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Abstract. Opinion aggregators�such as `like' or `retweet' counters�are
ubiquitous on social media platforms and often treated as implicit quality
evaluations of the entry liked or retweeted, with higher counts indicating
higher quality. Many such aggregators are poor quality evaluators as they
allow disruptions of the conditions for positive wisdom-of-the-crowds ef-
fects. This paper proposes a design of theoretically justi�ed aggregators
that improve judgment reliability. Interpreting states of di�usion pro-
cesses on social networks as implicit voting scenarios, we specify proce-
dures for isolating sets of independent voters in order to use jury theo-
rems to quantify the reliability of network states as quality evaluators.
As real-world networks tend to grow very large and independence tests
are computationally expensive, a primary goal is to limit the number of
such tests. We consider �ve procedures, each trading a degree of relia-
bility for e�ciency, the most e�cient requiring a low-degree polynomial
number of tests.

1 Introduction

Web2.0 introduced the possibility for internet consumers to also become content
creators [6]. This change led to an unprecedented amount of information being
shared online, but also to a deterioration in the quality control of the information
that is being shared. In some areas, such as medicine, the quality of the infor-
mation online has been a now long-standing concern (e.g., [7, 11]), leading to
the development of a code of conduct and certi�cation standards [12]. Recently,
we are witnessing the problem of low quality or even damaging content spread-
ing in many areas, with the problem of so-called �fake news� being particularly
worrisome [14,18].

With the content quality problem being an all-topic concerning issue, the
challenge is to �nd a way to automatically separate the reliable content from bad
quality, unreliable, o�ensive and even illegal content. As a possible improvement
of the current situation, here we propose that a good use of the consumers'
behavior can help ascertain the quality of a post.

A ubiquitous feature of social media platforms is the ability of users to di-
rectly express their impressions and opinions about media content making its



rounds on the platform. Beyond the option of reporting content for violations of
law or community standards, there are three main, widely available channels for
such expressions. One is by reaction buttons such as Twitter and Instagram's
♥ buttons, Reddit or YouTube's up- and downvotes, or Facebook's six choices
of emoticons. The second is by textual reply, such as Twitter's reply option or
Facebook's comments. The third, and the focus of this paper, is by sharing the
content with one's social network, as e.g. by Twitter's retweet option.

In this paper, we assume that the aforementioned �judgment� expressions�and
especially the decision on whether to further propagate content through shar-
ing�may be seen as quality signi�ers, while remaining aware that this is not
necessarily always the case in social media, where an upvote may be a herding
reaction [19] and sharing (or not) may be in�uenced more by emotional response
than by sound quality judgment [5].

Interpreting decisions to share or not as quality signi�ers, we aim to design
procedures which aggregate such judgment expressions into a reliable collective
quality judgment through majority rule. Yet, a collection of judgment expressions
is not su�cient to provide a good and reliable collective judgment. Some users
may not be competent at ascertaining content quality, if for no other reason than
by not being human [10]. Even when judgment expressions are from competent
users, the majority verdict cannot simply be taken as a theoretically sound qual-
ity assessment: due to herding e�ects or the mimicking of salient users, in�uenced
signals may stop carrying information about a competent quality judgment but
opaquely repeat already accounted for signals. Such dependencies between judg-
ments invalidate the premises of the Condorcet Jury Theorem [8] and its many
generalizations (e.g., [4, 13, 17, 20]) and thus disrupt the theoretical foundations
of positive wisdom-of-the-crowds e�ects. When dependent signals are present,
majority polling can no longer be trusted to reach the correct evaluation with
high probability. To reestablish the positive wisdom-of-the-crowds e�ects of jury
theorems, a main focus of the paper is on the identi�cation of sets of independent
users, whose majority vote may be trusted to be correct with high probability.

