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Abstract

Purpose: The purpose of this study was to investigate if, and to what degree, the use
of dual energy CT can reduce the uncertainty in range and stopping power calculations,
in proton therapy treatment planning, compared to single energy CT.

Methods: A theoretical investigation on existing studies of dual energy CT for proton
therapy treatment planning was done. Three methods of predicting the relative stopping
power of tissue substitutes were experimentally implemented and compared. These
experiments were performed on CT images acquired specifically for this project. The
current state-of-the-art method, a stoichiometric calibration on single energy CT (SECT)
data was experimentally verified and used for comparing two newer calibration methods.
These were a stoichiometric calibration using pseudo monoenergetic CT (MonoCT) data
derived from a dual energy CT scan, and a direct RSP calibration, called RhoSigma,
using dual energy CT (DECT) data directly. The accuracy of the calibration methods
were compared using the mean absolute error (MAE) between the experimental RSP
values and the theoretical reference RSP values. The root mean square error (RMSE)
of the water equivalent path length (WEPL) differences was also used for compar-
ing the methods. The calibration methods were also compared based on their ease of use.

Results: Across all the calibration methods, the DECT based RhoSigma calibration,
provided the most accurate RSP prediction for all the tissue substitutes used. The
SECT calibration proved more accurate than the calibration based on MonoCT. The
MAE of the DECT, SECT, and MonoCT calibrations were: 1.3%, 2.3%, and 2.8%,
respectively. Showing that the DECT calibration is notably more accurate than the two
other calibration methods. The RMSE of the WEPL difference maps was calculated to
be +3.2 mm (comparing DECT to SECT) and -1.4 mm (comparing MonoCT to SECT).

Conclusions: Based on the results of this study, the RhoSigma calibration method
is concluded to improve range calculations in proton therapy treatment planning from
2.3% using SECT to 1.3% using DECT. This conclusion is in agreement with on existing
literature. Regarding the MonoCT calibration, conclusions can not be made as the
results of this study disagree with existing literature. The work done in this thesis has
shown that the use of DECT has a clear potential to improve range uncertainties in
proton treatment planning.
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1INTRODUCTION

Cancer is a collective term for malignant diseases where abnormal growth and division
of cells are happening at an uncontrolled rate, and with the potential to spread to
other parts of the body. Where possible, the goal of cancer treatment involves killing
or removing the cancerous cells so as to permanently stop the abnormal cell growth.
Despite the apparent simplicity of this treatment, there are numerous obstacles that
complicate the process of reaching this end goal. A major one is namely that in the
process of killing the cancerous cells in a patient, it is unavoidable also to kill or
damage some amount of healthy cells. Thus all methods of cancer treatment are at a
constant tug-of-war between these two opposing goals; killing cancer cells while sparing
healthy tissue. Even after more than a hundred years of research, with medical and,
technological advancements in the field, cancer is still one of the leading causes of death
worldwide [12], and the leading cause of death in Norway as of 2018 [13]. This fact
should serve as a reminder of the complexity and severity of cancerous diseases and the
work still ahead of us.

However, it is important to acknowledge just how far we have actually come. From the
early 1980s until today, the 5 year relative survival rates, for all cancer types, for men
and women in Norway has increased from 42% and 52% to 74% and 74% respectively
[14]. This improvement is owed to the research and development of many different
treatment methods in oncology. Methods within radiotherapy (RT) have evolved
tremendously over the past few decades making radiotherapy a cornerstone in cancer
treatment. Either as a stand alone treatment, or in combination with other treatments
such as surgery, chemotherapy, and in later years immunotherapy.
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1.1. THE HISTORY OF RADIOTHERAPY

1.1 The History of Radiotherapy

Attempts to treat cancer using radiotherapy began promptly after the discovery
of x-rays in 1895 by Wilhelm Conrad Röntgen and radioactivity in 1896 by Marie
and Pierre Curie. Although the underlying mechanisms were not understood at the
time, experimental medical trial and error revealed that radiation could be used to
treat cancer. However, early methods were primitive and with limited applicabil-
ity, often with severe complications and side effects. One main problem was the
inability to produce high energy x-rays with the traditional x-ray tubes, resulting
in shallow penetration and high skin dose. Gamma radiation from radium had the
ability to treat deeper tumor sites, but radium prices were very high, limiting availability.

Big strides were made with the development of the linear accelerator during the period
from 1930 through 1950, in which Norwegian physicist Rolf Widerøe played a big
role. His idea of accelerating particles with radiofrequency pulses greatly improved the
feasible beam energy and his accelerators became the forerunners of modern particle
accelerators and colliders. Many ideas were proposed in this era, e.g. treatment with
neutron and proton beams.

In the same period progress was made in radiobiology and dosimetry, with growing
understanding of oncology and safety standards being developed. In the 1970s and
1980s computers were introduced to assist in treatment planning and dose monitoring.
Several modalities, e.g. Magnetic Resonance Imaging (MRI) and Positron Emission
Tomography (PET), but most importantly Computed Tomograpy (CT) imaging started
being incorporated in the treatment course. An important consequence of incorporating
CT based treatment plans, was the transition from a standardized, to a patient
specific treatment beam setup. Today the state of the art x-ray radiotherapy is highly
sophisticated with outcomes and precision incomparable to its humble beginnings. It
has become essential in modern oncology.

Trials with proton beams, first only conducted at research facilities, yielded promising
results, and in 1989 and 1990 the first hospital based particle centres opened at Clat-
terbridge Centre for Oncology in the UK and Loma Linda in USA. The appeal of using
protons, or heavier ions, is especially that the dose deposition is highest at the end range
of the protons. This is the famous Bragg peak, a characteristic that allows for better
sparing of healthy tissue, named after William Henry Bragg who discovered this charac-
teristic of charged particles already in 1904 [15]. As of July 2020, there are 104 operating
particle therapy facilities worldwide, with 66 more under construction or planning [16].
In 2018 the Norwegian government decided to build two proton therapy centers. This
means that Norway has taken an important step forward in the treatment of cancer
patients. These facilities are currently under construction.
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1.2. OBJECTIVE OF THIS THESIS

1.2 Objective of this Thesis

The precise dose deposition of protons is in essence the advantage of proton therapy
(PT), however it also makes the method more vulnerable to incorrect range calculations.
Due to the finite range and narrow high dose deposition of protons, an error in range
calculation leads to a high risk of under-dosage of the tumor or over-dosage of healthy
tissue or organs at risk. To account for these uncertainties and ensure full target cover-
age, appropriate safety margins are added to the target, increasing the target volume.
This increases the amount of irradiated healthy tissue, reducing the benefit of proton
therapy. These margins are typically in the order of 3.5% + 1 mm of the beam range,
which becomes around 8 mm at 200 mm depth [17]. A significant amount of healthy
tissue will therefore receive the same dose as prescribed for the tumor. For these reasons,
more accurate range prediction is essential to fully exploit the benefits of proton therapy.

The range of the protons in a proton beam is determined by their energy and the
relative stopping power (RSP) of the matter they penetrate. In radiotherapy (RT) this
matter is the various tissues inside a patient, proximal to the tumor, and the tumor
itself. Since the energy of the proton beam is controlled, the only unknown parameter
for range calculation is the patient tissue composition. However, acquiring an accurate
mapping of the patient RSP is actually the crux that makes up most of the range
uncertainty in proton therapy [17].

The current method of obtaining the patient RSP is using single energy CT (SECT)
scans. The problem with this approach is that there is no one-to-one correspondence
between how photons and protons deposit their energy in matter. Thus the accuracy
of the RSP calculation is limited by the physical interaction differences of photons and
protons. Two types of tissues that attenuate photons in a similar way may have the
same CT number, but they might not stop protons in the same way and thus have
different RSP values. Using SECT such differences can not be detected, thus limiting
the ability to accurately differentiate tissues.

Several studies point to dual energy CT (DECT) as a tool to reduce the range uncer-
tainties [18, 19, 20, 21]. The additional information obtained from imaging with two
different photon spectra, makes it possible to differentiate tissues much more accurately
than with SECT. The theory of this thesis focuses on understanding the underlying
physics that makes DECT a superior tool for accurate RSP calculation, over SECT.

As treatments at the new proton therapy centers in Bergen and Oslo are planned to
begin in 2024/2025, it is important to find and implement the best possible methods of
imaging and calibration for proton treatment planning. The main objective in this thesis
was to investigate to what degree the use of DECT data can reduce the uncertainty in
range and RSP calculations, compared to SECT data.

Calibrations with both modalities was compared, using relevant measurements of
accuracy such as water equivalent path length (WEPL) and mean absolute error (MAE).
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2THEORY

In this chapter, relevant background information is explained. Firstly we look at the
physical interactions of photons with matter, after which CT imaging and DECT is
explained. Thereafter we look at interactions of protons with matter and the range of
the proton beam. Lastly how CT imaging provides information that can be used for
proton range prediction in patients is investigated.

2.1 Radiobiology

Radiobiology is a branch of science that describes the mechanisms and effects of
ionizing radiation on biological tissues and living organisms [1]. What happens during,
and immediately after, ionizing radiation interacts with biological structures is well
understood. Yet why some patients will develop secondary cancer many years after
radiation treatment while others will not, is unknown. A simplified way of looking at it
is that the cells that are exposed to radiation, but survive, are altered in some way that
leads to malfunction after some time. No threshold amount of dose has been proven
to exist where this phenomenon comes into effect, meaning that any small amount of
dose might increase the risk of secondary cancer. This is the basis for the ALARA
(As Low As Reasonably Achievable) principle. A radiation safety principle of avoiding
any amount of unnecessary radiation exposure with all reasonable means [22]. Any
development in RT that leads to a reduction in dose to healthy tissue while still killing
all tumor tissue, might reduce the number of patients that develop secondary cancer.
Research furthering this goal is therefore especially impactful for patients with a long
life expectancy after treatment, i.e. children and young adults [23].

2.2 Ionizing Radiation

Radiation deposits energy in small volumes of tissue corresponding to single cells or
parts of cells depending on the type of radiation. In order to kill a cell, sufficient
damage needs to be dealt to the cell’s DNA molecule where genetic information needed
for mitosis (cell division) is stored. This is mostly achieved when both strands of the
DNA molecule is broken [24]. For this to be possible, the radiation needs to carry
enough energy to remove electrons in the target material from their bound state in
atoms and molecules, creating ions and free radicals. This type of radiation is therefore
called ionizing radiation. There are two main types of ionizing radiation; directly, and
indirectly ionizing.
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Indirectly ionizing radiation consists of electrically neutral, high energy particles photons
(x-rays, and gamma-rays) and neutrons. Despite these particles’ ability to ionize, most of
the ionizations in the absorbing material is done by secondary directly ionizing particles
liberated by the primary radiation. This is why in a depth-dose curve for a photon beam,
the peak energy deposition will be, not at the surface, but after an initial buildup of
free energetic electrons a few cm into the absorbing material (see figure 2.11). Although
neutrons are also indirectly ionizing, they are more harmful, due mainly to their reacting
with the nuclei of the absorbing material. The most common interactions are inelastic
collisions, neutron capture, and fission, resulting in a combination of emitted gamma-
rays, x-rays, beta particles, and radioactive fragments. The secondary charged particles
released by the neutral indirectly ionizing particles then go on to cause DNA damage. [1]

Figure 2.1: Types of ionizing radiation. (Adapted from [1] fig. 1.1)

Directly ionizing radiation consists of charged particles like electrons, protons, and other
heavier ions. These particles interact with matter primarily through Coulomb forces
and can directly damage the DNA of several cells while traveling through matter until
all their kinetic energy is lost.

2.3 Photon-Matter Interactions

Photons in the energy range relevant for medical imaging (50keV to 150keV) interact
with matter through three main mechanisms: the photoelectric effect, Compton
scattering, and Rayleigh scattering, see figure 2.2.

Photoelectric Effect
An incident photon, with energy close to the binding energy of the electron, is absorbed
by an atom which releases an electron with energy equal to the photon, see figure 2.2a.
This effect takes place mainly at relatively low photon energies, when the photon energy
is close to that of the binding energy of the electron. The likelihood of this interaction
is proportional with Z3/E3 [25]. Thus it increases with increasing atomic number and
with decreasing energy. This characteristic is highly useful in dual energy CT (DECT)
imaging, as it can be utilized for separating the effects of the energy dependence via the
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Figure 2.2: Photon interactions with matter. a) Photoelectric effect. b) Compton Scattering.
c) Rayleigh scattering. (Adapted from [2] fig. 3)

two energy spectra (more on this in section 2.4).

Compton Scattering
Compton scattering happens when an incident photon ejects an atomic electron, and is
itself deflected at an angle, see figure 2.2b. The photon loses some of its energy in the
interaction. The amount of energy lost, depends on the angle of the scattering, with the
highest energyloss at 180° deflection. This effect is more or less constant at diagnostic
energies.

Rayleigh Scattering
The photon is scattered at a small angle of an atomic electron without transferring
energy to the electron, see figure 2.2c.

The scattering interactions contribute to image noise if the scattered photons reach the
detector, and to dose to persons standing close to the patient if not.

Figure 2.3: Attenuation dependency on photon energy. The photoelectric effect varies
strongly within imaging energy range while Compton scattering is more or less constant.

(Adapted from [3])

7



2.3. PHOTON-MATTER INTERACTIONS

2.3.1 Photon Attenuation

The above mentioned photon-matter interactions remove photons from the beam as
they travel through a material. The intensity of the beam, or the number of photons
that make it all the way through, decreases exponentially with depth, as shown in fig. 2.4.

