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—— Abstract

Given a symmetric £ x ¢ matrix M = (m, ;) with entries in {0, 1, %}, a graph G and a function
L:V(GQ) — 29 (where [(] = {1,2,...,£}), a list M-partition of G with respect to L is a partition
of V(@) into ¢ parts, say, Vi, Va,..., Ve such that for each 4,5 € {1,2,...,¢}, (i) if m;; = 0 then
for any u € V; and v € Vj, uwv ¢ E(G), (ii) if m;; = 1 then for any (distinct) v € V; and v € Vj,
uv € E(Q), (iii) for each v € V(G), if v € V; then ¢ € L(v). We consider the DELETION TO LIST
M-PARTITION problem that takes as input a graph G, a list function L : V(G) — 2[4 and a positive
integer k. The aim is to determine whether there is a k-sized set S C V(@) such that G — S has a
list M-partition. Many important problems like VERTEX COVER, ODD CYCLE TRANSVERSAL, SPLIT
VERTEX DELETION, MULTIWAY CUT and DELETION TO LisST HOMOMORPHISM are special cases of
the DELETION TO LI1ST M-PARTITION problem. In this paper, we provide a classification of the
parameterized complexity of DELETION TO LIST M-PARTITION, parameterized by k, (a) when M is
of order at most 3, and (b) when M is of order 4 with all diagonal entries belonging to {0,1}.
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1 Introduction

A large number of problems in algorithmic graph theory are of the following two types. (1)
Given a graph G, can the vertices of G be partitioned subject to a set of constraints? And
(2) given a graph G and a non-negative integer k, is it possible to delete at most k vertices
from G so that the vertices of the resulting graph can be partitioned subject to a set of
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Deletion to List Matrix-Partition for Low-Order Matrices

constraints? In this paper, we study the parameterized complexity of a family of problems of
the second type, (with k, the size of the deletion set, as the parameter). We consider those
partitions that can be characterised by a matrix of order at most 4. In this regard, we follow
Feder et al. [17], who undertook a similar study of partition problems of the first type.

Let M be a symmetric £ x ¢ matrix with entries from {0,1,*}. For a graph G, an
M -partition V of G is a partition of V(G) into ¢ parts {Vi,Va,...,V;} (where some part
could be empty) such that for every i € [{], (i) V; is an independent set if m;; = 0, (ii)
G[V;] is a clique if m;; = 1 (and no restriction on V; if m; ; = ); and for distinct indices
i,7 €[4, (iii) V; and V; are completely adjacent if m; ; = 1, (iv) V; and V; are completely
non-adjacent if m; ; = 0 (and no restriction on the edges between V; and V; if m,; ; = ).
The M-PARTITION problem takes as input a graph G, and the objective is to determine
if G admits an M-partition. This problem encompasses recognition of many graph classes
that can be characterised by a partition of the vertex set satisfying certain constraints. For
instance, consider the following matrices:

0 = *

* 0 *
e U B
x 0 x 1 :

* % 0

The set of graphs that admit an M;-partition and Ms-partition are exactly the family of
bipartite graphs and split graphs, respectively. Note that both bipartite graphs and split
graphs have polynomial time recognition algorithms [3, 22, 25]. The graphs that admit an
M-partition are exactly the graphs that admit a proper colouring using at most ¢ colours. It
is well-known that while 2-colouring is polynomial time solvable [3], ¢-colouring is NP-hard
for every £ > 3 [19, 20].

For an ¢ x ¢ matrix M, LisST M-PARTITION is a generalization of M-PARTITION. Let M
be a symmetric ¢ x £ matrix over {0, 1, *}. Given a graph G and a function L : V(G) — 2!
(L is called a list function, and for each v € V(G), L(v) is called the list of v), a list M-
partition of G with respect to L (or a list M-partition of G that respects L) is an M-partition
V = {V1,Va,...,Vi} of G such that for each v € V(G), if v € V; for some i € [{] then
i € L(v). LisST M-PARTITION takes as input a graph G, a list function L : V(G) — 2[4 and
the objective is to determine if G admits a list M-partition of G that respects L. Note that
when an instance of LiST M-PARTITION has the input list function mapping every vertex to
the set [¢], then it is also an instance of M-PARTITION (where we forget the list function).

Both M-PARTITION and LiST M-PARTITION problems have been extensively studied
in the literature, both for restricted matrices and for restricted graph classes (see, for
example, [1, 5, 8, 10, 11, 12, 16, 17, 24, 29] and references therein). The most widely known
special case of LI1ST M-PARTITION is perhaps the LisT COLOURING problem. The notion of
studying the restriction of colouring problems with a list of allowed colours on vertices was
introduced and studied (independently) by Vizing [28] and Erdds et al. [13]. Since its advent,
the problem has been extensively studied in both graph theory and algorithms [13, 24, 29].
Another important special case of LiST M-PARTITION is the LiST HOMOMORPHISM problem,
which to the best of our knowledge, was introduced by Feder and Hell [14], and has been
extensively studied in the literature [1, 8, 10, 11, 12, 16].

