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Abstract
In this paper, we introduce a directed variant of the classical Bandwidth problem and study it
from the view-point of moderately exponential time algorithms, both exactly and approximately.
Motivated by the definitions of the directed variants of the classical Cutwidth and Pathwidth
problems, we define Digraph Bandwidth as follows. Given a digraph D and an ordering σ

of its vertices, the digraph bandwidth of σ with respect to D is equal to the maximum value of
σ(v)−σ(u) over all arcs (u, v) of D going forward along σ (that is, when σ(u) < σ(v)). The Digraph
Bandwidth problem takes as input a digraph D and asks to output an ordering with the minimum
digraph bandwidth. The undirected Bandwidth easily reduces to Digraph Bandwidth and thus,
it immediately implies that Directed Bandwidth is NP-hard. While an O?(n!)1 time algorithm
for the problem is trivial, the goal of this paper is to design algorithms for Digraph Bandwidth
which have running times of the form 2O(n). In particular, we obtain the following results. Here, n
and m denote the number of vertices and arcs of the input digraph D, respectively.

Digraph Bandwidth can be solved in O?(3n · 2m) time. This result implies a 2O(n) time
algorithm on sparse graphs, such as graphs of bounded average degree.
Let G be the underlying undirected graph of the input digraph. If the treewidth of G is at
most t, then Digraph Bandwidth can be solved in time O?(2n+(t+2) logn). This result implies
a 2n+O(

√
n logn) algorithm for directed planar graphs and, in general, for the class of digraphs

whose underlying undirected graph excludes some fixed graph H as a minor.
Digraph Bandwidth can be solved in min{O∗(4n · bn),O∗(4n · 2b log b logn)} time, where b
denotes the optimal digraph bandwidth of D. This allow us to deduce a 2O(n) algorithm in
many cases, for example when b ≤ n

log2 n .
Finally, we give a (Single) Exponential Time Approximation Scheme for Digraph Bandwidth.
In particular, we show that for any fixed real ε > 0, we can find an ordering whose digraph
bandwidth is at most (1 + ε) times the optimal digraph bandwidth, in time O∗(4n · (d4/εe)n).
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1 Introduction

The Bandwidth problem is a famous combinatorial problem, where given an undirected
graph G on n vertices, the goal is to embed its vertices onto an integer line such that
the maximum stretch of any edge of G is minimized. More formally, given a graph G

on n vertices and an ordering σ : V (G) → [n], the bandwidth of σ with respect to G is
max(u,v)∈E(G){|σ(u)− σ(v)|}. In the Bandwidth problem, given a graph G, the goal is to
find an ordering σ : V (G) → [n], which has minimum bandwidth with respect to G. The
bandwidth problem has found applications in an array of fields including, but not limited
to, the design of faster matrix operations computation on sparse matrices, VLSI circuit
design, reducing the search space of constraint satisfaction problems and problems from
molecular biology [22]. In many of the real world applications, a fundamental principle
that the Bandwidth problem captures is that of delays that occur as a result of allocation
of tasks on the time interval that have dependencies among them. An ordering in many
scenarios represent the allocation of tasks/objects on a time-line/one-dimensional hardware,
and the stretch of an edge captures the delay/effort/expense incurred to reach the other end
of the edge.

One restriction on the kind of models captured by Bandwidth is that, the models
cannot be tuned to allow for asymmetry or bias. More specifically, what happens when the
connections available between the tasks/objects are unidirectional? What happens when
there is a bias in terms of delay/expense based on the direction of communication on the
time-line/one-dimensional hardware? The above inquisitivities lead to our first contribution
to this article, which is the concept of Digraph Bandwidth2. Given a directed graph D on
n vertices and an ordering σ : V (D)→ [n], the digraph bandwidth of σ with respect to D is
the maximum stretch of the forward arcs in the ordering, that is, max(u,v)∈E(D)

σ(u)<σ(v)
{σ(v)−σ(u)}.

The Digraph Bandwidth problem takes as input a digraph D and outputs an ordering
σ : V (D)→ [n] with the least possible digraph bandwidth with respect to D.

Observe that, with the introduction of directions in the input graph, Digraph Band-
width allows us to capture one-way dependencies, that can help in modelling scenarios where
the links available for modelling the communication are one-directional. Also, by allowing
to care only about the stretch of the forward arcs in the ordering, one can model channels
where communication in one direction is cheaper/easier than the other. The later scenarios
can occur while modelling an uphill-downhill communication, where the cost of going up is a
matter of real concern whereas, the cost of going down is almost negligible.

Note that Digraph Bandwidth is indeed a generalization of the notion of undirected
bandwidth, as for any graph G, if ←→G denotes the digraph obtained from G by replacing each
edge of G by one arc in both direction, then the bandwidth of G is equal to the directed
bandwidth of ←→G . We would like to remark here that on the theoretical front, the way we
lift the definition of bandwidth in undirected graphs to directed graphs, by considering the

2 We choose the name Digraph Bandwidth over the more conventional Directed Bandwidth to avoid
clash of names from literature (which will be discussed later).
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stretches of only the forward arcs, is not something unique that we do for Bandwidth. The
idea of only considering arcs going in one direction for “optimizing some function” is very
common to the directed setting. The simplest such example is the notion of a directed cut. If
D is a digraph andX,Y are two disjoint subsets of vertices ofD, then the directed cut ofX and
Y , dcut(X,Y ), is defined as the set of arcs (u, v) in E(D), where u ∈ X and v ∈ Y . Another
closely related notion is the notion of Directed Cutwidth introduced by Chudnosky et
al. [5]. A digraph D on n vertices has cutwidth at most k if there exists an ordering of the
vertices σ such that for every i ∈ [n− 1], dcut({σ(1), . . . , σ(i)}, {σ(i+ 1), . . . , σ(n)}) is at
most k. Note that our notion of directed bandwidth is a stronger notion than cutwidth, as
for any ordering σ, the cutwidth associated to σ is at most the digraph bandwith of σ. There
is also a similar notion of Directed Pathwidth [5]. Observe that similar to Directed
Cutwidth and Directed Pathwidth, Digraph Bandwidth is 0 on directed acyclic
graphs (dags).