Figure 2.4: Factors affecting x-ray attenuation. I0 is the incident intensity, x is the thickness
of the attenuating material. (Adapted from [3] fig. 11-1)

The attenuation of the beam intensity is described by

I(x) = I0 e
−µx (2.1)

where I0 is the initial photon intensity, x is the thickness of the material traversed and µ
is the linear attenuation coefficient. The linear attenuation coefficient can be described
as the number of atoms per unit volume n [26], or as the electron density ρe [27], times
the photon absorption cross section σ.

µ = n σ (2.2a)

µ = ρeσ (2.2b)

where σ is the cross-section for photon-matter interaction. σ is a function of the photon
energy, making µ a function of energy as well: µ(E) = nσ(E). The total cross section can
be described as the sum of the cross sections for the different photon-matter interactions
that contribute [28]. Compton and Rayleigh scattering, and the photoelectric effect are
denoted subscripts C,R, and p:

σ(E) = σC(E) + σR(E) + σp(E). (2.3)

This is relevant for converting CT-numbers to proton stopping powers (section 2.7). Pair
production is not included, because the effect only occurs at energies higher than what
is relevant for medical imaging.
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2.3.2 The x-ray spectrum

X-rays are produced by accelerating electrons towards a high Z material. The accel-
erated electrons collide with the target, where they are decelerated and release their
energy in the form of electromagnetic radiation, called x-rays or photons.

The energy of the x-rays is limited by the energy of the accelerated electrons. The
electron energy is equal to the voltage, V, on the tube times the electron charge, e,
e.g. 120 keV if the tube Voltage is 120 kV The resulting x-rays however are not mono
energetic, but are distributed over a spectrum of energies up to 120 keV (see Figure 2.5).

Figure 2.5: A typical x-ray spectrum. The continuous curve is from bremsstrahlung, while
the spikes are from characteristic x-rays. The lower energy end of the spectrum is typically

filtered out. Figure from [4]

The distinct shape of the x-ray spectrum is indicative of the two main mechanisms
in which the electron energy is transformed into x-rays. Bremsstrahlung (or braking
radiation) is responsible for the continuous curve while characteristic radiation produce
peaks specific for the target atom. When referring to the energy of an x-ray source
therefore, the ending kVp, where p stands for peak, is used, indicating the highest
possible energy of photons in the spectrum [25]. As seen in Figure 2.5 however, the
effective energy of the photons in such a spectrum is notably lower, usually around
30% or 40% of the peak energy, depending on the shape of the spectrum. The term
effective energy represents the energy of a supposed mono-energetic beam with the same
penetrating ability as the original spectrum [3].

Note also that the lower end of the spectrum dips towards zero. In medical use, e.g. CT
imaging, it is preferable to remove the lower energy photons as they would otherwise
be absorbed in the patient while not contributing to the CT image. This is done by
filtering the beam through a foil where some of the low energy photons are absorbed,
also known as beam hardening. Additional filtering is commonly used in dual energy
CT (DECT), to better separate the two energy spectra.
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2.4 Computed Tomography

Unlike traditional x-ray imaging where the x-ray source is in a fixed position, CT imaging
uses a moving x-ray source that quickly circles around the patient in a toroidal gantry.
Detectors are placed directly opposite the x-ray source in the gantry. When imaging, the
patient is placed on a table that moves through the gantry, as the x-ray source revolves
around the patient in a helix, sending a wide x-ray beam through the patient, see 2.6.
Energy spectra for CT imaging usually ranges from 80 to 140 kVp. A typical imaging
energy used in single energy CT (SECT) for adults is 120 kVp.

Figure 2.6: Basic principles of CT scanner design (Figure from [5])

The x-rays that pass through the patient are measured by the detector as transmission
readings, or sums of the x-ray attenuation coefficients, µ, that pass through the patient.
One full rotation around the patient is reconstructed into one axial slice image, using
mathematical algorithms to solve for µ at all points inside the patient. This allows for
seeing organs and anatomy inside the patient without invasive surgery (see figure 2.7).
The scan also provides energy averaged information on the density and composition
of tissues inside the patient, according to equations 2.2 and 2.3. This information is
used when estimating proton stopping powers, see section 2.7. The pixel values are
represented in scaled µ-values, or CT numbers in Hounsfield Units (HU), defined as [26]:

H = (µ̂− 1) · 1000HU , (2.4)

where H is the CT number, µ̂ is the attenuation coefficient relative to the one of
water1. With this definition the CT number of water is always zero, independent of the
x-ray spectrum.

1A hat on a variable is used throughout this work to refer to that unit relative to the same unit for
water
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Figure 2.7: Axial slice of an anthropomorphic abdomen phantom. Darker/lighter grays
indicate lower/higher densities.

The x-ray beam is hardened before entering the patient (see section 2.3.2), but further
beam hardening also occurs naturally as more of the low energy photons are absorbed
while traveling through the patient. This means that tissues closer to the center of the
patient will receive a higher mean energy spectrum than tissues closer to the surface
as more of the lower energy photons are absorbed while traversing the patient volume.
The measured attenuation and CT numbers of identical tissues inside the patient, will
therefore vary depending on their position inside the patient and on the patient size.[29]

2.4.1 Dual Energy CT

Dual energy CT, or DECT, is a modality which allows for CT imaging with two
different x-ray spectra. This produces two sets of images, one for each energy. Ideally
the two image sets should overlap perfectly to avoid blurring and to ensure that each
corresponding pixel in the two images represents the same tissue. This is only possible
if the image sets are acquired simultaneously and at the same angle. In practice this is
only possible to achieve with a dual layer DECT scanner (see figure 2.8c) where only one
x-ray source is used. The two layers of detectors detect different parts of the energy spec-
trum, creating two acquisitions with different attenuation information. DECT images
can also be acquired in different ways, some of which can be seen illustrated in figure 2.8.

In rapid kV-switching, the system uses one x-ray source that rapidly (∼ ms) switches
between the high and low energies. Dual source DECT uses two sources fixed or-
thogonally in respect to each other in the gantry. In both of these techniques the
discrimination of the energy spectra happens in the x-ray source. Energies can also be
separated in the detector, by using a layered detector where each layer is sensitive to
different photon energies. Other approaches also exist [6], with photon counting CT
being one promising relevant modality [30].

The main goal is the same: the two images should be geometrically as identical as
possible, and spectrally as different as possible. The different energy spectra provide
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Figure 2.8: Technical approaches to DECT. a) Rapid kV-switching, using one x-ray source.
b) Dual source, using two source-detector pairs mounted orthogonaly in the gantry. c) Dual
layer, using a single x-ray source and separating the energies in the layered detector. Figure

from [6]

different information on the tissues inside the patient, therefore, the more they overlap
the less is to gain from using two separate spectra. The lowest reasonable and highest
possible energies are thus used in DECT. A common energy pair is 80 kVp and 140
kVp with additional tin filtration is used for the highest spectrum to further increase
the spectrum separation (see figure 2.9). This additional filtration of one of the x-ray
spectra is only possible with dual source DECT, as the filters can not be added/removed
at the same pace as the voltage is switched.

Figure 2.9: The energy spectra of 80 kVp and 140 kVp (plus 0.4 mm additional tin (Sn)
filtration) x-rays. (Figure from [7])

The CT number gives the average µ over the x-ray spectrum. For this reason two
tissues with slightly different µ, can have the same CT number [31] in SECT. These
same tissues will however rarely have the same average µ for two different x-rays pectra,
making them differentiable in DECT. This improved ability to differentiate tissues with
DECT has many advantages in medical applications. One of them is the possibility to
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create pseudo monoenergetic CT images, referred to as MonoCT in this thesis. MonoCT
images can be made from a superposition of the two CT numbers derived from DECT;
HL and HH from the low and high energy spectra respectively [32]:

HMono(α) = αHL + (1− α)HH (2.5)

where α is the blending factor. By varying the value of the α, the contribution from
the two spectra can be changed, e.g. Compton scattering is more dominant in the
high energy spectrum and the photoelectric effect is more dominant in the low energy
spectrum (see figure 2.3). Thus from one DECT scan one can produce different
MonoCTs for different purposes. To name some, an α > 0 yields a high contrast image,
useful for contouring an delineation, while an α < 0 results in an image with reduced
metal artifacts [18]. These calculated CT numbers are similar to the CT numbers that
would result if a monoenergetic x-ray beam had been used. The MonoCT images should
therefore in theory not be as affected by beam hardening as SECT images and has been
shown to have better stability in CT numbers across varying patient sizes [33]. This
is especially the case close to metals, and thus MonoCT is often considered a metal
artefact reduction algorithm.

A downside of DECT is that the acquired image set should not use a higher radiation dose
than a regular SECT scan, according to the ALARA principle. Because of this DECT
scans, and resulting MonoCTs or other reconstructions, also have this issue. This could
impact the accuracy of RSP prediction based on DECT images.

2.5 Proton Radiotherapy

As previously mentioned, the appeal of proton therapy for cancer treatment is mainly
the dose deposition characteristics of protons. In this section we take a closer look at
characteristics of the proton beam.

2.5.1 Proton-matter interactions

In the energy ranges relevant for proton therapy, the main types interactions that take
place between the protons and matter are; inelastic and elastic Coulomb scattering, as
well as non-elastic nuclear reactions, see figure 2.10.

Inelastic Coulomb Scattering
The proton kicks out an atomic electron, but is not deflected from its trajectory due to
its high mass relative to the electron. The proton loses a small fraction of its energy
in the interaction. Through enough collisions like this the proton will finally lose all its
energy and come to a stop. This electronic stopping of the proton beam when traveling
through a material, is referred to as the materials stopping power, S, described by the
Bethe equation [34][35].

S = ρe
4πe4

mec2β2
L(I, β) (2.6)
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Figure 2.10: Proton interactions with matter. a) inelastic Coulomb scattering - energy loss b)
elastic Coulomb scattering - deflection c) non-elastic nuclear reactions - removal of primary

proton and creation of secondary particles. p: proton, e: electron, n: neutron, γ: gamma ray.
(Adapted from [8] fig. 1)

where ρe is the electron density of the material, e is the electron charge, mec
2 is the

electron rest energy, β is the velocity of the proton in units of speed of light, and L(I, β) is
the stopping number. The stopping number, or Fano’s term, contains several corrections
to the Bethe formulation. When shell and density corrections are neglected L(I, β) can
be written:

L = ln
2mec

2β2

1− β2
− β2 − ln I , (2.7)

where I is the mean ionization energy of the material. The protons energy loss is at its
highest right before it comes to a complete stop, which gives rise to the characteristic
Bragg peak, see figure 2.11.

Elastic Coulomb Scattering
If passing close enough to nuclei in the target material to interact with their positive
charge, protons in the beam can also be elastically scattered [8]. The proton loses
a small amount of energy in this interaction. A single account of these events may
not deflect the proton much, but through multiple coulomb scatterings the effect is
a significant lateral broadening of the beam. This is one of the reasons why heavier
ion therapy is considered, where the increased mass leads to a reduction in lateral
broadening [36].

Non-elastic Nuclear Reactions
If the incoming protons have enough energy to overcome the Coulomb barrier, they can
interact with nuclei in the target material [8]. This interaction removes primary protons
from the beam, reducing the proton flux, and creating secondary particles like protons,
electron, neutrons, gamma-photons and radioactive fragments. These secondaries also
contribute to the treatment dose and might lead to increased risk of late effects [37].
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2.5.2 The Proton Beam and Dose Deposition

As the protons interact with the material they are travelling through, they start slowing
down as they transfer their energy to the material. As the velocity of the protons decrease
their energy loss increase, which can be seen from the inverse dependency on the particle
velocity (equation 2.6). This is explained by the proton having more time to interact
with the material when it is traveling at a lower velocity. As a consequence, the protons
transfer most of their energy to the material right before they come to a stop. This peak
of energy deposition is usually referred to as the Bragg Peak (see figure 2.11).

Figure 2.11: Comparison of depth-dose profiles for an x-ray beam and a proton beam in
water. The target for dose delivery is located at 10 cm to 15 cm depth. The resulting

broadened flat part of the proton beam peak is usually referred to as the spread out Bragg
peak (SOBP).

To cover the entire tumor area, the proton beam energy needs to be modified in steps,
as illustrated in figure 2.11. The spread out Bragg peak (SOBP) is the sum of the dose
profiles of several proton beams at different energies. Figure 2.11 also illustrates the
clear advantage of protons in comparison to photons in RT: significantly reduced dose to
healthy tissue in front of the tumor, and negligible dose behind the tumor, see figure 2.12.

The characteristic depth-dose profile of the proton beam therefore carries great potential
of reducing dose to healthy tissue, if the range of the beam is predicted accurately.
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Figure 2.12: Healthy tissue sparing. Reduced dose to heart and lungs using proton RT for
craniospinal irradiation, most usually prescribed for medulloblastoma where there is a

substantial risk of cancer spread in the central nervous system. Top row: photon RT plan.
Bottom row: proton RT plan. Used with permission [9]

2.5.3 The Range of the Proton Beam

One of the most important challenges in proton therapy is the uncertainty in the range
of the proton beam. The high number of small individual energy losses with atomic
electrons in the target material can be approximated to be a continuous slowing down
process. According to the continuous slowing down approximation (CSDA), the range
of a proton can be approximated by integrating the inverse stopping power[8]:

R =

∫ E0

0

1

S(E)
dE (2.8)

Because of statistical variations in interactions, not all protons in the beam with the
same initial energy will have the same exact range. The range in equation 2.8 is
therefore considered the mean range, or the depth at which 50% of the protons have
stopped. Clinically another definition of the beam range is usually used, defining the
range as the depth at which the dose has decreased to 80% of maximum distally to the
Bragg peak. These two definitions both result in approximately the same range [8, 31].
The variation in range between infividual protons broadens the Bragg peak and is called
range straggling. This effect is even more prominent when the protons travel through
heterogeneous material, e.g. inside a patient.

