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Abstract 

Transcranial direct current stimulation (tDCS) is a form of non-invasive brain 

stimulation which has gained widespread interest in neurology and psychology, both 

as a clinical and research tool. While it has been explored as a treatment for numerous 

disorders and as a potential means to improve function, there is still too little 

empirical evidence regarding its efficacy. So far, it is only considered effective as a 

treatment for depression. In schizophrenia, the tDCS montage of anodal stimulation 

over the dorsolateral prefrontal cortex (DLPFC) and cathodal stimulation over the 

temporo parietal cortex (TPC) has been proposed as treatment for auditory verbal 

hallucinations (AVH).  

 This montage is based on the hypofrontal/hypertemporal model in 

schizophrenia, which says that the DLPFC is hypoactive and therefore has reduced 

control over the hyperactive TPC, which causes AVH. By placing the anode over the 

DLPFC, which usually has an excitatory effect, activity in the DLPFC is expected to 

be boosted; and by placing the usually inhibitory cathode over the TPC activity is 

expected to be reduced. However, whether the idea that underlies the tDCS treatment 

is true, namely that tDCS reverses the hypertemporal/hypofrontal activity pattern, has 

not been studied sufficiently. In general, it is unclear what the underlying 

mechanisms of tDCS treatment of AVH are. Moreover, since the discovery of the 

tDCS treatment for AVH, the findings regarding whether it is effective have been 

inconsistent (Brunelin et al., 2012). Whether the hypofrontal/hypertemporal model 

and the hypothesized underlying mechanism of the treatment is correct has not been 

studied sufficiently.  

Therefore, the main goal of the thesis was to study the underlying mechanisms 

of tDCS with multimodal neuroimaging, including functional magnetic resonance 

imaging (fMRI), magnetic resonance spectroscopy (MRS), functional connectivity 

and structural imaging in both a healthy population (paper II) and a population of 

people with severe AVH within a randomized controlled trial (paper III). In addition, 

clinical measures and a behavioral task were included to examine whether the 
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treatment reduces AVH. To study the electric field of tDCS, simulation was 

performed in the specific montages of the studies. 

In paper I, the opportunity arose to research, if tDCS works in a specific type 

of epilepsy caused by mitochondrial disease, specifically a DNA polymerase-gamma 

(POLG) gene mutation. A previous case study (Ng et al., 2018) raised hopes that 

tDCS could alleviate symptoms in such POLG patients. Paper I studied the effects of 

tDCS using electroencephalography and electromyography. The results showed, 

however, that tDCS treatment at 2mA did not lead to a statistically or clinically 

significant reduction of myoclonus jerking or epilepsy spikes in the 15-year old 

POLG patient.  

 In paper II, tDCS did not induce any changes in functional activity in the 

DLPFC or TPC and there was only a trend for higher glutamate levels (as 

approximated by Glx = glutamate+glutamine) in both DLPFC and TPC. Neither 

finding is in line with the hypertemporal/hypofrontal model. Moreover, we found that 

simulation of tDCS showed peak electric field strength between the electrodes 

(Broca’s areas), not as hypothesized directly under the electrodes. 

In paper III, there was a small decrease in AVH after tDCS treatment. 

However, this decrease only emerged in self-reports from patients but not 

examinations by professional clinicians and was hard to distinguish from placebo 

effect. None of the neuroimaging data (rs-fMRI, MRS, structural MRI nor task-

related fMRI) showed significant effects for the DLPFC or TPC.  

Taken together, this thesis gives an overview of tDCS treatment in neurological 

and psychiatric disorders based on a single case study, a healthy control population 

and a patient population of schizophrenia/psychosis. It was shown that tDCS does not 

always relieve epilepsy symptoms in POLG disease cases. With only two case studies 

on the subject, much more research is needed if and in which cases of POLG disease 

tDCS can be effective. Paper II tested the hypofrontal/hypertemporal model indirectly 

and paper III directly tested the notion that underlies the tDCS treatment, namely that 

this activity pattern could be reversed with tDCS, with multimodal neuroimaging. 

The results showed that tDCS reduces AVH to a certain degree. In conclusion, the 

findings from both paper II and III argue against the notion that the tDCS treatment 
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reverses the hypofrontal/hypertemporal activity pattern that is believed to underlie 

AVH. Our data indicated that the Broca’s area should be investigated, as the peak 

intensity of the stimulation lies there when DLPFC and TPC are stimulated. In 

addition, future research should investigate the differences between tDCS responders 

and non-responders, preferably in a multimodal manner similar to paper II and III, as 

it is a crucial approach to investigate underlying neuronal mechanisms. 
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Table 1  

Overview over the three papers included in the thesis. 

 
PAPER I PAPER II PAPER III 

YEAR  2019 2020 Submitted 2020 

JOURNAL Epilepsy Behavior Reports European Journal of 

Neuroscience  

Translational 

Psychiatry 

RESEARCH 

QUESTION? 

Can tDCS relieve 

myoclonus symptoms or 

epileptic activity in POLG 

epilepsy? 

Does tDCS change 

Glx levels, dichotic 

listening (DL) 

behavior or brain 

activation on the 

TPC or DLPFC? 

What are the 

underlying neuronal 

mechanisms of tDCS 

and does the tDCS 

treatment of DLPFC 

and TPC reduce AVH 

hearing?  
MAIN 

FINDINGS 

No statistically or clinically 

significant reduction of 

seizures or epileptiform in 

the patient.  

No significant 

differences in Glx 

levels, dichotic 

listening behavior or 

brain activation 

between real and 

sham tDCS.  

A small reduction in 

AVH, but no 

significant imaging 

findings regarding 

tDCS in the DLPFC 

and TPC. 

DESIGN Case Study Double-blind within-

participant 

experiment 

Double-blind 

randomized controlled 

study  
SAMPLE One POLG patient 32 healthy 

participants 

21 patients with severe 

AVH  
DATA EEG and EMG  MR Spectroscopy, 

fMRI, Behavior 

scores, tDCS field 

simulation 

MR Spectroscopy, 

fMRI and rs-fMRI, 

clinical and 

neurocognitive scores, 

structural MRI, tDCS 

field simulation  
ANALYSIS EMG and EEG spike count, 

analyzed with ANOVA and 

non-parametric Friedmann 

test/ paired sample t-test 

and non-parametric 

Wilcoxon tests, 

respectively. 

rmANOVA for 

MRS, fMRI and DL 

data. 

rmANOVA for most of 

the data. 