Feder et al. [17] studied LisT M-PARTITION, and established a complete classification of
LisT M-PARTITION for small matrices M (into P/NP-hard/quasi polynomial time). Their
results form a special case of later results due to Feder and Hell [15, Corollary 3.4] on
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constraint satisfaction problems. In this paper, we look at the deletion version of LIST
M-PARTITION, which we call DELETION TO LiST M-PARTITION. The problem is formally
defined as follows.

DELETION TO LIST M-PARTITION Parameter: &
Input: A graph G, a list function L : V(G) — 2/} where ¢ is the order of M, and a
non-negative integer k.

Question: Does there exist X C V(@) such that |X| < k and G — X admits a list
M-partition that respects L?

The DELETION TO LIST M-PARTITION problem generalises many well-studied classical
problems, such as VERTEX COVER (VC), ObD CYCLE TRANSVERSAL (OCT), SpLIT
VERTEX DELETION (SVD) and MuLTIwAYy CUT, to name a few. These problems (VC,
OCT, SVD etc.) have been studied in both classical and parameterized complexity settings
and are all NP-hard [30, 9]. Chitnis et al. [7] initiated the study of the deletion version
of LisT HOMOMORPHISM to a graph H, called DL-HOM(H ), which is a special case of
DELETION TO L1ST M-PARTITION. (In [7], H is considered to be a loopless, simple graph.)
They showed that DL-HoM(H) is FPT (parameterized by k and |H|) for any (Ps, Cs)-free
bipartite graph H, and conjectured that the problem is FPT for those graphs H for which
LisT HOMOMORPHISM (i.e., without deletions) is polynomial-time solvable. Notice that for
some of the matrices that do not contain both 1 and 0 and do not have a * as a diagonal
entry, the corresponding DELETION TO LisT M-PARTITION problem is covered by the results
in [7].! While we study the deletion version of LIST M-PARTITION, the “counting version,”
denoted by #LIST M-PARTITION, where given G and L as input, the goal is to determine
the number of M-partitions of G that respect L, has been studied by Gébel et al. [21]. They
established a complete dichotomy by showing that for any symmetric matrix M over {0, 1, *},
#L1ST M-PARTITION is either in FP or #P-complete.

Our Results and Methods

We study the parameterized complexity of DELETION TO LiST M-PARTITION for different
matrices M, and obtain a classification of these problems (into polynomial time solvable,
NP-hard and FPT or para-NP-hard) when M is a matrix of order at most 4.

M is of order at most 3. First, we resolve the classical complexity of DELETION TO LIST
M-PARTITION problems when M is of order at most 3, except for one matrix. We extend
the study to explore the parameterized complexity of these deletion problems, parameterized
by the size k of the deletion set. Specifically, we prove the following theorem.

» Theorem 1 (x2). For a 3 x 3 symmetric matriz M over {0,1,%}, the DELETION TO LIST
M-PARTITION problem is
1. polynomial time solvable if either M or M is equivalent to one of the three matrices

* % ok * 0 % * % 0
x ok x|, 0 = x| or |x *x 0];
* % ok * % ok 0 0 =«

! The results in [7] only cover a few matrices of the described form because there is an additional constraint
of H being a (Ps, Cs)-free bipartite graph.
2 Due to paucity of space, (full) proofs of statements marked with a x have been omitted.
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Figure 1 An overview of the results on matrices, up to complementation and equivalence.

2. para-NP-hard if either M or M is equivalent to one of the two matrices
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3. solvable by an algorithm running in time 2.3146*n°0°8™) when M or M is equivalent to

*x O %

0
*
*

— % %

4. FPT if M is not covered by any of the previous cases.

Theorem 1 shows that the DELETION TO LiST M-PARTITION problem has polynomial
time algorithms, FPT algorithms or algorithms of the form ¢*n®0°€™)  depending on the
matrix M (see also Figure 1). We also have two cases for M where the DELETION TO LIST
M-PARTITION problem is para-NP-hard. With such a varied range of complexities, we use
several techniques to design the algorithms. The polynomial time algorithms are based on
ideas that help to reduce the problem to an equivalent minimum separator problem [18]. For
our FPT algorithms, we utilize the notion of important separators, which was introduced by
Marx [27]. Another technique we use to design our FPT algorithms for DELETION TO LIST
M-PARTITION is based on reducing the given instance to (polynomially many) instances of
VARIABLE DELETION ALMOST 2-SAT, and then employing the known FPT algorithm for
VARIABLE DELETION ALMOST 2-SAT to resolve the instance. We also use the technique of
“iterative compression” for designing FPT algorithm for one of our cases. For the matrix M
defined in item 3 of Theorem 1, although the FPT solvability versus W-hardness of DELETION
TO LIST M-PARTITION remains open, we design an algorithm for this problem that runs
in time 2.3146Fn°0°8™) where n is the number of vertices in the input graph. We use the
technique of separating families introduced by Feder et al. [17] to design this algorithm.
These results can be found in Section 3.