Our main contribution is the new approach to providing a quality evaluation
of a post, given the current state of a di�usion process of the post in a social
network. We suggest to obtain quality evaluations by considering a subset (the
jury) of agents that have been exposed to the post through its di�usion in the
network. The majority vote in the jury together with its correctness probability
then constitutes the quality evaluation of the post (Sec. 3). How to select a
jury among all agents exposed to the post is the main consideration of the
paper. For simple jury theorems to apply (Sec. 3), the jury must be independent.
Independence may be established statistically (Sec. 4), given a presumed set of
di�usion processes serving as background data (Sec. 2). Yet, independence tests
are computationally expensive: as real-world networks tend to grow large, the
number of tests required to �nd a satisfactory jury should ideally be minimized
for e�ciency. In Sec. 5, we consider �ve jury selection procedures, each trading
a degree of reliability for e�ciency, and analyze the number of required tests of



each of them, ranging from being exponential in the size of the set of exposed
agents to being low-degree polynomial.

In designing the procedures, we need to make several choices regarding our
priorities. Ideally, we desire a quality evaluation procedure that i) is theoretically
justi�able, ii) is computationally e�cient, iii) uses only data endogenous to the
social network on which it is implemented, and iv) is conservative in its estimates,
so that in choosing between two evils, we rather want a measure overly cautious
with respect to estimating an entry as high quality than vice versa. The last
point entails that we rather ignore the voice of a juror that might be bene�cial
than include the vote of a juror that may be misleading. Finally, in this paper,
we prioritize i) over ii), retaining the use of expensive independence tests. We
hope future work on such problems will improve e�ciency.

2 Social Networks and Di�usion

A social network is speci�ed by a set of links N ⊆ A2 connecting �nitely many
agents A. We interpret (a, b) ∈ N to mean that a sees the content shared by b.
Let N(a) = {b ∈ A : (a, b) ∈ N}. We assume no properties of N .

In the following, each network N is associated with a topic, identi�ed with
a set of entries E = {e1, e2, ...}. We think of N as used by the agents to discuss
the topic E with the desire to evaluate the quality of each entry. We assume that
entries bear an objective quality, or truth value, given by an exogenous quality
valuation V : E → {⊥,>}, unknown to the agents. We interpret agents as
casting votes on the quality of each entry. Given an entry, >a is the event that
agent a votes for the entry being of high quality, and ⊥a that a votes for it
being of low quality. As it is common in jury theorems, under the assumption
of independence, each agent a ∈ A is assumed to have the same individual
correctness probability c ∈ [0, 1] in their assessment, formally expressed in
terms of the following conditional probabilities: ∀a ∈ A,

p(>a | >) = p(⊥a | ⊥) = c = 1− p(>a | ⊥) = 1− p(⊥a | >).

Remark 1. The homogeneous correctness probability is a fundamental assump-
tion for the jury theorem applied throughout, and deserves comment. First, we
use homogeneous correctness probabilities for simplicity: jury theorems hetero-
geneous correctness probabilities also exist�see e.g. [13]. The procedures intro-
duced below assume knowledge of the correctness probability of the individu-
als, and that this correctness probability is homogeneous for all users. In this
respect, we remark that knowledge of the correctness probability c may be ob-
tained through lab experiments where single individuals are tested in isolation
and separately from the network interaction, just as individual utility functions
in economics are elicited through lab tests, separately from interactive game-
theoretic scenarios (see e.g. [21]). This would provide the aforementioned as-
sumptions with testable behavioral foundations. The details of this process are
outside of the scope of this work.



To describe the information �ow through the network, de�ne a state s ofN as
a pair (e, Li) with e an entry and Li : A → {S, R, U} a labeling map. Throughout,
let Si := L−1i (S), Ri := L−1i (R) and Ui := L−1i (U). Agents in Si have chosen to
share e, those in Ri have been reached by e (e.g., by having a neighbor in Si), and
agents in Ui are unreached by e. An initial state s0 = (e, L0) satis�es S0 = ∅.
A state si = (e, Li) can then transition to state sj = (e′, Lj) if and only if

1. e′ = e
2. Si ⊆ Sj and Sj\Si ⊆ Ri

3. Rj = (Ri\Sj) ∪ {a ∈ Ui : ∃b ∈ Sj and b ∈ N(a)}
4. Uj = Ui\Rj

I.e.: 1. the entry stays �xed, 2. agents never un-share and only reached agents
can start sharing, 3. sharing agents stop being reached, but agents with a shar-
ing neighbor become reached, and 4. else agents remain unreached.

