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Abstract

In this thesis we create a k-core decomposition of graphs algorithm. We will be using par-

allel techniques tailored towards a GPU to create our algorithm. These techniques will be

employed using Nvidia CUDA, a programming platform that allows us access to the GPU.

Our approach to solving the k-core decomposition is based on the locality property, calcu-

lating the k-core of each vertex based on its neighbors. We will look at how our algorithm

compares to a similar algorithm computed in sequential. Our algorithm will be tested on

various graphs, and see how it compared to a similar algorithm in sequential execution. We

will discuss our results, and conclude that a parallel algorithm provides a significant speedup

versus a sequential one. Lastly, we will discuss what could be done to improve our solution

and other approaches such as turning it into an approximation algorithm.
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Chapter 1

Introduction

1.1 Problem statement and motivation

The study of large scale networks and data sets have been interesting for researchers for

many decades. These data sets are becoming increasingly large, and doing relevant work

is getting more and more taxing on computers. Studying data can be done in many different

ways. The key in all of these studies is to find data that is relevant. Many different metrics

exist on how to interpret what should be considered relevant. Betweenness, eigenvector, and

closeness centrality indices [6] are some of them. K-core decomposition is one such estab-

lished way to analyze graphs.

K-core decomposition has been used to characterize social networks [1], to help visualiza-

tion of complex graphs [4], to determine the role of proteins in complex proteomic net-

works [2], and to identify good "spreaders" in epidemiological studies [10].

In this thesis, we will explore how an algorithm for k-core decomposition based on the local-

ity property performs in parallel. In graphs, the property of locality is a vertex and its adjacent

vertices also known as neighborhood. There already exist fast established algorithms for solv-

ing the k-core decomposition, but it does not translate very well to a parallel approach. We

believe that an algorithm based on the locality property could translate better in a parallel

setting, even if such an algorithm performs slightly worse in a sequential setting. We will use

a computing platform called Nvidia CUDA to design our algorithm for k-core decomposi-

tion. Nvidia CUDA is a heterogeneous platform that allows us access to computing on the

Graphics Processing Unit (GPU).



1.2. THESIS OUTLINE 3

1.2 Thesis outline

In chapter 2 we provide some background of graphs and k-core decomposition. Further-

more, we mention some previous algorithms designed to solve k-core decomposition. Giv-

ing some background of graph theory is necessary as we lead up to our implementation of

k-core decomposition.

In chapter 3 we give a brief introduction to parallel computing and how a Graphics Process-

ing Unit functions. We implement our algorithm in parallel, which is why we give a brief

introduction to parallel computing.

In chapter 4 we give a brief introduction to Nvidia CUDA. This is the platform we use to create

a k-core decomposition algorithm. Nvidia CUDA gives us control over parallel execution on

a Graphics Processing Unit.

In chapter 5 we discuss previous algorithms created to solve k-core decomposition in parallel

and provide our implementation of the problem both in sequential and parallel.

In chapter 6 we test our algorithm on a selection of graphs and compare how our algorithm

performs in parallel versus sequential.

In chapter 7 we conclude why we obtained the results from our tests, and discuss how and

why we obtained the results we did.

In chapter 8 we discuss some options to improve our implementation, and discuss other

approaches that might suit our algorithm better.
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Chapter 2

Background

In this chapter, we give a brief introduction to graphs in graph theory and explain the k-cores

of graphs. We provide some terminology that will be used throughout this thesis. Lastly, we

present some previous work done solving the k-core decomposition of graphs.

2.1 Graphs

In the field of graph theory, we define a graph as a set of vertices and edges. Vertices are

the components of a graph, and edges are the relations between these components. We can

picture a social network as a graph. The vertices of such a graph are the users of the social

network, and the edges are relationships (such as friends, spouses, colleagues, etc) between

them. Depending on what we wish to represent, graphs can take on different properties.

We can represent different types of graphs by using various types of edges and by giving

attributes to vertices.

Some graphs have undirected edges between vertices. An undirected edge is a relation that

two users share with each other, such as being friends. An edge that is directed is a relation

that is unique to one of the two vertices who share it. Having a boss is an example of a rela-

tion that goes one way. Some relations may carry more importance, or weight, than others,

and we have what is called a weighted graph. We can combine properties to create directed,

weighted graphs and others. For the k-core decomposition, it makes sense to focus on as

simple graphs as possible, as only small adjustments to the algorithm is necessary to make

it work on other types of graphs. Therefore, for the purpose of this thesis, we use undirected,

unweighted graphs, to keep the algorithm uncluttered and simple.
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2.1.1 Definitions, Notation and Terminology

We define a graph G as G = (V ,E), where V is the set of vertices, and E is the set of edges. We

define the number of vertices and edges in a graph G to N and M respectively. The degree of

a vertex v is defined as the number of vertices adjacent to v. We denote the degree of vertex

v as deg (v), and the minimum degree found in a graph G as δ(G). Using a social network

as an example again, we can picture this as the number of friends a user has. All vertices

adjacent to a vertex v are commonly referred to as the neighborhood of v. Therefore, adjacent

vertices are often referred to as neighbors. We denote the neighbourhood of vertex v as N (v).

A subgraph is a smaller graph contained inside a graph, i.e. all of its vertices and edges can be

found in the larger graph from which it derives. We denote this as subgraph H = (VH ,EH ) ⊆
G = (V ,E) of graph G, where vertices VH ⊆ V and its edges EH ⊆ E . The notion of the k-core

of vertex v is closely related to the degree of vertex v. We will give an introduction to k-cores

later in this chapter. K-core of vertex v is denoted as k(v). Furthermore, the maximal k-core

of vertex v is known as the coreness of v. It is common to refer to vertices as nodes, and we

will use the two terms interchangeably from here on out. A table of the terminology we will

use throughout this thesis is shown in table 2.1.