M is of order 4. We restrict the matrices M to have only Os and 1s as their diagonal entries.
First, we observe that all these problems are NP-hard. Second, we design FPT algorithms
for these problems, unless the matrix M “encompasses” the 3-COLOURING problem. Let
Mo denote the 3 x 3 matrix with only Os on the diagonal, and s elsewhere. We prove the
following theorem.
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» Theorem 2 (x). Consider a DELETION TO LIST M-PARTITION problem, where M is a
4 x 4 matriz over {0,1,x} that has only 0s and 1s as diagonal entries. If M does not contain
an equivalent matriz of Mo (or its complement) as a sub-matriz, then the problem is FPT.
Otherwise, the problem is para-NP-hard.

Our FPT algorithms use the technique of iterative compression along with the known FPT
algorithm for VARIABLE DELETION ALMOST 2-SAT. Our use of iterative compression
exploits structural properties provided by M in order to design the FPT algorithms. Our
results, in particular show that, for a 3 x 3 matrix (except the matrix defined in item 3 of
Theorem 1) or a 4 x 4 matrix with no xs on the diagonal, whenever the LIST M-PARTITION
is polynomial time solvable, the corresponding DELETION TO LIST M-PARTITION problem
is fixed-parameter tractable, and whenever L1ST M-PARTITION is NP-hard, DELETION TO
LisT M-PARTITION is para-NP-hard, and thus provide a (partial) parameterized analogue of
the results established in [17].

2 Preliminaries and Basic Tools

For a graph G, V(G) and E(G) denote respectively the vertex set and edge set of G. Given
a partition V of V! C V(G), V(V) = V', and for X C V', V — X denotes the restriction of
the partition to V/ \ X. Let G be a graph and X,Y C V(G). A set of vertices S C V(G) is
said to be an (X,Y)-separator if G — S contains no path from X to Y.

Definitions and results for some useful problems. Consider a 2-CNF formula . The
variable set of ¢ is denoted by Var(¢)). For a set Y C Var(¢)), ©» — Y denotes the 2-CNF
formula obtained from 1 by deleting all the clauses that contain a variable from Y. The
2-SAT problem takes as input a 2-CNF formula ), and the question is to test if there is a
satisfying assignment for ¢. The 2-SAT problem admits a polynomial time algorithm [23].
The VARIABLE DELETION ALMOST 2-SAT problem takes as input a 2-CNF formula v and
a non-negative integer k, and the objective is to test if there is a set X C Var(vy) of size at
most k such that 1) — X is satisfiable. It is known that VARIABLE DELETION ALMOST 2-SAT
admits an algorithm that runs in time 2.3146*2°(1) | where n is the number of variables [26],
and hence is in FPT, when parameterized by k.

Matrices and list partitioning. For an ¢ x ¢ matrix M, consider an M-partition V =
{V1,Va,...,V4} of a graph G. Then the part V; will be said to have index i. For an instance
(G,L:V(G) — 2l9) of LisT M-PARTITION, throughout the paper we assume that L(v) # 0,
as otherwise, we can immediately report that (G, L) does not admit an M-partition that
respects L. Similarly, for an instance (G, L : V(G) — 29, k) of DELETION TO LisT M-
PARTITION, we assume that L(v) # (), as otherwise, we can (safely) delete such a vertex from
G and reduce k by 1 (or return that it is a no-instance when k < 0).

Given a matrix M, the complement M is defined as follows: m;; = 0 <= m;; =
1,m;; =1 < m;; =0,m;; =+ <= Mm;; = *. The lower triangular submatrix
My, = (mf;) of a matrix M = (m;;) is defined as follows: Vi > j,m}; = m;; and
Vi < g, m{jj = 0. When the context is clear we drop the superscript from the entry names
of the lower triangular matrix My and simply use the entry names m; ; of M. Similarly,
the upper triangular submatrix My = (mgj) of a matrix M = (m; ;) is defined as follows:
Vi < j,m{; =m;; and Vi > j,m{; = 0. Again, we drop superscripts when the context is
clear. The following observation follows from the definition of the complement of a matrix.

41:5
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» Observation 3. A graph G admits a list M -partition with respect to a list function L if
and only if G admits a list M -partition with respect to L.