A di�usion process is a sequence of states d = s0, s1, ... such that i) s0
is initial, ii) all other states are transitions from the previous state, and iii) if
sk = sk+1, then sk = sk+n for all n ∈ N. These transition rules ensure that any
di�usion process reaches a �xpoint sk with sk = sk+n for all n ∈ N, called the
terminal state of d.

Proposition 2. For any network N , for any initial state s0, any di�usion pro-

cess d = s0, s1, ... reaches a �xpoint.

Proof. For any two states sk = (e, Lk), sk+1 = (e, Lk+1) for which sk can tran-
sition to sk+1, points 2. and 4. of ensure that Sk ⊆ Sk+1 and Uk+1 ⊆ Uk. Hence
the proposition follows as N is �nite.

We interpret a state in a di�usion process as an implicit, possibly partial,
cast of votes. For a state sn = (e, Ln), n ≥ 1, we take the set of agents that have
voted on the quality of e to be the jury Jn = Rn−1 ∪Sn at time n. The jury Jn
does not include newly reached agents Rn\(Rn−1∪Sn) as they have not yet had
the opportunity to choose whether to share or not. The jury Jn gives rise to a
voting pro�le (va)a∈Jn

with va = ⊥a if a ∈ Rn and va = >a if a ∈ Sn. Hence,
the agents that have been reached in previous states but have not shared vote
for the low quality of e, while those that have shared vote for the high quality.
Agents in Un are excluded from the jury: unexposed to e, they have not had
the chance to share. We use lower-case j's to refer to jury cardinality, such that
j = |J |, jn = |Jn|, etc., for J, Jn given by context. We assume di�usion processes
are observed, so we know the progress of each entry.

The model makes at least the following idealized assumptions: All agents i)
pay attention to all entries that reach them, and ii) to the best of their ability
decide to share or not to with the only aim of proliferating high quality content.
For i), moving agents from U to R could be done based on logged screen activity,
as social media users may not always pay attention to all content shared by
neighbors. The approach suggested here is not apt to extract reliable information
if one does not assume ii).



3 Voting and a Jury Theorem

Jury theorems provide a mathematical argument for larger groups being ben-
e�cial in collective decision making. Under some assumptions on correctness
probability (c > 1/2) and on independence of the voters, the majority vote
in larger groups is probabilistically more accurate than in smaller groups (see
e.g. [2, 3, 13]). Accepting social network di�usions as implicit voting scenarios
and aiming to extract information on the quality of the entries, jury theorems
thus constitute a natural basis for the selection of informative juries.

Given a quality evaluation V (e) and a voting pro�le (va)a∈J , for conciseness
we write va = 1 if agent a's vote is correct about e (i.e., if V (e) = > and va = >a,
or V (e) = ⊥ and va = ⊥a), and va = 0 otherwise. For a state s with jury J , the
majority vote is whichever of ⊥ and > that gets more votes (or, in case of a tie,
either ⊥ or > is chosen by a fair coin toss). The majority vote of voting pro�le
(va)a∈J on entry e is correct if it coincides with the quality valuation V (e).

At a state s, if all j jurors in J vote independently, the probability that the
majority vote is correct is given by M(j) below, where the �rst term captures
the tie-breaking rule, and the second is the probability of correctness of a strict
majority.

M(j) =
`

2

(
j
j
2

)
c

j
2 (1− c)

j
2 +

j∑
k=mj

(
j

k

)
ck(1− c)j−k

with ` = 0 and mj = (j+1)/2 for j odd, and ` = 1 and mj = j/2+1 for j even.
The simplest jury theorems, to which we stick here, concern the probability

that a group makes the correct decision under majority rule. One statement
of the classic Condorcet Jury Theorem is: if c > 1/2 and all jurors vote
independently, then

1. the probability of a correct majority vote goes to one as the jury size goes
to in�nity: limj→∞M(j) = 1.

2. the probability of a correct majority vote increases under the addition of two
jurors: for j + j′ with j′ = (0 mod 2), M(j) < M(j + j′).

Points 1 and 2 are sometimes referred to as the asymptotic and the non-asymptotic

part of the theorem, respectively, with the former possibly taken to show that
huge groups are infallible, while the latter shows that larger groups are better
truth-trackers than small ones [9]. Note that the addition of two jurors is essen-
tial in the non-asymptotic part: moving from an odd to an even jury by adding
a single juror may cause a drop in the probability of correctness due to the tie-
breaking rule. As customary, in the following we simplify matters by limiting
attention to juries of odd size.