Notation

Graph G G(V, E)

Number of vertices in G N

Number of edges in G M

Subgraph H of G H ⊆G

neighborhood of vertex v N(v)

degree of vertex v deg(v)

minimum degree of Graph G δ(G)

k-core of vertex v k(v)

Table 2.1: Terminology

2.2 K-cores

The notion of k-core was first described by Seidman [23], although the concept of k-degenerate

graphs was formally as early as 1970[12]. The k-degeneracy of graphs closely relates to the

concept of k-cores, as it is synonymous with the largest k-core induced on graphs. Formally

we introduce k-core as:

• Let G be a graph and H be a subgraph of G.
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• Let δ(H) denote the minimum degree of H.

• Each node in G is adjacent to at least δ(H) other nodes of H.

• If H is a maximal connected (induced) subgraph of G, with δ(H) >= k, we say that H is

a k-core of G.

We can picture k-cores as subgraphs Gk of G , where all vertices in Gk has at least k neighbors

also in Gk . A simple example of a k-core decomposition is shown in figure 2.1. Subgraph

Gk of graph G , where k = 1, is equal to graph G excluding isolated vertices(vertices with no

edges). K-cores are nested, meaning all nodes in the subgraph Gk , where δ(Gk ) >= k, are

in the subgraph Gk−1, where δ(Gk−1) >= k − 1. This follows from the definition of k-cores.

Vertex u with k-core k has at least k neighbors with k-core larger than or equal to k. Since

k > k −1, vertex u has more than k −1 neighbors with k-core at least k −1. For each node, it

is thus satisfactory to find the maximal k-core, known as the coreness of a node.

Figure 2.1: The k-core decomposition of a simple graph

2.3 Previous Work

We can find the k-core decomposition of a graph by exhaustively removing nodes with the

minimum degree. We start by removing nodes with degree equal to one and decrement ad-

jacent nodes’ degree by one. If the adjacent node’s degree becomes one after the removal

of a node, we remove this node as well and repeat until we have zero nodes with deg (1).

When the graph contains no nodes with degree equal to one, we have found the subgraph

G2, where the degree of all nodes is larger than or equal to two. We can now move on to

removing nodes with degree equal to two. We execute the same logic on our newly created

subgraph G2 and obtain G3. We continue to do this until we have removed every node from

the graph. By storing each nodes’ degree at each intermediate step, we have calculated each

nodes’ maximal k-core. A simple example of k-core decomposition is shown in figure 2.1.
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2.3.1 Smallest-last vertex ordering

An algorithm for finding a smallest-last vertex ordering was created by David Matula and

Leland Beck in 1983 [14]. Although this algorithm is not created to find the k-core decompo-

sition, the way smallest-last vertex ordering is computed gives us the k-core decomposition

as well. The algorithm is shown in Algorithm 1.

Algorithm 1 Smallest-last vertex ordering

1: function SMALLEST_LAST_VERTEX_ORDERING(Graph G = (V ,E))

2: j ← number of vertices in V

3: H ← G

4: while j > 0 do

5: v j← δ(H)

6: H ← H /{v j }

7: j ← j - 1

8: end while

9: end function

Finding the minimum degree of G (line 5) is not always trivial, and thus hurt the overall

runtime of this algorithm.

2.3.2 Cores algorithm

Another algorithm created specifically to find the k-core decomposition was created by Vladimir

Batagelj and Matjaz Zaversnik [3]. The vertices are kept in increasing order based on their de-

gree. After removing a vertex, if an adjacent vertex’s degree is updated to be smaller, reorder

accordingly. The algorithm is shown in figure 2.



8 CHAPTER 2. BACKGROUND

Algorithm 2 Cores algorithm

1: function CORES_ALGORITHM(Graph G = (V ,E))

2: Compute the degrees of vertices in V;

3: Order the set V in increasing order of degrees;

4: for all v ∈V do

5: for all u ∈ N (v) do

6: if deg(u) > deg(v) then

7: deg(u) ← deg(u) - 1;

8: reorder V accordingly;

9: end if

10: end for

11: end for

12: end function

Reordering the vertices in V (line 8) is done efficiently with bin sort. When the algorithm

terminates, the k-core of a vertex v is equal to the value stored in deg (v).

2.3.3 Locality Property

The algorithms described previously in this chapter focus on removing vertices from a graph

to compute larger and larger k-cores. In this subsection, we introduce another approach,

where each vertex calculates an estimate of its k-core by looking at its adjacent vertices. In

the paper Distributed k-Core Decomposition [17], the authors describe an approach based

on the locality property.

Formally, the locality property is introduced as:

∀u ∈V : k(u) = k if and only if:

1. There exist a subset Vk ⊆ N (u) such that |Vk | = k and ∀v ∈Vk : k(v) >= k and

2. There is no subset Vk+1 ⊆ N (u) such that |Vk+1| = k +1 and ∀v ∈Vk+1 : k(v) >= k +1

The locality property allows us to give an estimate of a vertex’s k-core based on its neigh-

bors. After each vertex has computed its estimate, new estimates can be computed based on

the previous estimates. This process is repeated until estimates converge, and every vertex

estimate corresponds to its true coreness. Since every vertex computes its k-core estimate

independently, we can easily structure the computation in parallel. Before we introduce our

own implementation, we will provide some background in parallel computing. Furthermore,
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we will introduce the computing platform the implementation of our k-core decomposition

algorithm utilizes.
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Chapter 3

Parallel Computing

From 1986 to 2002 the performance of microprocessors increased on average 50% per year [22].

With such a large increase in performance software developers were content with making

applications that executed on a single microprocessor, knowing the performance would be

substantially better in just a few years. However, this large increase in performance could not

last. When the size of microprocessors decreased, their speed could continue to increase.