In this paper, for an £ x £ matrix M, a submatrix M’ of order p < £ is defined as follows:
there are p distinct indices {i1,i2,...,4,} € [{] such that m] , = m;, ;, for all a,b € [p].
Consider two symmetric £ x £ matrices M = (m; ;) and M’ = (m] ;) over {0, 1, x}. We say
that M is equivalent to M', if there is a permutation 7 : [¢(] — [£] such that mj ; = Mz (i) (j)-
And such a permutation 7 is called a witness-permutation for (M, M'). Notice that if M is
equivalent to M’, then M’ is also equivalent to M with witness-permutation 7. That is,
M and M’ are equivalent if they define the same partition up to a re-indexing of the parts.
We immediately obtain the following result.

» Proposition 4. Let M be a symmetric matriz equivalent to M, with a witness-permutation
w. Then, a graph G admits a list M -partition with respect to a list function L if and only if G
admits a list M'-partition with respect to the list function L', where L'(v) = {x(i) | i € L(v)}
for every v € V(G).

Some Useful Results on List M-Partition

We present a summary of results from [17], which will be used throughout.

Reducing List M-partition to 2-SAT, for a 2 X 2 matrix M. It was shown in [17] that
an instance of the LIST M-PARTITION problem can be reduced (in polynomial time) to an
equivalent instance of 2-SAT, provided that M is a 2 X 2 matrix. And since 2-SAT is
polynomial time solvable [2], so is LIST M-PARTITION, when M is a 2 x 2 matrix. What is
interesting is that this reduction works even if M is not of order 2, but the size of L(v) is
at most 2 for every vertex v of the input graph GG. The LisST M-PARTITION problem such
that the list of every vertex in G has size at most two will also be referred to as the 2-LiST
M-PARTITION problem. The reduction from 2-LiST M-PARTITION to 2-SAT will also be
useful while designing algorithms for DELETION TO LIST M-PARTITION. Next, we state the
properties of the reduction from 2-Li1ST M-PARTITION to 2-SAT.

» Proposition 5 (). Let (G, L: V(G) — 29 be an instance of 2-L1sT M-PARTITION. In
polynomial time we can output an instance ¥ of 2-SAT and a bijective function f:V(G) —
Var(v), such that for every X C V(G): i) ¢ — f(X) is a yes instance of 2-SAT if and
only if (G — X, Lly-x): V(G- X) — 2y 4s a yes instance of 2-LI1ST M-PARTITION,
and ii) a set A C Var(yp — f(X)) is a satisfying assignment for ¢ — f(X) if and only if for
each v € {f~Y(a) | a € A} with Llya-x)(v) = {i,j}, where i < j, we have v € V;. Here,
V ={V1,Va,...,Vi} is an M-partition of G — X (if it exists).

From the above proposition, we can conclude that 2-LisT M-PARTITION admits a
polynomial time algorithm. It also suggests a strategy for solving L1ST M-PARTITION: try to
reduce the size of every list. It is indeed possible to do that, as shown in [17], if the matrix
M has a row that contains both a 0 and a 1 (see Proposition 2.3 and Corollary 2.4 in [17]).

» Proposition 6 ([17]). Suppose the matriz M has m;, ;, =0 and m;, ;, =1 (one of iz or
io can be equal to i1). Then an instance (G, L) of the L1IST M-PARTITION problem can be
reduced (in polynomial time) to (i) one instance with no list containing i1 and (ii) at most
[V (G)| instances with no list containing both is and iz, such that (G, L) is a yes instance if
and only if at least one of the |V(G)| + 1 instances is a yes instance.
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The above proposition comes handy when M is a 3 X 3 matrix, as in this case the problem
reduces to |V(G)| + 1 instances that have only lists of size at most two. Another notion that
will be useful in our algorithm is “domination”, defined below.

» Definition 7. For a symmetric matriz M of order £ over {0,1,*}, and rows i1,io € [€], i1
dominates io in M if for each column ig € [€], either my iy = Miyiy OT My iy = *.

» Proposition 8 (Proposition 2.5 [17]). Consider a matriz M of order £, where the row iy
dominates the row is, and an instance (G, L) of LiST M-PARTITION. Let L' be the list
function such that for each v € V(G), (i) L'(v) = L(v) if |L(v) N {i1,i2}] < 1, and (%)
L'(v) = L(v) \ {iz} otherwise. The graph G admits a list M -partition that respects L if and
only if it admits a list M -partition that respects L'.

Basic tools for Deletion to List M-Partition. We show how the results presented earlier
for LI1ST M-PARTITION can be used for solving DELETION TO L1ST M-PARTITION. Consider
an instance (G, L, k) of DELETION TO L1ST M-PARTITION. Suppose |L(v)| < 2 for every
v € V(G). Let 9 be the 2-CNF formula and f : V(G) — Var(y)) be the bijective function
returned by Proposition 5. The properties of ¢ and f (as in Proposition 5), ensures that
deleting a set X C V(G) of vertices from G is equivalent to deleting the variables f(X)
from 9. Let DELETION TO 2-LIST M-PARTITION be the special case of DELETION TO
LisT M-PARTITION where the list of each vertex has size at most two. By Proposition 5,
DELETION TO 2-LiST M-PARTITION is equivalent to testing whether k variables can be
deleted from 1) to make it satisfiable. This is exactly the same as the VARIABLE DELETION
A1LMOST 2-SAT problem, which admits an FPT algorithm running in time 2.3146’“,71’0(1),
where k' is the size of the deletion set and n’ is the number of variables. This together with
Proposition 5 gives us the following result.