We would like to remark that ours is not the first attempt in generalising the definition of
bandwidth for digraphs. A notion of bandwidth for directed graphs appeared in 1978 in the
paper by Garey et al. [16]. But the notion was defined only for dags. In their problem, which
they call Directed Bandwidth (DAG-BW), given a dag D, one is interested in finding a
topological ordering (a linear ordering of vertices such that for every directed arc (u, v) from
vertex u to vertex v, u comes before v in the ordering) of minimum bandwidth. Note that
this is very different from our notion of Digraph Bandwidth which is always 0 for dags.

Algorithmic Perspective

Bandwidth is one of the most well-known and extensively studied graph layout problems [17].
The Bandwidth problem is NP-hard [25] and remains NP-hard even on very restricted
subclasses of trees, like caterpillars of hair length at most 3 [24]. Furthermore, the bandwidth
of a graph is NP-hard to approximate within a constant factor for trees [3]. Polynomial-
time algorithms for the exact computation of bandwidth are known for a few graph classes
including caterpillars with hair length at most 2 [2], cographs [29], interval graphs [20] and
bipartite permutation graphs [19]. A classical algorithm by Saxe [26] solves Bandwidth in
time 2O(k)nk+1, which is polynomial when k is a constant. In the realm of parameterized
complexity, Bandwidth is known to be W[t]-hard for all t ≥ 1, when parameterized by
the bandwidth k of the input graph [4]. However, on trees it admits a parameterized
approximation algorithm [12] and an algorithm with running time 2O(k log k)nO(1) on AT-
free graphs [18]. Unger showed in [27] that the problem is APX-hard. The best known
approximation algorithm for this problem is due to Krauthgamer et al. [21] and it provides
an O(log3 n) factor approximation.

The Bandwidth problem is one of the test-bed problems in the area of moderately
exponential time algorithms and has been studied intensively. Trying all possible permutations
of the vertex set yields a simple O∗(n!) time algorithm while the known algorithms for the
problem with running time 2O(n) are far from straightforward. The O∗(n!) barrier was broken
by Feige and Kilian [13] who gave an algorithm with running time O?(10n). This result
was subsequently improved by Cygan and Pilipczuk [6] down to O?(5n). After a series of
improvements, the current fastest known algorithm, due to Cygan and Pilipczuk [9, 7] runs in
time O?(4.383n). We also refer the readers to [8] for the best known exact algorithm running
in polynomial space. For graphs of treewidth t, one can design an algorithm with running
time 2nnO(t) [1, 7]. On the other hand, Feige and Talwar [14] showed that the bandwidth of a
graph of treewidth at most t can be (1+ε)-approximated in time 2O(logn(t+

√
n
ε )). Vassilevska

et al. [28] gave a hybrid algorithm which after a polynomial time test, either computes
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the bandwidth of a graph in time 4n+o(n), or provides γ(n) log2 n log logn-approximation in
polynomial time for any unbounded γ. Moreover, for any two positive integers k ≥ 2, r ≥ 1,
Cygan and Pilipczuk presented a (2kr− 1)-approximation algorithm that solves Bandwidth
for an arbitrary input graph in O(k

n
(k−1)r nO(1)) time and polynomial space [7]. Finally, Fürer

et al. [15] gave a factor 2-approximate algorithm for Bandwidth running in time O(1.9797n).
DAG-BW, as defined by Garey et al. [16] for dags, was shown to admit a polynomial time
algorithm for testing if a dag has bandwidth at most 2. Also, it was proved that the problem
to determine if the directed bandwidth of a dag is at most k, for any k > 2, is NP-hard even
in the case of oriented trees. This notion of directed bandwidth reappeared in [23], where it
was studied for dense digraphs.

Our Results

The main objective of this paper is to introduce a directed variant of the Bandwidth
problem for general digraphs and study it from the view point of moderately exponential
time algorithms, both exactly and approximately. Throughout the remaining, n,m denote
the number of vertices and arcs in the input digraph, respectively. For many linear layout
problems on graphs on n vertices, beating even the trivial O?(n!) algorithm asymptotically
remains a challenge. In this article we design 2O(n) time algorithms for Digraph Bandwidth.
Below we mention the challenges that Digraph Bandwidth imposes when we try to apply
the techniques used in the design of 2O(n) algorithm for Bandwidth, and how we bend our
ways to overcome them to design the desired algorithms.

The 2O(n) time algorithms for Bandwidth that exist in literature (cited above), all follow
a common principle of bucket-then-order. Suppose one is interested in checking whether the
input graph has an ordering of bandwidth b. The bucket-then-order procedure is a 2-step
procedure, where in the first step, instead of directly guessing the position of the vertex in
the ordering, for a range of consecutive positions (called buckets) of size O(b), one guesses the
set of vertices that will occupy these positions in the final ordering. This process of allocating
a set of vertices to a range of consecutive positions is called bucketing. Since one can always
assume that the graph is connected, once a bucket for the first vertex is guessed using n
trials, its neighbours only have a choice of some c buckets for a small constant c depending
on the constant in the order notation of the size of the bucket. This, makes the bucketing
step run in time 2O(n). The outcome of the first step is a collection of bucketings which
contains a bucketing that is “consistent” with the final ordering. In the second step, given
such a consistent bucketing, one can find the final ordering using either a recursive divide
and conquer technique or a dynamic programming procedure or a measure and conquer kind
of an analysis.