However, this generates a lot of heat and air-cooled integrated circuits are reaching their

ability to dissipate this heat [7]. Making processors denser does not generate more heat, so

the solution was to fit more integrated circuits on one chip. Adding more microprocessors

does not improve the performance of most sequential programs, as it does not affect pro-

grams designed for one processor. Computing in parallel, utilizing multiple processors in

programs and applications, is required. In this chapter, we give a brief introduction to par-

allel computing, which is the nature of how GPUs function. Later in this thesis, we explain

how we can make programs executing on the GPU, and present some techniques we will use

to solve k-core decomposition.

3.1 Parallel Systems

Today most consumer grade computers support parallel execution. However, this was not

always the case. To compute in parallel we need systems that support it. Flynn’s Taxonomy

is a widely used classification scheme to classify different computer architectures[5]. It gives

us a general idea of how different systems operate when solving computational tasks. There

are four main different schemes a machine or computer may have:

• Single Instruction Stream-Single Data Stream (SISD)

• Single Instruction Stream-Multiple Data Stream (SIMD)
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• Multiple Instruction Stream-Single Data Stream (MISD)

• Multiple Instruction Stream-Multiple Data Stream (MIMD)

An Instruction Stream is the sequence of instructions performed by a machine, and a Data

Stream is the sequence of data called for by an instruction stream. Essentially the instruction

stream is what work is done by a machine, and the data stream is what the machine does the

work on.

SISD is how a standard single-core computer is structured. Being single-core simply means

having one processor. One instruction is executed at a time on one input stream.

SIMD is a parallel structure where multiple identical computations are executed on different

data. A multicore computer is structured this way, and CUDA uses a similar scheme.

MISD is an uncommon architecture. Streams are not identical, but they execute on the same

data.

MIMD has many streams, that execute independently of each other.

3.2 Computing in parallel

Programming in parallel can be done in different ways. The main idea is to divide a program’s

workload between processors, utilizing as much computational power as possible. One way

is to divide a sequential program into sections, splitting the workload of these sections be-

tween available processors. Dividing a program into sections, or tasks, and having separate

processors execute these tasks is known as task-parallelism. Another way is to divide the in-

put data. Distributing the input data between processors, where each processor execute the

same task, is known as data-parallelism.

When we compute applications in parallel, cores often depend on the execution of other

cores. They need to communicate between each other. The way cores communicate depends

on the underlying system we are making our application in. In a distributed-memory system,

cores have their private memory. When a core needs the result from another core it has to be

transmitted with send and receive functions.

Some systems offer a shared-memory structure. As the name suggests, the memory is shared

between all cores contained in the system. This eliminates the need for explicit communi-

cation, but other hazards accompany instead. When more than one process tries to access

the same memory space, they create a race condition.

Process A tries to read what Process B has computed and stored in memory space M. In

theory, the processes execute simultaneously, and A should have no problem reading the
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result from B’s computation. In practice, however, the processes do not execute at the same

time. If A makes the read-operation before B has stored its result, A reads the wrong value

from M. This creates undefined behavior in our program.

To stop race conditions from happening, we need to synchronize our processes. A synchronization-

barrier keeps processes idle while they wait for other processes to finish. It ensures that no

work is done until every process reaches the barrier. If we synchronize process A and B after

B does the store-operation and before A makes the read-operation, we eliminate the race

condition.

3.3 Graphics Processing Unit

The term Graphics Processing Unit (GPU) was first coined by NVIDIA in 1999 [15]. The GPU

was initially designed with one task in mind, to offload and accelerate 2D or 3D rendering

from the Central Processing Unit (CPU), working through the GPU pipeline[13] to visualize

data to a computer screen.

This pipeline has since been optimized, combining several steps in the pipeline together.

One key observation paved way for parallelization; Each pixel on a screen can be calculated

independently. Consequently, GPUs are designed with a focus on parallel execution.

GPUs focus on high throughput, whereas CPUs focus on low latency. Throughput is the mea-

sure of how many operations can be processed per unit of time. Latency is the amount of

time it takes for an operation to start and complete.

The demand for better and more streamlined graphics have accelerated the development

of GPUs drastically. GPUs have thus evolved to become powerful computational units, and

have been used to accelerate the progress in many fields of computer science.

Nvidia’s GPUs are manufactured with various architectures. Some are designed with op-

timal graphics for gaming in mind, while others focus on more computational power for

machine learning and deep learning [19]. All architectures are built around a scalable array

of Streaming Multiprocessors (SM). The design of SMs depends on the architecture, but the

computational power comes from the specialized CUDA-cores found in all of them.

Today, high-end CPUs have 20-28 cores [9] and consumer-grade CPUs usually cap at 8. Con-

trary, GPUs available to consumers have thousands of cores. A simple representation of a

GPU’s cores next to a CPU’s cores is shown in figure 3.1.
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Figure 3.1: CPU cores vs GPU cores
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Chapter 4

NVIDIA CUDA

NVIDIA CUDA is a general-purpose parallel computing platform that utilizes NVIDIA GPUs

to solve computational problems more efficiently than on a CPU. NVIDIA released CUDA in

2006, and it is currently in its 11th edition. It provides support to many languages such as

C/C++, Fortran, and wrappers for Java and Python. For the purposes of this thesis, we will be

using C/C++. CUDA is a heterogeneous platform, meaning the GPU and the CPU are both

utilized. Even though the GPU offers great computational power, it lacks a lot of the control

the CPU offers. We still depend on the CPU to provide relevant data for computation. In this

chapter, we give a brief overview of how CUDA functions, and how will be using the platform

and some libraries associated with it to solve k-core decomposition.