» Proposition 9. DELETION TO 2-L1ST M-PARTITION is fized-parameter tractable with
running time 2.3146¥n°M)

Now using Propositions 6 and 9, we obtain the following result.

» Proposition 10. Let M be a 3 x 3 matriz such that M has a row that contains both a 0
and a 1. Then DELETION TO LIST M-PARTITION is fized-parameter tractable.

» Proposition 11 (). DELETION TO LiST M-PARTITION is NP-hard if at least one of the
diagonal entries of M is 0 or 1.

The reduction rule stated in the following lemma will be useful in our algorithms.

» Lemma 12 (x). For a matrix M, let (G, L,k) be an instance of DELETION TO LIST
M-PARTITION, with a vertex v € V(QG), such that L(v) = 0. Then, (G,L,k) and (G —
{v}, Llv @y qvy, kB — 1) are equivalent instances of DELETION TO LIST M-PARTITION.

» Remark 13. We note that for any DELETION TO LIST M-PARTITION problem, we assume
that we are looking for a list M-partition where each part is non-empty. First, if there is
a part that is empty in the list M-partition, then our current instance can be resolved as
an instance of DELETION TO LisT M’-PARTITION, where M’ is a matrix of order strictly
less than M. Otherwise, for no list M-partition is any part empty. In such a case, in a
polynomial time preprocessing step, we can guess one vertex v; per part ¢ of the hypothetical
list M-partition V and appropriately reduce L(v;) = {i}.

41:7
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Table 1 An overview of our NP-hardness vs. P results (not covered by Proposition 11) for
matrices of order 3 x 3, where complement matrices are not shown.

Matrices (and witness-permutation 7 : [3] — [3]

) Equivalent matrix Class Proof
m(1)=1,72)=3,73)=2 | n(1)=3,7(2)=2,7(3) =1

Lemma 16(a)
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P Lemma 16(b)

P Lemma 16(c)

* * O|lo * *
* % O x O *
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O % O ¥ ¥ %

NP-hard | Lemma 14(a)

NP-hard | Lemma 14(b)

— ] —
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v
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3 Classification of 3 X 3 matrices

In this section, our main objective is to classify DELETION TO LIST M-PARTITION for
matrices M of order 3, both in classical complexity as well as parameterized complexity.
Throughout the section, M = (m; ;) denotes a symmetric 3 x 3 matrix over {0, 1, *}. We prove
some of the main algorithmic results that we obtain for DELETION TO L1ST M-PARTITION
for matrices M of order 3, and thus present a partial proof of Theorem 1.

Before we go into the proof of Theorem 1, we first address the question of NP-hardness
versus polynomial time solvability of these problems. Already we saw in Proposition 11 that
DELETION TO LiST M-PARTITION is NP-hard if at least one of the diagonal entries of M is 0
or 1. So we now need to consider only those matrices M for which m; 1 =mgo 2 = mg3 = *.
And up to complementation and equivalence of matrices, we are left with only six such
matrices. We resolve five of these cases; see Table 1 for an overview of these results.

» Lemma 14 (x). DELETION TO LI1ST M-PARTITION is NP-hard if M is one of the following
matrices: (a) mi1 = Moo = Mg3 =%, M2 =My 3 =ma3 =0, and (b) m11 = mas =
ma3 =%, mi3=ma3=0,mi2=1.

» Remark 15. We do not know whether DELETION TO LiST M-PARTITION is NP-hard or
not when M is described as my 1 = mg 2 = m3 3 = *, mi2 = 0,my 3 = 1,my 3 = *. However,
in the course of the proof of Theorem 1, we show that DELETION TO LIST M-PARTITION is
FPT, when M or M is equivalent to the above matrix.

We now briefly discuss the polynomial time solvability of the cases described in Theorem 1,
item 1.

» Lemma 16 (x). DELETION TO LIST M-PARTITION is polynomial time solvable if M is
one of the following matrices:

—~~
&
N
*
*
—
=3
=
* O *
* * O
*
—~
o
~
S *x ¥
O x *
* O O
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Proof Sketch. In each of the cases below, (G, L, k) denotes an input instance of DELETION

TO LIST M-PARTITION. We assume that for each v € V(G), we have L(v) # 0 (see

Lemma 12). And recall that for any X,Y C V(G), an (X,Y)-separator can be found in

polynomial time [18].

(a) In this case, all entries of the matrix M are *s. Notice that a vertex v € V(G) can go to
any one of the parts V; in a list M-partition as long as i € L(v).