 



 xi 

List of abbreviations 

AHCS – Auditory Hallucination Change Scale 

AVH – Auditory Verbal Hallucinations 

AES - Apathy Evaluation Scale  

AHRS - Auditory Hallucination Rating Scale  

CGI - Clinical Global Impression 

DL – Dichotic Listening 

DLPFC – Dorsolateral Prefrontal Cortex 

EEG – Electro Encephalography  

EMG – Electromyography  

fMRI – functional Magnetic Resonance Imaging 

GABA - γ-aminobutyric acid 

GAF - Global Assessment of Functioning 

Glx – glutamine + glutamate 

MRI – magnetic resonance imaging  

MRS – magnetic resonance spectroscopy 

NART - National Adult Reading Test 

PANSS - Positive and Negative Symptom Scale 

POLG - DNA polymerase-gamma 

rs-fMRI – resting state functional Magnetic Resonance Imaging 

tDCS – transcranial direct current stimulation 

TPC – Temporo Parietal Cortex 



 xii 

Contents 

SCIENTIFIC ENVIRONMENT ....................................................................................................... III 

ACKNOWLEDGEMENTS .................................................................................................................V 

ABSTRACT ........................................................................................................................................ VI 

LIST OF PUBLICATIONS ............................................................................................................... IX 

LIST OF ABBREVIATIONS ............................................................................................................ XI 

CONTENTS ...................................................................................................................................... XII 

1. INTRODUCTION ..................................................................................................................... 1 

1.1 TRANSCRANICAL DIRECT CURRENT STIMULATION (TDCS) ..................................................... 1 

1.1.1 History .......................................................................................................................... 1 

1.1.2 Fields of use and tDCS safety....................................................................................... 2 

1.1.3 Mechanisms of tDCS .................................................................................................... 3 

1.2 MITOCHONDRIAL DISORDERS: POLG RELATED EPILEPSY ....................................................... 6 

1.3 SCHIZOPHRENIA AND OTHER MENTAL DISORDERS WITH AVH SYMPTOMS .............................. 7 

1.3.1 Auditory verbal hallucinations ..................................................................................... 8 

1.4 STUDY AND TREATMENT OF AUDITORY HALLUCINATIONS ...................................................... 9 

1.4.1 The hypofrontal/hypertemporal model ....................................................................... 11 

1.4.2 The hypofrontal/hypertemporal reversal model ......................................................... 13 

1.4.3 Dichotic Listening paradigm ...................................................................................... 15 

1.4.4 Functional Magnetic Resonance Imaging .................................................................. 16 

1.4.5 Resting-state fMRI ...................................................................................................... 18 

1.4.6 Magnetic Resonance Spectroscopy ............................................................................ 19 

1.4.7 EEG and EMG ........................................................................................................... 21 

2. AIMS OF THE THESIS ......................................................................................................... 23 

3. METHODS ............................................................................................................................... 25 

3.1 PARTICIPANTS ....................................................................................................................... 25 



 xiii 

3.1.1 Paper I: tDCS in POLG epilepsy ................................................................................ 25 

3.1.2 Paper II: Healthy participants .................................................................................... 25 

3.1.3 Paper III RCT of tDCS treatment in AVH ................................................................... 25 

3.2 ETHICAL CONSIDERATIONS .................................................................................................... 26 

3.3 TDCS STIMULATION............................................................................................................... 26 

3.4 STUDY PROTOCOLS ................................................................................................................ 29 

3.4.1 Paper I ........................................................................................................................ 29 

3.4.2 Paper II ....................................................................................................................... 29 

3.4.3 Paper III ...................................................................................................................... 32 

3.5 STATISTICAL ANALYSIS ......................................................................................................... 36 

4. RESULTS .................................................................................................................................. 38 

4.1 PAPER I .................................................................................................................................. 38 

4.2 PAPER II ................................................................................................................................. 38 

4.3 PAPER III ................................................................................................................................ 38 

5. DISCUSSION ............................................................................................................................ 40 

5.1 PAPER I CASE REPORT: TDCS TREATMENT FOR EPILEPSIA PARTIALIS CONTINUA IN POLG DISEASE 40 

5.2 PAPER II MULTIMODAL NEUROIMAGING STUDY OF TDCS IN HEALTHY PARTICIPANTS .......... 41 

5.3 PAPER III MULTIMODAL NEUROIMAGING OF TDCS TREATMENT IN PATIENTS WITH SEVERE AVH 42 

5.4 DISCUSSION ON MECHANISMS OF TDCS ................................................................................. 46 

5.4.1 Neuroimaging and tDCS ............................................................................................. 51 

5.5 LIMITATIONS .......................................................................................................................... 52 

6. CONCLUSION AND FUTURE RESEARCH ....................................................................... 56 

7. REFERENCES ......................................................................................................................... 58 



 1 

1. Introduction 

1.1 Transcranical direct current stimulation (tDCS) 

Transcranial direct current stimulation (tDCS) is a non-invasive brain 

stimulation method applied to the scalp via two or more electrodes. tDCS is often 

carried out in a single or multiple sessions of 10-30 minutes and, unlike transcranial 

magnetic stimulation (TMS), tDCS cannot in itself induce neuronal firing in the form 

of action potentials (Nitsche et al., 2008). It rather increases or decreases membrane 

potential and thereby enhances or reduces the chances of action potentials (Nitsche et 

al., 2008). In recent years, it has become increasingly popular as a neuroscientific 

research and clinical treatment tool, as it can be used to alter brain activation in the 

targeted areas. Its purpose can be to make the brain more efficient in some way, bring 

it back to earlier functioning lost due to illness, or to interfere with normal 

functioning to identify which brain areas are involved in a given task. The electrodes 

usually supply a low direct current between 0.5-2 mA, as higher currents induce 

painful sensations and lower currents do not have meaningful effects on brain 

functioning (Dubljević, Saigle, & Racine, 2014).  

1.1.1 History 

tDCS is a relatively new method, as it was first introduced by Nitsche and 

Paulus (2000) with the currently used parameters, showing that changes in 

excitability were induced and could last for several minutes after tDCS. The idea to 

stimulate the brain with electricity, however, is much older. Already the ancient 

Egyptians, about 2000 years ago, tried treating headache with torpedo electric fish 

(Sarmiento, San-Juan, & Prasath, 2016). Around the year 1800, stimulation was first 

used in patients with mental disorders, but due to technical shortcomings at the time it 

was not successful and largely abandoned. This changed by 1930 when 

electroconvulsive therapy was discovered, using much stronger electric currents 

(around 800 mA) in order to deliberately induce seizures, which is a crucial 

difference to tDCS, where this is avoided. Treatment with lower-electric currents was 
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not focused on in this time period. In the 1960s, animal studies advanced the 

knowledge about how low anodal currents applied directly to the cortex could 

increase excitability, while cathodal currents reduced it (Bindman, Lippold, & 

Redfearn, 1964; Creutzfeldt, Fromm, & Kapp, 1962; Purpura & McMurtry, 1965; 

Stagg & Nitsche, 2011). From the 1980s, human studies were done with tDCS, 

however their parameter settings were with very low currents under 1mA. Results 

were divergent, but were able to show that a small current crossing the scalp can 

influence the brain (Priori, Berardelli, Rona, Accornero, & Manfredi, 1998).   