To calculate the range of the proton beam inside a patient, the tissue’s relative stopping
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powers (RSP) to the one of water is used:

RSP = ρ̂e
ln
(

2mc2β2

1−β2

)
− β2 − ln(I)

ln
(

2mc2β2

1−β2

)
− β2 − ln(Iw)

, (2.9)

where I and Iw is the ionization energies, or I-values, of the tissue and of water respec-
tively2. The RSP can therefore also be expressed simply as ρ̂e times the relative stopping
number L̂ = L/Lw (see eq. 2.7):

RSP = ρ̂eL̂ , (2.10)

meaning that the RSP is directly proportional to the relative electron density ρ̂e. This
shows that to calculate a tissue’s RSP we first need to determine its electron density
and mean ionization energy. The main contributor to the RSP of these two parameters
is the relative electron density, ρ̂e, however the mean ionization energy also impacts the
RSP calculation.

The accuracy of determining I-values, even of materials of known elemental composition
such as water, is a disputed topic. For compound materials the I-value is usually cal-
culated using tabulated ionisation values for the elements in a solid state, estimated by
Berger and Zeltzer in 1982 [38] (see table A.2), and the Bragg additivity rule:

ln(I) =

∑
iwi

Zi

Ai
ln(Ii)∑

iwi
Zi

Ai

, (2.11)

where Zi, Ai, and wi is the atomic number, atomic weight, and weight fraction in the
material composition. The problem with this is that the I-value of an atom or molecule
depends on what it is bound to and the types of bonds [39]. Thus the I-values of the
elements in real biological tissues will not be the same as the I-values of the elements
in a solid state. The resulting uncertainty contribution from the I-value was estimated
by Paganetti [17] to be approximately 1.5% of the total 3.5% uncertainty in the RSP
calculation. For materials of unknown elemental composition, e.g. tissues inside a living
patient, the problem is even more complex. The problem with the I-value determination
falls beyond the scope of this thesis and the current clinical derivation will therefore be
used.

Beam range margin
As previously stated margins are added to the calculated beam range. This margin
is typically in the order of 3.5% + 1 mm. This number does not only account for
theoretical range calculations uncertainties, but also includes other clinical uncertainties,
such as patient positioning, organ motion, etc. The contribution from the CT based
range prediction alone is therefore expected to be lower.

To obtain the needed tissue-information, medical imaging is used, which brings us back
to CT.

2The subscript w will generally refer to water in this thesis
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2.6 Tissue Characterization using CT imaging

The most effective way of obtaining accurate information on the proton stopping powers
of tissues inside patients, would be to use proton CT (pCT) for the planning CT images.
By increasing the energy of the proton beam so that the Bragg peak is located in a
detector outside the patient, it is possible to reconstruct a SP-map of the patient. The
accuracy of this RSP calculation drastically exceeds the calculations based on x-ray CT
[40]. Unfortunately this modality is not yet clinically available, so a calibration from
CT numbers to RSP is used instead. There exists a somewhat standardised method of
obtaining RSP from CT images, although, as pointed out by Wohlfahrt and Richter in
their recent review article on the topic [18]:

”The definition of CT scan protocols and image reconstruction as well as in
particular the conversion from CT number to SPR are challenging and error-
prone processes demanding special attention and quality assurance. This is
especially true for PT centers in the preclinical preparation phase, when it is
often difficult to allocate resources for such, at first glance, sideline tasks.”

And indeed, although the general physical principles are agreed upon, there exist no
guidelines on how to apply the calibration in practise. The current clinically applied
method of estimating RSP, is using patient data obtained from an x-ray CT scan. The
energy dependent x-ray attenuation coefficient, obtained from CT scans, of a compound
material is given by [26, 28, 41]:

µ(E) = ρNA

∑
i

wi
Ai

( kC(E)Zi + kR(E)Z2.86
i + kp(E)Z4.62

i ), (2.12)

where E is the energy of the x-rays, ρ is the mass density, NA is Avogadro’s number and
the three terms in the sum are the energy and atomic number parametrisation of the
cross sections for Compton scattering, Rayleigh scattering, and the photoelectric effect,
respectively. Since the CT number, H , is directly related to µ(E) (see equation 2.4),
density and compositional information can be acquired from CT scans. However due to
the polychromatic photon energies used in CT, the measured µ represents the average
attenuation coefficient over the x-ray spectrum, µs, calculated as:

µs =

∫
E

µ(E) s(E) d(E) dE , (2.13)

where s(E) is the x-ray spectrum as produced by the CT scanner and d(E) describes
the number of photons registered by the detector. These two factors will vary from
scanner to scanner, even between scanners of the same type/model. This means that
any calibration from CT-numbers to RSP should be specific for every scanner used for
PT treatment planning. Because the measured µs, and therefore the CT number, is
an average value, two similar tissues might be assigned the same CT number, and will
therefore not be differentiable, if only one x-ray spectrum is used. Using two x-ray
spectra, as in DECT, this will rarely be the case for both spectra and thus the tissues
can be differentiated.
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2.7 CT-based RSP calculation

In order to calculate the RSP of a material with the Bethe-equation (eq. 2.9) one needs
to know the materials’ relative electron density, ρ̂e, and the mean ionisation energy, the
I-value. The relative electron density of a compound material can be calculated similarly
to the Bragg additivity rule with:

ρ̂e =
ρ
∑

iwi
Zi

Ai

ρw(wH
ZH

AH
+ wO

ZO

AO
)
, (2.14)

where the subscripts H and O represent the elemental constituents of water; Hydrogen
and Oxygen. From this and equations 2.12 and 2.4, one can see that the CT number
depends linearly on ρ̂e, meaning that this information can be obtained from CT imaging.
The I-value on the other hand, can only be obtained if imaging with directly ionizing
radiation, which x-rays are not. The I-value thus can not be determined from CT imaging
and an exact relation between CT numbers and RSP is not possible to obtain using this
modality. Recall also that the RSP also depends linearly on ρ̂e (see equation 2.10). The
CT number and the RSP both depend linearly on the electron density, but not with
the same proportionality constant, see figure 2.13 [31] This proportionality constant
is σ for the CT number and L (containing the I-value) for the RSP. Because of this,
and because the electron density is the main contributor to the RSP (compared to the I-
value) it is assumed that the relation between CT number and RSP can be approximated
with a piecewise linear function. This idea is the basis for today’s state-of-the-art RSP
calculations.

Figure 2.13: The CT number and the RSP are both proportional to ρ̂e, but not with the
same proportionality constant. Clinically, the assumption is that the CT number and RSP

are somewhat proportional to each other.
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2.7.1 Tissue Substitution Calibration

The easiest way of establishing a relation between HU and RSP is to use a set of tissue
like materials where the elemental compositions are known, usually referred to as tissue
substitutes (the workflow is illustrated in figure 2.14). The RSP values of each tissue
substitute can then be calculated theoretically, and plotted against their HU obtained
from a SECT scan. A piecewice linear curve is then fitted to the plot, so that any given
HU corresponds to a RSP. This semi-linear relation is called a Hounsfield Lookup Table
(HLUT).

Figure 2.14: Tissue substitution calibration workflow. Tissue substitutes of known elemental
composition are scanned. The RSP is calculated theoretically and plotted against the

measured HU values from the CT scan. A piecewise linear curve is fitted to the plot to make
the HLUT.

2.7.2 Stoichiometric Calibration

One problem with the tissue substitute calibration is that there are inherent differences
between tissue substitutes and real human tissues. Ideally the calibration should be done
with real tissues, however this is not possible for practical reasons. In 1996 Schneider et
al. proposed a method for including real tissue data in the HLUT calibration [42] (the
workflow is illustrated in figure 2.15). In this method two CT scanner specific parameters
k1 and k1 are determined (see section 3.3.3) using tissue substitutes. These k-values
characterize the scanners’ x-ray spectrum and detector response. Once the scanner is
characterized it is possible to calculate synthetic HU values for a number of real tissues
as if they were scanned at the characterized scanner. This human tissue data is usually
taken from the ICRU recommended human tissue database [43], originally made by
White et al. in the 1980s. Theoretical RSP values are also calculated for the real
tissues. This set of synthetic HU values and theoretical RSP values for the real human
tissues are then used to make the HLUT. This stoichiometric calibration is considered
the gold standard today, although one third of the European PT centers included in
the 2019 review from Wohlfahrt and Richter, still use the tissue substitution method [18].
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Figure 2.15: Stoichiometric calibration workflow. A tissue substitute calibration phantom
(here Gammex 467) is used to characterize the scanner via two parameters k1 and k2.

Synthetic HU values can then be calculated for tabulated real human tissues. The synthetic
HU values and theoretical RSP values of the human tissues are then used to make the HLUT.

2.7.3 Problems with the HLUT approach

Even though the stoichiometric calibration is considered the gold standard, there exist
no general guidelines on how the HLUT should be made, other than that it should be
a piecewise fit. The most common approach seems to be using three line segments for
lung, soft, and bone tissues. How to choose the HU intervals for the segments, how
many segments should be used, and how to connect them is not standardised. Neither
is there any recommendations on using different HLUTs for different patient groups or
tumor sites. As explained in section 2.3.1, the patient geometry will affect the measured
HU due to beam hardening. Further, the HLUT approach does not account for the
relative abundance of the various tissues in the treatment area. The HLUT could be
weighted for the ratio of lung/soft/bone tissue that is present in different body locations
or patient specific variations in body composition. A ”one size fits all” HLUT is simply
not going to provide the best possible HU to RSP conversion for all patients.
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2.7.4 DECT-based methods

DECT as a tool to reduce range uncertainty in PT treatment planning has been sug-
gested by by several research groups, and has been shown to be superior to SECT based
calibration on organic tissue samples [19, 39, 44, 45]. The stopping power of a material
depends on two parameters; ρ̂e and the I-value. With SECT calibration, both of these
parameters are estimated through the HLUT. The additional information obtained from
imaging with two x-ray spectra in DECT enables us to distinguish these [18] by directly
extracting ρ̂e through a weighted subtraction of the attenuation coefficients from each
spectrum [11]:

ρ̂e = αµ̂H + (1− α)µ̂L (2.15)

It is also possible to estimate the so called effective atomic number Zeff of different
tissues. As this is not a real physical parameter it needs not be an integer, and can be
interpreted as the mean atomic number of a compound material [31]. Zeff can then
be used to estimate the I-value with a HLUT-like approach. Although there is still no
exact way of extracting the I-value from CT images, this greatly reduces the reliance
of the entire calibration on the HLUT approach, as only the less important of the two
relevant parameters has to be estimated in this way.

In this thesis the focus will be on two specific DECT calibration methods. The first,
MonoCT based calibration, can be considered a mix of DECT and SECT approaches.
It offers some range uncertainty improvement while requiring very small changes in
the calibration regime. The second is a direct use of DECT data to estimate the RSP,
following the RhoSigma approach described by Möhler et al. [11]. The reasoning behind
these choices are similar. The methods are both easy to implement and already clinically
applied at PT centers in Europe. Additionally the RhoSigma approach forms the basis
for the upcoming first ever TPS integrated implementation of DECT calibration for PT
planning [18, 31]. This makes these two approaches the most relevant candidates for
implementation at the new facilities in Norway.

MonoCT based calibration

The ability of MonoCT images to reduce noise, beam hardening effects and thereby
metal artifacts, is one of the reasons for implementing these images in PT treatment
planning. The method mainly provides more stability in the measured HU values
independent placement inside the patient. Another reason is simply that the MonoCT
images behave exactly like the regular SECT images in the calibration, making the
method easily adaptable as no other changes to the calibration regime is needed.

In 2015, MonoCT calibration made its way into clinical application for the first time
at the University Proton Therapy Dresden. The MonoCT based HLUT approach can
be seen as a stepping stone towards full implementation of a DECT based approach.
Aarhus University Hospital in Denmark also applied a MonoCT based calibration
regime recently. In 2018 Möhler et al. presented good results from the clinical trials
and implemented a pure DECT based calibration method. Several other direct DECT

22



2.7. CT-BASED RSP CALCULATION

based RSP calibration regimes have been proposed, many of which are very complex
and challenging to implement [11, 31]. Although these are theoretically robust, their
complexity might make them ill suited for clinical application.

RhoSigma Calibration

The RhoSigma calibration estimates the RSP directly instead of using a HLUT (the
workflow is illustrated in figure 2.16). In this calibration a DECT scan of a calibration
phantom, with tissue substitute inserts of known elemental composition, is performed.
The x-ray spectra used is typically 80 kVp and 140 kVp with additional tin (Sn)
filtration. MonoCT images are made by a weighted sum of the high and low energy
CT images, using the parameter α. For a specific value of α, the produced image
corresponds to the ρ̂e-image [11], see equation 2.15. Firstly, the α is calibrated based
on a DECT scan of bone-tissue substitutes of known elemental composition (explained
in detail in section 3.5). The calibration of α characterizes the scanner parameters. A
ρ̂e-image and a MonoCT image is then calculated. This can be done directly in the
Siemens software Syngo.via.

Figure 2.16: RhoSigma calibration workflow. A MonoCT and a relative electron density
image (RED) is directly derived by a weighed subtraction of the two image sets (alpha

blending). A relative cross section image (RCS) is derived by dividing the MonoCT by the
RED. A relative stopping number image (RSN) is derived via a LUT. Finally the RSP image

is obtained by multiplying the RED by the RSN.