In the case of Digraph Bandwidth, finding a bucketing that is consistent with the
final ordering becomes a challenge as even the information that a vertex is placed in some
fixed bucket does not decrease the options of the number of buckets in which its neighbours
can be placed. This is because there could be some out-neighbours (resp. in-neighbours) of it
that need to be placed before (resp. after) it thereby contributing to backward arcs, which
eventually results in the need for allocating them to far off buckets. We cope up with this
challenge of bucketing in two ways - both of which lead to interesting algorithms that run
in 2O(n) time in different cases. As a first measure of coping up, we take the strategy of
“kill what cause you trouble”. Formally speaking, it is the set of backward arcs in the final
ordering that have unbounded stretch and hence, make the bucketting process difficult. One
way to get back to the easy bucketting case is to guess the set of arcs that will appear as
backward arcs in the final ordering. Having guessed these arcs, one can remove them from
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the graph and preserve the information that the arcs which remain all go forward the final
ordering. This problem becomes similar to the DAG-BW problem defined on dags by Garey
et al. [16]. We show that one can do the bucketing tricks similar to the undirected case here
to design a 2O(n) algorithm for this problem (Theorem 1.1). This together with the initial
guessing of the backward arcs gives Theorem 1.2.

I Theorem 1.1. DAG-BW on dags can be solved in O?(3n) time.

I Theorem 1.2. Digraph Bandwidth can be solved in O?(3n · 2m) time.

Note that even though the 2m in the running time of Theorem 1.2 looks expensive, it
already generates an algorithm better that O?(n!) for any digraph that has at most o(n logn)
arcs. In particular, this implies an exact algorithm with running time 2O(n) whenever
|E(D)| = O(|V (D)|), for example for digraphs with bounded average degree.

We will now briefly explain about our second way of dealing with the bucketing phase.
As discussed earlier, getting a hold over the arcs which will go backward in the final ordering,
eases out the remaining process. In this strategy, instead of guessing the arcs that goes
backward by a brute force way (that takes 2m), we exploit the fact that guessing a partition
of the vertex set into two parts, left and right - which corresponds to the first n/2 vertices in
the final ordering and the last n/2 vertices in the final ordering, also gives hold on some if not
all backward arcs in the final ordering. We place this simple observation into the framework
of a divide and conquer algorithm to get a bucketting that is not necessarily “consistent”
with the final ordering, but is not too far away to yield a “close enough” approximation to
the optimal ordering. This result is formalized in Theorem 1.3. Effectively, the result states
that one can find an ordering whose digraph bandwidth is at most (1 + ε) times the optimal
in time O?(1/ε)n. Note that, this result is in contrast with the result of Feige and Talwar [14]
for undirected bandwidth where they gave an exponential time approximation scheme that
run in time which had a dependence on the treewidth of the graph(2O(logn(t+

√
n
ε ))). As a

side result of our strategy, we can also design an algorithm for solving Digraph Bandwidth
optimally on general digraphs in time O?(2O(n) · OPTn) or O?(2O(n) · 2OPT logOPT logn),
where OPT is the optimal digraph bandwidth of the input digraph. This result is stated in
Theorem 1.4. Note that, on one hand where O(OPTn) is easy to get for the undirected case
(because fixing the position of one vertex in the ordering leaves only 2 ·OPT choices for its
neighbours), it is not trivial for the directed case. Also, observe that Theorem 1.4 gives a
2O(n) algorithm whenever b ≤ n/log2 n.

I Theorem 1.3 ((Single) Exponential Time Approximation Scheme). For any real number
ε > 0, for any digraph D, one can find an ordering of digraph bandwidth at most (1 + ε)
times the optimal, in time O∗(4n · (d4/εe)n).

I Theorem 1.4. Digraph Bandwidth can be solved in min{O∗(4n ·bn),O∗(4n ·2b log b logn)}
time, where b is the optimal digraph bandwidth of the input digraph.

Our last result is based on the connection of the Bandwidth problem with a subgraph
isomorphism problem. Amini et al. [1] viewed the Bandwidth problem, on undirected
graphs, as a subgraph isomorphism problem, and using an inclusion-exclusion formula with
the techniques of counting homomorphisms on graphs of bounded treewidth, they showed
that an optimal bandwidth ordering of a graph on n vertices of treewidth at most t can be
computed in time O?(2t logn+n) and space O?(2t logn). Using this approach and by relating
Digraph Bandwidth via directed homomorphisms to directed path-like-structures, we
obtain the following result.
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18:6 Exact and Approximate Directed Bandwidth

I Theorem 1.5. Let D be a digraph on n vertices and D′ be the underlying undirected
graph. If the treewidth of D′ is at most t, then Digraph Bandwidth can be solved in time
O?(2n+(t+2) logn).

Observe that Theorem 1.5 provides O?(2n+O(
√
n logn)) algorithm for directed planar

graphs and for digraph whose underlying undirected graph excludes some fixed graph H as a
minor. This algorithm in fact, yields a 2O(n) time algorithm even when the treewidth of the
underlying undirected graph of the given digraph is O(n/ logn). Notice that Theorem 1.2
gives 2O(n) time algorithm for digraphs of constant average degree, while Theorem 1.5 will
not apply to these cases as these digraphs could contain expander graphs of constant degree
whose treewidth of the underlying undirected graph could be n/c, for some fixed constant
c. On the other hand Theorem 1.5 could give 2O(n) time algorithm for digraphs that have
O(n2/ logn) arcs but treewidth is O(n/ logn). Thus, Theorems 1.2 and 1.5 give 2O(n) time
algorithm for different families of digraphs.

Road Map

In Section 2, we introduce some notation and definitions. Section 3 is devoted to the proof of
Theorem 1.1 and Section 4 proves Theorem 1.2 with the help of Theorem 1.1. Section 5 leads
to the proofs of Theorems 1.3 and 1.4. Section 6 proves Theorem 1.5. We finally conclude in
Section 7.