1.1.2 Fields of use and tDCS safety 

 The research on tDCS is wide, ranging from research on cognitive 

enhancement, for example for working memory, to its potential as treatment in a 

variety of mental and neurological disorders: for example, major depression disorder, 

stroke, aphasia, Alzheimer, Parkinson’s disease, chronic pain, addiction, tinnitus and 

schizophrenia (Fregni et al., 2020). In science, applications of brain stimulation are to 

determine which brain areas are involved in a given task. Several recent meta-

analyses claim that tDCS with stimulation of the left dorsolateral prefrontal cortex 

(DLPFC) is an effective treatment for depression (Fregni et al., 2020; Moffa et al., 

2019; Mutz et al., 2019; Wang, 2019). It has also been claimed to be “probably 

effective” in relieving symptoms of neuropathic pain, migraine, chronic and 

fibromyalgia pain, improving cognitive function in Parkinson’s disease, motor 

rehabilitation in chronic stroke, decreased seizures in epilepsy, and craving/addiction, 

as well as “possibly effective” in motor function in Parkinson’s disease, OCD, and 

chronic post-stroke aphasia (Fregni et al., 2020). TMS has been classified as 

“definitely effective” in depression and chronic pain, and “probably effective” in 

motor stoke and negative symptoms of schizophrenia (Lefaucheur et al., 2014). 

tDCS has a minimal side-effects profile, if safety guidelines are followed, and 

is usually well tolerated by participants and pain free. Typical side effects include 

itching and tingling or more rarely burning sensation in the area where electrodes are 

attached, headache and discomfort and in the worst case (very rarely and typically if 
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participants are predisposed to it) epileptic seizures (Brunoni et al., 2011). In order to 

prevent side effects, safety guidelines need to be followed. Safety measures in healthy 

participants include that tDCS participants should not: suffer from epilepsy or have 

epilepsy cases in their close family, have severe dermatitis or other open sores in the 

area the electrodes are attached, have any medical implants such as cochlea implants 

or pacemakers, should not have consumed considerable amounts of alcohol or drugs 

in the 24 hours prior to participation, and should not be pregnant (Antal et al., 2017). 

It has been established that heating of the skin and brain under tDCS electrodes is not 

a problem (Antal et al., 2017; Stagg & Nitsche, 2011). When treating severe 

disorders, for example severe epileptic seizures, the potential benefit of tDCS can 

outweigh the risks and the treating physician, with the consent of the patient, can 

decide to give tDCS despite the side effects. A key advantage of this method is that it 

is relatively cheap compared with other medical interventions, the cost of a tDCS 

machine being in the order of $10,000. Moreover, tDCS stimulators are small and 

hence portable, which opens up for treatment in practitioners’ offices or at home after 

sufficient education of the proper use (Gough et al., 2020; Shaw, Pilloni, & Charvet, 

2020). 

1.1.3 Mechanisms of tDCS 

Despite considerable advances, the underlying mechanisms of how tDCS 

affects the stimulated brain tissue are not fully understood. The general view is that 

the positively charged anode typically increases neuronal activity (i.e., it has an 

excitatory effect), while the negatively charged cathode typically reduces neuronal 

activity and, thus, has an inhibitory effect. These effects have been typically obtained 

with 1 mA (Nitsche & Paulus, 2000). However at 2mA, the cathode has been found 

to have excitatory effects (Batsikadze, Moliadze, Paulus, Kuo, & Nitsche, 2013), 

challenging the view that anode/cathode are typically excitatory/inhibitory, 

respectively. 

 The amount and distribution of current on the cortex is highly affected by 

individual anatomical and physiological differences. Factors that affect the current 
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include skull thickness, the distribution of cerebrospinal fluid (CSF) and 

subcutaneous fat (De Berker, Bikson, & Bestmann, 2013). For example, the skull is a 

poor conductor and delivers little current to the underlying tissue since skull bone is 

the least conducting tissue in the human head. So, thick bone would mean little 

current, and thin bone would be preferable for tDCS. This is counterbalanced though 

by thicker bone often having cancellous bone which conducts well and thin skull 

having compact bone which does not conduct that well. Thus, both the thickness and 

the structure of the skull determine the amount of current that can flow from the skin 

to the brain (Opitz, Paulus, Will, Antunes, & Thielscher, 2015). CSF is the best 

conductor in the head and a thin layer increases the field strength in the underlying 

brain. If there is a lot of CSF, the current is carried away along the surface of the 

brain, instead of entering the gray matter. These factors add to the uncertainty of the 

strength and distribution of the delivered tDCS current. 

Another important factor which determines the current flow, is the topography 

of the underlying cortical surface. Polarity can be reversed in adjacent sulci or gyri, 

and there is generally higher field strength on top of gyri and lower electrical fields 

with increasing depth (Miranda, Mekonnen, Salvador, & Ruffini, 2013; A. Rahman et 

al., 2013). The anatomy of the tissue above the brain and the topography of the brain 

surface itself renders the assumption that current simply flows straight inward from 

the electrode in an either depolarizing or excitatory manner (for anodal stimulation) 

too simplistic. Most of tDCS current actually flows tangentially to the brain surface 

(along the surface, not into the surface and deeper structures), which means that cells 

that are aligned parallel to the brain surface (e.g., interhemispheric connections) are 

more optimally stimulated than radial ones. The radial or normal component (going 

down into the brain from surface) of the current is strongest at the bottom of the sulci 

and under the electrodes, while the tangential component is practically zero directly 

under the electrode and spreads on the edge toward the other electrode (De Berker et 

al., 2013). Even within a single cell the current will have different effects, depending 

on the morphology of the cell. One part might be depolarized, making action 
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potential firing easier while other parts are hyperpolarized, making the formation of 

action potentials difficult. 

 There is an important distinction to be made between targeting a brain area 

with the stimulation electrode and putting an electrode “over” the brain area, because 

the peak of delivered current is often somewhere between two electrodes. To map the 

effects of structure on tDCS current, scientists have begun to simulate and model 

current intensity and distribution based on anatomical images. Here, the current flow 

between the electrodes is simulated based on the individual anatomy from MRI 

images and electrode montage in each participant (Miranda, Callejón-Leblic, 

Salvador, & Ruffini, 2018). It gives insight into the individual effects tDCS can have 

and how a specific montage influences the underlying cortex and with which 

intensity. It could be used to optimize individual tDCS treatment, by planning the 

exact position of the electrodes in the individual to give the electric field peak in the 

desired area. Especially between large electrodes (5x7 cm2) that are close together, a 

single maximum of current will occur between the electrodes or on the edge of the 

electrode toward the other electrode - instead of the desired two current maxima, one 

under each electrode (Miranda et al., 2013). Since the electrodes are usually still 

placed over the area to be affected instead of behind the target area, even though the 

total current and the tangential component occur between the two electrodes, this 

could indicate that the normal current, which in fact is under the electrodes, is most 

important for stimulation (Miranda et al., 2013).  

tDCS is often criticized for not being spatially specific enough, since the big 

electrodes stimulate broad brain areas. In order to increase focality in tDCS, smaller 

electrodes can be used. High definition tDCS uses several smaller electrodes in order 

to achieve this (Nikolin, Lauf, Loo, & Martin, 2019). About 50 % of the variation in 

the electrical field in a region of interest during tDCS can be explained from five 

factors I have mentioned here: 1) thickness of the skull, 2) CSF layer, 3) sulcal depth, 

4) distance to the closest anode edge, and 5) distance to the cathode. Individual 

anatomical differences between people play a role in several of the factors (Opitz et 
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al., 2015). This discussion demonstrates that the simple assertion that the anode is 

depolarizing and the cathode is hyperpolarizing does not hold. 