Similar jury theorems also exist for juries which exhibit patterns of depen-
dence and correlation among the voters (see [4,15,20]). Using independent juries
for quality assessments may thus cause an information loss: an independent set
of jurors can possibly be extended by the addition of dependent jurors while im-
proving the majority vote precision. An alternative to our approach of seeking



independent juries is thus to look for juries that exhibit patterns of correlation
which do not negatively a�ect the majority correctness probability. However, the
approaches of [4] and [15] requires to calculate the majority correctness prob-
ability by an expression exponential in jury size (The results of [20] are not
applicable, being for the asymptotic case.) For this reason, we here make use
of the simpler jury theorem requiring independent juries and suggest to use the
majority vote of an independent jury as quality evaluation, presented together
with its correctness probability.

4 Assessing Independence

Given a set of voters, whether their votes are independent and therefore war-
rant an application of the Condorcet Jury Theorem is an unobservable empirical
matter. On this matter, we cannot supply a theoretical guarantee, but only hy-
pothesize from other observables. One could hypothesize from network structure:
If no voters in the set are connected, then conclude the set independent. Or one
could hypothesize from personal or demographic traits: if all voters in the set are
`di�erent enough', then conclude the set independent. These approaches cannot
ensure independence: agents may be in�uenced by another through long chains
in the network, and trait di�erences may lead to negative correlation in voting.

A third is a history-based, statistical approach: if the set of voters have
not previously shown stochastically dependent behavior, then conclude the set
independent. This approach proceeds via an independence test, e.g. the χ2 test,
to check if the voters' previously observed votes were stochastically independent.3

We follow this approach.
The χ2 test assesses how compatible some observed frequencies are with a

theoretical probability distribution. In our case, the theoretical distribution is
the distribution of votes obtained under the assumption of independent jurors.
Having a network N with correctness probability c, and a set D of di�usion
processes with terminal states T = (t1, ..., tm) over the topic E = {e1, ..., em}
valuated by V , we can then use the χ2 test to compare the theoretical distribution
with the observed distribution of votes in T to assess the stochastic independence
of any subset of voters J ⊆ A. Again, this does not guarantee independence: not
rejecting the null hypothesis that the agents are independent does not prove that
they are independent, but at least tells us that they cannot be shown dependent
beyond any reasonable doubt (the P -value). The details follow.

Theoretical Distribution. In a terminal state t where U = ∅, the probability
distribution p of vote pro�les v = (v1, ..., vn) ∈ {0, 1}|A|, given independent
voters with correctness probability c and quality valuation V , is

p(v1, ..., vn) =
∏
i∈A

xi with xi =

{
c if vi = 1

1− c if vi = 0.

3 We use the classic χ2 test just to exemplify our procedure, but other alternatives
are also possible, e.g. the G-test.



This distribution does not apply when U 6= ∅, since agents in U are just un-
reached by the entry and have not had the chance to vote. For such cases, we
have to �nd the appropriate theoretical distribution by taking the marginal of p
on the set of exposed agents St ∪ Rt. For a subset of voters J ⊆ A, let TJ ⊆ T
be the set of terminal states such that J ⊆ St ∪ Rt for all t ∈ TJ . Then the
marginal on J of p is

pJ(vJ) =
∑

v−J∈{0,1}|A\J|
p(vJ , v−J)

with vJ = (vi)i∈J and v−J = (vi)i∈A\J . The distribution pJ hence gives the
probability that one should expect, under the assumption of independent voters,
on the votes by the agents in J who are jointly exposed to the entries in TJ .

The χ2 Test for Independence. Given the theoretical distribution p, for each
subset J ⊆ A, we can then test for independence between its members. Running
a χ2 test amounts to the following: 1. Select a signi�cance (e.g., .1, .05, .01) for
rejecting the null hypothesis that the tested variables (votes) are dependent. 2.
For each outcome i, 0 ≤ i ≤ n, �nd the number Ei of occurrences estimated by
the theoretical distribution given the bounds set by the data. 3. Compare Ei to
the number Oi of observed occurrences of i by �nding the χ2 statistic:

χ2 :=
∑|J|+1

i=0
(Oi−Ei)

2

Ei

4. Compare χ2 to the upper-tail critical values of the χ2 distribution for the
selected signi�cance level and the appropriate number of degrees of freedom, and
reject the null hypothesis if the P -value is less than the chosen signi�cance level.