2 Preliminaries

For positive integers i, j, [i] = {1, · · · , i} and [i, j] = {i, · · · , j}. For any set X, by X =
(X1, X2) we denote an ordered partition of X, that is X1 ∪ X2 = X, X1 ∩ X2 = ∅ and,
(X1, X2) and (X2, X1) are two different partitions of X. For any functions f1 : X1 → Y1 and
f2 : X2 → Y2, we say that f1 is consistent with f2 if for each x ∈ X1 ∩X2, f1(x) = f2(x). If
f1 and f2 are consistent, then f1 ∪ f2 : X1 ∪X2 → Y1 ∪ Y2 is defined as (f1 ∪ f2)(x) = fi(x),
if x ∈ Xi. For any set V of size n, we call a function σ : V → [n] as an ordering of V ). Given
an ordering σ of V (D), an arc (u, v) ∈ E(D) is called a forward arc in σ if σ(u) < σ(v),
otherwise it is called a backward arc. For a natural number b ∈ N, we call σ as a b-ordering of
D if for any forward arc (u, v) ∈ E(D), σ(v)− σ(u) ≤ b, that is, if it has digraph bandwidth
at most b. Given a set V and an integer b, a b-bucketing of V is a function B : V → [p, q],
such that p, q ∈ N and for each i ∈ [p, q − 1], |B−1(i)| = b and |B−1(q)| ≤ b. Note that, if |V |
is a multiple of b, then B−1(q) = b and (q − p+ 1) · b = |V |. If for each i ∈ [p, q], |B−1(i)| ≤ b,
we call B a partial b-bucketing of V . Note that, for any b, every b-bucketing is a partial
b-bucketing. For a (partial) b-bucketing B : V → [p, q], we say that an element v ∈ V is
assigned the i-th bucket of B if B(v) = i and B(v) is called the bucket of v. Also, b is called
the size of the bucket B(v). If B(u) = i and B(v) = j and j > i, then the number of buckets
between the buckets of u and v is equal to j − i− 1. Also, the number of elements of V in the
buckets between i and j is (j − i− 1) · b. In explanations, we sometimes drop b and call B a
(partial) bucketing to mean that it is a b-bucketing for some b that should be clear from the
context. Given a set V , an integer b and an ordering σ of V , one can associate a b-bucketing
with σ which assigns the first b elements in σ the 1-st bucket, the next b-elements the next
and so on. This is formalized below. Given a set V , an integer b and an ordering σ of V , we
say a b-bucketing B respects σ if B : V → [d|V |/be] is defined as follows. For any x ∈ [|V |], if
x = ib+ j for some i ∈ N such that j < b, then B(σx) = i+ 1 if j > 0, and B(σx) = i if j = 0.

The proofs marked with ? have been omitted because of space constraints and will appear
in the full version.
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3 Exact Algorithm for Directed Bandwidth for dags

The goal of this section is to prove Theorem 1.1. The algorithm follows the ideas of Cygan
and Pilipczuk [10]. We give the details here for the sake of completeness and to mention the
little details where we deviate from the algorithm of [10]. Throughout this section, without
loss of generality, we can assume that the input digraph D is weakly connected, as otherwise,
one can solve the problem on each of the weakly connected components of D and concatenate
the orderings obtained from each of them, in any order, to get the final ordering. Also,
instead of working on the optimization version of the problem, we work on the decision
problem, where together with the input digraph D, one is given an integer b, and the goal is
to decide whether there exists a topological ordering of V (D) of bandwidth at most b. It is
easy to see that designing an algorithm for this decision version with the desired running
time is enough to prove Theorem 1.1. In the following, we abuse notation a little and call
(D, b) as an instance of DAG-BW.

Throughout the remaining section, we call a topological ordering of D of bandwidth b as
a b-topological ordering. A b-bucketing of V (D) is called a b-topological bucketing if for all
(u, v) ∈ E(D), either B(u) = B(v) or B(v) = B(u)+1. Our algorithm, like the algorithm of [10],
has two phases : Bucketing and Ordering. The Bucketing phase of the algorithm is
described by Lemma 3.1.

I Lemma 3.1. (?) Given an instance (D, b) of DAG-BW, one can find a collection B, of
(b+ 1)-topological bucketings of V (D) of size at most 2n−1 · dn/b+1e, in time O?(2n), such
that for every b-topological ordering σ of D, there exists a bucketing B ∈ B such that B
respects σ.

In the Ordering phase, given a (b+ 1)-topological bucketing B, the algorithm finds a
b-topological ordering σ of D, if it exists, such that B respects σ. From Lemma 3.1, the
family B guarantees the existence of a (b + 1)-topological bucketing B of the final desired
ordering, if it exists.

To execute this step, we use the idea of finding a sequence of lexicographically embeddibe
sets using dynamic programming as used in [10]. To define lexicographically embeddible
set, the authors first defined the notion of lexicographic ordering of slots. We use the same
definition in this paper.

I Definition 3.2 (Lexicographic ordering of slots). Given an integer b, let bucket : [n] →
dn/(b+1)e be a function such that bucket(i) = di/(b+1)e and pos : [n]→ [b+ 1] be a function
such that pos(i) = ((i− 1) mod (b+ 1)) + 1. We define the lexicographic ordering of slots
as the lexicographic ordering of (pos(i), bucket(i)), where i ∈ [n].