 A study found that when stimulating the left DLPFC with anodal tDCS, 

perfusion increases also in the primary sensory cortex, midcingulate cortex, 

paracingulate cortex, and left parietal cortex compared to baseline (Stagg et al., 

2013), while cathodal tDCS decreased perfusion in the thalami bilaterally and other 

regions. This shows that tDCS modulates regions directly under the electrode, but 

also in spatially distant regions that are closely related anatomically. So, when 

electrodes are applied to the scalp to affect a specific region below, other regions 

might be inadvertently activated too. 

1.2 Mitochondrial disorders: POLG related epilepsy 

 Because of the potentially excitatory and inhibitory effects of tDCS, epilepsy 

was one of the early targets of tDCS treatments (Fregni et al., 2006). Epilepsy is a 

group of neurological disorders, characterized by epileptic seizures, which is 

characterized by abnormal and excessive neuronal activity and often manifests as 

shaking of the body or body parts and variable levels of consciousness loss (Fisher et 

al., 2014). tDCS has been studied as possible treatment in epilepsy (San-juan et al., 

2015). A recent meta-analysis of the current evidence of cathodal tDCS treatment for 

epilepsy found that it is “probably effective” in decreasing seizures (Fregni et al., 

2020). The patient in the first study of the present thesis suffered from mitochondrial 

disease, more specifically DNA polymerase-gamma (POLG) disease. POLG disease 

usually has an early age of onset (< 5 years) but can also occur later in life. 

Mitochondrial diseases have a prevalence of one in 5000 (Anagnostou, Ng, Taylor, & 

McFarland, 2016; S. Rahman, 2012). POLG disease is caused by a mutation in POLG 

– a gene that encodes mitochondrial DNA polymerase (Stumpf, Saneto, & Copeland, 

2013). The mitochondrial DNA polymerase is a vital part of replicating the 

mitochondrial genome. Hence, when it is damaged, mitochondrial DNA is reduced. 

As the mitochondria are responsible for ATP production through the mitochondrial 

respiratory chain, damage to this system progressively disables the energy 
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metabolism. When the energy level in neurons falls to a critical point, it can trigger 

epilepsy and neuronal death. Epilepsy is common in POLG disease, estimated to be 

present in 50%-65% of POLG patients, with even higher probability in pediatric 

patients. There is a high risk for status epilepticus and therapy resistant epilepsy, and 

mortality is high (Bindoff & Engelsen, 2012; Hikmat, Eichele, Tzoulis, & Bindoff, 

2017).  

1.3 Schizophrenia and other mental disorders with AVH 
symptoms 

Schizophrenia is a devastating mental disorder with a lifelong prevalence of 

around 1 % (Tandon, Keshavan, & Nasrallah, 2008). One typically differentiates 

between positive and negative symptoms, where positive symptoms come in addition 

to or are distorted from normal function while negative symptoms are characterized 

by a loss or decrease of normal function. Examples of negative symptoms include 

lack of emotions, loss of motivation, and social withdrawal. Hallucinations and 

delusions are examples of positive symptoms and widely regarded as core symptoms 

of schizophrenia. Individuals with schizophrenia further experience cognitive 

symptoms (i.e., loss of cognitive functions), such as disorganized behavior, attentional 

and memory deficits as well as poor decision making. The DSM V definition of 

schizophrenia is: two or more of the symptoms delusions, hallucinations, 

disorganized speech, grossly disorganized or catatonic behavior and negative 

symptoms such as diminished emotional expression, lasting for a one-month period 

or longer (and at least one of them must be the first three symptoms mentioned). 

There has to be impairment in functioning in one or more areas of work, interpersonal 

relations or self-care. Some signs of the disorder must last for a period of at least six 

months and the disturbance must not be caused by another medical condition; in 

particular, schizoaffective disorder and bipolar or depressive disorder must be ruled 

out (American Psychiatric Association, 2013).  

The disorder is very heterogeneous in its manifestation (Tandon et al., 2008), as 

many different symptoms are observed and patients can present very differently in 
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dysfunction and symptoms. Risk factors for schizophrenia are cannabis use, prenatal 

infection, winter birth (season of birth effect increases with severity of winter), 

childhood trauma, urbanity, migration and genetics (Tandon et al., 2008; Van Os, 

Rutten, & Poulton, 2008). Schizophrenia is heritable. If one parent has schizophrenia, 

the child will have a 10-20% chance of also having the disorder, if both parents have 

schizophrenia, the chance it is passed to their offspring increases to 40-50%. 

Schizophrenia has a higher prevalence in males than in females, with a 2:1 ratio. 

Symptom onset is typically in early adulthood 20-29 years, with women being a bit 

older than men on average (Rosenhan & Seligman, 1995).  

Early intervention is important for disorder outcome. Not only is schizophrenia 

a devastating disorder for the individual and their family, but it is also highly costly 

for society. Mental health disorders are estimated to cost Norway 31.7 billion NOK 

yearly in health care expenses alone, with lost production costs coming in addition, 

thereby being the costliest kind of condition to the system (Kinge, Sælensminde, 

Dieleman, Vollset, & Norheim, 2017). With the disorder comes a heightened suicide 

risk, with 1% lifetime incidence of suicide in the general population, compared to 10-

15% incidence amongst schizophrenia patients (Caldwell & Gottesman, 1992; Möller 

& Müller, 2006).  

1.3.1 Auditory verbal hallucinations 

As stated above, hallucinations are one of the core symptoms of schizophrenia. 

A hallucination is a perceived stimulus which has no real-world stimulus equivalent. 

Hallucinations can be experienced in all sensory modalities: perceiving smell 

(olfactory), touch (tactile), noise (auditory), taste (gustatory), or seeing (visual) 

something that is not really there. Auditory hallucinations are any kind of auditory 

perception without a corresponding auditory stimulus. Auditory hallucinations are the 

most common modality in schizophrenia patients, with 60-80% of schizophrenia 

patients reporting them (Andreasen & Flaum, 1991; Hugdahl, Løberg, Specht, et al., 

2008; Pondé et al., 2017). They can be only noise or music, but often comprise 

speech or speech-like sounds. Auditory verbal hallucinations (AVH) are perceived 
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speech in the absence of speech stimuli. AVH manifest in several different forms: 

they can be clear and loud or mumbling and low in volume. Single words or short 

phrases are more commonly reported than long sentences. The frequency of voice 

hearing varies hugely from a few times a month to almost constantly, often depending 

on the severity of the illness and acute episodes. Some voice hearers experience 

having some control over the voices. However, it is much more common that voice 

hearers have no or little control over the voices, causing high levels of distress (Larøi 

et al., 2012). 

Control – or more specifically, a lack thereof – is an important feature when 

differentiating clinical and non-clinical voice hearers, with non-clinical voice hearers 

experiencing higher levels of control than clinical ones (Larøi et al., 2012). There are 

estimated to be around 15% healthy voice hearers in the population (Beavan, Read, & 

Cartwright, 2011). Another factor that differentiates healthy voice hearers from voice 

hearers with a psychiatric diagnosis is the content of the voices, which is typically 

much more negative and abusive and therefore more disturbing in clinical voice 

hearers, often in the form of two or more voices talking negatively about the patient 

(Larøi et al., 2012).   