4.1 Programming Model

CUDA offers higher control over resources than conventional programming. This gives pro-

grammers more options when creating programs, but it demands greater care. In conven-

tional sequential programming we typically do not think about how memory stores and

loads are done. With CUDA, we are offered explicit control over various levels of memory.

Much of the development process of programs utilizing CUDA boils down to managing re-

sources in the form of memory.

4.1.1 CUDA Programs

When we make programs in heterogeneous systems such as CUDA, we need to manage both

the CPU side and the GPU side. In CUDA we refer to the CPU to as the host, and the GPU

as the device. These terms are used in most CUDA-functions, and we will use the terms
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interchangeably as well. A typical CUDA program is structured as follows:

1. Allocate GPU memory

2. Copy data from CPU memory to GPU memory

3. Invoke a CUDA-kernel to perform computation

4. Copy data back from GPU memory to CPU memory Destroy GPU memory

The GPU and CPU do not share their memory, which is why we need to allocate memory

to the GPU and transfer data from the CPU. Since the GPU does not offer input functions,

it depends on the CPU to provide useful data needed for computation. A CUDA-kernel is

a function that enables GPU computation from the programmer’s perspective. We will ex-

plain CUDA-kernels in detail later in this chapter. After the computation is finished on the

GPU, we transfer the result back to the CPU if needed. Similar to garbage management in

conventional C-programs, GPU memory must be freed after we are finished with it. A sim-

ple CUDA program is shown in Listing 4.1. The type of devPtr is float, but it could be any

other datatype supported by CUDA. We assume hostPtr is declared earlier in the scope,

and that it is of the same type as devPtr. The argument cudaMemcpyHostToDevice and

cudaMemcpyDeviceToHost is of the CUDA-type cudaMemcpyKind, and describes which way

we want to transfer data. The simple_kernel< < <,> > >()-function (line 9 in Listing 4.1)

is the CUDA-kernel that enables work to be done on the GPU which will be explained in de-

tail in section 4.1.2. BLOCKS is the number of blocks we wish to invoke the kernel with, and

BLOCK_SIZE is the number of threads in each block. Blocks and threads are central terms

necessary to understand how CUDA programs work, which we will explain in detail later in

this chapter.

Listing 4.1: Snippet of a simple CUDA program

int main ( )

{

. . .

f l o a t * devPtr , * hostPtr ;

cudaMalloc(&devPtr , N * s i z e o f ( f l o a t ) ;

cudaMemcpy( devPtr , hostPtr , N * s i z e o f ( f l o a t ) , cudaMemcpyHostToDevice ) ;

. . .

simple_kernel <<<BLOCKS, BLOCK_SIZE>>>(devPtr , N) ;
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. . .

cudaMemcpy( hostPtr , devPtr , N * s i z e o f ( f l o a t ) , cudaMemcpyDeviceToHost ) ;

cudaDestroy ( devPtr ) ;

. . .

}

4.1.2 CUDA Kernel

A kernel is similar to a conventional function we are used to from sequential programming.

The main difference being it is executed on the GPU. We cannot, however, call a kernel in the

same way as we would a regular function in conventional programming. As we mentioned

previously in this chapter the CPU and GPU do not share memory. Calling a kernel with

data only accessible from the CPU as an argument causes our program to crash. Before we

can do work on the GPU, data has to be explicitly transferred from the CPU to the GPU.

Additionally, kernels take some extra arguments. These arguments determine how many

blocks and threads should be executed in parallel. A thread is the execution path of the

kernel. They are divided into blocks, where each block is executed independently of others.

Furthermore, these blocks are divided into a grid, which contains all threads launched by a

kernel. Each thread in a kernel has an identical execution path but handles different parts of

the input data.

4.1.3 Thread Hierarchy

To understand how Nvidia’s GPUs execute in parallel, we need to understand what happens

when we invoke a kernel. The arguments we give inside the brackets of a kernel-call lets

the GPU know how many threads should be invoked. These threads are organized in a grid-

structure as shown in figure 4.1. A grid represents a kernel-launch, and its size depends on

the arguments given for the launch. The grid is divided into blocks, where the threads are

contained. Threads are executed in a warp, a collection of 32 threads. A lot of the resource

optimizations are based around warps. It is always a good idea to divide work into warps,

as failing to do so keeps threads idle. Threads that are idle do no work, while also keeping

resources occupied for other threads. Therefore, it is common practice to divide blocks into

multiplicands of 32.
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Figure 4.1: Thread Hierarchy, Reprinted from[18]

4.1.4 Memory Hierarchy

When we compute on the GPU, we have to manage resources more carefully than we would

computing on the CPU. We do not think about memory stores and loads when writing CPU

code, this is managed by the Operating System automatically. For GPUs, we do not have an

operating system to do this for us. Programmers have to manage memory themselves, which

adds another layer to coding. This can be challenging for beginners, but it can be a useful

tool when we seek to optimize our programs’ performance.

At the top level, we have the global memory. It has a lot of space, but low throughput. On

block-level, we have shared memory which is comparable to the CPU’s cache. It is smaller

than the global memory but has much better throughput. Additionally, each thread has its

own local memory that is much smaller but provides the best throughput.

The GPU’s memory is organized in a hierarchy as shown in figure 4.2.

The CPU and GPU do not share memory. This means all input data has to be transferred

from the CPU to the GPU, as the GPU does not support user input. Initially, all data is

stored in global memory. Firstly, we have to allocate the memory needed on the GPU, simi-

lar to the malloc() function used in C. The function CUDA provides for this is simply called

cudaMalloc(). From a programmers perspective, it is the exact same thing as malloc()
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from C. Then, data has to be explicitly transferred from the CPU to the GPU.