For the Bandwidth problem, the authors of [10] proceed as follows. Given a graph
G = (V,E), and a (b + 1)-bucketing, B of V (G), they prove that there exists an ordering
σ of G such that B respects σ if and only if there exists a sequence of subsets of V (G),
∅ ⊂ S1 ⊂ · · · ⊂ Sn, |Si| = i, for all i ∈ [n], such that each Si satisfies the following properties:
(i) for each Si, there is a mapping γSi

: Si → [n] such that bucket(γSi
(v)) = B(v), and the set

{(pos(γSi(v)), bucket(γSi(v))) | v ∈ Si} is the set of first |Si| elements in the lexicographic
ordering of slots, and (ii) if u ∈ Si and v /∈ Si, then B(v) ≤ B(u). They call such a set Si
as a lexicographically embeddible set. They then obtain γSi+1 by extending γSi

as follows.
If v ∈ Si ∩ Si+1, then γSi+1(v) = γi(v), otherwise (pos(γSi+1(v)), bucket(γSi+1(v))) is the
|Si+1|th element in the lexicographic embedding of slots. Recall that there is only one vertex
v in Si+1 \ Si. Furthermore, if v has a neighbor u in Si, then B(v) ≤ B(u). If B(v) = B(u),
then since bucket size is at most b+ 1, |γ(v)− γ(u)| ≤ b. If B(v) < B(u), then by construction
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18:8 Exact and Approximate Directed Bandwidth

of γSi+1 , pos(γSi+1(v)) > pos(γSi+1(u)). Now, again since each bucket size is at most b+ 1,
|γ(v) − γ(u)| ≤ b. Therefore, γSi

can be extended to γSi+1 . Thus, γSn
will yield the final

ordering. Hence, the goal reduces to finding a sequence S1 ⊂ · · · ⊂ Sn, |Si| = i, for all i ∈ [n],
such that each Si is a lexicographically embeddible set. We will call such a sequence as a
lexicographically embeddible sequence (les, in short).

We proceed in a similar way for Directed Bandwidth. We first note that one cannot
use the same definition of lexicographically embeddible set as defined above due to the
following reason. Suppose that Si is a lexicographical embeddible set. Consider a vertex
u ∈ Si. Suppose that there exists a vertex v /∈ Si that is an in-neighbor of u, then v cannot
belong to the bucket of u as it will not lead to the topological ordering using the method
defined above. Also, if v is an out-neighbor of u, then since we are working with topological
bucketing, v does not belong to the bucket that precedes the bucket of u. Hence, v belongs
to the bucket of u. We also want γ as a topological ordering. Therefore, we redefine the
notion of lexicographically embeddible set for Directed Bandwidth as follows.

I Definition 3.3 (Lexicographically embeddible set for digraphs). Given a (b+ 1)-topological
bucketing B, of V (D), we say that S ⊆ V (D) is a lexicographically embedibble set if the
following condition holds.
(C1) For each arc (u, v) ∈ E(D) such that u ∈ S and v /∈ S, B(u) = B(v).
(C2) For each arc (u, v) ∈ E(D) such that v ∈ S and u /∈ S, B(u) = B(v)− 1.
(C3) There exists a b-topological ordering γ : S → [n] such that for all v ∈ S, bucket(γ(v)) =

B(v), and (pos(γ(v)), bucket(γ(v))) belongs to the first |S| elements in the lexicographic
ordering of slots. We refer γ as a partial b-topological ordering
that respects lexicographic ordering of slots.

Now we prove that given a (b+ 1)-topological bucketing B of V (D), to find a b-topological
ordering σ such that B respects σ,

I Lemma 3.4. (?) Given a (b + 1)-topological bucketing B of V (D), the following are
equivalent. (i) There exists a b-topological ordering σ of the digraph D such that the unique
(b+1)-bucketing induced by σ, that is Bσ, is B. In other words, Bσ(v) = B(v), for all v ∈ V (D),
(ii)There exists a les, ∅ ⊂ S1 ⊂ · · · ⊂ Sn = V .

Due to Lemma 3.4, our goal is reduced to find a les. Cygan and Pilipczuk [10] find
les using dynamic programming over subsets of the vertex set of given graph. We use a
similar dynamic programming approach with appropriate modification because of the revised
definition of a lexicographically embeddible set. In the dynamic programming table, for each
S ⊆ V (D), c[S] = 1, if and only if S is a lexicographically embeddible set. To compute the
value of c[S], we first find a vertex v ∈ S such that S \ {v} is a lexicographically embeddible
set, that is, c[S \ {v}] = 1, and v satisfies the following properties : (i) for all the arcs
(v, u) ∈ E(D) such that u /∈ S, B(v) = B(u); (ii) for all the arcs (u, v) ∈ E(D) such that
u /∈ S, B(u) = B(v)−1; and (iii) B(v) = ((|S|−1) mod dn/(b+1)e) + 1. We compute the value
of c[S] for every subset S ⊆ V (D). Note that if c[V (D)] = 1, then V (D) is a lexicographically
embeddible set. Also, we can compute les by backtracking in the dynamic programming
table.

I Lemma 3.5. (?) Given an instance (D, b) of DAG-BW, and a (b+ 1)-topological bucketing
B of V (D) that respects some b-topological ordering of D (if it exists), one can compute a les
in time O?(2n).

Note that using Lemmas 3.1, 3.4 and 3.5, one can solve DAG-BW in O?(4n) time. The
desired running time of O?(3n) in Theorem 1.1 can be proved by careful analysis of two
steps in the algorithm as done in Theorem 12 of [10]. Since the proof of this is the same as
that of Theorem 12 of [10], we defer the proof here.
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4 Exact Algorithm for Digraph Bandwidth via Directed Bandwidth