1.4 Study and treatment of auditory hallucinations 

 AVH are inherently hard to measure and study. They are only to be measured 

by asking and interviewing the voice hearers who experience them. We have to trust 

in the description given by the voice hearer, usually patients in our studies. This is 

difficult, especially in patients, as they often struggle with a disturbed worldview 

inherent to their disorder, namely delusions. Even when patients are very cooperative 

and eager to share their experiences, it is often hard to understand their descriptions 

or it is hard for them to find the words to describe the AVH. Nevertheless, there are 

well established interviews and measures which give us a good indication of voice 

hearing severity that is scored though the combination of several individual questions, 

like the positive and negative symptom scale (PANSS) (Kay, Fiszbein, & Opler, 

1987), the Questionnaire for Psychotic Experiences (QPE) (Rossell et al., 2019; 
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Sommer, Kleijer, & Hugdahl, 2018) and the auditory hallucination rating scale 

(AHRS) (Ralph E. Hoffman et al., 2003; Van de Willige, Jenner, & Wiersma, 1996). 

 Psychosis and auditory hallucinations are commonly treated with a group of 

medications called antipsychotics or neuroleptics. Pharmacotherapy is tailored to the 

individual on a trial and error basis. Antipsychotics are grouped into 1st generation or 

typical antipsychotics and 2nd generation or atypical antipsychotics. Among the 

typical antipsychotics we find: Chlorpromazin (1st antipsychotic produced), 

Haloperidol, Fluphenazine, Prochlorperazine and Benperidol. Examples for atypical 

antipsychotics are: Clozapin (1st atypical produced), Ziprasidone, Risperidone, 

Olanzapine and Aripiprazol (Benkert et al., 2013). The pharmacological mechanism 

behind antipsychotics is the decrease of dopaminergic hyperactivity in psychosis 

through blocking dopaminergic receptors. There are five dopamine receptors, D1-5. 

Most important to the antipsychotic effect is the inhibition of the D2-receptor, which 

all antipsychotics do to a larger (typical) or smaller (atypical) degree (Möller & 

Müller, 2006). Antipsychotics affect the three important dopaminergic systems; the 

nigrostriatal system, which controls motorics and therefore causes extrapyramidal 

side effects as tremor; the mesolimbic/mesocortical system, whose up- and down-

regulation causes delusions and negative symptoms and therefore is the main reason 

for antipsychotic effects of medication; and the tuberinfundibular system, where 

antipsychotics cause an increase in prolactin. In addition to dopamine receptors, 

serotonin and noradrenalin receptors are blocked by antipsychotics, which also 

influences the therapeutic effect and causes side effects. Atypical antipsychotics are 

usually preferred due to less extrapyramidal (movement-related) side effects. 

Atypicals should also have a good antipsychotic effect, usually work better against 

negative symptoms than typicals and have low prolactin increase (Benkert et al., 

2013). 

Antipsychotics have a large side effects profile caused by D2-receptor blockage 

in the different dopaminergic neuron-systems in the central nervous system. About 

60% of patients treated with them report side effects. The typical side effects in 

addition to those above are sedation, anticholinergic effects – for example, dry mouth 
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and constipation, weight gain, sexual dysfunction, metabolic changes - glucose 

intolerance, agranulocytosis – low white blood cell count, and hypotension – low 

blood pressure. Inherently with the disorder and the heavy side effects comes the 

problem of non-compliance: due to low insight in illness and delusions, up to 80% of 

patients do not take their antipsychotics as planned (Benkert et al., 2013; Möller & 

Müller, 2006). In addition to the side effects, about 25-30% of schizophrenia patients 

are drug resistant, so called non-responders. That is, despite continuous medication 

use, AVH do not improve (Möller & Müller, 2006; Shergill, Murray, & McGuire, 

1998). Therefore, the search for new treatments outside the pharmaceutical realm is 

important and tDCS is one of the methods that has been proposed.  

1.4.1 The hypofrontal/hypertemporal model 

 There are several models trying to explain how AVH arise. One is based on 

the idea that AVH occur due to bad or unwanted memories that get activated 

unintentionally as inner speech (Ralph E Hoffman, 1986; Waters, Badcock, Michie, 

& Maybery, 2006). Another AVH model is based on tinnitus research and states that 

AVH arise due to interhemispheric miscommunication, meaning that altered 

connectivity between the auditory cortices via the corpus callosum causes AVH 

(Ćurčić-Blake et al., 2017; Steinmann, Leicht, & Mulert, 2014). The source 

monitoring model hypothesizes that AVH arise due to deficits in self-monitoring and 

reality discrimination (Allen, Aleman, & Mcguire, 2007; Bentall & Slade, 1985). The 

following hypofrontal/hypertemporal model and the source-monitoring model have 

been combined into one descriptive model (Aleman & Larøi, 2011). 

 In the present thesis, the following model was chosen as it is the basis for the 

model of tDCS treatment in AVH (described below) and has been used extensively in 

the research of the Bergen fMRI Group owing to growing empirical support. The 

neuronal basis of AVH is hypothesized to be due to two main processes: First, 

language areas in the left temporo parietal cortex (TPC) are assumed to be 

hyperactive, giving voice hearers the impression that self-generated stimuli are 

external stimuli. Second, hypoactivation in the DLPFC aggravates AVH, because the 
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DLPFC is insufficiently capable of exerting top-down control over the hyperactive 

TPC (Hugdahl, 2009; Jones, 2008). This theory is based on neuroimaging findings 

showing that, on one hand, there was increased activation in the temporal lobe during 

hallucinations in the absence of external stimuli (Lennox, Park, Medley, Morris, & 

Jones, 2000; Shergill et al., 2004). On the other hand, studies had shown that 

schizophrenia patients with hallucinations, when presented with speech sounds, fail to 

activate the speech areas in the TPC in the same way as healthy controls (Hugdahl, 

Løberg, & Nygård, 2009). Later, findings by Kompus et al. (2011) confirmed this, 

showing that schizophrenia patients have increased activation in the left primary 

auditory cortex in the absence of external stimuli and decreased activation in the 

presence of external stimuli. This amounts to a hyperactivation in the TPC in 

schizophrenia due to internal stimuli, but also a reduced responsivity of the TPC to 

external stimuli, most likely due to top-down control impairment. Patients also fail to 

activate higher cognitive functions for executive control and top-down suppression 

and exhibit reduced gray matter density and volume in the left TPC (Hugdahl, 

Løberg, et al., 2009; Hugdahl, Løberg, Specht, et al., 2008). When glutamine and 

glutamate (measured combined as Glx) were measured in the temporal and frontal 

lobe, it was shown that schizophrenia patients had reduced Glx levels compared to 

healthy controls, while patients with severe hallucinations had increased Glx levels 

compared to patients with less frequent hallucinations in both regions of interest 

(Hugdahl et al., 2015). This evidence lends support to the hypofrontal/hypertemporal 

model depicted to the left in Figure 1 (Hugdahl, Løberg, et al., 2009).  
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Figure 1 shows the proposed hypofrontal/hypertemporal model of auditory verbal 

hallucinations to the left and the hypofrontal/hypertemporal reversal model for tDCS 

treatment to the right. 