Figure 4.2: Memory Hierarchy, Reprinted from[18]

4.2 Libraries

In most programming languages many tools exist to help programmers implement fast and

reliable code. Nvidia CUDA is no exception. To help speed up the process, and make our im-

plementation more reliable, we have made use of some functions from external and internal

libraries.

4.2.1 Thrust

Thrust was originally created by Jared Hoberock and Nathan Bell [8]. It has since evolved

to be integrated into the CUDA toolkit, even though it was not specifically made for CUDA.
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In addition to CUDA, Thrust provides overhead to numerous parallel frameworks such as

OpenMP and TBB. The functions we will be using from this library is inclusive_scan()

and max_element(). Intuitively, max_element() finds the max element from a sequence of

numbers. An inclusive scan is executed over a sequence of numbers, known as an array of

numbers in computer science. For each position, p in an array A, add each number from

previous positions of A to the number at position p. So, for position pi we have pi +pi−1 +
pi−2 + ...p0 assuming no other positions have been computed.

In figure 4.3

1 2 3 4 5

1 3 6 10 15

Figure 4.3: Simple example of inclusive sum

4.2.2 CUB

CUB stands for CUDA UnBound and was created by Duane Merrill [16]. Contrary to Thrust,

CUB is only optimized for CUDA C++. The functions we will be using from CUB is found in

the classes BlockScan() and BlockReduce(). From the class BlockScan() we will be using

inclusive_sum(), and from the class BlockReduce() we will be using reduce() and max().

These classes function on the block level, meaning they dedicate an entire thread block for

execution.



20

Chapter 5

K-Core Decomposition

In this chapter, we present an algorithm for creating a k-core decomposition of undirected

graphs. We parallelize this algorithm utilizing the Nvidia CUDA platform for heterogenous

programming.

5.1 Our algorithm

Our algorithm is based on the graph property of locality, the neighborhood of vertices. By

looking at nodes’ adjacent k-cores, we can determine what k-core we have support for. We

start by initializing every node’s k-core to be equal to its degree. Node u is part of k-core Gk

when u has at least k adjacent nodes with k-core larger or equal to k. We can count how many

of the adjacent nodes have k-core larger than or equal to k, and if we count k or more nodes

we know node u is in Gk . If we count less than k, u is not part of Gk . When this happens

we need to update the k-core of u. The easiest way is to set k equal to k-1 and repeat the

count with k-1 as our threshold. However, this potentially leads to extra steps, as we may

need to reduce the k-core significantly more than 1. Therefore, we use a more efficient way

of determining our next iteration of node u’s k-core.

We know that the next iteration of the k-core of node u cannot be larger than our previous k.

This means it has to be somewhere between our current iteration of k and the arbitrary case

of 1. Instead of counting just the adjacent k-cores larger than or equal to k, we count how

many we have of each adjacent k-core. By doing this we can determine which k-core node u

has support for.

To find the next iteration of the k-core we utilize buckets in the form of a histogram. Each

bucket, or column in the histogram, represents a number between k and 1. If an adjacent

nodes’ k-core kad j is larger than or equal to k, add one to the first column. If kad j = k − 1
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add one to the second column, if kad j = k −2 add one to the third, and so on. We now have

buckets where their size corresponds to the number of adjacent k-cores, but this does not

tell us which k-cores node u is part of. As with the case of having k or more nodes with k-

core larger than or equal to k, we know buckets with size larger than or equal to the k-core

it represents is supported. However, each bucket represents only one specific k-core, and

not the k-cores larger. These k-cores also provide support. Because subgraphs of k-cores are

nested, any node in k-core Gk is in Gk ′ where k ′ is any k-core smaller than k.

As an example, bucket 5 represent k-core k −5, but has size c where c < k −5. By our logic

k-core k −5 is not supported. However, lets say bucket 4, representing k-core k −4, has size

k−5. This is not enough to provide support for k-core k−4, as k−4 > k−5, but we have k−5

nodes with k-core equal to k −4. Since k −5+c >= k −5, we have enough support for k-core

k −5.

To account for this we add the size of every bucket representing a larger k-core into buckets

representing smaller k-cores. This procedure of adding values is known as inclusive sum.

To find the largest supported k-core of node u, we need to find the bucket representing the

largest k-core providing support. The easiest way to do this is with a standard linear search,

where we compare the size of a bucket to the k-core it represents starting from the largest to

smallest. The first bucket we find where the size of it is larger than the k-core it represents will

be our next iteration of k. Linear search is by no means optimal, as the similar binary search

operates much faster. However, in a parallel setting searching it is best to use a reduction-

function, which we will explain in an upcoming section.

Algorithm 3 Create a histogram

1: function MAKE_BUCKETS(node v)

2: bins ← array with size k(v)

3: for all u ∈ N (v) do

4: adj_core ← k(u)

5: if adj_core > k(v) then

6: adj_core ← k(v)

7: end if

8: bins[k(v) - adj_core] ← bins[k(v) - adj_core] + 1

9: end for

10: end function

In figure 5.1 node v has k-core k = 10. The number inside its adjacent nodes represent their

respective current k-core estimate.
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Figure 5.1: Neighborhood of vertex v

Figure 5.2: Result of make_buckets

Now that we have made a histogram of the adjacent k-cores of v, we can calculate the largest

possible k we can support. We know any k-core larger than or equal to k, provides support

for it. Furthermore, our histogram is sorted with the largest k-cores first, meaning any k from

a previous position provides support. To account for this we can do an inclusive sum over

the array. In an inclusive sum algorithm over array A, we add the sum from each previous

position into the current position.