(b) Let X = {veV(G)|Lw)={1}}, Y = {veV(G) | Llv)={2}} and Z = {v €
V(G) | 3 € L(v)}. We can show that S C V(G) is a solution for the DELETION
TO LIST M-PARTITION instance (G, L, k) if and only if S is an (X,Y)-separator in
G-7Z.

(c) In this case, indices 1 and 2 dominate each other. Thus we can assume that the
list of no vertex contains both 1 and 2. Let X = {v € V(G) | L(v) ={3}} and Y =
{x € V(GQ) | L(v) C{1,2}}. Notice that a set S C V(G) is a solution to the DELETION
TO L1ST M-PARTITION instance (G, L, k) if and only if S is an (X, Y")-separator. <

Now we turn our attention to the parameterized complexity of DELETION TO LisT
M-PARTITION when M is of order 3. First, we consider the matrices defined in item 2 of
Theorem 1.

» Observation 17. The problem DELETION TO LIST M-PARTITION is para-NP-hard, when
M is one of the two matrices matrices define in item 2 of Theorem 1. The first matriz in item
2 corresponds to a 3-colouring and the second matriz corresponds to a stable-cutset partition.
Therefore, the corresponding LiST M-PARTITION problems correspond to the problems 3-
COLOURING and STABLE CUTSET, respectively, both of which are NP-hard [19, 4].

In the remaining part of this section, we consider some special cases from Theorem 1 and
describe algorithms for these special cases. The rest of the case analysis leading to the proof
of Theorem 1 has been omitted due to space constraints.

Algorithm for the Deletion to List Clique-Cutset Partition. The problem is DELETION
TO LI1ST M-PARTITION, where M is the matrix such that an M-partition is a clique-cutset
partition, i.e., M is such that m; 1 = mo2 = %, mg3 =1 and my 3 = mg3 = *. my 2 = 0.
Consider a clique-cutset partition V = {V;, V5, V3} of a graph G. The subgraph G[V3] is a
clique, and V3 is also a cutset between the parts V3 and V5. Hence the name clique-cutset
partition. We now prove the following lemma, the proof of which relies on a family of vertex
subsets that “separate cliques and stable-pairs,” defined below.

» Lemma 18. DELETION TO LIST CLIQUE-CUTSET PARTITION is solvable in 2.31465nO(ogn)
time.

» Definition 19. For a graph G, a pair of disjoint sets A, B C V(QG) is a stable-pair if for
everya € A and b € B, ab ¢ E(G). A family F C {F | F C V(G)} separates cliques and
stable-pairs if for every A, B,C C V(G) such that A, B is a stable-pair, G[C] is a cliqgue and
CnN(AUB) =0, there is F € F such that C C F and either FNA=0 or FNB = 0.

» Proposition 20 (Theorem 4.3 [17]). Every graph on n vertices has a family of size n'°&™
that separate cliques and stable-pairs. Moreover, such a family can be found in time n©1°8™).

Let us see the implication of this proposition to our problem. Consider an instance (G, L, k)
of DELETION TO LisT CLIQUE-CUTSET PARTITION, and its solution S C V(G) (if it exists).
Let F be a family of sets that separates cliques and stable-pairs in G. And consider the list
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Algorithm 3.1 Algorithm for DELETION TO LI1ST CLIQUE-CUTSET PARTITION.
Input: (G, L, k).
Output: yes or no.
1 Construct a family F of size n
2 for each F € F do
3 Define L; : V(G) — 2B as follows. For every v € F, set Li(v) = L(v) \ {1}. For
every v ¢ F, set Li(v) = L(v) \ {3}.
4 if Proposition 9 returns yes for the instance (G, L1, k) then
L return yes
6 Define Lo : V(G) — 2131 ag follows. For every v € F, set Ly(v) = L(v) \ {2}. For
every v ¢ F, set Lo(v) = L(v) \ {3}.
if Proposition 9 returns yes for the instance (G, Lo, k) then
8 L return yes

logm that separates cliques and stable-pairs in G.

9 return no

clique-cutset partition (V1, Va, V3) of G—S. Note that G[V3] is a clique, Vi, V3 is a stable-pair,
and V3 is disjoint from V; U V5. Then, by Proposition 20, there exists F' € F such that F
contains V3 and F' is disjoint from at least one of V; and V5. Consider the set of lists Lq
obtained from L by removing 1 from L(v) for every v € F and 3 from L(v) for every v ¢ F.
Observe that if ' NV; = 0, then S is a solution for the DELETION TO LIST M-PARTITION
instance (G, L1, k) as well. Similarly, let Ly be the set of lists obtained from L by removing
2 from L(v) for every v € F and 3 from L(v) for every v ¢ F. Then if F NV, = (), then S
is a solution for the DELETION TO LIST M-PARTITION instance (G, Lo, k) as well. But we
know that either F N'V; =0 or F N V3 = 0. Therefore, S is a solution to either (G, Ly, k) or
(G, La, k). These observations lead us to our algorithm (see Algorithm 3.1).

