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Abstract 

Background and aims Physical activity is favourably associated with certain markers of lipid 

metabolism. The relationship of physical activity with lipoprotein particle profiles is not known. 

Here we examine cross-sectional associations between objectively measured physical 

activity and sedentary time with serum markers of lipoprotein metabolism. 

Methods Our cohort included 880 children (49.0% girls, mean age 10.2 years). Physical 

activity intensity and time spent sedentary were measured objectively using accelerometers. 

30 measures of lipoprotein metabolism were quantified using nuclear magnetic resonance 

spectroscopy. Multiple linear regression models adjusted for age, sex, sexual maturity and 

socioeconomic status were used to determine associations of physical activity and sedentary 

time with lipoprotein measures. Additional models were adjusted for adiposity. Isotemporal 

substitution models quantified theoretical associations of replacing 30 minutes of sedentary 

time with 30 minutes of moderate- to vigorous-intensity physical activity (MVPA). 

Results Time spent in MVPA was associated with a favourable lipoprotein profile 

independent of sedentary time. There were inverse associations with a number of lipoprotein 

measures, including most apolipoprotein B-containing lipoprotein subclasses and triglyceride 

measures, the ratio of total to high-density lipoprotein (HDL) cholesterol, and non-HDL 

cholesterol concentration. There were positive associations with larger HDL subclasses, HDL 

cholesterol concentration and particle size. Reallocating 30 minutes of sedentary time to 

MVPA had broadly similar associations. Sedentary time was only partly and weakly 

associated with an unfavourable lipoprotein profile. 

Conclusions Physical activity of at least moderate-intensity is associated with a favourable 

lipoprotein profile in schoolchildren, independent of time spent sedentary, adiposity and other 

confounders. 
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Introduction 

Insufficient levels of physical activity are associated with a number of adverse health 

indicators in children and youth, including cardiometabolic risk factors and obesity (1–4). In 

contrast, it is recognised that higher levels of physical activity are favourably associated with 

certain traditional clinical measures of lipid metabolism (5). The mechanisms by which 

physical activity exerts its metabolic benefits remain poorly understood.  

Advances in quantitative high-throughput serum metabolomics have enabled more 

comprehensive molecular profiling of lipoprotein metabolism (6,7). Recent studies using 

nuclear magnetic resonance (NMR) spectroscopy have identified disparities in the 

associations of constituent lipoprotein subclasses with coronary heart disease (CHD) risk, 

long-term participation in physical activity, and obesity in adults (8–11). Though lipoprotein 

subclasses have also been profiled in children (12–14), to our knowledge no studies have 

explored their independent associations with sedentary time or physical activity. We 

examined the cross-sectional associations between objectively measured physical activity 

and sedentary time and 30 lipoprotein measures in a population of Norwegian 

schoolchildren. Reallocating time spent sedentary to physical activity has shown beneficial 

associations with traditional CVD risk biomarkers (15,16). We therefore also investigated the 

theoretical effect of reallocating sedentary time to moderate- to vigorous-intensity physical 

activity (MVPA) on these novel markers. 

 

Materials and methods 

Study population and design 

The ASK study was a seven-month cluster randomized controlled trial (RCT) to investigate 

the effect of a school-based physical activity intervention on academic performance and 

health indices in schoolchildren (https://clinicaltrials.gov. Unique identifier: NCT02132494). 

The methods and design of the study have been comprehensively described previously (17). 
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All children were in the fifth-grade of the Norwegian school system and from the Sogn and 

Fjordane county in western Norway. Sixty-one schools (1282 children) agreed to participate 

in the study. Baseline accelerometer data collection took place between April and October 

2014, prior to the physical activity intervention. There were no differences in pupils' physical 

activity or sedentary time between the intervention or control schools at either baseline or 

follow-up (18). Hence, in the present study all participating pupils' baseline data is pooled as 

a cohort. 

 

Ethics 

The Regional Committee for Medical Research Ethics approved the study protocol. 

Procedures and methods abide by the World Medical Association's Declaration of Helsinki 

(19). Written consent was obtained from each child's parent or legal guardian and from 

school authorities prior to testing. 