Dividing the MonoCT by the RED image then yields a RCS image, since σ = µ/ρe.
From this a relative stopping number (RSN) image, can be made, using a RCS to RSN
lookup table. This lookup table (LUT) has similar drawbacks as the usual HLUT, but
in this case the LUT uncertainties only affect one of the two parameters needed for the
calibration. Because of this, the uncertainties from this process are far lower than from
the HLUT. The RSN image can then be multiplied with the RED image to directly
produce a RSP image, according to equation 2.10.

Based on negligible differences in calibration results obtained when testing this cali-
bration regime on different CT setups and protocols, Möhler et al. [11] propose that
only one general calibration per scanner type and voltage pair is sufficient. Meaning
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that in-house calibrations, at every PT facility, is not necessary. This is a rather bold
statement that is likely to be met with some scepticism. Nevertheless, the method has
demonstrated excellent results on reducing range uncertainties [18]. Due to this and to
its claimed universal applicability, the method will be integrated into Siemens software,
likely within the coming year, making its clinical application feasible in the very near
future.

2.8 Water Equivalent Path Length

The RSP errors in and of themselves are not translatable in clinical use. To assess
the clinical relevancy of the RSP error, a complete dose plan must be produced with
a robustness analysis that adjusts the RSP values to within the accepted uncertainties
(usually 3.5%) and translates the RSP errors into tumor coverage.. This is a time
consuming process. Water equivalent path length (WEPL) is therefore usually used
as a surrogate for the RSP error. The WEPL, usually given in millimeters, is used
in clinical settings to describe the stopping abilities of a heterogeneous material with
a single parameter. Considering the protons traveling through tissues of different
stopping abilities, the WEPL scales all these tissues to the equivalent depth of water
needed to produce the same integrating stopping power. When evaluating different
RSP calculations this is done by calculating the difference in WEPL to the depth of
the tumor. This method of assessing target coverage with the given RSP calculation is
more time effective although not as precise as it does not account for patient specific
treatment parameters such as beam spots, margins, etc. A concrete clinical application
of the WEPL is to utilize it in connection to the cone beam CT (taken prior to every
treatment fraction) to e.g. receive a warning if the WEPL to a reference point in the
patient has changed by a set distance [46].

The WEPL is calculated by integrating all the RSP values along a straight lines in
the RSP image. This sum is then multiplied by the pixel size to obtain the WEPL in mm:

WEPL = x ·
∑
i

RSPi , (2.16)

where x is the pixel size in mm and the subscript i represents all RPS values along a
track through a phantom.
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3MATERIALS AND METHODS

In this chapter the materials and methods used in this study are presented. The ma-
terials section show the CT acquisition details (section 3.1.1), phantoms used (section
3.1.2), and software used (section 3.1.3). The calibration procedures described are the
SECT calibration (section 3.3), the MonoCT calibration (section 3.4), and the RhoSigma
calibration (section 3.5). Lastly the WEPL calculation is described in section 3.6.

3.1 Materials

3.1.1 CT Acquisition

A dual source CT scanner (Siemens SOMATOM Definition Flash, Siemens Healti-
neers, Forchheim, Germany) belonging to the radiological department of Haukeland
University Hospital, was used for all CT scans. The SECT scans were acquired at
120 kVp and the DECT scans at 80 kVp and 140 kVp, with settings as shown in table 3.1.

Table 3.1: CT scan protocols used for SECT and DECT scans. The slice thicknesses used
were 5 mm for the calibration phantom and 3 mm (shown in parentheses) for the

anthropomorphic phantom

120 kVp 80 kVp 140 kVp

Convolution Kernel B40f Q40f/2 Q40f/2
Slice Thickness [mm] 5 (3) 5 (3) 5 (3)
Exposure Time [ms] 500 500 500
Tube Current [mA] 480 636 246
Exposure [mAs] 300 530 205
Additional filtration n/a n/a Sn

The following doses were used for the acquisitions: Gammex 20.25 mGy (CTDI 32).
Abdomen 20.04 mGy (CTDI 32, for both SECT and DECT).

The SECT and DECT acquisitions were performed in direct succession, without re posi-
tioning the phantoms. Nevertheless, the two image sets were not perfectly overlapping.
This would cause problems in comparing the modalities, and as such the image sets had
to be registered to match each other (see section 3.1.3).
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3.1.2 Phantoms

The RMI 467 tissue substitute phantom (Gammex, Middleton, WI, USA) was scanned
using both SECT and DECT. This phantom is currently used for clinical photon
radiotherapy. This phantom is 32 cm in diameter and contains 16 cylindrical inserts
arranged as shown in figures 3.1 and 3.2.

Figure 3.1: Gammex 467 calibration phantom setup
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Figure 3.2: Left: arrangement of tissue substitute inserts in the Gammex 467 phantom.
Right: CT-image of the same arrangement.

The elemental composition of each insert for this specific phantom, as provided by the
manufacturer, is tabulated in table A.1. It is important to use the tabulated elemental

26



3.1. MATERIALS

composition of the exact calibration phantom being used for the calibration, as the
composition of the inserts may vary slightly between phantoms. This is especially
important for the lung inserts where the variations are larger due to air bubbles in the
inserts.

For WEPL calculations the anthropomorphic phantom (Kyoto Kagaku, CT Abdomen
Phantom PH-5), see figure 3.3, was scanned using both SECT and DECT. For the
Gammex and Abdomen phantoms, slice thickness was set to 5 mm and 3 mm respec-
tively. According to previous studies, the slice thickness does not affect the calibrations
significantly.

Figure 3.3: Kyoto Kagaku antropomorphic abdomen phantom. Image from [10]

3.1.3 Computer Software

The Siemens software Syngo.via version VA48A was used to make pseudo monoener-
getic, and electron density images. Newer versions of syngo will likely offer an integrated
method similar to the RhoSigma method used in this thesis.

All programming was done using Python 3.7. The Python code will be made pub-
lically available on github.com/BergenParticleTherapy/DualEnergyCTForProtons.
The SECT image set was registered to the DECT image set using MICE 1.1.3.
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3.2 Calibration Procedures

In this section the three HU to RSP calibration methods implemented in this work are
described. The first is a stoichiometric calibration on SECT data. The second is a
stoichiometric calibration on MonoCT data. The third is based on direct use of DECT
data, the RhoSigma calibration. For all calibrations the phantom used was the Gammex
467 calibration phantom. Lastly the anthropomorphic phantom was used for WEPL
calculations and comparisons.

3.3 Stoichiometric Calibration: SECT

In order to calculate dose distribution from proton therapy in a patient, the treatment
planning software (TPS) needs a mapping that for any given voxel, gives the relationship
between its HU value and its RSP. Such a HU to RSP calibration curve is called a
Hounsfield lookup table, or HLUT. As the response of the detectors in the CT scanner,
the produced energy spectrum, filtration of the beam, beam hardening, anode angle,
etc. vary between machines, the HLUT is machine and protocol specific and needs to
be calibrated for every CT scanner and protocol used for treatment planning. Today’s
gold-standard calibration involves performing a so called stoichiometric fit using SECT
data of a calibration phantom containing tissue-substitute inserts, as well as tabulated
information on the elemental constituents of real human tissues, as proposed by
Schneider et al. [42]. See figure 2.15 for a visual overview of the calibration.

3.3.1 Calculating Ground Truth RSP

The Gammex calibration phantom was scanned at 120 kVp as specified in table 3.1,
as this is the spectrum that is normally used clinically for treatment planning. The
theoretical RSPs for all tissue substitute inserts were calculated using equation 2.9,
with the tabulated elemental compositions and electron densities, ρ̂e, see table A.1.
The I-values was calculated using the Bragg additivity rule (eq. 2.11) and the tabulated
I-values for the elements in a solid state, see table A.2.

3.3.2 Measuring HU’s of Inserts

The average HU value for every tissue insert was measured with a python package for
reading DICOM files1, using a circular region of interest (ROI) with radius 50% that
of the insert radius. A program was written that automatically measures all 16 ROI’s.
The measurements were made for the three middle slices and averaged (see table 3.2).

1DICOM files are the format of CT images, containing the image itself and all metadata
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Table 3.2: Measured HU-value for all 16 inserts in the Gammex 467 calibration phantom,
from the SECT images. The inserts were measured in three middle slices and averaged. The

average HU was used for the calibration.

Insert Slice 1 Slice 2 Slice 3 Avg HU
1 CB2-30% 437.6 428.1 416.2 427.3
2 Lung 300 -714.3 -707.2 -699.2 -706.9
3 Inner Bone 190.7 198.2 193.5 194.1
4 Solid Water -3.6 -0.1 4.6 0.3
5 Cort Bone 1096.3 1134.1 1132.6 1121.0
6 Liver 55.7 64.2 69.9 63.2
7 Brain 20.3 19.4 18.6 19.5
8 Lung 450 -529.7 -530.3 -523.2 -527.8
9 Solid Water -1.1 -1.2 -6.8 -3.0

10 Adipose -88.6 -84.6 -86.5 -86.5
11 Solid Water -10.0 -0.1 -0.1 -3.4
12 B-200 193.1 209.1 206.4 202.8
13 Muscle 20.6 28.2 26.3 25.0
14 CB2-50% 737.2 752.5 741.1 743.6
15 Water -1.9 -2.8 -12.1 -5.6
16 Breast -50.3 -50.3 -55.0 -51.9

3.3.3 Characterizing the Scanner

Predicting, or calculating, synthetic HU values without performing a CT scan, requires
determination of two constants k1 and k2 that account for the polychromatic spectrum
of the x-ray source and the energy dependency of the detector in the CT scanner. The
scanner specific parameters were determined using the reduced HU, defined as µ̂, in the
following form [26]:

HUred = µ̂ = ρ̂

∑
i
wi

Ai
(Zi + k1Z

2.86
i + k2Z

4.62
i )

wH

AH
(1 + k1 + k2) + wO

AO
(8 + k182.86 + k284.62)

, (3.1)

for derivation of this expression see appendix A in Goma et al. 2018 [26]. The k1 and
k2 parameters may be determined by minimizing the expression [42]:

∑
j

[
(HUred(k1, k2))j −

(
HU

1000
+ 1

)
j

]2
, (3.2)

where j runs over all tissue-substitutes used for the calibration, i.e. minimizing the
squared sum of the differences between the measured and synthetic HU values. This was
done using a gradient descent minimization in Python with packages minimize from
scipy.optimize, and linregress from scipy.stats (see appendix B). A gradient
decent minimization is an iterative optimization algorithm for finding a local minimum.
The k-values bounds was set to those with physical meaning at imaging energies [41]:
2 · 10−4 < k1 < 6 · 10−3 and 3 · 10−6 < k2 < 6 · 10−4.
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3.3.4 Synthetic HU and RSP for Human Tissues

With the scanner characterized (k1 and k2 determined), synthetic HU values for any
material of known elemental composition can be calculated. This was done for the 61
ICRU adult human tissues listed in table A.3 using equation 3.1 and the definition of
the CT number equation 2.4. The theoretical RSPs for the human tissues were also
calculated, using the same method as for the tissue substitute inserts.

3.3.5 Making and Using the HLUT

To make the HLUT, the human tissue RSPs and synthetic HUs were plotted against
each other. Three HU intervals were chosen for the line segments based on typical
HU values for lung, soft, and bone tissues. A piecewise linear regression was made,
using the chosen intervals and the python package PWLF [47]. This produces three
connected line segments, each in the form RSP = a ·HU + b. This set of functions is the
HLUT. The measured insert HU values was input to the piecewise function to obtain
experimental RSP values. These were then compared to the theoretically calculated
RSP values. The HU intervals of the piecewise fit were adjusted manually a few times
to achieve the smallest possible2 difference between ground truth RSP and experimental
RSP. The breakpoints chosen after adjustments were 20HU and 40HU, which is roughly
the HU interval for soft tissue and muscle. The resulting HLUT can be seen in figure 3.4.

3.4 Stoichiometric Calibration: MonoCT

The Gammex calibration phantom was scanned using DECT at 80 kVp and 140 kVp/Sn
as specified in table 3.1. A 70 keV pseudo monoenergetic CT scan was made from the
DECT scan, using the Siemens software syngo.via Monoenergetic Plus. The other steps
in the MonoCT calibration is identical to the SECT calibration steps. The measured
and averaged HU values used can be seen in table 3.3.

2these subjective visual estimates can not in any way guarantee to find the best possible intervals
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Figure 3.4: HLUT made with SECT stoichiometric calibration based on 61 recommended
tissues

Table 3.3: Measured HU-value for all 16 inserts in the Gammex 467 calibration phantom,
from the MonoCT scan. The inserts were measured in three middle slices and averaged. The

average HU was used for the calibration.

Insert Slice 1 Slice 2 Slice 3 Avg HU
1 CB2-30% 508.4 503.1 500.6 504.1
2 Lung 300 -720.5 -716.9 -720.4 -719.3
3 Inner Bone 236.8 233.9 233.7 234.8
4 Solid Water 3.5 1.4 2.2 2.4
5 Cort Bone 1358.8 1348.5 1345.9 1351.1
6 Liver 74.7 71.2 72.8 72.9
7 Brain 18.5 16.9 15.6 17.0
8 Lung 450 -533.4 -535.0 -540.2 -536.2
9 Solid Water 2.0 0.5 -0.6 0.7

10 Adipose -93.6 -95.4 -95.3 -94.8
11 Solid Water 0.2 -1.2 -1.5 -0.8
12 B-200 249.2 248.1 246.1 247.8
13 Muscle 42.5 37.9 36.4 39.0
14 CB2-50% 892.8 889.2 887.2 889.7
15 Water 4.9 3.8 2.3 3.7
16 Breast -57.4 -59.3 -58.7 -58.4
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3.5 RhoSigma Calibration: DECT

Recall figure 2.16 for a visual overview of the calibration. The Gammex calibration phan-
tom was scanned with dual energy at 80 kVp and 140 kVp/Sn as specified in table 3.1. In
this approach the RSP is estimated for each voxel in the CT scan. Only one step in this
calibration involves a lookup table as opposed to using a HLUT for the entire conversion.