The correctness of Algorithm 3.1 is apparent from our previous discussions. As for the
running time, Step 1 takes n®1°8™) time to construct F, and we have |F| < n'°¢™. For
each F € F, Steps 2-8 take 2.3146*n®() time. Therefore, the algorithm runs in time
2.3146FnC0o8n) We have thus proved Lemma 18.

Algorithm for Deletion to List M-Partition, where M is the bipartite-star matrix or
the three-stars matrix. We are now going to design an FPT algorithm that works for two
different partitions. The first of these is an M-partition when M is defined by m 1 = mo 2 =0,
ms3 = *, M2 = %, M3 = Mgz = 0. We call M the bipartite-star matrix and an M-
partition a bipartite-star partition. The second partition is an M-partition for M defined by
my,1 =Moo =M33 =% M2 =m13=mg3=0. We call M the three-stars matrix and an
M-partition a three-stars partition. We shall prove the following lemma.

» Lemma 21. DELETION TO LIST M-PARTITION, where M is either the bipartite-star
matriz or the three-stars matriz is fized-parameter tractable.

We prove Lemma 21 by showing that Algorithm 3.2 solves DELETION TO LIST M-PARTITION
in 16729 time, when M is either the bipartite-star matrix or the three-stars matrix. Let
(G, L, k) be an instance of DELETION TO LiST M-PARTITION. The idea behind our algorithm
is as follows. Assume that (G, L, k) is a yes-instance. Let S C V(G) be an optimal solution
for the problem, and V = {V1, V5, V3} be a list M-partition of G — S. Then, S contains an
(X,Y)-separator where X = {u € V(G) | L(u) ={3}} and Y = {v € V(G) | L(u) C {1,2}}.
And for a vertex u with 3 € L(u), note that u can be placed in V3 (because mg 3 = *) if u
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Algorithm 3.2 Algorithm for the proof of Lemma 21.
Input: (G, L,k).
Output: yes or no.
1 Define X ={u e V(G) | L(u) ={3}} and Y = {u € V(G) | L(u) C {1,2}}.
2 Let F be the family of all important (X, Y')-separators of size at most k.
3 for each S € F do
4 Let Z be the reachability set of Y \ S in G — S. (Note that for
v e V(G)\ (SUZ), we have 3 € L(v), and for v € Z, L(v) N {1,2} #0.)
5 Define a new list function L’ for the vertices in Z. For every v € Z, let
L'(v) = L(v) \ {3}. (Then |L'(v)| < 2 for every v € Z.)
6 | Set k' =k—|S|.
if Proposition 9 returns yes for the instance (G[Z], L', k") then
L return yes

A~

9 return no

is not reachable from Y in G — S. Hence we try to place as many vertices as possible in
V3 by choosing an (X, Y)-separator that is “farthest from X,” (and by augmenting such a
separator to ensure that the other constraints dictated by M are also satisfied). For this,
Algorithm 3.2 uses the concept of an important separator, introduced by Marx in [27]. For a
graph G and A C V(G), Rg(A) = {v € V(GQ) | there is a path from z to v in G for some z
€ A}. And the set Rg(A) is called the reachability set of A in G. For A,B C V(G), a
minimal (A, B)-separator S C V(G) is said to be an important (A, B)-separator if there
exists no (A, B)-separator S’ such that |S’| < |S| and Rg_s(A) C Rg—s/(A).

» Proposition 22 ([27, 6]). Given a graph G, sets A, B C V(G) and an integer k, G contains
at most 4% important (A, B)-separators of size at most k. Moreover, all these important
separators can be enumerated in time O(45(|V(G)| + |E(GQ)])).

» Lemma 23. Algorithm 3.2 is correct.

Proof. In light of Remark 13, we assume that X,Y # (), where X and Y are as defined in
Step 1 of Algorithm 3.2.

Notice first that if Algorithm 3.2 returns yes, then (G, L, k) is indeed a yes-instance.
Assume that the algorithm returns yes. Then there exists S € F such that § is an important
(X,Y)-separator, and (G[Z],L/,k') is a yes-instance, where Z = R\ S), (and
X,Y, F,L' and k' are as defined in the algorithm). Let U C Z be an optimal solution for
the instance (G[Z], L, k). Then, |U| < k' =k —|S|. Let (Vi, Va, V3) be a partition of Z \ U
that respects L'. Since 3 ¢ L'(v) for every v € Z, we have V3 = (. It is not difficult to see
that (Vi,Va, V(G)\ (ZUSUU)) is a list partition of V(G) \ (S UU) that respects L. That
is, SU U is a solution for the instance (G, L, k) and |[SUU| < k.