[1] shows that there exists an algorithm for testing the independence of j
random variables with time complexity

O

((∏j
i=1[i]

)1/2
+
∑j

i=1[i]

)
where [i] denotes the number of possible values that random variable i can take.
The exponential complexity arises as a direct consequence of the exponential
growth of the number outcomes, as going through the whole outcome space
is necessary to assess the independence of a given set of random variables. In
our social network scenario, the (votes of the) agents in jury J are the random
variables whose mutual independence we are interested in, and the number of
possible outcomes of the voting process among the agents in J is the number
of possible voting pro�les, 2|J|. Therefore, given the result in [1], the time com-
plexity in our case is O

(
2|J|/2 + 2|J |

)
.

With independence tests being computationally expensive, we cannot readily
design a procedure that both checks independence and is e�ective: any procedure
based on the current state-of-the-art will be exponential in the size of the jury.
We then look for procedures that limit the required number of tests.

Remark: Family-wise Error and Bonferroni Correction. Seeking proce-
dures that limit the required number of tests highlights the expectation that
it will often be necessary to run multiple tests before settling on a jury. This



implies that we cannot �x a general signi�cance level to be used in all tests, for
the risk of committing type I errors. E.g. setting a signi�cance level of 0.1 while
running 1000 tests makes the family-wise error rate 1, theoretically guaranteeing
one false positive�one jury deemed independent when it is not.

To control the family-wise error rate, we throughout assume the signi�cance
level of the individual tests is adjusted using Bonferroni correction: with
an overall desired signi�cance of α, Bonferroni correction tests the individual
hypotheses at α/m, with m the total number of hypotheses to be tested. As
each of the procedures discussed below speci�es such anm and as the signi�cance
level does not a�ect the complexity of a χ2-test, Bonferroni correction does not
a�ect the overall test complexity.

Compared to alternative methods, Bonferroni correction �ts present purposes
well: First, it is conservative in its estimates, �tting well with the conservatism of
point iv) from the introduction. Second, it is computationally trivial, compared
e.g. to the stronger Holm-Bonferroni method which requires �nding all m P -
values prior to running any tests.

5 Jury Finding Problems

Given a network state sn with jury Jn, we seek to present the users with a con-
servative estimate of the quality of the current entry e in sn. Due to possible
dependencies between jurors, the majority decision of Jn need not be as trust-
worthy as stochastic independence would imply. Therefore, we look for subsets
J∗ ⊆ Jn that retain independence. However, we also seek to constantly improve
correctness of the assessment that we can extract from the agents as the infor-
mation �ows through the network. To this end, we look for a jury J∗ in relation
to a jury J ′ ⊆ Jn−1 assumed found independent in the previous round n−1. For
the sake of brevity, we refer to Jn, J

′ and J∗ with the above properties implicit
throughout this section.

5.1 Optimal Juries

The optimal choice of J∗ is any largest set of independent agents that we can
�nd among those in Jn, as this maximizes collective correctness probability. An
optimal jury may be found by solving the following problem for increasing values
of correctness probability, C:

Problem 3. C-precise Jury is the decision problem
Instance: A social network (A, N), its network state sn with jury Jn, a jury J ′

for state sn−1 and a number C ∈ [c, 1].
Question: Is there an independent subset J∗ ⊆ Jn such that M(J∗) ≥ C?

Finding an optimal choice of J∗ corresponds to �nding a solution to the opti-
mization version of C-precise Jury. Using binary search, we need only solve the
decision problem for O(log(jn− j′)) di�erent values of C, as j′ is a lower bound
on the jury size of interest and the number of possible values of C is limited to
{M(k) : 1 ≤ k ≤ jn}.