5.1. OUR ALGORITHM 23

Figure 5.3: Result of the inclusive sum

When the inclusive sum algorithm is finished, we have an array with values in increasing

order. Now we need to determine the largest k-core that has support using this array. We

can determine this with an observation. Observe that the indexes of the array correspond

to the k-core values between our old k-core and zero. Furthermore, each value at the index

corresponds to the number of adjacent nodes that provide support. Keep in mind we flipped

the position of our k-cores, which means at index i = 0 we have the previous k-core k, at index

i = 1 we have k −1 and so on. This means the value v ∈ A at position i provides support for

the k-core k − i . In our example above the value v at index i = 5 is 9, which means we have

9 adjacent nodes that has k-core either larger than or equal to k − 5 = 5. Therefore, k-core

5 is supported. We see that any k − i <= v is a supported k-core. The largest knew , where

knew = k − i <= v , is the largest supported k-core and the next iteration of node v’s k-core.

Algorithm 4 Find the next k-core of a node

1: function NEXT_K-CORE(bucket B)

2: k-core ← |size of B| - 1

3: for all value v ∈ B do

4: if v >= k-core then

5: return v

6: end if

7: k-core ← k-core - 1

8: end for

9: end function

Figure 5.4 shows the k-core estimates v is part of. We are interested in the largest one, which

is 7 in this case.

Putting the procedures together, we get Algorithm 5.
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Figure 5.4: Possible K-cores of v

Algorithm 5 Next iteration of k-cores in Graph G

1: function DECOMPOSITION(Graph G = (V ,E))

2: for all node v ∈ V do

3: buckets ← make_buckets(v) (Algorithm 3)

4: buckets ← inclusive_sum

5: k(v) ← next_k-core(buckets (Algorithm 4)

6: end for

7: end function

Unfortunately, running algorithm 5 once will not provide the correct k-core decomposition.

When updating a node’s k-core, the support it provided for its adjacent nodes is no longer

there. In the figure 5.1 this means every adjacent vertex u with of vertex v with deg (u) > 7, no

longer has the support of v. Furthermore, we cannot guarantee any of the supportive nodes

in N (v) updates to a lesser k-core in the same iteration. When this happens for enough nodes

in N (v), v ′s current k-core will no longer be supported and need to update its k-core again.

We ensure correctness by running the algorithm until none of the nodes in the graph updates

its k-core as shown in Algorithm 6. When the algorithm completes, i.e. all nodes in G have

converged, the coreness is found for all nodes.



5.1. OUR ALGORITHM 25

Algorithm 6 k-core decomposition of Graph G

1: function K-CORE_DECOMPOSITION(Graph G = (V ,E))

2: update ← true

3: while update do

4: update ← false

5: for all node v ∈ V do

6: prev_k ← k(v)

7: buckets ← make_buckets(v) (Algorithm 3)

8: buckets ← inclusive_sum

9: k(v) ← next_k-core(buckets (Algorithm 4)

10: if prev_k > k(v) then

11: update ← true

12: end if

13: end for

14: end while

15: end function

5.1.1 Extended with CUDA

When computing in parallel it is necessary to think about our problem differently. Not only

do we need to solve our problem, we also need to utilize as much of the available resources

as possible. Neglecting to do this means losing out of potential huge time saves.

One approach to solving the k-core decomposition with CUDA is to dedicate an entire thread

block to each vertex. As shown in algorithm 7, we run a kernel with N blocks (recall that N

represents the number of vertices in a graph) where each block has 128 threads until update

become false. When the value update is false none all vertices in graph G have converged to

their coreness.
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Algorithm 7 K-core decomposition host side

1: function K_CORE_DECOMPOSITION(Graph G = (V ,E))

2: Gd ← graph G on device

3: N ← number of vertices in G

4: update ← true

5: updated← update on device

6: while update do

7: next_k_core_estimates< < <N, 128> > >(Gd , updated)

8: update ← updated

9: end while

10: G ← Gd

11: end function

The device side of a kernel demonstrating this is shown in algorithm 8. Buckets (line 7 of

algorithm 8) is a shared array. A shared variable is stored at the block level, described in chap-

ter 4.1.4. This means every thread contained in the block can access it. From line 9 to line 18

functions in the same way as described in algorithm 3. However, an added variable called

limit is sometimes needed. When the k-core estimate of vertex v is larger than 128, the pur-

pose limit is to place k-cores of adjacent vertices in the interval [0,127], which corresponds

the indexes of buckets. This is required as the block primitives, described in chapter 4.2.2,

utilizes exactly the number of threads in a block for execution. We calculate the limit for a

vertex v with the formula:

l i mi t =
⌊

k(v)

128

⌋
∗128−1.

The rest of algorithm 8 mimics algorithm 5.
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Algorithm 8 Calculating next k-core estimate on device

1: function NEXT_K_CORE(Graph G = (V ,E), update)

2: block_id ← unique ID of a block

3: block_sz ← 128

4: node v ← V(block_id)

5: prev_k ← k(v)

6: thread_id ← unique ID of a thread

7: buckets[] ← shared array of size block_sz

8: limit ← threshold for interval

9: while thread_id < |N(v)| do

10: if k(thread_id) >= limit + (block_sz - 1) then

11: buckets[0] ← buckets[0] + 1

12: else if k(thread_id) <= limit then

13: buckets[(block_sz - 1)] ← buckets[(block_sz - 1)] + 1

14: else

15: buckets[k(thread_id) - limit] ← buckets[k(thread_id) - limit] + 1

16: end if

17: thread_id ← thread_id + block_sz

18: end while

19: buckets ← inclusive_sum(buckets)

20: supported_k ← 128 - thread_id + limit

21: if buckets[thread_id] >= supported_k then

22: next_k ← supported_k

23: else

24: next_k ← 0

25: end if

26: max_supported_k ← BlockReduce(next_k, max())

27: if max_supported_k < prev_k then

28: update ← true

29: k(v) ← max_supported_k

30: end if

31: end function

In algorithm 8, we dedicate 128 threads to each vertex in a graph. However, in many real-

world graphs vertices have a wide variety of degrees. In the graphs examined in chapter 6

some vertices have many neighbors, while some vertices have few neighbors. This means

a vertex v with deg (v) < 128 will have idle threads, threads that do nothing while occupy-



28 CHAPTER 5. K-CORE DECOMPOSITION

ing resources. When computing in parallel we wish to achieve load balancing, every thread

should do roughly the same amount of work. One possible solution is to execute our ker-

nel with less than 128 threads, for example, 32 threads. This means vertices with degree less

than 32 have idle threads. To keep all threads from idling, we would have to launch our ker-

nel with 1 thread per block. While this is feasible, it is not the most efficient approach. Each

streaming multiprocessor on the device executes one warp, 32 threads, in parallel, meaning

we lose out on performance anyway.