We call an ordering of the vertex set of a digraph a b-ordering if its digraph bandwidth is at
most b. In order to prove Theorem 1.2 observe the following. Let (D, b) be an instance of (the
decision version of) Digraph Bandwidth. If it is a Yes instance, then let σ be a b-ordering
of D. Let R be the set of backward arcs in σ. Note that σ is a topological ordering of D−R.
If we guess the set of backward arcs R in a b-ordering of D (which takes time 2m), then the
goal is reduced to finding a b-topological ordering, σ, of D −R such that if (u, v) ∈ R, then
σ(u) > σ(v). In fact, one can also observe that it is sufficient to find a b-topological ordering,
ρ, of D−R such that for all (u, v) ∈ R either ρ(u) > ρ(v) or ρ(v)− ρ(u) ≤ b. We claim that
we can find the required ordering of D −R using the algorithm for Directed Bandwidth
for dags given in Section 3. Suppose that σ is a b-ordering of D. Let Bσ be a (b+1)-bucketing
that respects σ. Let R be the set of backward arcs in σ. Since σ is a b-topological ordering
of D − R, using Lemma 3.1, Bσ belongs to the collection of (b + 1)-bucketings B. Now,
using Lemmas 3.5 and 3.4, we obtain a b-topological ordering ρ of D −R that respects Bσ.
Note that ρ is a b-ordering of D, as for each arc (u, v) 6∈ R, ρ(v)− ρ(u) ≤ b because ρ is a
b-topological ordering of D −R. Also, if (u, v) ∈ R, then observe that if Bσ(u) 6= Bσ(v), then
since both σ and ρ respect Bσ and (u, v) is a backward arc in σ, thus, (u, v) is a backward
arc in ρ too, that is, ρ(u) > ρ(v). Otherwise, if (u, v) 6∈ R and Bσ(u) = Bσ(v), then since ρ
respects Bσ and the size of the buckets of Bσ is (b+ 1), therefore, |ρ(u)− ρ(v)| ≤ b. Thus,
the algorithm of Theorem 1.2 runs the algorithm for DAG-BW for each R ⊆ E(D), to obtain
the desired running time.

5 (Single) Exponential Time Approximation Scheme for Digraph
Bandwidth

The goal of this section is to prove Theorems 1.3 and 1.4. Let (D, b) be an instance of (the
decision version of) Digraph Bandwidth. The algorithm relies on an interesting property
of a b-bucketing that respects a b-ordering of D. Let σ be a b-ordering of D and let B be a
b-bucketing of V (D) that respects σ. An interesting property of such a bucketing B is that
if (u, v) ∈ E(D), then either B(u) > B(v) or B(v) ≤ B(u) + 1. This is because the size of
each bucket in B is b and σ is a b-ordering of D. Let us call this property of a b-bucketing
useful. What we saw in the previous section is that if we somehow have a bucketing that
respects σ, then one can design an algorithm to fetch σ from this bucketing. In this section,
instead of seeking for a bucketing that respects σ we seek for a bucketing with the above
mentioned useful property. Observe that, while the existence of such a bucketing with this
useful property might not necessarily imply the existence of some b-ordering of D, but having
such a bucketing with, for example buckets of size b, definitely yields a 2b-ordering of D.
This is because, given such a bucketing one can assign positions to vertices in the ordering
by choosing any arbitrary ordering amongst the vertices that belong to the same bucket
and concatenating these orderings in the order of the bucket numbers. By changing the
bucket size in the described bucketing, one can yield an ordering of digraph bandwidth at
most (1 + ε) times the optimal. This procedure, as we will see, also give an optimal digraph
bandwidth ordering when we use the bucket sizes to be 1. Below we give the description of
the algorithm used to find a bucketing with the useful property.

We begin by formulating the useful property of a bucketing described above. Since
the size of buckets is uniform in a bucketing, instead of defining the property in terms of
bucket numbers, we describe it in terms of the number of vertices that can appear between
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the two buckets corresponding to the end points of a forward arc in the ordering. Such
a shift in definition helps us to get slightly better bounds in our running time. For any
positive integers b, s and a digraph D, given X ⊆ V (D) and a (partial) b-bucketing of X,
say B : X → [p, q] for some p, q ∈ N, we say that the external stretch of B is at most s if
for each arc (u, v) ∈ E(D[X]), either B(u) ≥ B(v), or (B(v)− B(u)− 1) · b ≤ s. Recall that
B(u)− B(v)− 1 denote the number of buckets between the bucket of u and the bucket of v.
Our major goal now is to prove Lemma 5.1.

I Lemma 5.1. Given a digraph D and positive integers b, s, there is an algorithm, that runs
in time min{O∗(4n · (ds+1/be)n),O∗(4n · (ds+1/be)2(b+s) logn)}, and computes a b-bucketing of
V (D), B : V (D)→ [d|V (D)|/be], of external stretch at most s.

We give a recursive algorithm for Lemma 5.1 (Algorithm 1). Since Algorithm 1 is recursive,
the input of the algorithm will contain a few more things in addition to D, b, s to maintain
the invariants at the recursive steps. We give the description of the input to Algorithm 1 in
Definition 5.2.

I Definition 5.2 (Legitimate input for Algorithm 1). The input (D, b, s, first, last,
left-bor(V (D)), right-bor(V (D)), Bin) is called legitimate for Algorithm 1 if the following
holds. Let δ = ds+1/be.
(P1) D is a digraph, b, s are positive integers and |V (D)| = 2η · b ·δ, where η ≥ 0 is a positive

integer.
(P2) first and last are positive integers such that last − first + 1 = 2η, where η is such

that |V | = 2η · b · δ.
(P3) left-bor(V (D)), right-bor(V (D)) ⊆ V (D),
(P4) Bin : left-bor(V (D)) ∪ right-bor(V (D)) → [first, last] is a partial b-bucketing such

that for each v ∈ left-bor(V (D)), Bin(v) ∈ [first, first + δ − 1], for each v ∈
right-bor(V (D)), Bin(v) ∈ [last − δ + 1, last] and the external stretch of Bin is at
most s.