1.4.2 The hypofrontal/hypertemporal reversal model 

 The aforementioned AVH hypofrontal/hypertemporal model leads us to the 

theoretical background of the present thesis. As described above, many tDCS studies 

and treatments are based on the assumption that the anode is excitatory, and the 

cathode is inhibitory. If true, then by placing the cathode over the assumed 

hyperactive language areas, activity in the TPC should be downregulated. In turn, by 

placing the anode over the assumed hypoactive cognitive control areas, activity in the 

DLPFC should be increased and cognitive control should be improved. This montage 

is designed to reverse the underlying neuronal effects of AVH caused by the 

hypofrontal/hypertemporal activation pattern. Hence, we call the idea that this 

reversal would reduce AVH the “hypofrontal/hypertemporal reversal model” (see 

right side of Figure 1); this is currently the leading theory behind the AVH treatment 

with tDCS.  

 A first randomized controlled trial (RCT) in 2012, which used the 

anode/DLPFC-cathode/TPC montage based on the hypofrontal/hypertemporal 

reversal model, was a great success: a significant reduction in AVH of around 40% 

(equivalent to an effects size of Cohen’s d =1.6) after five consecutive days with 20 

min twice-daily tDCS at 2 mA (Brunelin et al., 2012). Subsequent RCTs have shown 
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more inconsistent results for the effect of tDCS on hallucinations (Bose et al., 2017; 

Koops et al., 2018). Some replicated the significant decrease in AVH after 20 min of 

2 mA real tDCS compared to sham tDCS after 10 sessions (Bose et al., 2017; 

Mondino, Haesebaert, Poulet, Suaud-Chagny, & Brunelin, 2015) and 40 sessions 

(Lindenmayer et al., 2019). However, tDCS was not always superior to sham, i.e., the 

placebo effect was as strong as the treatment effect of tDCS after 10 sessions (Koops 

et al., 2018) and five sessions (Fröhlich et al., 2016). Another study (Kantrowitz et 

al., 2019) found a significant reduction of AVH when controlling for medication. 

Others found a positive effect of tDCS on cognition after five sessions (Smith et al., 

2015) and insight into illness (Chang, Tzeng, Chao, Yeh, & Chang, 2018) but no 

reduction of AVH. No effects for AVH measures were found in another study, but a 

reduction in negative symptoms was found (Valiengo et al., 2019). Neither unilateral 

nor bilateral tDCS at 2mA for 15 once-daily sessions reduced AVH in another study 

(Fitzgerald, McQueen, Daskalakis, & Hoy, 2014). After ten tDCS sessions over two 

weeks in the DLPFC, negative symptoms were reduced, while AVH specifically were 

not assessed (Gomes et al., 2015; Palm et al., 2016). 

 Several meta-analyses and reviews (Hasan, Strube, Palm, & Wobrock, 2016; 

Kubera, Barth, Hirjak, Thomann, & Wolf, 2015; Mondino, Sauvanaud, & Brunelin, 

2018; Nathou, Etard, & Dollfus, 2019; Nieuwdorp, Koops, Somers, & Sommer, 

2015; Pondé et al., 2017) suggested that the database is too small for a conclusion on 

the effectiveness of tDCS on AVH and that there is a need for further investigation on 

the impact of different stimulation parameters. AVH symptom reduction for active 

tDCS was found but not significant in another meta-analysis (Kennedy, Lee, & 

Frangou, 2018). Osoegawa et al. found tDCS to be superior to sham with Hedges g = 

0.5 for the treatment of negative symptoms in schizophrenia (2018). Recent meta-

analyses found a reduction for stimulation given twice daily and 10 or more sessions 

applied for auditory hallucinations (Cheng et al., 2020; J. Kim et al., 2019). The 

number of reviews (n = 12, two not cited here due to language, Dutch, and being 

outdated) on brain stimulation including tDCS for AVH is higher than the number of 
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empirical studies on the effects of tDCS on auditory hallucinations (n = 11), which 

also indicates a need for more original studies. 

 In addition to the unresolved question whether tDCS treatment in general is 

effective or not, we know even less about the specific mechanisms that underlie the 

tDCS treatment of AVH. For example, scientists have been calling for more basic 

research on the influence of tDCS on the stimulated brain tissue using neuroimaging 

(J. Kim et al., 2019). Most of the studies that used tDCS to treat AVH are based on 

the hypofrontal/hypertemporal reversal model (Bose et al., 2017; Brunelin et al., 

2012; Chang et al., 2018; Fitzgerald et al., 2014; Fröhlich et al., 2016; Kantrowitz et 

al., 2019; Koops et al., 2018; Lindenmayer et al., 2019). However, very few of the 

RCTs on tDCS in AVH studies include neuroimaging. Two studies investigated the 

effect of stimulating the DLPFC alone - not the TPC - and both investigated only 

resting-state connectivity (Mondino, Jardri, et al., 2015; Palm et al., 2016). In general, 

neuroimaging studies in connection with tDCS mostly focus on the primary motor 

cortex and are usually limited to one specific neuroimaging method, not multimodal 

imaging. Hence little is known about the underlying mechanisms of tDCS, especially 

in other brain regions. For this reason, the present thesis employed multimodal 

neuroimaging of the hypofrontal/hypertemporal reversal tDCS montage, in order to 

study its underlying mechanisms. 

1.4.3 Dichotic Listening paradigm 

 Dichotic listening is a task where two different consonant-vowel syllables 

(such as /ta/ and /da/) are presented simultaneously, one to the left and one to the 

right ear. There are three different conditions: In the non-forced condition, 

participants are instructed to verbally report the syllable they heard best and most 

clearly. In the forced-left and forced-right condition, they are instructed to 

specifically report the stimulus from the left and right ear, respectively, adding an 

attentional focus to the paradigm. This task was chosen because it has previously 

been shown to produce reliable activation in the DLPFC and TPC areas (van den 

Noort, Specht, Rimol, Ersland, & Hugdahl, 2008). The non-forced condition typically 
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evokes areas in the TPC regions (van den Noort et al., 2008), while the attentional 

focus leads to activations in the cognitive control regions (Hugdahl, Westerhausen, et 

al., 2009). Moreover, healthy individuals typically display a right ear advantage 

behaviorally, meaning that, when asked to report the stimulus they perceived best or 

most clearly, they more often report the one presented to the right ear than the left 

ear. This is indicative of left-hemispheric language lateralization (Kimura, 1961).  

This right ear advantage is reduced in patients with schizophrenia (Hugdahl, 

Løberg, Jørgensen, et al., 2008; Kompus et al., 2012), especially in those with 

frequent and severe AVH (Ocklenburg, Westerhausen, Hirnstein, & Hugdahl, 2013). 

Schizophrenia patients are also less able to attend to the stimulus presented in one 

particular ear (Collinson, Mackay, Jiaqing, James, & Crow, 2009). All these features 

make dichotic listening a useful paradigm to study DLPFC/TPC activity and 

schizophrenia patients, especially those with auditory hallucinations.  