Instead, we work towards load balancing by partitioning the vertices in a graph based on

their degree. Each partitioned group of vertices is executed on a separate kernel, tuned to the

degrees of the vertices. The interval for which vertices are partitioned is shown in table 5.1.

Vertices placed in singles have deg (v) = 1, vertices placed in tiny have 2 <= deg (v) <= 7,

vertices placed in half_warp have 8 <= deg (v) <= 31 and so on.

Partition degree interval

singles 1

tiny 2, 7

half_warp 8, 15

one_warp 16, 31

two_warp 32, 63

four_warp 64, 127

eight_warp 128, 255

large 256 , maxDegree

Table 5.1: Partitioning of vertices based on degree

The single partition is ignored in the algorithm, as these vertices have achieved their core-

ness of 1. For partitions of vertices with small degree, we dedicate one thread block to multi-

ple nodes. For partitions of vertices with large degree, we dedicate one thread block to each

vertex. Each kernel performs the same as the kernel described in algorithm 8, but are tuned

towards the degrees found in the partitions. Algorithm 9 shows how kernels are invoked on

the CPU.
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Algorithm 9 K-core decomposition host side

1: function K_CORE_DECOMPOSITION(Graph G = (V ,E))

2: G ← partitioned into intervals described in table 5.1

3: Gd ← graph G on device

4: update ← true

5: update[] ← array of updates on device for each partition group

6: while update do

7: tiny_k_core_estimates< < <TINY_BLOCK_SIZE, 1024> > >(Gd , update[0])

8: half_warp_k_core_estimates< < <HALF_WARP_BLOCK_SIZE, 1024> > >(Gd , update[1])

9: one_warp_k_core_estimates< < <ONE_WARP_BLOCK_SIZE, 1024> > >(Gd , update[2])

10: two_warp_k_core_estimates< < <|two_warp|, 32> > >(Gd , update[3])

11: four_warp_k_core_estimates< < <|four_warp|, 64> > >(Gd , update[4])

12: eight_warp_k_core_estimates< < <|eight_warp|, 128> > >(Gd , update[5])

13: large_k_core_estimates< < <|large|, 256> > >(Gd , update[6])

14: if any val ∈ update[] = true then

15: update ← true

16: else

17: update ← false

18: end if

19: end while

20: G ← Gd

21: end function
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Chapter 6

Results

In this chapter, we present the processing time achieved from our k-core decomposition

algorithm. We examine the run time of our kernels and discuss why some perform better

than others. Furthermore, we compare how the overall run time of our parallel algorithm

compares to sequential algorithms for solving k-core decomposition.

6.1 Hardware Used

NVIDIA Tesla V100 [21] was the GPU used to achieve the execution times presented. Tesla

V100 offers the performance of up to 100 CPUs, enabling computing challenges once thought

impossible. This GPU is built with the Volta architecture [20]. It is one of world’s most ad-

vanced data center GPUs ever built to accelerate Artificial Intelligence(AI), High-Performance

computing(HPC), and graphics.

6.2 Graphs

All the graphs we use to analyze are undirected and unweighted. Making a correct algorithm

for other types of graphs require a bit more care, but the overall idea stays the same. For this

reason we have chosen to keep graphs simple, focusing instead on optimizing the runtime

of kernels. The graphs used to examine the runtime of our implementation can be found at

Stanford network analysis project [11].
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Nodes Edges highest degree

Facebook-combined 4039 88 234 1045

As-skitter 1 696 415 11 095 298 35 455

Wiki-topcats 1 791 489 28 511 807 238 607

Table 6.1: Overview of graphs used to examine runtimes

6.3 Timing method

We have chosen to ignore the time taken to transfer data from the CPU to the GPU, and in-

stead focus on the kernel runtimes. The time taken to transfer data is by no means uninter-

esting, but most of the speedup of implementations can be achieved by optimizing kernels.

We also present each kernel’s runtime and some information of intermediate steps. The con-

figuration of kernels is explained in chapter 5.1.1, where each kernel execute on one partition

group.

6.4 Execution times

6.4.1 Total runtimes

Table 6.2 shows the combined runtime of all kernels for each graph. Iterations represent the

number of estimates were needed until all vertices converged to their coreness. Note that

runtimes are presented in milliseconds.

Graph Iterations Runtime in

ms

facebook-

combined

18 1.48

as-skitter 39 38.8

wiki-topcats 62 156.8

Table 6.2: Parallel algorithm with CUDA

Table 6.3 shows the runtime of the comparable sequential algorithm described in chap-

ter 5.1. Iterations represent the number of estimates that were needed until all vertices con-

verged to their coreness. Note that runtimes are presented in milliseconds.
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Graph Iterations Runtime in

ms

facebook-

combined

12 12.20

as-skitter 34 5652.10

wiki-topcats 52 18 346.90

Table 6.3: Comparable sequential algorithm

Table 6.4 shows the runtime of a faster sequential algorithm based on ideas described in

chapter 2. Note that runtimes are presented in milliseconds.