Observe that δ− 1 represents the number of buckets that can appear between the buckets
of u and v in any b-bucketing of external stretch at most s, where the bucket of u precedes
the bucket of v and (u, v) ∈ E(D). We would like to remark that the condition of 1 is not
serious as we could have worked without it. We state it like the way we do for the sake of
notational and argumentative convenience in the proofs. All it states is that the number of
vertices is a power of 2 multiplied by b and δ. The first and last in 2 represents the bucket
number of the first and last buckets in the bucketing to be outputted. The relation between
first and last in 2 is there to ensure that there are enough buckets to hold the vertices of
D. At any recursive call, the sets left-bor(V (D)) and right-bor(V (D)) represent the sets
of vertices whose buckets have already been fixed in the previous recursive calls. The set
left-bor(V ) represents the set of vertices in V that have an in-neighbour to the vertices
that have been decided to be placed in the buckets before the bucket numbered first in the
earlier recursive calls. Similarly, right-bor(V ) represents the set of vertices in V that have
an out-neighbour to the vertices that have been decided to be placed in the buckets after the
bucket numbered last in the earlier recursive calls. Thus, in order to give the final bucketing
of external stretch at most s, it is necessary that left-bor(V ) are placed in the first δ buckets
and right-bor(V ) are placed in the last δ buckets. This is captured in 4. The next definition
describes the properties of the bucketing that would be outputted by Algorithm 1.

I Definition 5.3 (Look-out bucketing for a legitimate instance). Given a legitimate instance
I = (D, b, s, first, last, left-bor(V (D)), right-bor(V (D)), Bin), we say a bucketing B is a
look-out bucketing for I, if B is a b-bucketing Bout : V → [first, last] of external stretch at
most s that is consistent with Bin.
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Observe that, for the algorithm of Lemma 5.1, a call to Algorithm 1 on (D, b, s, 1, |V |/b, ∅,
∅, φ) is enough. To give the formal description of Algorithm 1, we will use the following
definition.

I Definition 5.4 (B validates a partition (X1, X2)). For any integers p, q and X ′ ⊆ X, let
B : X ′ → [p, q] be a partial bucketing of X ′. Let (X1, X2) be some partition of X. We say
that B validates (X1, X2) if the following holds. Let r = b(p+q)/2c. For each v ∈ X1 ∩X ′,
B(v) ∈ [p, r] and for each v ∈ X2 ∩X ′, B(v) ∈ [r + 1, q].

Algorithm 1 Algorithm for computing b-bucketing of external stretch at most s.
Input: I = (D, b, s, first, last, left-bor(V ), right-bor(V ), Bin) such that I is legitimate for
Algorithm 1.
Output: A look-out bucketing for I, if it exists.
1: Let V = V (D) and δ = ds+1/be.
2: if |V | = b · δ then
3: return any b-bucketing B : V → [first, last] that it consistent with Bin
4: Let mid = (first+last−1)/2.
5: for each partition (L,R) of V such that |L| = |R| and Bin validates (L,R) do
6: Let borL = {v ∈ L | there exists u ∈ R, (v, u) ∈ E(D)}.
7: Let borR = {v ∈ R | there exists u ∈ L, (u, v) ∈ E(D)}.
8: Let B be the collection of partial b-bucketings, B : borL ∪ borR → [mid − δ +

1,mid + δ], such that for each v ∈ borL, B(v) ∈ [mid − δ + 1,mid], for each
v ∈ borR, B(v) ∈ [mid+ 1,mid+ δ], external stretch of B is at most s and B is
consistent with Bin.

9: for each B ∈ B do
10: Define Bnewin : left-bor(V ) ∪ borL ∪ borR ∪ right-bor(V ) → [first, last], such

that for each v ∈ left-bor(V ) ∪ right-bor(V ), Bnewin (v) = Bin(v) and, for each
v ∈ borL ∪ borR, Bnewin (v) = B(v).

11: Let BnewLin : left-bor(V ) ∪ borL → [first,mid] be such that BnewLin = Bnewin |L.
12: Let BnewRin : borR ∪ right-bor(V )→ [mid+ 1, last] be such that BnewRin = Bnewin |R.
13: Define left-bor(L) = left-bor(V ) and right-bor(L) = borL.
14: Define left-bor(R) = borR and right-bor(R) = right-bor(V ).
15: Let IB

L be the instance (D[L], b, s, first,mid, left-bor(L), right-bor(L), BnewLin ).
16: Let IB

R be the instance (D[R], b, s,mid, last, left-bor(R), right-bor(R), BnewRin ).
17: if IB

L and IB
R are legitimate inputs for Algorithm 1 then

18: if Algorithm 1(IB
L) ! = NO and Algorithm 1(IB

R) ! = NO then
19: return Algorithm 1 (IB

L) ∪ Algorithm 1 (IB
R)

20: return NO

For the formal description of Algorithm 1 refer to the pseudocode. We give the informal
description of Algorithm 1 here. In a legitimate instance when the number of vertices is b · δ,
the number of buckets is δ. Recall that δ = ds+1/be. Note that in this case, every b-bucketing
of the vertex set has external stretch at most s. This is because the number of buckets
between any two buckets is at most δ − 2 and hence, the number of vertices that appear in
the buckets between any two buckets is at most (δ − 2) · b ≤ s.

When the number of vertices is larger, the algorithm first guesses which vertices will be
assigned a bucket from the first half buckets of the final bucketing (this corresponds to the
set L) and which will be assigned the last half (this corresponds to the set R). Since the final
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bucketing has to be consistent with Bin, from the description of Bin in Definition 5.2, the
vertices of left-bor(V ) should belong to the first half buckets and the vertices of right-bor(V )
should belong to the last half buckets. Thus, the algorithm only considers those partitions
(guesses) which Bin validates (Line 5).

Fix a guessed partition (L,R) of V . The set borL represents the set of vertices in L that
have an out-neighbour in R. Similarly, the set borR represents the set of vertices in R with
an in-neighbour in L. Since in any b-bucketing of external stretch at most s, the number of
buckets that can appear between the buckets of the end points of a forward arc is at most
δ − 1, the vertices of borL can only be placed in the δ buckets closest to the middle bucket
and before it. Similarly, the vertices of borR can only be placed in the δ buckets closest to
the middle bucket and after it. The algorithm goes over all possible partial b-bucketings of
these vertices in the described buckets, that are consistent with Bin, and themselves have
external stretch at most δ (Line 8).