1.4.4 Functional Magnetic Resonance Imaging 

 Functional magnetic resonance imaging (fMRI), like all other MRI techniques, 

is based on nuclear magnetic resonance (NMR). In 1H-NMR the magnetic properties 

of hydrogen atoms are used to produce pictures of the body. Hydrogen atoms consist 

of one proton (- charged) and one (+ charged) electron. The proton possesses a spin 

and therefore has a magnetic moment. When the proton is placed in a strong external 

magnetic field (B0), such as an MRI scanner, the spins of the protons align with the 

magnetic field and undergo precession. The precession frequency is directly 

proportional to the applied magnetic field (B0) and is called Larmor frequency; this is 

given by the Larmor equation: 

  Eq 1:    𝜔0 =  𝛾0𝐵0; 

 Where 𝜔0 is the Larmor frequency in megahertz, 𝛾0 is the gyromagnetic ratio, 

a constant specific to a particular nucleus (~42.577 MHz/T for 1H), and B0 is the 

strength of the magnetic field in Tesla. The protons can align either parallel or anti-

parallel to the magnetic field, with parallel alignment being slightly more common 
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because this state requires less energy. This small difference between the number of 

spins being parallel and anti-parallel gives a net magnetization in the longitudinal 

direction that can be measured. A radiofrequency (RF) pulse with the same frequency 

as the Larmor frequency is transmitted in order to make the spins absorb energy; this 

is called excitation. A 90 degree RF pulse, flips the longitudinal magnetization into 

transverse magnetization. Now, the spins precession is around the z-axis and works as 

an electrical generator. Thereby, the rotating spins induce an alternating field which 

can be picked up by a receiver – the MR signal (Weishaupt, Köchli, & Marincek, 

2008). This is a fundamental principle that applies to all MRI methods, including 

fMRI.  

 fMRI allows for observation of active brain areas in a non-invasive manner 

and was discovered thirty years ago by Ogawa et al. (1990). The fMRI technique is 

based on the blood-oxygen-level dependent (BOLD) contrast; it is measured via 

deoxygenated hemoglobin, hemoglobin without an attached oxygen, which is 

paramagnetic (attracted to a magnetic field) and alters the magnetic susceptibility of 

blood (Buxton, 2013). When neuronal activity occurs, there is an increased glucose 

metabolism and therefore an increased oxygen demand. Hence, the blood flow to the 

active area increases to compensate, which increases the amount of available 

oxygenated hemoglobin while the proportion of deoxygenated hemoglobin decreases, 

giving an increased MRI signal. This mechanism is called the hemodynamic 

response. fMRI is an artefact prone method and in order to minimize artefacts, 

especially movement artefacts, participants need to be well briefed on lying as still as 

they manage and feel secure. The signal that is measured – the increase in oxygenated 

hemoglobin -  is very small, only 1%, which is why the signal-to-noise-ratio is 

another difficulty of the method (Poldrack, Mumford, & Nichols, 2011; Strubreither 

et al., 2011).  

There is 5-6 seconds delay between the actual neuronal activity and the 

observed peak hemodynamic response. The peak is followed by an undershoot that 

does not return to baseline for about 20 seconds, which is the reason for the relatively 

low temporal resolution of fMRI (Poldrack et al., 2011). It is important to keep in 
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mind that fMRI is not a direct measure of neural activity as there are various physical, 

physiological, and anatomical parameters that affect the BOLD signal. Between the 

neural activity and the change in MR signal there are many steps, such as increased 

oxygen-extraction rate and cerebral flood flow, overcompensation by oxygenated 

blood, decreased deoxyhemoglobin concentration and a change in magnetic 

susceptibility (Faro & Mohamed, 2010). 

 In order to analyze fMRI data there are three essential steps; correction – for 

motion and distortion, normalization – the alignment of the individuals data to a 

common spatial framework, smoothing – in order to reduce noise the data is 

intentionally blurred (Poldrack et al., 2011). 

 fMRI data is typically acquired whilst a participant performs a simple 

cognitive or motor task in the scanner – often split into periods of activity separated 

by periods of rest. Contrasting images acquired during activity with those acquired at 

rest allows regions of increased (or decreased) activity to be identified. 

1.4.5 Resting-state fMRI 

 Resting-state fMRI (rs-fMRI) does not require participants to perform any 

specific task, as opposed to paradigm- or task-based functional MR imaging and is 

thus carried out with participants at rest. It is also based on the BOLD signal 

fluctuation (Lv et al., 2018). It can be used to study brain activity at rest, described as 

the default mode network and brain function in general (Poldrack et al., 2011). The 

are several ways to analyze rs-fMRI data. In this thesis, seed-based functional 

connectivity analysis and fractional amplitude of low-frequency fluctuation (fALFF) 

were used. Seed-based functional connectivity finds regions correlated with the 

activity in a seed region by computing a cross-correlation between the BOLD signal 

time-series of the seed and the rest of the brain. “The coupling of activation between 

different brain areas indicates that they are involved in the same underlying 

functional process and can thus be interpreted as functionally connected. However, 

these brain regions may not be directly connected by neural fibers” (Lv et al., 2018). 
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fALFF is a measure showing relative BOLD signal power within the frequency 

band of interest (0.008-0.09 Hz in this study) compared to the entire frequency band 

and is defined as a ratio of root mean square of BOLD signal at each individual voxel 

after vs. before low- or band- pass filtering (Zou et al., 2008). fALFF is regarded as 

an indicator of spontaneous neural activity (Yu-Feng et al., 2007; Zou et al., 2008) 

since it coincides with other established activity measures (Kiviniemi et al., 2000) 

and shows the expected default mode network activity patterns during rest (Fransson, 

2006; Zou et al., 2008). 

1.4.6 Magnetic Resonance Spectroscopy 

 MR spectroscopy (MRS) is a method to identify and measure metabolite 

concentrations in the brain (De Graaf, 2019, p. 43). It provides the possibility to look 

for changes on the molecular level in the brain tissue, but it has limited spatial 

resolution (Hajek & Dezortova, 2008). In our studies, we used 1H-MRS, which picks 

up the signal from hydrogen protons attached to other molecules in a specified region, 

our ROI, which is defined by a voxel (3-dimensional cuboid region). The MRS 

output, which is a spectrum made from the acquired time-domain data by Fourier 

transformation, shows distinct peaks at different radiofrequencies representing the 

proton nuclei in different chemical environments. A typical spectrum can be seen in 

Figure 2B in paper II, for example. Many neurotransmitters are too large or lack the 

necessary properties to be visible with in vivo MRS, but glutamate and GABA are 

possible to detect (Blüml, 2013). 

 Chemical shift is the main method by which peaks in the spectrum are 

assigned to different compounds. Electron density shields the nuclei, the nucleus 

“sees” a fractionally smaller magnetic field and slightly shifts the resonance 

frequency for protons in different molecules and within the same molecule, in 

accordance with the Larmor equation (Eq 1). The magnetic field is also modulated by 

J–coupling, an internal, indirect interaction of spins within the same molecule due to 

the electron structure, which results in a modulation of the signal intensity depending 
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on sequence type and parameters. Depending on how many spins are coupled and 

affecting each other via J-coupling, the observed signal gets split into several peaks.  