 

Physical activity and sedentary time 

Physical activity and sedentary time were measured using the ActiGraph GT3X+ triaxial 

accelerometer (ActiGraph LLC, Pensacola, Florida, USA). The children wore the 

accelerometer on their right hip, except during water-based activities or sleep for seven 

consecutive days. Monitor wear time of ≥480 minutes accumulated between 0600 and 0000 

is considered a valid day. Non-wear time is defined as ≥20 minutes of zero counts (20). 

Accelerometer data was collected and analysed using 10-second epochs. The accelerometer 

data were processed using KineSoft analytical software version 3.3.80 (KineSoft, 

Loughborough, United Kingdom). The physical activity outcomes are minutes/day in 

sedentary time (≤100 counts/min), light-intensity physical activity (LPA; >100 to <2296 

counts/min), and MVPA (≥2296 counts/min), classified using the Evenson cut points (21,22).  
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Anthropometry and maturity 

Body mass (weight, 0.1kg) was measured using an electronic scale (Seca 899, SECA 

GmbH, Hamburg, Germany). A portable stadiometer (Seca 217, SECA GmbH, Hamburg, 

Germany) was used to assess stature (height, 0.1cm); the child facing forward, shoes 

removed. Two measurements of each child's waist circumference were taken using an 

ergonomic circumference measuring tape (Seca 201, SECA GmbH, Hamburg, Germany). If 

the difference of the two measurements exceeded 1cm, a third measurement was taken. The 

mean of the two measurements with the least difference was used for analysis. Waist 

circumference has been shown to be highly correlated with both total fat mass and trunk fat 

measured using dual x-ray absorptiometry (DXA) (23). 

The children self-assessed their genital and pubic hair development (girls also assessed their 

breast development) according to Tanner stages and using a standardised scale of colour 

images accompanied by brief text descriptions of each stage (24). The assessments took 

place in a private room, accompanied by a researcher of the same sex to ensure the comfort 

of each child. Low frequencies were recorded in stages 4 and 5 for girls and boys, and were 

therefore combined with the Tanner stage 3 category. For statistical analysis, girls were 

assigned a single score, which corresponded to the higher of their reported Tanner stage for 

pubic hair and breast development. 

 

Socioeconomic status 

Socioeconomic status (SES) was quantified as the highest level of educational attainment of 

either a child's mother or father, whichever was higher. This information was collected using 

a self-report questionnaire designed for the ASK study and completed by each parent. There 

were six categories of educational level completed. Low frequencies were recorded in the 

four lowest SES categories and were combined accordingly. Hence, three categories are 
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used in the present analysis: i) upper secondary school, ii) less than four years of 

college/university, iii) equal to or more than four years of college/university.  

 

Blood sample collection and metabolite measurement 

Overnight fasting blood samples for each child were drawn from the antecubital vein, 

between 0800 and 1000 by a trained nurse or phlebotomist. Serum samples were stored in 

cryotubes at -80°C until analysis. Baseline sample collection took place between August and 

September 2014, prior to the physical activity intervention. 

 

Quantification of lipoprotein measures 

NMR spectra were recorded on a Bruker Avance III 600MHz spectrometer, equipped with a 

QCI CryoProbe and automated sample changer (SampleJet) (Bruker BioSpin GmbH, 

Karlsruhe, Germany). The standard operating procedure as described by Dona et al. (25) was 

applied. 

Frozen serum samples were thawed at room temperature for approximately one hour. Aliquots 

of 120µL were carefully mixed with equal amounts of phosphate buffer in Eppendorf tubes, 

and transferred to 3mm SampleJet tubes by syringe (25). A fill height of 4cm was used 

amounting to approximately 180µL.  