Alpha Blending

When two CT numbers are available for the same voxel, i.e. in DECT, ρ̂e can be obtained
directly by a linear superposition of the two spectrally weighted µs, µH and µL, with a
single blending parameter α [11].

ρ̂e = α µ̂H + (1− α) µ̂L (3.3)

The subscripts H and L correspond to the high and low voltage on the tubes in the
DECT scan respectively. These will be referred to as S = {H,L} as a collective term.

Eliminating ρ̂e using the relation µ = ρ̂eσ for both spectra; µ̂H = ρ̂eσ̂H and µ̂L = ρ̂eσ̂L,
equation 3.3 becomes

σ̂H =
1

α
+

(
1− 1

α

)
σ̂L (3.4)

By identifying the best fit between the two spectra, we get a simple parametrisation of
the scanner specific effects such as energy spectrum, detector response, and acquisition
protocol. The α is calibrated using the Gammex 467 tissue substitutes (see appendix
B.2). Only the higher Z materials, i.e. bones, are used due to them giving the most
reliable calibration [11]. The calibration can become unstable if materials with ρ̂e close
to 1 is used as this leads to µ̂H ≈ µ̂L. The issue is clear when rewriting 3.3 as

α =
ρ̂e − µ̂L
µ̂H − µ̂L

(3.5)

The average HU values for the bone-tissue inserts was measured with a python program,
using a circular region of interest (ROI) with radius 50% that of the insert radius. The
measurements were made for the three middle slices and averaged. The inserts used
were: CB2-30%, Inner Bone, Cortical Bone, B-200, and CB2-50%. Following the steps
of Möhler et al. [27], by combining eq. 2.2b and 2.4, the relative cross sections σ̂S can
be found from the DECT scan via

σ̂S =

(
H

1000HU
+ 1

)
/ρ̂e, (3.6)

The relative cross sections, σ̂S, of the high and low energies were plotted against each
other. The α parameter was determined by linear regression to the expression in
equation 3.4. With the blending factor α one can use the two original DECT images
(80/140Sn kVp) to calculate pseudo monoenergetic images (MonoCT) and relative
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electron density images (RED) [11].

The attenuation coefficients were calculated using:

µS =
HS

1000
+ 1 , (3.7)

then the ρ̂e images were calculated, using [11]:

ρ̂e = (1− α)µL + αµH . (3.8)

From the MonoCT and RED images a relative cross section image (RCS) can be made
by the simple relation

RelativeCrossSection =
MonoCT

RED
(3.9)

The relation

σ̂ =
∑
i

ρ̂ei∑
j ρ̂ej

σ̂i =
∑
i

νiσ̂i (3.10)

is obtained from equation 3.9 and the attenuation sum for compound materials

µ̂ =
∑
i

µ̂i. (3.11)

Figure 3.5: Lookup table for relative cross section to relative stopping number conversion.
The calibration procedure is the same as described in Möhler et al. [11]

To make the RCS to RSN lookup table, relative cross sections and stopping numbers
were calculated for a number of materials. The data used to calculate the relative
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cross sections was taken from the NIST XCOM database [48]. The cross sections and
stopping numbers were then plotted against each other and the lookup table was made
using the same principles as the regular HLUT approach (see figure 4.3). With this
approach, ρ̂e is obtained directly, and only the relative stopping number L̂ relies on a
lookup table approach.

Based on the Bragg’s additivity rule for stopping powers [49], eq. 2.9, and eq. 3.10, the
stopping number L̂ can be found through

L̂ =
∑
i

νi L̂i. (3.12)

With the LUT defined, the RSN image can be made from the RCS image. Finally the
RSP image can be calculated using eq. 2.10, namely by multiplying the RSN image by
the RED image.
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3.6 WEPL calculation

Calculating a theoretical ground truth, or reference, RSP for the Gammex inserts,
is possible because their compositions are known. Thus the RSP predictions of the
SECT, MonoCT, and DECT calibrations can be compared to this reference RSP.
When calculating the WEPL projections of a patient, or in the case of this study
an antropomorphic abdomen phantom, no ground truth can be calculated unless the
ground truth WEPL values are measured with a proton beam, or the phantom-specific
materials are fully known. The three calibration methods are therfore compared in
relation to each other. Specifically the MonoCT and DECT calibrations were both
compared to the SECT calibration as this is the state-of-the-art calibration. The
comparison is done by subtracting the SECT based WEPL from the MonoCT based
WEPL, and the DECT based WEPL in turn (see section 4.4.2). The root mean square
error (RMSE) of the difference is then obtained. To assign meaning to the obtained
RMSE, one needs to know which of the calibrations being compared, is theoretically
more accurate. This is decided based on the methods reported MAE of the experimental
RSP to the reference RSP. The value of the RMSE then describes how much more
accurate, on average, the method with the lowest MAE is, compared to the other.

For the WEPL calculations, SECT and DECT based images of the abdomen phantom
were used. RSP maps for all the image slices was calculated so as to make WEPL pro-
jections of the entire phantom, not just one axial slice. The RSPs were integrated along
the beam path through the image slices and multiplied with the pixel spacing, to get the
WEPL in mm. By subtracting the SECT-based WEPL from the MonoCT and DECT
based WEPL projections, two WEPL difference maps were generated. Any difference in
the calculated WEPLs was assumed to be in favour of the most accurate RSP calibration
method of the two being compared. The difference of the WEPLs were calculated as
root mean square of the entire projections. Only data from inside the phantom was used
in the WEPL comparison. This was done by setting a lower threshold for RSP values
included in the WEPL subtraction, so that the air outside the phantom was not included.

In the process of comparing the SECT-based and DECT-based WEPLs, it was discovered
that the SECT and DECT image sets did not overlap perfectly. This occured even
though the two image acquisitions were made in direct succession, without moving the
phantom. The SECT image set thus had to be registered to match the DECT-based
image set before comparing the WEPL projections.
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4RESULTS

In this chapter the results of the studied methods are presented. Sections 4.1, 4.2, and
4.3, show the results from the three calibration methods that were implemented in this
thesis. Section 4.4 contain comparisons of the three methods via error-plots and WEPL
projection comparisons.

The accuracy of the RSP prediction of each method was estimated in comparison to the
calculated theoretical RSP values for the Gammex calibration phantom. These were
calculated as described in section 3.3 and are considered the ground truth, RSPref , for
all methods, see table 4.1.

Table 4.1: Theoretical RSP values for the Gammex 467 phantom inserts used in this study

Insert: CB2-30 Lung300 Inner B Solid W Cort Bone Liver Brain Lung450
RSP ref: 1.276 0.281 1.084 0.99 1.679 1.065 1.052 0.458

(cont.) Solid W Adipose Solid W B-200 Muscle CB2-50 Water Breast
0.99 0.931 0.99 1.10 1.02 1.462 1.00 0.957

4.1 Stoichiometric Calibration on SECT data

The scanner was characterized, i.e. the two k-parameters were determined, following the
method described in section 3.3. For the SECT-based calibration this resulted in the
k-values: k1 = 2.000 · 10−4 and k2 = 2.005 · 10−5. The HLUT based on 61 recommended
ICRU tissues theoretical RSPs and synthetic HUs can be seen in figure 3.4. This HLUT
has three linear segments with the two breakpoints at HU = 20 and HU = 40.

The HLUT was used on the measured HU values of the Gammex inserts to obtain the
experimental RSP, RSPexp, see table 4.2. The error, RSPexp − RSPref , relative error
(RSPexp − RSPref)/RSPref , and absolute error, |RSPexp − RSPref |, was calculated for
all inserts. As can be seen in table 4.2, the relative error becomes very large for the
lung tissues in this calibration, with 18.9% and 9.4% relative error for Lung300 and
Lung450. The lung tissues are often excluded from the calibration for this reason. The
mean relative error (MRE) was calculated to 3.3%. Bear in mind that in the MRE the
positive and negative errors cancel. The mean absolute error (MAE) was calculated
both including, and excluding, the lung tissues to be 2.6% and 2.3% respectively (the
abbreviation MAE-L is used for the MAE excluding lung tissues).
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Figure 4.1: HLUT (orange line) made with stoichiometric calibration based on 61
recommended tissues (blue dots)
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Table 4.2: SECT - RSP prediction errors. RSPref: calculated from tabulated compositional
info. RSPexp: estimated with HLUT. Rel Err: RSPexp - RSPref / RSPref. Err: RSPexp -
RSPref. Abs Err: abs(RSPexp - RSPref). MRE: Mean relative error, MAE. Mean absolute

error, MAE-L: mean absolute error(no lung). STD: Standard deviation of Errors.

SECT (120kVp)
Insert RSP ref RSP exp Rel Err Err Abs Err

CB2-30 1.276 1.283 0.55% 0.70% 0.70%
Lung300 0.281 0.334 18.86% 5.30% 5.30%
Inner B 1.084 1.144 5.54% 6.00% 6.00%
Solid W 0.990 1.020 3.03% 3.00% 3.00%
Cort Bone 1.679 1.720 2.44% 4.10% 4.10%
Liver 1.065 1.064 -0.09% -0.10% 0.10%
Brain 1.052 1.034 -1.71% -1.80% 1.80%
Lung450 0.458 0.501 9.39% 4.30% 4.30%
Solid W 0.990 1.013 2.32% 2.30% 2.30%
Adipose 0.931 0.934 0.32% 0.30% 0.30%
Solid W 0.990 1.016 2.63% 2.60% 2.60%
B-200 1.100 1.152 4.73% 5.20% 5.20%
Muscle 1.022 1.041 1.86% 1.90% 1.90%
CB2-50 1.462 1.483 1.44% 2.10% 2.10%
Water 1.000 1.011 1.10% 1.10% 1.10%
Breast 0.957 0.963 0.63% 0.60% 0.60%

MRE 3.31% MAE 2.59%
STD 0.022 MAE-L 2.27%
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4.2 Stoichiometric Calibration on MonoCT data

The MonoCT-based scanner characterization resulted in the k-values: k1 = 2.000 · 10−4

and k2 = 3.185 · 10−5. Two HLUTs were made, one with three line segments and
breakpoints at HU = 20 and HU = 40 (identical to the SECT based HLUT), and
one with five line segments with breakpoints at HU = −30, HU = 0, HU = 35, and
HU = 60. The resulting HLUTs can be seen in figure 4.2.

Figure 4.2: HLUTs (red and orange lines) made with stoichiometric calibration MonoCT data
and 61 recommended tissues (blue dots)

Both HLUTs were used on the measured HU values of the Gammex inserts to obtain
the experimental RSPs, see table 4.3. The error, relative error, and absolute error, was
calculated for all inserts (see table 4.3). From the HLUT with three segments: MRE =
3.1%, MAE = 2.8%, and MAE-L = 2.8%. From the HLUT with five segments: MRE =
3.6%, MAE = 2.8%, and MAE-L = 2.9%.

Both MonoCT HLUTs thus performed poorer than the SECT HLUT in predicting the
RSP of the tissue inserts. The MonoCT based predictions were however more stable for
the lung tissues with relative errors of 11.4% and 7.9% for Lung300 and Lung450.
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Table 4.3: MonoCT - RSP prediction errors. RSPref: calculated from tabulated compositional
info. RSPexp: estimated with HLUT. Rel Err: RSPexp - RSPref / RSPref. Err: RSPexp -
RSPref. Abs Err: abs(RSPexp - RSPref). MRE: Mean relative error, MAE. Mean absolute

error, MAE-L: mean absolute error(no lung). STD: Standard deviation of Errors.

Mono (70keV) Mono (70keV) (5 SEGMENTS)
Insert RSP ref RSP exp Rel Err Err Abs Err RSP exp Rel Err Err Abs Err

CB2-30 1.276 1.291 1.18% 1.50% 1.50% 1.299 1.80% 2.30% 2.30%
Lung300 0.281 0.313 11.39% 3.20% 3.20% 0.298 6.05% 1.70% 1.70%
Inner B 1.084 1.150 6.09% 6.60% 6.60% 1.163 7.29% 7.90% 7.90%
Solid W 0.990 1.023 3.33% 3.30% 3.30% 1.009 1.92% 1.90% 1.90%
Cort Bone 1.679 1.730 3.04% 5.10% 5.10% 1.725 2.74% 4.60% 4.60%
Liver 1.065 1.066 0.09% 0.10% 0.10% 1.082 1.60% 1.70% 1.70%
Brain 1.052 1.037 -1.43% -1.50% 1.50% 1.018 -3.23% -3.40% 3.40%
Lung450 0.458 0.494 7.86% 3.60% 3.60% 0.488 6.55% 3.00% 3.00%
Solid W 0.990 1.021 3.13% 3.10% 3.10% 1.008 1.82% 1.80% 1.80%
Adipose 0.931 0.927 -0.43% -0.40% 0.40% 0.942 1.18% 1.10% 1.10%
Solid W 0.990 1.020 3.03% 3.00% 3.00% 1.007 1.72% 1.70% 1.70%
B-200 1.100 1.157 5.18% 5.70% 5.70% 1.170 6.36% 7.00% 7.00%
Muscle 1.022 1.047 2.45% 2.50% 2.50% 1.030 0.78% 0.80% 0.80%
CB2-50 1.462 1.491 1.98% 2.90% 2.90% 1.494 2.19% 3.20% 3.20%
Water 1.000 1.024 2.40% 2.40% 2.40% 1.010 1.00% 1.00% 1.00%
Breast 0.957 0.963 0.63% 0.60% 0.60% 0.979 2.30% 2.20% 2.20%

MRE 3.12% MAE 2.84% MRE 2.63% MAE 2.83%
STD 0.022 MAE-L 2.76% STD 0.026 MAE-L 2.90%

4.3 RhoSigma Calibration on DECT data

The two DECT spectra were calibrated according to section 3.5 to obtain the best match
for the alpha parameter. This calibration yielded α = 1.494, which is close to what other
studies have found. The software syngo.via was used to produce the MonoCT (70keV)
and the relative electron density image (RED). This was also done by Möhler et al. The
relative cross section image (RCS) was made by dividing the MonoCT image by the
RED image. The RCS to relative stopping number (RSN) LUT was made following the
method described in section 3.5. Our LUT behaves almost as expected, except that it
is inverted compared to the LUT produced by Möhler et al.[50], see figure 4.3.
Using the LUT a σ̂-image was made. This image was then multiplied with the ρ̂e-image,
to produce the final RSP-image mapping the RSP of every pixel in the original CT
images, see figure 4.4.