Graph Runtime in

ms

facebook-

combined

2.44

as-skitter 958.13

wiki-topcats 2 186.65

Table 6.4: Fast sequential algorithm

Table 6.5 shows the speedup achieved with the parallel algorithm compared to the sequen-

tial algorithms. Speedup Comparable is the speedup versus a comparable sequential algo-

rithm, Speedup Fast is the speedup compared to a faster sequential algorithm. The speedup

is calculated with the formula speedup = r unti meseq /r unti mepar . So, if r unti meseq =
1000ms and r unti mepar = 100ms we have speedup = 1000ms/100ms = 10, which means

the runtime of the parallel execution is ten times faster compared to the sequential execu-

tion.

Graph Speedup Comparable Speedup Fast

facebook-

combined

8.24 1.65

as-skitter 145.67 24.69

wiki-topcats 117.01 13.95

Table 6.5: Speedup Parallel vs Sequential
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6.4.2 Kernel runtimes

For each of the following tables Kernel represent kernels tuned to the partitions as explained

in chapter 5.1.1. Nodes is the number of vertices in a partition group, Iterations are the num-

ber of estimates of k-cores in a partition group until all vertices have converged to coreness.

Note that runtimes are presented in milliseconds.

Kernel Nodes Iterations Runtime in ms

tiny 579 3 0.16

half 741 7 0.17

one 907 18 0.18

two 835 18 0.16

four 597 17 0.16

eight 298 16 0.16

large 7 16 0.16

Table 6.6: Runtime of each kernel for facebook-combined

Kernel Nodes Iterations Runtime in ms

tiny 903 193 9 8.30

half 318 795 17 7.20

one 149 829 17 8.90

two 68 987 18 4.70

four 21 819 37 2.10

eight 9364 39 1.63

large 6029 38 5.35

Table 6.7: Runtime of each kernel for as-skitter

Kernel Nodes Iterations Runtime in ms

tiny 489 255 24 7.95

half 527 400 19 18.65

one 412 126 20 37.25

two 214 803 28 21.35

four 90 646 61 12.25

eight 35 922 62 9.23

large 21 337 62 52.60

Table 6.8: Runtime of each kernel for wiki-topcats
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6.5 Discussion

From the runtimes of kernels obtained in section 6.4.2 we notice a considerable discrepancy

of runtimes in the graphs as-skitter and wiki-topcats. There seems to be no correlation be-

tween the number of k-core estimates and runtimes. This can easily be explained. The k-core

estimates needed for all vertices in a partition group to achieve coreness do not represent the

number of computations performed. We cannot guarantee that k-core estimates of a parti-

tion group are influenced by vertices in other groups. Indeed, we found some partition group

that had seemingly converged needing updates in the next iteration. The runtimes of kernels

for facebook-combined are too similar to draw any conclusion from.

The speedup obtained in section 6.4.1 is decent for the parallel execution. Not surprisingly,

the parallel algorithm is much faster than the comparable algorithm in sequential. It is also

faster than the fast approach in sequential, albeit not as considerably. However, the speedup

is smaller for the graph wiki-topcats compared to the graph as-skitter even though it is larger.

This could be explained by the number of iterations needed. Furthermore, the large kernel

has noticeably worse runtime compared to other kernels for the wiki-topcats. For the graph

as-skitter this is not the case. This can be explained by the number of vertices in the parti-

tioning of large, as well as the considerably higher max degree of wiki-topcats (238 607) com-

pared to as-skitter (35 455). It seems the highest degree of a graph has a larger impact on the

implementation in parallel compared to sequential. This can be explained by the number of

estimates needed before large k-cores converge. During each step, we iterate through each

adjacent node of a node v, meaning a substantially higher amount of iterations is needed for

wiki-topcats compared to as-skitter.
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Chapter 7

Conclusion

The purpose of this thesis was to explore how an algorithm based on the locality-property,

neighborhood of vertices, could perform in parallel with Nvidia CUDA. The algorithm we

implemented did not necessarily intend to be the fastest available, but the nature of its ex-

ecution suits a parallel approach well. The recursively exhaustive algorithm [3] performs

excellently in general, but it does not translate well to parallel execution. For some values of

k-core k, we may need to remove only a few vertices. When we compute for these values, a

lot of the resources of parallel systems are left unused.

The idea behind our approach was to keep threads from idling, thus utilizing resources more

efficiently. When we compute based on the locality, we can calculate every node simultane-

ously. We can do this because each node computes independently of the others. Each vertex

depends on the k-core of adjacent ones, but for each intermediate step, it is sufficient to use

the previous k-core. Furthermore, race conditions work in the algorithms favor. Some itera-

tions of node u may be skipped if some of its adjacent nodes calculate their new k-core faster,

thus influencing the result of the computation of k(u). This does not produce an incorrect

result, as this computation would have taken place in the next iteration either way.

From the results obtained in this thesis, we found the parallel algorithm to be much faster

than the sequential one. However, managing resources proved to be difficult even with our

approach. For some intermediate iterations, especially as it approaches finished, only a few

nodes’ k-core is computed. This is natural as nodes with smaller degree reach their maxi-

mum k-core in fewer iterations than nodes with a larger degree.
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7.1 Further Work

Treating the algorithm presented in this thesis as an approximation algorithm, could yield

interesting results. Rather than focusing on a correct result, we could sacrifice accuracy for

performance. We could extend the implementation to larger data sets, too large to fit on one

disk. The nature of the algorithm supports localized execution on graphs.

Another approach is to combine algorithm techniques to potentially improve execution times.

Instead of an algorithm tailored purely towards the locality property, we could use the ex-

haustive approach discussed in chapter 2 to preprocess graphs.
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