One-dimensional 1H NMR spectra were recorded at 310K, using the noesygppr1d pulse 

sequence for water suppression. Relaxation delay and mixing time were set to 4 seconds and 

10ms respectively, with a low-power (25Hz) continuous-wave pulse centred at the water 

frequency during both delays. A total of 32 scans were recorded, using 96k data points and a 

spectral width of 30ppm (18 028.846Hz). A fixed receiver gain of 90.5 was used. Line 

broadening of 0.3Hz was applied prior to Fourier transformation. The spectra were processed 

to a total of 131 072 data points and automatically phased using Bruker program apk00.noe. 
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For quantification, an ERETIC  signal was added to the spectrum at 15ppm, using the PULCON 

principle (26,27). The spectra were imported to MATLAB (MathWorks, Natick, MA, USA), 

scaled to the ERETIC signal and aligned to the lactate doublet at 1.32ppm. 

After aligning the spectra to the lactate shifts and normalizing to the QREF-signal, we selected 

the shift regions describing the peaks at 1.3ppm (approx. 900 shifts) and 0.9ppm (approx. 440 

shifts). These regions can provide quantitative information about the lipoprotein subclasses 

(28). Without any further pretreatment, these spectral regions were selected as explanatory 

variables to partial least squares (PLS) modelling with subclass concentrations of cholesterol 

and triglycerides determined by the high-performance liquid chromatography (HPLC) as 

response variables (29,30). Furthermore, we calculated PLS models for particle concentrations 

(particle numbers) of each lipoprotein subclass (31). A total of 106 serum samples were 

randomly selected to be analysed by both NMR and HPLC and used for PLS modelling. For 

triglyceride concentrations of subclasses only the spectral shift region describing the peak at 

1.3ppm was used. For particle and cholesterol concentrations of subclasses both windows 

were used. Individual PLS models with optimal prediction ability were calculated for all 

subclasses using a Monte-Carlo resampling approach (32). From these models, we predicted 

the concentrations of 20 lipoprotein subclasses determined for both triglycerides and 

cholesterol individually and combined for the whole cohort. Similarly, particle concentrations 

were predicted for the 20 subclasses for the whole cohort. 

Following the procedure of Lin et al. (33), we calculated total particle concentrations of 20 

lipoprotein subclasses, then reduced these to 15. We kept the three large very low-density 

lipoprotein (VLDL) subclasses distinct given the excellent resolution and accuracy achieved 

through the NMR spectroscopy analysis. We obtained total cholesterol and triglyceride 

concentrations for chylomicrons (CM), VLDL, low-density lipoprotein (LDL), and high-density 

lipoprotein (HDL) subclasses. We calculated non-HDL cholesterol by subtracting the HDL 

cholesterol concentration from total cholesterol concentration, total to HDL cholesterol ratio, 

and obtained average particle diameters for VLDL, LDL, and HDL particles. In addition to 
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quantification using NMR spectroscopy, we used standard clinical chemistry methods to 

measure serum concentrations of total cholesterol, HDL cholesterol, and triglycerides. LDL 

cholesterol was calculated using the Friedewald formula (34). 

 

Statistical analysis 

Descriptive data are presented as mean and standard deviation (SD), median and 

interquartile range [IQR] for skewed data, frequency (N) and proportion (%). We performed 

between-sex comparisons of continuous variables using independent samples Student's t-

tests. For the categorical variables parental education and sexual maturity, we used a 2-

degree of freedom (df) Chi-square (X2) test for between-sex comparisons. We calculated 

correlation coefficients for four biochemical measures (total, LDL and HDL cholesterol, and 

total triglycerides) measured by both clinical chemistry and NMR spectroscopy.  

We visually assessed residual distributions using graphical methods and interpreted 

statistics. We examined associations between sedentary time and physical activity variables 

(i.e. LPA and MVPA) as exposure variables and each lipoprotein measure as the outcome 

using multiple linear regression for normally distributed lipoprotein measures (median 

regression for skewed measures). We modelled these associations as follows: First, models 

were adjusted for monitor wear time, sex, sexual maturity and SES. Second, we further 

adjusted model 1 for adiposity (i.e. waist circumference). Third, we mutually adjusted MVPA 

for sedentary time and vice versa, also adjusting for the same covariates as in models 1 and 

2. Prior to regression, we scaled the lipoprotein measures to SD units. 

We report regression coefficients and 95% confidence intervals (CIs) for all lipoprotein 

measures. Each regression coefficient represents a SD-unit change in lipoprotein measure 

per unit increment in physical activity variable. We defined a one-unit increment in sedentary 

time or physical activity as 30 minutes. We standardised to 30 minutes time spent in MVPA, 

LPA, and sedentary time. For example, a coefficient of 0.2 for large HDL particle 
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concentration indicates that 30 minutes of MVPA is associated with a 0.2 SD-unit increment 

in large HDL particle concentration. 