The C-precise jury problem is NP-hard, as may be shown by reduction to
the Independent Set problem, cf. e.g. [16]. Given a graph G = (V,E), call a set
A ⊆ V independent∗ if no v, v′ ∈ A are connected by an edge in E. Then:

Problem 4. Independent Set is the decision problem
Instance: A graph G = (V,E), and an integer k ≤ |V |.
Question: Does G contain an independent∗ set of size at least k?

Proposition 5. C-precise Jury is NP-complete.

Proof. We show hardness by reduction to Independent Set which is NP-hard cf.
e.g. [16]. Identify the graph (V,E) with a network (A, N) given by A = V and
N = E. Assume a non-initial di�usion state sn of (A, N) such that Jn = A.
We make no special use of J ′, so let J ′ = {a} for some a ∈ J . Checking that
an independent∗ set of G of size k exists is a special case of checking whether
a jury J∗ with M(j∗) ≥ C exists. Let C = M(k). It is always possible to
�nd a probability distribution p on voting pro�les (vi)i∈A such that two agents
i,j are not independent under p if and only if they are connected by an edge
in N , and where p additionally satis�es that for all A ⊆ A, if all elements
of A are pairwise independent, then A′ is mutually independent. For such p,
independence∗ in (A, N) implies mutual independence in (A, N). As A can
only be mutually independent if it is pairwise independent, mutual independence
also implies independence∗. Hence an independent jury J∗ ⊆ Jn satisfying
M(j∗) ≥ C is also an independent∗ set of size at least k. Inclusion: A simple
guess and check algorithm can be constructed: if we guess a subset J∗ ⊆ Jn, we
can check in polynomial time whether M(J∗) ≥ C.

Finding an optimal jury at state sn requires �nding the maximal C for which
the C-precise Jury is solved in the positive. A naive brute force algorithm ex-
amining every candidate subset J ⊆ Jn, j > j′, in the worst case requires run-
ning 2jn−1 independence tests. By the result of [1], �nding a optimal jury is
in O

(
2jn−1 ·

(
2jn/2 + 2jn

))
. The naive aspect of this complexity may be dimin-

ished be the algorithm of [22] which �nds a maximum independent∗ set in
O(1.1996jn) using polynomial space.

5.2 Error-Diminishing Juries

Due to the exorbitant number of independence tests required, the optimality
of the outcome jury has to be foregone in the interest of computational e�-
ciency. A �rst alternative is to look for improvements in the collective correctness
probability, without aiming to identify the best possible jury. In the next three
subsections we follow this path.

One option in this direction is to seek a jury that diminishes the error of the
current jury by a given percentage:

De�nition 6. A jury J∗ ⊆ Jn is error-diminishing by h% with respect to

J ′ ⊆ Jn−1 if its probability of an incorrect majority vote is h% lower than that

of J ′. I.e., if 1−M(j∗) ≤ h
100 (1−M(j′)).



In �nding an error-diminishing jury J∗, the required size depends on the size of
J ′, as well as on the correctness probability c and the increment h. The number
of necessary tests, however, has not been reduced much by this approach:

Proposition 7. Whether a jury J∗ error-diminishing by h% exists can be de-

termined by testing at most
( j

j+1
2

)
subsets for independence. Worst case, none of

these tests are redundant.

Proof. With a �xed error-diminishing degree h%, there is some j∗ ∈ N given as
a function of the size of J ′ such that only juries of size at least j∗ will be precise
enough. It then su�ces to seek through the

(
j
j∗

)
-many size j∗ subsets of J for

an independent jury: no smaller sets will do, and every larger set will be non-
independent if all size j∗ are. With h∗ := 1− h

100 (1−M(j′)), this is the smallest j∗

such that h∗ ≤M(j∗). This j∗ may be approached from j′ using binary search,
but checking higher values is more expensive: the inequality needed checked for
a value m has a �xed left-hand side, but a right-hand side increasing linearly in
m. Finding j∗ is thus in O(j). Second, we seek for a suitable J∗ ⊆ J . Worst case,

j∗ is argmax
(
j
x

)
= { j−12 , j+1

2 }, providing an upper bound of
( j

j+1
2

)
tests before

concluding. The lower bound is established by the worst case where each of the( j
j+1
2

)
subsets may be non-independent due to just one agent. In this case, none

of the tests are redundant.

For reference, we remark that f(x) =
(

x
x+1
2

)
is not a slow-growing function.