The RSP-values of the insert was then measured by averaging a ROI inside each insert
in the RSP image, see table 4.4. From the RSP measurements the following : MRE =
1.0%, MAE = 1.3%, and MAE− L = 1.4%. Note that this method performs better when
including the lung tissues than if they were not included.
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4.3. RHOSIGMA CALIBRATION ON DECT DATA

Figure 4.3: Lookup table for relative cross section to relative stopping number conversion.
The calibration procedure is described in section 3.5 and is the same as in Möhler et al. [11].

Left: LUT produced in this thesis. Right: LUT from Möhler et al.

Table 4.4: DECT - RSP prediction errors. RSPref: calculated from tabulated compositional
info. RSPexp: estimated with RhoSigma calibration. Rel Err: RSPexp - RSPref / RSPref.
Err: RSPexp - RSPref. Abs Err: abs(RSPexp - RSPref). MRE: Mean relative error, MAE.
Mean absolute error, MAE-L: mean absolute error(no lung). STD: Standard deviation of

Errors.

RhoSigma (DECT 80/140Sn)
Insert RSP ref RSP exp Rel Err Err Abs Err

CB2-30 1.276 1.276 0.00% 0.00% 0.00%
Lung300 0.281 0.285 1.42% 0.40% 0.40%
Inner B 1.084 1.089 0.46% 0.50% 0.50%
Solid W 0.990 0.998 0.81% 0.80% 0.80%
Cort Bone 1.679 1.652 -1.61% -2.70% 2.70%
Liver 1.065 1.088 2.16% 2.30% 2.30%
Brain 1.052 1.081 2.76% 2.90% 2.90%
Lung450 0.458 0.464 1.31% 0.60% 0.60%
Solid W 0.990 1.000 1.01% 1.00% 1.00%
Adipose 0.931 0.954 2.47% 2.30% 2.30%
Solid W 0.990 0.998 0.81% 0.80% 0.80%
B-200 1.100 1.100 0.00% 0.00% 0.00%
Muscle 1.022 1.036 1.37% 1.40% 1.40%
CB2-50 1.462 1.446 -1.09% -1.60% 1.60%
Water 1.000 1.010 1.00% 1.00% 1.00%
Breast 0.957 0.985 2.93% 2.80% 2.80%

MRE 0.99% MAE 1.32%
STD 0.015 MAE-L 1.44%
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Figure 4.4: Steps of the RhoSigma approach. MonoCT: pseudo monoenergetic image, RED:
relative electron density image, RCS: relative cross section image, RSN: relative stopping

number image, RSP: relative stopping power image.
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4.4 Comparisons

4.4.1 RSP prediction accuracy

Table 4.5 shows accuracy of the RSP predictions of all the applied calibration regimes.
Surprisingly, the SECT-based calibration performs better than both MonoCT-based
calibrations, including and excluding lung tissues. The barplots in figure 4.5 shows a
visual representation of the actual difference and relative difference in RSP prediction
for all the methods. Only one MonoCT-dataset, from the HLUT with 3 segments, is
included in this plot.

Table 4.5: Uncertainty analysis for all calibration methods used in this study. MAE: Mean
absolute error, MAE-L: Mean absolute error excluding the lung tissues Lung300 and

Lung450, Err STD: The standard deviation in the actual error between ground truth and
experimental RSP. SECT: Stoichiometric calibration on SECT data, MonoCT-3:

Stoichiometric calibration on MonoCT data using 3 segments in the HLUT, MonoCT-5:
Stoichiometric calibration on MonoCT data using 5 segments in the HLUT, DECT:

RhoSigma calibration using DECT data.

Methods MAE MAE-L Err STD
SECT 2.59% 2.27% 0.022
MonoCT-3 2.84% 2.76% 0.022
MonoCT-5 2.83% 2.90% 0.026
DECT 1.32% 1.44% 0.015

These representations show how the relative difference becomes unstable for lung tissues
in the HLUT-based calibrations. These are usually excluded from the calibration for
this reason. Note, however that the DECT-based calibration performs very well for
the lung tissues both in relative difference and in actual difference. There is a 42%
reduction in MAE from the best performance of the HLUT calibrations: 2.27% to
the best performance of the DECT calibration 1.32%. Additionally the DECT-based
calibration has a lower standard deviation in absolute error, meaning that it is less
vulnerable to which tissues are used in the calibration.
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Figure 4.5: Top: Difference in percentage points between ground truth between ground truth
and experimental RSP (RSPexp-RSPref). Bottom: Relative difference between ground truth

and experimental RSP.
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4.4.2 WEPL results

The WEPL projections for all methods were calculated, including only the MonoCT-
based method using 3 segments in the HLUT. These WEPL projections can be seen
in the upper row of figure 4.6, where the two first columns are the WEPL projections
for the SECT and DECT based calibrations. The third column is the difference in
the WEPL predictions between the two calibrations where the SECT-WEPL has been
subtracted from the DECT-WEPL. The air outside of the phantom was removed from
the comparison. White color indicates that the two WEPL projections are in agreement.
Since the DECT based calibration has been shown, in other studies and in this thesis,
to be more accurate than the SECT based calibration, any difference between the two
WEPL calculations will be considered to favour the DECT based calibration.

Figure 4.6: Top: Water equivalent path length (WEPL) projections from the SECT
calibration and the DECT calibration. The RMSE is 3.16 mm in favour of the DECT
calibration. Bottom: WEPL projections from the SECT calibration and the DECT

calibration. The RMSE is 1.41 mm in favour of the SECT calibration

The RMSE, or the root mean square error, of the difference-image was calculated to be:
3.16 mm. This translates to a 3.16 mm mean error in range prediction using the SECT
based calibration compared to the DECT based calibration, when the whole image is
considered.

The WEPL comparison of the SECT and MonoCT based projections can be seen in
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figure 4.6. Since the MonoCT based RSP prediction was shown to be less accurate
than the SECT based calibration in this study, any difference between the two WEPL
projections is considered to be in the favour of the SECT based calibration. The RMSE
of the difference-image was calculated to be 1.41 mm. Thus, in this case the SECT
based calibration is more accurate than the MonoCT based calibration.
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5DISCUSSION

In this thesis, three calibration methods for calculating RSP from CT-numbers were
investigated and compared. A stoichiometric calibration was made using SECT.
From the DECT images, two calibrations were made; a stoichiometric calibration
using MonoCT and a RhoSigma calibration using the DECT data directly. In this
section the MonoCT and direct DECT calibration will be discussed in comparison
to the state-of-the-art SECT based calibration, and to each other. The SECT based
HLUT calibration performed as expected from previous literature. A MAE of 2.6% in
RSP prediction, seems reasonable as the typical 3.5% range margin accounts for all
clinical uncertainties, not only the theoretical RSP prediction and that the CT related
uncertainty often is reported as being in the order of 2% to 3% [51]. This makes this
method a good comparative baseline method for discussing the other calibrations.

The clinical impact of reducing range calculation uncertainties in proton therapy, can
be significant if it leads to the reduction of treatment margins. With the margins used
today, a notable amount of healthy tissue recieves the same dose as prescribed for the
tumor. Reducing this volume of radiated healthy tissue can reduce the late side effects
seen in treated patients. This is especially the case for pediatric patients.

5.1 MonoCT

The MonoCT stoichiometric calibration method was expected to provide more stability
and slightly better, or equal, RSP prediction compared to the SECT based calibration.
Better stability in lung tissue was achieved, however the overall performance of the
method was poorer than the state-of-the-art SECT calibration, with MonoCT calibra-
tion resulting in a MAE of 2.8%. Further, the MonoCT HLUT with five segments
performed worse (MAE of 2.9%) than the MonoCT HLUT with three segments. We
have not been able to find any obvious mistakes in the implementation of this method,
or otherwise managed to identify why the RSP prediction from MonoCT is less accurate
than expected. As shown in section 3.4, this method is the exact same as the SECT
based method, except for the input data, which did perform as expected.

While the implementation of the MonoCT calibration at other facilities has been
mostly due to other advantages, such as reduced beam hardening, than improved RSP
prediction, the method has usually been reported to yield equal or slightly better
RSP prediction than SECT calibration. This suggests that negative results might be
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under-reported, or more likely, that there are more accurate ways of implementing the
method than what has been demonstrated in this thesis. One step of this calibration
that should be improved is the explorative approach to choosing the break points of
the HLUT. The most precise directions for this step found in the literature, is that the
intervals should be chosen to represent the different tissue types. If this can be done in a
more sophisticated way, the calibration might yield a more optimal fit, and thus better
results. Krah et al. [52] investigated methods for optimizing the HLUT (albeit with
a radiograph as the input) and assessed the effects of differently placed breakpoints.
They found an agreement with the used ground truth better than 0.5%.

Another possible point of investigation is the CT dose while acquiring the DECT scan
from which the MonoCT is made. As DECT images, and followingly MonoCT images,
are often acquired so that the patient dose is equal to that of a SECT scan, these images
have more noise. If allowing a higher patient dose during the DECT acquisition leads to
better accuracy in RSP prediction, it could be investigated whether the improved range
calculation makes up for the added dose during the planning CT.

5.1.1 k-values

For both stoichiometric calibrations (SECT and MonoCT), k1 was calculated to be equal
to the lower bound value of the optimization algorithm: 2.000 ·10−4. The behaviour of k1
in the optimization was asymptotic towards (and beyond) its lower bound. It was there-
fore set to the value of the lower bound in accordance similar studies [26]. Nevertheless,
varying the breakpoints of the HLUT had a much greater impact on the calibration than
varying the k-values. As such it reasonable to assume that the uncertainty correlated to
breakpoints outweigh any potential uncertainty correlated to the k-values.

5.2 DECT

The results of the DECT-based RSP prediction show that this method has great
potential to reduce range uncertainties in proton therapy. The method showed superior
stability in low density tissues as well as better overall stability, compared to today’s
gold standard HLUT approach. This is in accordance with existing literature. The
results of other groups suggest that the MAE should be below one percent [20], to which
our results (MAE of 1.32%) are close. Although this MAE is slightly larger than one
percent, it is still more than one percent point lower than the best MAE of the other
predictions which is 2.27% for the SECT calibration excluding lung tissue.

There occurred an unresolved problem while implementing the DECT calibration,
namely that the relative cross section to relative stopping number LUT appeared
inverted. This phenomenon leads to an error, of small yet unknown magnitude, in the
estimated stopping number of the tissue substitutes. Fortunately the stopping number
is not the main contributor to the final RSP, and as such the calibration performs well
even with this flaw. The reason for this inversion should however be investigated and
resolved. With this error corrected, the calibration will likely yield the expected below
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one percent MAE in RSP prediction.

5.2.1 WEPL

The RMSE of the WEPL difference between the DECT and the SECT calibration was
3.16 mm. Since the DECT was proven to be more accurate from the RSP analysis, the
improvement of the proton range accuracy in an anthropomorphic phantom is thus in the
order of 3 mm. Clinically the WEPL difference will be somewhat lower since one does
not integrate over the entire volume of the patient, but only to the depth of the tumor
site. Investigation of this type falls beyond the scope of this work. Yet, this reported
RMSE support that the DECT calibration is more accurate than the state-of-the-art
SECT calibration.

5.3 Implementation

The process of implementing the different RSP calibrations has been error-prone and
complex. While investigating the literature on this topic, several questions arose that
were not answered. How should the HU intervals of the HLUT breakpoints be chosen
and how many should there be? How should the segments of the HLUT be connected?
Further, there are no recommendations on what optimization algorithms should be used
to determine the k-values. Neither are there guidelines on CT protocols, reconstruction
algorithms, or methods of measuring the HU values. These are only a few of the
questions that were encountered.

There are thus, many considerations to keep in mind when implementing the required
steps, and there are many opportunities for small errors to pass unnoticed. This
process is truly more complex than it appears at first sight, which is the case for
the state-of-the-art stoichiometric calibration and to some degree for the RhoSigma
calibration, although the latter is less complex. After correspondence with some proton
therapy facilities in Europe, the consensus regarding protocols for calibrations between
proton facilities, seems to be that as long as uncertainties are under control, everything
is up for interpretation. This is both reassuring and worrying as so many steps are
left to the interpretation of the physicists implementing the calibration. This also
makes quality assurance harder and inter-center variations bigger. There is a need for
international guidelines, and ICRU are expected provide this in 2021.