We used isotemporal substitution models to examine the effect of replacing time spent 

sedentary with an equal amount of MVPA.  An isotemporal substitution analysis 

simultaneously models both the activity being performed and the activity being replaced in an 

equal time-exchange manner, whilst holding other activity types constant (35). For example, 

by excluding sedentary time from a regression model that keeps MVPA, LPA and monitor 

wear time constant, the coefficient obtained for MVPA demonstrates the theoretical effect of 

replacing sedentary time with a specified amount of MVPA. Hence, the regression 

coefficients of our model represent the SD-unit change in each lipoprotein measure for a 30-

minute substitution of MVPA replacing 30 minutes of sedentary time. Our primary model was 

adjusted for monitor wear time, sex, sexual maturity and SES. We additionally adjusted for 

adiposity in a separate model. 

Two sensitivity analyses were performed for each model. Firstly, we restricted inclusion to 

those children with at least four valid days of physical activity data. Secondly, we removed 

influential observations from each model, identified using a cut-off Cook's distance >4/N.  

We applied multiple testing correction using false discovery rate (FDR) estimation to each 

regression analysis, implemented using the Benjamini-Hochberg procedure (36). We 

consider 2-sided p values <0.05 as evidence against the null hypothesis for both the FDR-

corrected p values of the regression analyses and uncorrected p values for all other 

statistical analyses.  

We performed all analyses using R version 3.4.3 (R Foundation for Statistical Computing, 

Vienna, Austria). In addition to the base R software, additional packages used included: 

'broom', 'car', 'moments', 'quantreg', and a number of packages from the 

'tidyverse' suite. 
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Results 

Baseline characteristics 

Table 1 shows the characteristics of the children included in our study. Valid blood samples 

were available for 1056 children. Of these, complete baseline data was available for 880 

children, and they comprise the cohort for the present analyses. Those with complete data 

accumulated more LPA (p = 0.02), had higher clinical chemistry measures of total cholesterol 

(p = 0.02) and HDL cholesterol (p = 0.02), and lower triglycerides (p = 0.02) than those 176 

children with missing data. In our analytical sample, we found between-sex differences for 

the clinical chemistry measure of HDL cholesterol (p = 0.02), sexual maturity, total physical 

activity, MVPA, and clinical chemistry measure of triglycerides (all p <0.01). 

 

(Table 1 here) 

 

Comparison of lipid measurement techniques 

All four clinical chemistry measures were strongly correlated with the NMR spectroscopy-

derived values (Supplementary Material Figure S1). 

 

Associations between intensity of physical activity and lipoprotein measures 

Figure 1 shows the associations between a 30-minute difference in MVPA and the 30 

lipoprotein measures. In the model not adjusted for adiposity, there were inverse associations 

with the particle concentrations of CM and all VLDL subclasses, except small VLDL, and 

small LDL. The positive associations with the larger HDL subclasses were marked. There 

were inverse associations between MVPA and the cholesterol concentrations of CM and 

VLDL, the ratio of total to HDL cholesterol, and a positive association with HDL cholesterol. 

Time spent in MVPA was inversely associated with total, CM and VLDL triglyceride 
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concentration. There was an inverse association with average VLDL particle size, and 

positive associations with average LDL and HDL particle size. Adjusting for adiposity 

attenuated a number of the associations. However, MVPA was associated with 12 lipoprotein 

measures independent of adiposity. LPA was not associated with any lipoprotein measures 

(Supplementary Material Figure S2). 

 

(Figure 1 here) 

 

Associations between sedentary time and lipoprotein measures  

Figure 2 shows the associations between a 30-minute difference in time spent sedentary and 

the 30 lipoprotein measures. In the model not adjusted for adiposity, there were positive 

associations with the particle concentrations of VLDL L2 and L3, the cholesterol 

concentration of CM, and average VLDL particle size. There was an inverse association with 

average LDL particle size. Sedentary time was not associated with any measures 

independent of adiposity. 