In fact, it grows as fast ax, a > 1.

5.3 Incrementally Improved Juries

Since the required number of tests has not appreciably decreased by looking for
error-diminishing juries, we turn to the alternative of improving the collective
correctness probability by a �xed percentage. For a 5% increment, for instance,
the number of required additional jurors is illustrated in Table 1.

.60 .65 .70 .75 .80 .85 .90 .95
c = .6 1 3 7 11 17 27 41 65
c = .75 1 1 1 1 3 5 5 9

Table 1. The number of agents of correctness probability c (in the rows) needed
to reach a certain collective correctness probability (in the columns). Even when the
individual correctness c is relatively low, e.g. c = .6, only 65 independent jurors are
needed to reach a collective correctness probability of 0.95.

De�nition 8. A jury J∗ ⊆ Jn is incremental by h% with respect to J ′ ⊆ Jn−1
if the probability of a correct majority vote is h% higher than that of J ′. I.e., if
(1 + h

100 )M(j′) ≤M(j∗).

Note that while the error-diminishing requirement above may fail to be satis�ed
for some jury J ′ just because there is no su�ciently large independent subset of



the currently exposed agents, �nding a jury of improved correctness probability
by a �xed increment may be impossible also because the current jury's correct-
ness probability cannot be raised by h% without exceeding 1. One may therefore
expect that this could reduce the search for improved juries as compared to the
previous case. However, the required number of tests does not change:

Proposition 9. Whether a jury J∗ incremental by h% exists can be determined

by testing at most
( j

j+1
2

)
subsets for independence. Worst case, none of these tests

are redundant.

Proof. With a �xed desired increment, there is some j∗ ∈ N given as a function
of the size of J ′ such that only juries of size at least j∗ will be precise enough.
As in the proof of Prop. 7, �nding j∗ is in O(j) using binary search, but here
we �nd the smallest j∗ satisfying h∗ ≤ M(j∗) for h∗ := (1 + h

100 )M(c, j′) �xed.

Again as in the proof of Prop. 7, it su�ces to seek through the
(
j
j∗

)
-many size

j∗ subsets the same non-redundancy argument applies.

5.4 Monotonic Juries

Looking thus for even simpler approaches, the next possible simpli�cation is
to merely seek any improvement in the correctness probability of the jury. A
corresponding formal requirement is then the following:

De�nition 10. A jury J∗ ⊆ Jn is monotonic with respect to J ′ ⊆ Jn−1 if the

probability of a correct majority vote is strictly higher than that of J ′. I.e., if
M(j′) < M(j∗).

Proposition 11. Whether a jury J∗ monotonic with respect to a �xed jury J ′

exists can be determined by testing at most
(

j
j′+2

)
subsets for independence. When

J ′ may grow with J , it can be determined by testing at most
( j

j+1
2

)
subsets for

independence. Worst case, none of these tests are redundant.

Proof. For a �xed size J ′, searching through juries of size j∗ = j′+2 is su�cient:
if an independent jury J∗ of size j∗ is found, it will satisfy M(c, j′) < M(c, j∗);
if no independent size j∗ jury exists, then every larger set will also be non-
independent. Testing each of the

(
j

j′+2

)
size j′+2 subsets may also be necessary,

as each of the subsets may be non-independent due to just 1 agent. When J ′

may grow with J , the upper bound is established by the worst case number of
tests, argmax

(
j
x

)
= { j−12 , j+1

2 }. The lower bound is established by the argument
used for Prop. 9.

5.5 In�ationary Juries

A common cause for the large search space�and hence the many required in-
dependence tests�across the hitherto considered procedures is that they make
little use of the jury J ′ assumed found in the previous step: only its size matters,



used as a lower bound of the size of an improved jury J∗. The simpli�cation we
now propose is instead based on the idea of looking only for additions to the cur-
rent jury J ′, rather than throwing it away and starting the search anew. In other
words, rather than focusing on a general improvement in the correctness proba-
bility as we have done in subsections 5.1�5.4, one may instead focus exclusively
on extensions of the current jury J ′.