Results aside, in working with both the stoichiometric calibration and with the
RhoSigma calibration, the latter proved easier to implement. The RhoSigma calibration
has fewer steps, which translates to less room for personal interpretation and therefore
less misinterpretations or mistakes. There is a possibility that this statement is
somewhat biased, due to lack of knowledge on the topic at hand in the beginning of this
project and that the stoichiometric calibration was the first method to be implemented.
Nevertheless, it must be stressed that the implementation of the RhoSigma calibration
was quicker, performed better, and that it requires less heuristic assumptions, than the
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stoichiometric calibration.

A way of implementing the benefits of DECT into existing protocols is by retrospective
adaptation of a MonoCT HLUT based on patient data, as done by Wohlfahrt et al., in
2020 [53]. This adaptation of the HLUT resulted impressive reduction of the proton
range down to approximately 0.2%.

5.4 Implications and Future Work

The results in this thesis show that there are still some unresolved issues in both the
MonoCT and the DECT calibrations, as implemented in this study. As routines for
the new particle centers in Norway are being developed, these should be investigated
further. Contrary to the current literature, the results in this thesis showed that
MonoCT calibration does not improve the RSP prediction compared to the state-of-
the-art SECT calibration. The method should be investigated further to uncover why
the results disagree with literature. Unfortunately, we can not point to any specific part
of this calibration that is responsible for the negative result, although the method of
determining the break points should be looked into. If better results can be achieved,
the method should be considered for potential clinical implementation as a stepping
stone towards a full DECT based calibration.

The DECT based RhoSigma calibration, on the other hand, has been shown in this
thesis, to improve the RSP prediction and thus the range calculation of protons. This
is in agreement with existing literature. The recent review article by Wohlfahrt et
al. [18] on the topic, concluded that there is substantial and broad evidence for the
clinical benefits of DECT in proton treatment planning. This conclusion was based
on more than 20 studies assessing the accuracy of RSP prediction with various DECT
algorithms. For the RhoSigma calibration specifically, Möhler et al. [27] concluded
that the maximum RSP uncertainty was below 1%. If results like these are clinically
attainable, reduction of treatment margins should be considered and investigated furter.

If the RhoSigma calibration method is considered for clinical implementation, the
inverted LUT needs to be resolved. The method can also be further improved upon by
including patient specific weighted calibrations such as in Wohlfahrt et al. [53].
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5.5 Conclusions

In this thesis, methods for proton range calculation using SECT and DECT were
implemented and compared. Based on the results of this study, the DECT calibration
method is concluded to improve range calculations in proton therapy treatment planning
from 2.3% using SECT to 1.3% using DECT. This conclusion is in agreement with
existing literature. If clinically implemented, such a range uncertainty reduction, might
lead to the reduction of treatment margins which, in turn, can contribute to less
irradiation of healthy tissue and its related side effects. Based on the results presented
in this thesis and on the investigation of existing literature, it should therefore be
considered to bypass the un-adapted state-of-the-art stoichiometric calibrations, and
focus on establishing a sound DECT-based calibration regime.

The work done in this thesis has shown the clear potential of DECT to reduce uncertain-
ties of range calculations for proton therapy, although further development of calibration
methods is needed. The results presented can contribute to a foundation on high which
quality RSP prediction methods can be developed and implemented in Norway.
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ATabulated Material

A.1 Gammex 467 insert constituents

The elemental constituents of the tissue like inserts used for scanner calibration with
the Gammex 467 calibration phantom can be seen in Table A.1:

Table A.1: Tabulated elemental composition (in percent) of Gammex 467 inserts, relative
electron density, ρ̂e, and relative mass density, ρ̂, provided by manufacturer.

Element H C N O Mg Si P Cl Ca ρ̂e ρ̂
Z 1 6 7 8 12 14 15 17 20
A 1.008 12.01 14.01 16 24.31 28.09 30.97 35.45 40.08
CB2-30% 6.68 53.48 2.12 25.61 0 0 0 0.11 12.01 1.279 1.334
Lung 300 8.46 59.38 1.96 18.14 11.19 0.78 0 0.1 0 0.281 0.290
Inner Bone 6.67 55.64 1.96 23.52 0 0 3.23 0.11 8.87 1.086 1.133
Solid Water 8.02 67.23 2.41 19.91 0 0 0 0.14 2.31 0.988 1.017
Cort Bone 3.41 31.41 1.84 36.5 0 0 0 0.04 26.81 1.696 1.824
Liver 8.06 67.01 2.47 20.01 0 0 0 0.14 2.31 1.063 1.095
Brain 10.83 72.54 1.69 14.86 0 0 0 0.08 0 1.047 1.051
Lung 450 8.47 59.57 1.97 18.11 11.21 0.58 0 0.1 0 0.458 0.470
Solid Water 8.02 67.23 2.41 19.91 0 0 0 0.14 2.31 0.988 1.018
Adipose 9.06 72.3 2.25 16.27 0 0 0 0.13 0 0.928 0.945
Solid Water 8.02 67.23 2.41 19.91 0 0 0 0.14 2.31 0.988 1.017
B-200 6.65 55.52 1.98 23.64 0 0 3.24 0.11 8.87 1.102 1.150
Muscle 8.1 67.17 2.42 19.85 0 0 0 0.14 2.32 1.020 1.050
CB2-50% 4.77 41.63 1.52 32 0 0 0 0.08 20.02 1.471 1.561
Water 11.19 0 0 88.81 0 0 0 0 0 1.000 1.000
Breast 8.59 70.11 2.25 16.27 0 0 0 0.13 0.95 0.954 0.977
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A.2. I-VALUES

A.2 I-values

Table A.2: Mean ionization energies [eV] for the elements in a solid state from Berger et al
1984.

Element H C N O Mg Si P Cl Ca
I (eV) 19.02 81 82 106 176.3 195.5 195.5 180 215.8

A.3 ICRU Standard Tissues

The following table (Table A.3) contains elemental composition data on 61 selected adult
tissues obtained from [54]. These are used as guidance for creating human tissue-like
substitutes used in radiotherapy. The same data is usually used to create the clinical
HLUT, by applying the CT calibration to the standard tissues as well as scanned tissue
substitutes used for calibration.
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A.3. ICRU STANDARD TISSUES

T
ab

le
A

.3
:

61
ad

u
lt

st
an

d
ar

d
ti

ss
u

es
li

st
ed

in
IC

R
U

R
ep

o
rt

4
6
.

E
le

m
en

ta
l

co
m

p
os

it
io

n
s,

m
as

s
d

en
si

ty
,
ρ

[k
g
m

−
3
],

el
ec

tr
on

d
en

si
ty
ρ
e

[m
−
3
·1

02
6
],

a
n

d
el

ec
tr

o
n

d
en

si
ty

re
la

ti
v
e

to
w

a
te

r
ρ̂
e

T
is

su
e
–

H
C

N
O

N
a

M
g

P
S

C
l

K
C

a
F
e

I
ρ

ρ
e

ρ̂
e

Z
1

6
7

8
1
1

1
2

1
5

1
6

1
7

1
9

2
0

2
6

5
3

A
1
.0

0
8

1
2
.0

1
1
4
.0

1
1
6

2
2
.9

9
2
4
.3

1
3
0
.9

7
3
2
.0

5
3
5
.4

5
3
9
.1

4
0
.0

8
5
5
.8

5
1
2
6
.9

A
d

ip
o
se

#
1

11
.2

51
.7

1.
3

35
.5

0.
1

0
0

0
.1

0
.1

0
0

0
0

9
7
0

3
2
4
0

0
.9

7
0

A
d

ip
o
se

#
2

11
.4

59
.8

0.
7

27
.8

0.
1

0
0

0
.1

0
.1

0
0

0
0

9
5
0

3
1
8
0

0
.9

5
2

A
d

ip
o
se

#
3

11
.6

68
.1

0.
2

19
.8

0.
1

0
0

0
.1

0
.1

0
0

0
0

9
3
0

3
1
2
0

0
.9

3
4

L
ip

o
m

a
10

.9
71

.9
3

13
.8

0.
1

0
0

0
.2

0
.1

0
0

0
0

9
8
0

3
2
7
0

0
.9

7
9

S
T

IC
R

U
-3

3
0.

1
11

.1
2.

6
76

.2
0

0
0

0
0

0
0

0
0

1
0
0
0

3
3
1
0

0
.9

9
1

S
T

IC
R

U
-4

4
m

10
.5

25
.6

2.
7

60
.2

0.
1

0
0
.2

0
.3

0
.2

0.
2

0
0

0
1
0
3
0

3
4
2
0

1
.0

2
4

S
T

IC
R

U
-4

4
f

10
.6

31
.5

2.
4

54
.7

0.
1

0
0
.2

0
.2

0
.1

0.
2

0
0

0
1
0
2
0

3
3
9
0

1
.0

1
5

B
lo

o
d

—
10

.2
11

3.
3

74
.5

0.
1

0
0
.1

0
.2

0
.3

0
.2

0
0
.1

0
1
0
6
0

3
5
1
0

1
.0

5
1

B
o
n

e
m

in
e
ra

l
0.

2
0

0
41

.4
0

0
1
8
.5

0
0

0
3
9
.9

0
0

3
2
2
5

9
6
7
0

2
.8

9
5

B
ra

in
—

10
.7

14
.5

2.
2

71
.2

0.
2

0
0
.4

0
.2

0
.3

0.
3

0
0

0
1
0
4
0

3
4
6
0

1
.0

3
6

B
re

a
st

-c
a
lc

0.
3

1.
6

0.
5

40
.7

0
0

1
8
.7

0
0

0
3
8
.2

0
0

3
0
6
0

9
1
8
0

2
.7

4
9

B
re

a
st

-m
a
m

-1
10

.9
50

.6
2.

3
35

.8
0.

1
0

0
.1

0
.1

0
.1

0
0

0
0

9
9
0

3
3
0
0

0
.9

8
8

B
re

a
st

-m
a
m

-2
10

.6
33

.2
3

52
.7

0.
1

0
0
.1

0
.2

0
.1

0
0

0
0

1
0
2
0

3
3
9
0

1
.0

1
5

B
re

a
st

-m
a
m

-3
10

.2
15

.8
3.

7
69

.8
0.

1
0

0
.1

0
.2

0
.1

0
0

0
0

1
0
6
0

3
5
1
0

1
.0

5
1

B
re

a
st

5
0
/
5
0

11
.5

38
.7

0
49

.8
0

0
0

0
0

0
0

0
0

9
6
0

3
2
2
0

0
.9

6
4

B
re

a
st

3
3
/
6
7

11
.6

51
.9

0
36

.5
0

0
0

0
0

0
0

0
0

9
4
0

3
1
5
0

0
.9

4
3

C
a
rb

o
h
y
d

ra
te

6.
2

44
.5

0
49

.3
0

0
0

0
0

0
0

0
0

1
5
6
0

4
9
8
0

1
.4

9
1

C
e
ll

n
u

c
le

u
s

10
.6

9
3.

2
74

.2
0

0
2
.6

0
.4

0
0

0
0

0
1
0
0
0

3
3
2
0

0
.9

9
4

E
y
e

le
n

s
9.

6
19

.5
5.

7
64

.6
0.

1
0

0
.1

0
.3

0
.1

0
0

0
0

1
0
7
0

3
5
3
0

1
.0

5
7

G
a
ll

st
o
n

e
s

11
.8

79
.4

0.
5

8.
3

0
0

0
0

0
0

0
0

0
1
0
7
5

3
6
1
0

1
.0

8
1

G
I

tr
a
c
t

10
.6

11
.5

2.
2

75
.1

0.
1

0
0
.1

0
.1

0
.2

0.
1

0
0

0
1
0
3
0

3
4
2
0

1
.0

2
4

H
e
a
rt

h
e
a
lt

y
10

.4
13

.9
2.

9
71

.8
0.

1
0

0
.2

0
.2

0
.2

0.
3

0
0

0
1
0
5
0

3
4
8
0

1
.0

4
2

H
e
a
rt

fa
tt

y
10

.3
18

.2
3.

1
67

.4
0.

1
0

0
.2

0
.2

0
.2

0.
3

0
0

0
1
0
4
0

3
4
5
0

1
.0

3
3

H
e
a
rt

fi
ll

e
d

10
.3

12
.1

3.
2

73
.4

0.
1

0
0
.1

0
.2

0
.3

0.
2

0
0
.1

0
1
0
6
0

3
5
1
0

1
.0

5
1

K
id

n
e
y
–

10
.3

13
.2

3
72

.4
0.

2
0

0
.2

0
.2

0
.2

0.
2

0
.1

0
0

1
0
5
0

3
4
8
0

1
.0

4
2

L
ip

id
—

11
.8

77
.3

0
10

.9
0

0
0

0
0

0
0

0
0

9
2
0

3
0
9
0

0
.9

2
5

L
iv

e
r

h
e
a
lt

h
y

10
.2

13
.9

3
71

.6
0.

2
0

0
.3

0
.3

0
.2

0.
3

0
0

0
1
0
6
0

3
5
1
0

1
.0

5
1

L
iv

e
r

c
ir

rh
o
ti

c
10

.4
23

2.
4

63
0.

2
0

0
.3

0
.2

0
.2

0.
3

0
0

0
1
0
4
0

3
4
5
0

1
.0

3
3

L
iv

e
r

fa
tt

y
10

.3
18

.6
2.

8
67

.1
0.

2
0

0
.2

0
.3

0
.2

0.
3

0
0

0
1
0
5
0

3
4
8
0

1
.0

4
2

L
u

n
g

h
e
a
lt

y
10

.3
10

.5
3.

1
74

.9
0.