 

(Figure 2 here) 

 

Isotemporal substitution of MVPA for sedentary time 

Reallocation of 30 minutes sedentary time to an additional 30 minutes of MVPA daily 

produced a near identical pattern of associations with the 30 lipoprotein measures as in the 

single activity MVPA model (Figure 3). In addition to those that were associated in the single 

activity model, substitution of MVPA was inversely associated with the particle concentration 

of the very small LDL subclass, and non-HDL cholesterol concentration. A number of the 

associations were independent of adiposity. 
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(Figure 3 here) 

 

Independent associations between moderate- to vigorous-intensity physical activity, 

sedentary time and lipoprotein measures 

Adjustment for sedentary time for the associations between MVPA and lipoprotein measures 

showed a broadly similar pattern of associations as without adjustment (Figure 4).  

 

(Figure 4 here) 

 

A comparison of the adiposity-adjusted MVPA single activity model with and without 

adjustment for sedentary time is presented in Supplementary Material Figure S3. Adjustment 

for MVPA in the model examining the associations between sedentary time and the 

lipoprotein measures showed no independent associations (Supplementary Material Figure 

S4 and Figure S5). 

 

Sensitivity analyses 

The association patterns of our models remained similar for each analysis when restricting 

included children to those 841 individuals (410 girls) that had at least four valid days of 

accelerometer wear data. When repeating each analysis having excluded influential 

observations, identified as those observations with a Cook's distance >4/N, the patterns of 

associations remained unaltered (data not shown). 

 

Discussion 
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In our cohort of healthy, Norwegian schoolchildren, time spent in MVPA is favourably 

associated with a number of lipoprotein measures independent of time spent sedentary and 

adiposity. Our results support previous work investigating different physical activity intensities 

and traditional clinical chemistry measures of lipid metabolism (37,38). The direction of 

association for time spent in MVPA with many of the lipoprotein measures are consistent with 

changes reported by Sarzynski et al. (39) in their meta-analysis of exercise interventions in 

adults. The pattern of associations shown in the MVPA isotemporal substitution model 

suggest that these potential benefits could be achieved within a waking day by reallocation of 

time from sedentary behaviours. Similar theoretical effects of reallocating sedentary time to 

MVPA in children produced favourable changes in traditional cardiometabolic risk factors 

(16). In our population, reallocation to 30 additional minutes of daily MVPA corresponds to an 

average relative increase in MVPA of 40%, which, though challenging in an already active 

population, is feasible. The associations between sedentary time, LPA and lipoprotein profile 

are negligible (38,40), and likely mediated by adiposity and MVPA. 

There are a limited number of studies investigating physical activity and NMR spectroscopy-

derived lipoprotein measures. Kujala et al. (10) reported a favourable lipoprotein profile for 

adults that self-reported as persistently physically active compared to those who were 

inactive. Also in adults, Aadland et al. (11) reported complementary findings to ours for 

individuals that spent a greater proportion of awake time in MVPA. Our observations extend 

those previously observed in adults to healthy children. 

In a recent paper, Holmes et al. (41) investigated associations between a number of 

lipoprotein measures quantified using NMR spectroscopy and risk of myocardial infarction 

(MI) and stroke in adults. They reported significantly increased odds of an event for 1 SD 

greater particle and cholesterol concentrations of all apolipoprotein B-containing lipoprotein 

subclasses, and with triglyceride concentration in most subclasses. Many of the lipoprotein 

measures associated with increased odds in that study are inversely associated with time 

spent in MVPA in our study. Therefore, increasing levels of physical activity may reduce CVD 
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risk, though we are cautious extrapolating the findings of our single study in children to 

clinical endpoints in adults.  

Strengths of our study include the reasonably large sample size, which enabled us to 

investigate a number of individual lipoprotein measures. Objective measurement of physical 

activity reduces the potential for misclassification compared to self-reported assessment. 

