,formula=A~B)$bw
5 ## Model for optimized bandwidth selected above ##
6 obj <-npreg(bws=obj_bw ,formula=A~B,data=data)
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7 ## MSE of optimized model ##
8 optimized_MSE <- sum(residuals(obj) ^ 2) / nrow(data)
9 ## Model for scaled optimized bandwidth ##

10 obj_change <- npreg(bws=obj_bw*scalar ,formula=A~B,data=data)
11 ## MSE of scaled model ##
12 MSE <- sum(residuals(obj_change) ^ 2) / nrow(data)
13 ## The ratio of scaled MSE and optimized MSE in % ##
14 return ((MSE/optimized_MSE - 1)*100)
15 }
16

17 #### Estimation of relative bias for different scales ####
18 repeat_relative_bias <- function(scalars=seq(from=1,to=3,by =0.01))
19 {
20 ## Simulated data set to be used ##
21 df <- AR_to_MOR(simulate_data_np(samp=25,ran=c(3.5 ,11),lin=F))
22 ## Relative bias in percent for all scales ##
23 percent_more_than_opt <- foreach(i=1: length(scalars) ,.packages=c("

dplyr","np") ,.export=c("relative_bias") ,.combine = c) %dopar%
relative_bias(scalars[i],df)

24 ## Return a list of data frames of the relative bias ##
25 return(list(data.frame(percent_more_than_opt=percent_more_than_opt)

))
26 ## In the text we repeat repeat_relative_bias(), 1000 times ##
27 ## and takes the average over each scale ##
28 ## This produces the average mean relative MSE for each scale

specified ##
29 }
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