2
0

0
.2

0
.3

0
.3

0.
2

0
0

0
2
6
0

8
6
2

0
.2

5
8

L
u

n
g

c
o
n

g
e
st

e
d

10
.5

8.
3

2.
3

77
.9

0.
2

0
0
.1

0
.2

0
.3

0.
2

0
0

0
1
0
4
0

3
4
5
0

1
.0

3
3

L
y
m

p
—

-
10

.8
4.

1
1.

1
83

.2
0.

3
0

0
0
.1

0
.4

0
0

0
0

1
0
3
0

3
4
2
0

1
.0

2
4

60



A.3. ICRU STANDARD TISSUES

T
a
b

le
A

.3
co

n
ti

n
u

ed
fr

o
m

p
re

v
io

u
s

p
a
g
e

T
is

su
e
–

H
C

N
O

N
a

M
g

P
S

C
l

K
C

a
F
e

I
ρ

ρ
e

ρ
e
,w

M
u

sc
le

–
10

.2
14

.3
3.

4
71

0.
1

0
0
.2

0
.3

0
.1

0
.4

0
0

0
1
0
5
0

3
4
8
0

1
.0

4
2

O
v
a
ry

—
10

.5
9.

3
2.

4
76

.8
0.

2
0

0
.2

0
.2

0
.2

0.
2

0
0

0
1
0
5
0

3
4
9
0

1
.0

4
5

P
a
n

c
re

a
s

10
.6

16
.9

2.
2

69
.4

0.
2

0
0
.2

0
.1

0
.2

0.
2

0
0

0
1
0
4
0

3
4
6
0

1
.0

3
6

P
ro

te
in

-
6.

6
53

.4
17

22
0

0
0

1
0

0
0

0
0

1
3
5
0

4
3
3
0

1
.2

9
6

S
k
e
le

to
n

-c
a
rt

il
9.

6
9.

9
2.

2
74

.4
0.

5
0

2
.2

0
.9

0
.3

0
0

0
0

1
1
0
0

3
6
2
0

1
.0

8
4

S
k
e
le

to
n

-c
o
rt

.b
3.

4
15

.5
4.

2
43

.5
0.

1
0
.2

1
0
.3

0
.3

0
0

2
2
.5

0
0

1
9
2
0

5
9
5
0

1
.7

8
1

S
k
e
le

to
n

c
ra

n
i

5
21

.2
4

43
.5

0.
1

0
.2

8
.1

0
.3

0
0

1
7
.6

0
0

1
6
1
0

5
0
7
0

1
.5

1
8

F
e
m

u
r

-
3
0
y

7
34

.5
2.

8
36

.8
0.

1
0
.1

5
.5

0
.2

0
.1

0
1
2
.9

0
0

1
3
3
0

4
2
7
0

1
.2

7
8

F
e
m

u
r

-
9
0
y

7.
9

38
.5

2.
2

36
.2

0.
1

0
.1

4
.4

0
.1

0
.1

0
1
0
.4

0
0

1
2
2
0

3
9
5
0

1
.1

8
3

H
u

m
e
ru

s-
6

31
.4

3.
1

36
.9

0.
1

0
.1

7
0
.2

0
0

1
5
.2

0
0

1
4
6
0

4
6
4
0

1
.3

8
9

M
a
n

d
ib

le
4.

6
19

.9
4.

1
43

.5
0.

1
0
.2

8
.6

0
.3

0
0

1
8
.7

0
0

1
6
8
0

5
2
7
0

1
.5

7
8

R
e
d

M
a
rr

o
w

10
.5

41
.4

3.
4

43
.9

0
0

0
.1

0
.2

0
.2

0
.2

0
0
.1

0
1
0
3
0

3
4
2
0

1
.0

2
4

R
ib

s1
—

6.
4

26
.3

3.
9

43
.6

0.
1

0
.1

6
0
.3

0
.1

0
.1

1
3
.1

0
0

1
4
1
0

4
5
0
0

1
.3

4
7

R
ib

s2
—

5.
6

23
.5

4
43

.4
0.

1
0
.1

7
.2

0
.3

0
.1

0
.1

1
5
.6

0
0

1
5
2
0

4
8
2
0

1
.4

4
3

S
a
c
ru

m
M

7.
4

30
.2

3.
7

43
.8

0
0
.1

4
.5

0
.2

0
.1

0.
1

9
.8

0
.1

0
1
2
9
0

4
1
6
0

1
.2

4
6

S
a
c
ru

m
F

6.
6

27
.1

3.
8

43
.5

0.
1

0
.1

5
.8

0
.3

0
.1

0
.1

1
2
.5

0
0

1
3
9
0

4
4
5
0

1
.3

3
2

S
p

o
n

g
io

sa
8.

5
40

.4
2.

8
36

.7
0.

1
0
.1

3
.4

0
.2

0
.2

0
.1

7
.4

0
.1

0
1
1
8
0

3
8
4
0

1
.1

5
0

V
e
rt

.c
o
l.

C
4

6.
3

26
.1

3.
9

43
.6

0.
1

0
.1

6
.1

0
.3

0
.1

0
.1

1
3
.3

0
0

1
4
2
0

4
5
3
0

1
.3

5
6

V
e
rt

.c
o
l.

D
6
,L

3
7

28
.7

3.
8

43
.7

0
0
.1

5
.1

0
.2

0
.1

0
.1

1
1
.1

0
.1

0
1
3
3
0

4
2
7
0

1
.2

7
8

Y
e
ll

o
w

m
a
rr

o
w

11
.5

64
.4

0.
7

23
.1

0.
1

0
.1

0
0

0
.1

0
0

0
0

9
8
0

3
2
8
0

0
.9

8
2

S
k
in

—
-

10
20

.4
4.

2
64

.5
0.

2
0

0
.1

0
.2

0
.3

0
.1

0
0

0
1
0
9
0

3
6
0
0

1
.0

7
8

S
p

le
e
n

–
10

.3
11

.3
3.

2
74

.1
0.

1
0
.3

0
0
.2

0
.2

0.
3

0
0

0
1
0
6
0

3
5
1
0

1
.0

5
1

T
e
st

is
–

10
.6

9.
9

2
76

.6
0.

2
0

0
.1

0
.2

0
.2

0.
2

0
0

0
1
0
4
0

3
4
6
0

1
.0

3
6

T
h
y
ro

id
-

10
.4

11
.9

2.
4

74
.5

0.
2

0
0
.1

0
.1

0
.2

0.
1

0
0

0
.1

1
0
5
0

3
4
8
0

1
.0

4
2

B
la

d
d

e
r

e
m

p
ty

10
.5

9.
6

2.
6

76
.1

0.
2

0
0
.2

0
.2

0
.3

0.
3

0
0

0
1
0
4
0

3
4
5
0

1
.0

3
3

B
la

d
d

e
r

fi
ll

e
d

10
.8

3.
5

1.
5

83
0.

3
0

0
.1

0
.1

0
.5

0
.2

0
0

0
1
0
3
0

3
4
3
0

1
.0

2
7

U
r.

st
o
n

e
s

c
y
st

5
30

.7
11

.9
26

.5
0

0
0

2
5
.9

8
0

0
0

0
0

1
6
6
0

5
2
4
0

1
.5

6
9

U
r.

st
o
n

e
s

o
x
a

1.
5

11
.7

0.
5

50
.7

0
0

6
0

0
0

2
9
.6

0
0

2
3
0
0

7
0
1
0

2
.0

9
9

U
r.

st
o
n

e
s

a
c
id

3.
3

33
.2

29
.9

33
.6

0
0

0
0

0
0

0
0

0
1
7
4
5

5
4
2
0

1
.6

2
3

W
a
te

r—
11

.2
0

0
88

.8
0

0
0

0
0

0
0

0
0

1
0
0
0

3
3
4
0

1
.0

0
0

61



BPython codes

B.1 Determine k-values

### Gradient decent minimizat ion to determine k1 and k2

import numpy as np
import pandas as pd
import matp lo t l i b . pyplot as p l t
from s c ipy . opt imize import minimize
from s c ipy . s t a t s import l i n r e g r e s s

data = pd . r ead c sv ( ”Data/datablad gammex NY . csv ” )
measured = pd . r ead c sv ( ”Data/Measured Mean HU . csv ” )

### HU R = mu/mu w = r h o r e l ∗ ( f ( k1 , k2 ))/” water ”
def o b j e c t i v e ( k ) :

k1 = k [ 0 ]
k2 = k [ 1 ]

x = l i s t ( )
y = l i s t ( )

## Denominator in eq . A.20 (Goma e t a l 2016) −water
wH = f loat ( data . i l o c [ 1 6 , 1 ] )
AH = f loat ( data . i l o c [ 1 , 1 ] )
wO = f loat ( data . i l o c [ 1 6 , 4 ] )
AO = f loat ( data . i l o c [ 1 , 4 ] )
sum water = wH/AH∗(1+k1+k2 ) + wO/AO∗(8+k1∗8∗∗2.86+ k2 ∗8∗∗4 .62)
##

## f ( k1 , k2 )
sum tot=0
### Loop over Gammex t a b u l a t e d m a t e r i a l s p r e a d s h e e t ( Table A. 1 )
for i in range ( 2 , 1 8 ) :# i t t e r a t e through rows (CB2−30% − Breast )

sum row = 0
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B.1. DETERMINE K-VALUES

for j in range ( 1 , 1 0 ) : # i t t e r a t e through columns (H − Ca)
wi = f loat ( data . i l o c [ i , j ] )
Ai = f loat ( data . i l o c [ 1 , j ] )
Zi = f loat ( data . i l o c [ 0 , j ] )
rho = f loat ( data . i l o c [ i , 1 1 ] ) #r e l a t i v e mass d e n s i t y

sum element = wi/Ai ∗ ( Zi + k1∗ Zi ∗∗2 .86 + k2∗ Zi ∗∗4 .62 )
sum row += sum element

calc HU = rho ∗( sum row/sum water )
meas HU = ( f loat ( measured . i l o c [ i −2 ,0]))/1000+1

##

i f kDRAW:
x . append (meas HU)
y . append ( calc HU )

d i f f s q u a r e d = ( calc HU − meas HU)∗∗2

sum tot += d i f f s q u a r e d

i f kDRAW:
f i g = p l t . f i g u r e ( f i g s i z e =(10 ,5))
p l t . subp lot (121)
p l t . s c a t t e r ( x , y , l a b e l=” data ” )
x l i n = np . l i n s p a c e (min( x ) , max( x ) , 100)
p l t . x l a b e l ( ”Measured HU” )
p l t . y l a b e l ( ” Calcu lated HU” )
p l t . yl im ( [ 0 , 2 . 5 ] )
p l t . t i t l e ( f ”k1={k1 : . 3 e } ; k2={k2 : . 3 e } ; e r r o r={sum tot : . 3 e}” )
p l t . p l o t ( x l in , x l in , ” r ” , l a b e l=f ”x=y” )
p l t . l egend ( )

p l t . subp lot (122)
p l t . s c a t t e r ( x , [ a−b for a , b in zip ( x , y ) ] ,

l a b e l=” c a l c u l a t e d − measured” )
x l i n = np . l i n s p a c e (min( x ) , max( x ) , 100)
p l t . x l a b e l ( ”Measured HU” )
p l t . y l a b e l ( ” Calcu lated − measured HU” )
p l t . yl im ( [ −0 .1 , 0 . 1 ] )
p l t . show ( )

return sum tot

### Determine k−v a l u e s by minimizing the HU meas − HU synth d i f f e r e n c e
# I n i t i a l gues−v a l u e s
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B.1. DETERMINE K-VALUES

k0 = [5 .3∗10∗∗ ( −4) ,2 .3∗10∗∗ ( −5) ]
kDRAW = True
print ( o b j e c t i v e ( k0 ) )

kDRAW = False
# Bounds (Goma e t a l , p . 5)
b1 = (2∗10∗∗( −4) ,6∗10∗∗( −3))
b2 = (3∗10∗∗( −6) ,6∗10∗∗( −4))
bnds = ( b1 , b2 )

# Solve :
s o l = minimize ( ob j e c t i v e , k0 , method=’SLSQP ’ , bounds=bnds )
print ( s o l )

kDRAW = True
print ( o b j e c t i v e ( s o l . x ) )
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B.2. DETERMINE ALPHA

B.2 Determine alpha

### C a l i b r a t i o n o f a lpha us ing bone i n s e r t s ###

import numpy as np
import matp lo t l i b . pyplot as p l t
from s c ipy . opt imize import c u r v e f i t

# Bone i n s e r t s −> ( (HU/1000)+1)/ r e l e d e n s ) −> r e l a t i v e c r o s s s e c t i o n
x = np . array ( [ 1 . 2 3 9 , 1 . 181 , 1 . 534 , 1 . 183 , 1 . 3 9 2 ] ) #r c s l o w
y = np . array ( [ 1 . 0 7 9 , 1 . 061 , 1 . 177 , 1 . 061 , 1 . 1 2 8 ] ) #r c s h i g h

def f (x , a ) :
return 1/a + (1−1/a )∗x

p l t . p l o t (x , y , ”x” , l a b e l=”Bone I n s e r t s ” )

popt , pcov = c u r v e f i t ( f , x , y )

p l t . p l o t (x , f (x , ∗popt ) , ’ r− ’ ,
l a b e l=’ f i t : a=%5.4 f ’ % tuple ( popt ) )

p l t . x l a b e l ( ’ Re l a t i v e Cross Sec t i on (Low E) ’ )
p l t . y l a b e l ( ’ Re l a t i v e Cross Sec t i on ( High E) ’ )
p l t . l egend ( )
p l t . show ( )
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