Other strengths include high compliance with physical activity measurement, and adjustment 

for a number of confounders, including adiposity and mutual adjustment for MVPA and 

sedentary time. The decision to include all children with at least one valid day of 

accelerometer data is supported by the unchanged pattern of associations shown in the 

sensitivity analyses that excluded children with less than four valid days. 

We acknowledge some limitations of our study. The data is cross-sectional, thus limiting our 

ability to attribute causality. Though there is potential bidirectional causation between 

adiposity and physical activity levels, it is unlikely that the lipoprotein measures themselves 

directly influence physical activity. For example, given that many of the associations remain 

after adjustment for adiposity in our MVPA model, suggests that physical activity affects 

these metabolic markers independent of adiposity. We acknowledge that we cannot exclude 

the potential for residual confounding from unmeasured variables such as dietary 

composition and genotype. 

Though there are a number of advantages to objective measurement of physical activity 

using accelerometers (42) including their popularity, which facilitates comparisons between 

cohorts and data pooling (43–45), well-known limitations remain. For instance, the inability of 

accelerometry to accurately assess the intensity of certain activities, like swimming or 

bicycling. Further, a week of objective measurement may not reflect habitual activity patterns. 

A previous study in children reported intraclass correlation coefficients of approximately 0.5 

for serial objectively measured physical activity (46). However, if we assume that the within-

individual measurement error is random, it is likely that the observed associations are 

attenuated and possible, therefore, that the magnitudes be twice as strong as reported here. 
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The marginal associations reported for LPA in our results could be due to known issues of 

misclassification with sedentary time when using accelerometer cut-points (47). Lastly, given 

that our sample is from a particular geographical region within Norway, the generalisability of 

our findings to other populations is limited. 

 

Conclusion 

Physical activity of at least moderate-intensity shows broadly favourable associations with 

lipoprotein metabolism, independent of time spent sedentary. These associations are 

somewhat attenuated by, but mostly independent of, adiposity and suggest a combination of 

increased physical activity coupled with approaches to reduce adiposity are likely to be more 

beneficial than unidimensional interventions. Theoretically, these benefits could be achieved 

by reallocating 30 minutes of sedentary time to moderate- to vigorous-intensity physical 

activity each day. Larger, longitudinal studies of more diverse populations are required to 

establish the broader applicability of our findings, investigate their stability into adulthood and 

potential associations with clinical endpoints. 
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Table 1. Baseline characteristics of the included participants. 1 

Characteristic All Girls Boys p c 

N (%) 880 431 (49.0) 449 (51.0)  

Age, years a 10.2 (0.3) 10.2 (0.3) 10.2 (0.3) 0.82 

Parental education, N (%)    

0.73 
  Upper secondary school 287 (32.6) 142 (32.9) 145 (32.3) 

  <4 years college/university 268 (30.5) 126 (29.2) 142 (31.6) 

  ≥4 years college/university 325 (36.9) 163 (37.8) 162 (36.1) 

Anthropometry     

  Height, cm a 142.9 (6.8) 142.6 (6.8) 143.1 (6.7) 0.32 

  Weight, kg a 37.1 (8.1) 37.2 (8.4) 37.0 (7.8) 0.85 

  BMI, kg/cm2 a 18.1 (3.0) 18.1 (3.1) 18.0 (2.9) 0.47 

  WC, cma  62.0 (7.5) 61.5 (7.8) 62.5 (7.2) 0.07 

Tanner stage, N (%)    

<0.01 
  Stage 1 245 (27.8) 88 (20.4) 157 (36.4) 

  Stage 2 529 (60.1) 284 (65.9) 245 (56.8) 

  Stage ≥3 106 (12.0) 59 (13.7) 47 (10.9) 

Physical activity     

  Wear time, min/day a 778 (58) 776 (56) 781 (60) 0.20 

  Total PA, cpm a 741 (288) 696 (243) 784 (320) <0.01 

  SED, min/day a 466 (58) 468 (57) 464 (58) 0.31 

  LPA, min/day a 233 (39) 236 (37) 231 (40) 0.08 

  MVPA, min/day a 76 (27) 69 (21) 83 (29) <0.01 
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Clinical chemistry     