Now, we prove that if (G, L, k) is a yes-instance, then Algorithm 3.2 returns yes. Assume
that (G, L, k) is a yes-instance, and let S be an optimal solution to the list partition instance
(G,L,k), and S’ C S be a minimal (X,Y)-separator. Let S be an important (X,Y)-
separator that dominates S, i.e., | S| < || and Rg_g/(X) C R, _¢(X). We will show that
S =(5\S5)US is also an optimal solution.

We first show that $ is an (8" \ S,Y)—separator. Suppose not, then there is an s—y
path P in G — S for some s € §'\ S and y € Y\ 5. As §' is a minimal (X, Y)- separator,
there is an X-Y path, say P’, that intersects S’ only in s. Consider the X—s subpath of
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P’ and call it P”. None of the vertices of P” can belong to S, as for each v € V(P"),
v € Rg-s5/(X) C Ry_4(X). Thus, P” is a path in G — S. Then P” followed by the path P
is an X-Y path in G — S , which contradicts the fact that S is an (X,Y)-separator. Thus, S
is an (5" \ $,Y)-separator.

Now, let Z’ be the reachability set of Y\ S” in G — S’, and Z the reachability set of Y\ §
in G — S. (Notice that for every vertex v ¢ Z, we have 3 € L(v), and therefore, v can be
placed in V3 without violating any of the constraints on ms 3 or m 3 or mg 3. And every
vertex v € Z has either 1 or 2 on its list.) We claim that 7 C Z'. Consider z € Z. Let Q be
a w-z path in G — S for some w € Y. Suppose z ¢ Z'. Then @ must pass through §', i.e.,
V(Q)NS #0. Let ue V(Q) NS # 0. But then the u—w subpath of Q is an (S’ \ §) — Y
path in G — §, which contradicts the fact that S is an (5" \ $,Y)-separator. Thus, Z C Z’,
and G[Z] is an induced subgraph of G[Z’]. Observe that (S\ S’) is a solution of size at
most k — |S’| for the list partition instance on G[Z’]. Hence, (S'\ S’) is a solution for the list
partition instance on G[Z] as well. <

» Lemma 24 (x). Algorithm 3.2 runs in time 16*n°0),

Lemmas 23 and 24 together prove Lemma 21. Next we give a proof sketch of Theorem 1.

Proof sketch of Theorem 1. The proofs of item 1, item 2 and item 3 of the theorem
statement follow from Lemma 16, Observation 17 and Lemma 18, respectively. Therefore,
we next focus on the proof of item 4 of the theorem statement. We only consider matrices
that are not covered by any of the previous three cases. Let us first classify matrices M
depending on the number of off-diagonal entries that are 0s. In fact, we will only make
distinctions based on the off-diagonal entries in the upper triangular submatrix My of M,
since M is a symmetric matrix. Below, we deal with one of the classes, which is illustrative
of the techniques used to resolve these problems.

Exactly two off-diagonal entries of My are Os. Assume that m;3 = mo3 = 0 and
mi 2 € {1,+}. All other cases of two off-diagonal entries of My being 0 can be symmetrically
argued. If any one of mj 1,mg 9 or mg 3 is 1, then M has a row that contains both a 0 and a
1, and then by Proposition 10, the problem is fixed-parameter tractable. So assume that
mi,1,Ma2,m33 € {0,+}. We consider each possibility of mq 5 for our analysis. First, suppose
mq g = *. If my; = *, then index 1 dominates 2. If mg 9 = *, then index 2 dominates 1. In
either case, the problem is fixed-parameter tractable, by Propositions 8 and 9. So assume
that m; 1 = mg2 = 0. If mz 3 = 0, then index 1 dominates 3, and by Propositions 8 and
9 the problem is again fixed-parameter tractable. If ms3 = *, then an M-partition is a
bipartite-star partition, and by Lemma 21, the problem is fixed-parameter tractable. The
other possibility for m; o is that m; o = 1. Then M has a row containing both a 0 and a 1,
and by Proposition 10, the problem is fixed-parameter tractable. |

4  Conclusion

We almost complete the parameterized classification of DELETION TO LIST M-PARTITION
when the matrix M is of order < 3, or when it is of order 4 and has its diagonal entries from
{0,1}. We do not know whether the DELETION TO CLIQUE CUTSET problem is FPT— we
obtain an algorithm with running time 2.3146¥n.°(1°2") where k is the solution size. Also, the
NP-hardness of the DELETION TO LIST M-PARTITION problem when m;,; = mo 2 = mg 3 = *,
mi2 = 0,my 3 = 1,my 3 = * is open, although we give an FPT algorithm, parameterized by
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the solution size. It would be interesting to complete the classification of these problems, as
well as the paramaterized dichotomy of DELETION TO LIST M-PARTITION for all matrices
of order 4. We are also interested in optimising the running time of our algorithms, and
studying the kernelization complexity of these problems in the future.
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