On the one hand, this approach may be considered the farthest from Sec-
tion 5.1's search for an optimal jury, in that an unfortunate start might lead
to a maximal independent set of agents much smaller than an de facto optimal
jury. On the other hand, however, its convenience arises precisely from favoring
simplicity over optimality. As we have seen in Table 1 above, small independent
juries already su�ce to achieve a high collective correctness probability, even
when the individual correctness c is low. Given nowadays dimensions of social
networks, a set of a few tens or hundreds of agents is but a minimal fraction
of the total number of users. Hence, even when holding the actual independent
jury J ′ �xed, one may reasonably hope to be able to �nd another pair of agents
independent of J ′ among the many available users.

The corresponding requirement that the next jury J∗ should satisfy is then
the following:

De�nition 12. A jury J∗ ⊆ Jn is in�ationary with respect to J ′ ⊆ Jn−1 if it

extends J ′ and the probability of a correct majority vote is strictly higher than

that of J ′. I.e., if J ′ ⊆ J∗ and M(j′) < M(j∗).

By the Condorcet Jury Theorem, to �nd an in�ationary jury, it is su�cient
to �nd a pair of agents a, a′ ∈ J\J ′ such that J ′ ∪ {a, a′} = J∗ is a jury of
mutually independent agents. We are thus able to greatly reduce the required
number of tests, as stated by the following:

Proposition 13. Whether an in�ationary jury J∗ exists can be determined by

testing at most
(
j−j′
2

)
subsets for independence. Worst case, none of these tests

are redundant.

Proof. Given J ′, by the Condorcet Jury Theorem, it su�ces to �nd J∗ with

j∗ = j′ + 2 and J ′ ⊆ J∗. There are
(
j−j′
2

)
candidates of pairs to add to J ′.

Testing each is su�cient; testing each may also be necessary, as each may be
non-independent due to just 1 agent.

As
(
n
2

)
=
∑n−1

k=1 k = (n2−n)
2 , the number of tests required to �nd an in�a-

tionary jury is bounded above by a degree-2 polynomial. The in�ationary jury
procedure thus considerably reduces the number of required tests.

6 Conclusion

We have considered how states of di�usion processes in social networks may be
used as quality evaluations of shared content. We have noted that establishing
independence of juries is essential to rely on wisdom-of-the-crowds results from



jury theorems and to ensure a theoretically sound evaluation, but that indepen-
dence testing is computationally expensive. For this reason, we have sought jury
selection procedures that reduce the number of necessary independence tests.

Of the �ve selection procedures introduced here, only the in�ationary jury
procedure requires a number of tests bounded by a polynomial (of degree 2).
While, given the current algorithms, the time complexity of testing for inde-
pendence remains exponential in the size of the in�ationary jury, we have also
shown that there is hope for tractably using the in�ationary jury procedure in
practice, as the number of independent jurors needed to achieve a high collective
correctness probability is, even for low individual correctness probability, rather
small, cf. Table 1.

Several fundamental questions remain unexplored, and core elements may
be chosen di�erently. One question pertains to the amount of data required to
conduct the χ2 tests. Highly competent voters will often vote alike, wherefore a
large set of previous di�usion processes will be required to determine whether
their voting pattern signi�cantly di�ers deform from the theoretical distribution
under independence. We do not know how this required data grows with com-
petence, and it may thus introduce computational hindrances. Related is the
use of the χ2 test itself. Possibly, alternative statistical approaches may lead to
stronger conclusions about independence. That �eld should be surveyed, with
complexity issues in mind.

The results presented do not tell us much about the practical di�culty of the
proposed approach. It could be informative to develop a a randomized algorithm,
or applying reduction to SAT to use one the excellent SAT solving algorithms
developed in recent years. Currently, we do not know if the problems posed in
this paper are highly approximate, or exactly solvable for all practical problems.

Finally, it would be instructive to perform empirical evaluations of several
aspects of the proposed approach, to gauge both its e�ciency (cf. the above)
and its necessity. As real-life social networks tend to grow large, the continuous
and global observation assumed here may be unfeasible. Due to the large size of
networks, it could also be the case that random sampling of users or other se-
lection methods de facto provide a way to obtain a correct aggregated judgment
with su�ciently high frequency. Empirical studies could thus be instructive in
determining how to best improve judgment reliability in social networks via jury
theorems.
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