For a fixed partial b-bucketing enumerated above, the algorithm recursively finds a
bucketing of the L vertices in the first half buckets and the bucketing of the R vertices in
the last half buckets that is consistent with Bin and the partial b-bucketing of the borL and
borR vertices guessed. This final bucketing is then obtained by combing the two bucketings
from the two disjoint sub-problems (Lines 9 to 19).

I Lemma 5.5. (?) Algorithm 1 on a legitimate input (D, b, s, first, last, left-bor(V ),
right-bor(V ), Bin), runs in time min{O∗(4n·ds+1/ben),O∗(4n·ds+1/be2(b+s) logn)}, and returns
a look-out bucketing for I, if it exists.

Theorem 1.3 (resp. Theorem 1.3) can be proved by setting bucket size to be dbε/2e (resp. 1)
and external stretch b− 1 as parameters in the algorithm of Lemma 5.1. The full proofs are
deferred to the full version.

6 Exact Algorithm for Digraph Bandwidth via Directed
Homomorphisms

The goal of this section is to prove Theorem 1.5. Towards this, we give a reduction from
Digraph Bandwidth to a subgraph homomorphism problem for digraphs. Given two
digraphs D and H, a directed homomorphism from D to H is a function h : V (D)→ V (H),
such that if (u, v) ∈ E(D), then (h(u), h(v)) ∈ E(H). A directed homomorphism that is
injective is called an injective directed homomorphism. For any positive integers n, b such
that b ≤ n, we denote by P bn the directed graph on n vertices such that V (P bn) = [n] and
E(P bn) = Ef]Eb, where Eb = {(i, j) : i > j, i, j ∈ [n]} and Ef = {(i, i+j) : i ∈ [n−1], j ∈ [b]}.
In the following lemma, we build the relation between Digraph Bandwidth of D and
injective homomorphism from D to P bn.

I Lemma 6.1. For any digraph D and an integer b, D has bandwidth at most b if and only
if there is an injective homomorphism from D to P bn.

Proof. In the forward direction, suppose that D has digraph bandwidth at most b. Let σ be
a b-ordering of D. Let f : V (D) → V (P bn) be a function such that f(u) = σ(u). We claim
that f is an injective homomorphism. Since σ is an ordering of D, f is an injective function.
We prove that it is also a homomorphism. Consider an arc (u, v) ∈ E(D). If σ(u) < σ(v),
then since σ is a b-ordering, σ(v)− σ(u) ≤ b. Therefore, (f(u), f(v)) ∈ Ef . If σ(u) > σ(v),
then (f(u), f(v)) ∈ Eb. Hence, (f(u), f(v)) ∈ E(P bn). In the backward direction, suppose
that there exists an injective homomorphism from D to P bn. Let f : V (D) → V (P bn) be
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a function. Then, we claim that σ = (f−1(1), · · · , f−1(n)) is a b-ordering of D. Suppose
not, then there exists an arc (u, v) ∈ E(D) such that σ(v) − σ(u) > b. Let u = f−1(j)
and v = f−1(k). Note that σ(u) = j and σ(v) = k. Therefore, j < k. Since k − j > b,
(j, k) /∈ E(P bn), a contradiction that f is an injective homomorphism. J

For any two digraphs D and H, let inj(D,H) denote the number of injective homomorph-
isms from D to H and let hom(D,H) denote the number of homomorphisms from D to H.
Then the following lemma holds from Theorem 1 in [1].

I Lemma 6.2 (Theorem 1, [1]). Suppose that D and H be two digraphs such that |V (D)| =
|V (H)|. Then,

inj(D,H) =
∑

W⊆V (D)

(−1)|W |hom(D \W,H).

Now, we state the following known result about the number of homomorphisms between two
given digraphs D and H.

I Lemma 6.3 (Theorem 3.1, 5.1 [11]). Given digraphs D and H together with a tree
decomposition of D of width tw, hom(D,H) can be computed in time O(nhtw+1 min{tw, h}),
where n = |V (D)| and h = |V (H)|.

Using Lemmas 6.2 and 6.3, we get the following result.

I Lemma 6.4. Given digraphs D and H together with a tree decomposition of D of width
tw, inj(D,H) can be computed in time O(2nnhtw+1 min{tw, h}), where n = |V (D)| and
h = |V (H)|.

Proof of Theorem 1.5. The proof follows from Lemmas 6.1 and 6.4. J

7 Conclusion

In this paper we gave exponential time algorithm for the Digraph Bandwidth problem,
that either solved the problem exactly or computed it approximately. In particular, our
results imply that whenever b ≤ n

log2 n
or, the treewidth of the underlying undirected digraph

is O( n
logn ) or, the number of arcs in the digraph are linear in the number of vertices, then

there exists a 2O(n) time algorithm for solving Digraph Bandwidth. Some important
questions that remain open about Digraph Bandwidth are the following.

Does Digraph Bandwidth admit an algorithm with running time 2O(n) on general
digraphs?
Another interesting question is the complexity of the Digraph Bandwidth problem,
when b is fixed. Recall that, in the undirected case, Bandwidth can be solved in time
O(nb+1) [26]. When b = 0, the problem is equivalent to checking if the input is a dag,
which can be done in linear time. For b = 1, we are able to design an O(n2) time
algorithm. For b = 2, the problem seems to be extremely complex, and in fact, we will be
surprised if the problem turns out to be polynomial time solvable. Overall, finding the
complexity of Digraph Bandwidth, for a fixed b ≥ 2, is an interesting open problem.
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