  TC, mmol/L a 4.5 (0.7) 4.5 (0.7) 4.5 (0.7) 0.63 

  LDL C, mmol/L a 2.5 (0.6) 2.5 (0.6) 2.5 (0.7) 0.54 

  HDL C, mmol/L a 1.6 (0.3) 1.6 (0.3) 1.6 (0.3) 0.02 d 

  TG, mmol/L b 0.7 [0.5-0.9] 0.7 [0.6-1.0]  0.6 [0.5-0.8] <0.01 e 

a Mean (SD) 1 
b Median [IQR] 2 
c p value between sexes derived from independent samples Student's t-test (continuous, normally distributed 3 
variables); 2-df Chi-square test (categorical variables).  4 
d Values to 2 decimal places: 1.58 for girls, 1.63 for boys. 5 
e p value for t-test shown for log(TG). Wilcoxon rank-sum test p <0.01. 6 
BMI = body mass index; HDL C = high-density lipoprotein; LDL C = low-density lipoprotein cholesterol; LPA = 7 
light-intensity physical activity; MVPA = moderate- to vigorous-intensity physical activity; PA = physical activity; 8 
SED = sedentary time; TC = total cholesterol; cholesterol; TG = triglycerides; WC = waist circumference.9 
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Figure 1. Cross-sectional associations of time spent in MVPA with 30 serum 
lipoprotein measures (N = 880). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The associations were adjusted for monitor wear time, sex, sexual maturity and SES (red). Analyses were 
additionally adjusted for adiposity (black). Association magnitudes are the standardised unit difference in 
lipoprotein measure per 30-minute increment in MVPA. Filled circles are FDR-corrected p value <0.05. Error bars 
are 95% CIs. CM = chylomicrons; HDL = high-density lipoprotein; LDL = low-density lipoprotein; VLDL = very low-
density lipoprotein; L = large; M = medium; S = small; VS = very small; VL = very large; C = cholesterol; TG = 
triglycerides. 
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Figure 2. Cross-sectional associations of sedentary time with 30 serum lipoprotein 
measures (N = 880). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The associations were adjusted for monitor wear time, sex, sexual maturity and SES (red). Analyses were 
additionally adjusted for adiposity (black). Association magnitudes are the standardised unit difference in 
lipoprotein measure per 30-minute increment in sedentary time. Filled circles are FDR-corrected p value <0.05. 
Error bars are 95% CIs. CM = chylomicrons; HDL = high-density lipoprotein; LDL = low-density lipoprotein; VLDL 
= very low-density lipoprotein; L = large; M = medium; S = small; VS = very small; VL = very large; C = 
cholesterol; TG = triglycerides. 
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Figure 3. Cross-sectional associations of 30 serum lipoprotein measures with an 
isotemporal substitution of 30 minutes time spent in MVPA for 30 minutes of 
sedentary time (N = 880). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The associations were adjusted for monitor wear time, sex, sexual maturity and SES (red). Analyses were 
additionally adjusted for adiposity (black). Association magnitudes are the standardised unit difference in 
lipoprotein measure for a 30-minute reallocation of activity. Filled circles are FDR-corrected p value <0.05. Error 
bars are 95% CIs. CM = chylomicrons; HDL = high-density lipoprotein; LDL = low-density lipoprotein; VLDL = very 
low-density lipoprotein; L = large; M = medium; S = small; VS = very small; VL = very large; C = cholesterol; TG = 
triglycerides. 
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Figure 4. Cross-sectional associations of time spent in MVPA with 30 serum 
lipoprotein measures adjusted for sedentary time (N = 880). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The associations were adjusted for sedentary time, monitor wear time, sex, sexual maturity and SES (red). 
Analyses were additionally adjusted for adiposity (black). Association magnitudes are the standardised unit 
difference in lipoprotein measure per 30-minute increment in MVPA. Filled circles are FDR-corrected p value 
<0.05. Error bars are 95% CIs. CM = chylomicrons; HDL = high-density lipoprotein; LDL = low-density lipoprotein; 
VLDL = very low-density lipoprotein; L = large; M = medium; S = small; VS = very small; VL = very large; C = 
cholesterol; TG = triglycerides. 