 The signal to noise ratio (S/N) is crucial for MRS and one of the biggest 

challenges with the method. It is the ratio between the amplitude of a resonance and 

the amplitude of random noise observed in the spectrum. The S/N and quality in 

general can be increased by a few parameters, such as longer acquisition time, 

minimal movement by the participant, larger volumes, good shimming (optimization 

of the homogeneity of the magnetic field at ROI), and shorter echo times (Blüml, 

2013). 

Water is the most abundant compound in tissues, which is why the majority of 

the received MRS signal comes from the two protons in water, providing a large 

resonance peak at 4.65 ppm. The concentration of metabolites is often >10 000 times 

lower than that of water, leading to baseline distortions and making accurate 

detection of metabolites challenging. In order to deal with this issue, the water signal 

is suppressed but not altogether removed (De Graaf, 2019, p. 317).  

Point Resolved Spectroscopy Sequence (PRESS) is one of many MRS 

sequences. It needs one voxel or ROI and does not require addition or subtraction of 

signals. It uses slice selective pulses along each of the spatial directions: one 90° 

excitation pulse and two 180° refocusing pulses, generating a signal from the overlap 

in the form of a spin echo. It recovers the maximum possible signal unlike, for 

example, the STEAM sequence. This is an advantage because S/N is crucial for data 

quality (Blüml, 2013). Glutamine and glutamate may not be easily distinguished from 

one another with the PRESS sequence, but can be measured in a combined measure 

called Glx. Glutamate is the main excitatory neurotransmitter in the brain and is 

relatively abundant with 6-13 mmol/L concentration. Glutamine is synthesized from 

glutamate in astroglia and synthesized to glutamate in neurons in the glutamate-

glutamine cycle. It is important for the metabolism within the cell and has a 

concentration of 3-6 mmol/L.  
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γ-Aminobutyric Acid (GABA) is the main inhibitory neurotransmitter in the 

brain and has a typical concentration of ca. 1 mmol/L. Glutamate is its precursor (De 

Graaf, 2019; Ramadan, Lin, & Stanwell, 2013). Due to its low concentration and 

overlap with stronger signals, GABA is not possible to estimate with a regular 

PRESS sequence. However, an editing sequence such as MEGA-PRESS sequence 

can be used; where additional pulses are used to manipulate signals from specific 

metabolites, with the difference between “edited” and “unedited” spectra allowing 

those metabolites to be separated (Blüml, 2013). In MEGA-PRESS, “unedited” 

PRESS spectra are subtracted from spectra acquired with an editing pulse at 1.9 ppm, 

which allows the coupled GABA peak at 3.0 ppm to be isolated.  

In order to get most reliable estimates it is possible to perform segmentation, 

where the content of the MRS voxel is classified according to tissue class (e.g., 

cerebral-spinal-fluid, gray matter or white matter), and the spectroscopy data is 

corrected according to voxel content and the relaxation time of the different parts. 

1.4.7 EEG and EMG 

 Electroencephalography (EEG) and surface electromyography (EMG) were 

used as measures to look at epileptic spikes and muscle jerks in the first study 

presented in this thesis. With EEG, one can non-invasively measure the brain’s 

electrical activity via electrodes attached to the scalp. Summations of excitatory and 

inhibitory postsynaptic potentials are measured (Marquardt, 2015). In a clinical 

setting, one usually uses 19+2 electrodes set up in the international 10/20 system to 

diagnose: different encephalopathies, epilepsy, and sleep disturbance. The data from 

a clinical EEG setup was used in this thesis to quantify the number of epilepsy spikes 

before and after tDCS treatment. In research, more electrodes are usually used and 

the raw EEG data is processed in order to calculate event-related-potentials (ERP) 

These are specific wave-patterns hidden in the raw EEG that occur in the brain in 

relation to an event/stimuli and are used to study attention, error making and more in 

healthy participants and diseases (e.g., Eichele et al., 2017; Marquardt, Eichele, 

Lundervold, Haavik, & Eichele, 2018). 
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 Surface EMG is a technique to study the electrical activity produced by 

skeletal muscles by placing electrodes over specific target muscles. Surface EMG 

with electrodes is used rather than needle electrodes for EMG, due to its non-invasive 

nature (Cacioppo, Tassinary, & Berntson, 2000).  
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2. Aims of the thesis 

The overarching aim was to advance the clinical applications of tDCS by 

gaining a better understanding of its underlying neuronal mechanisms. The main 

objective was to test tDCS as treatment for auditory verbal hallucinations and to 

better understand its underlying mechanism, but as the opportunity arose treatment 

efficacy was also studied in epilepsy. The following research questions will be 

addressed: 

 

 1) Can tDCS reduce auditory hallucinations?  

2) Is there supporting evidence for the hypofrontal/hypertemporal reversal 

model  of the tDCS treatment?  

 3) What are the neurochemical and functional changes in the stimulated brain 

regions of tDCS treatment, in general? 

 4) Does tDCS relieve symptoms in POLG mutation specific epilepsy? 

 To answer those questions, we conducted three studies:  

Paper I: In the first study, tDCS treatment was given to a single patient with a specific 

disease, namely status epilepticus induced by POLG-mutation. This addresses 

research question four. 

Paper II: In the second study, we aimed to test the hypofrontal/hypertemporal model 

indirectly, by stimulating healthy individuals with the reversed electrode montage 

that is used in tDCS treatment of patients. That is, the supposedly excitatory anode 

was placed over the TCP and the supposedly inhibitory cathode over the DLPFC, in 

order to mimic the hypofrontal/hypertemporal model for AVH in healthy participants. 

To examine the underlying neuronal effects of tDCS we employed a multimodal 

approach, encompassing behavior, functional activity, and neurotransmitter levels in 

the same tDCS session. Participants received 2 mA tDCS for 20 min, the standard 

parameters for tDCS treatment in AVH (also used in the RCT in paper III). By 

investigating the effects of the reversed electrode montage in healthy individuals, we 
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also indirectly test the general idea that tDCS over the DLPFC and TPC leads to 

changes in those areas, as postulated by the hypofrontal/hypertemporal reversal 

model. Paper II thus addresses research questions two and three. 

Paper III: In the third study, an RCT was carried out with patients with severe 

auditory verbal hallucinations, in order to examine if and how tDCS can reduce voice 

hearing. Also here, behavior, functional activity, neurotransmitter levels (as assessed 

by DL, fMRI and MRS respectively), and in addition functional connectivity and 

anatomical changes (as assessed by rs-fMRI and structural MRI, respectively) were 

measured before and after treatment to unravel the underlying mechanisms of tDCS 

(addressing research questions one to three). The study parameters were based on 

Brunelin et al. (2012), which have become standard procedure, with 20 min of 2 mA 

tDCS for 10 sessions. The anode was placed over the DLPFC and the cathode over 

the TPC in order to reverse the hypofrontal/hypertemporal activity pattern.  

 As a behavioral marker for DLPFC and TPC involvement the dichotic 

listening task was used in paper II and III. As described above, this is a well-

established paradigm, that has repeatedly demonstrated (a) activation in the DLPFC 

and TPC (van den Noort et al., 2008), (b) reduced right ear advantage in 

schizophrenia patients compared to controls (Hugdahl, Løberg, Jørgensen, et al., 

2008), and (c) a reduced ability in schizophrenia patients to report stimuli from a 

specific ear compared to controls (Collinson et al., 2009). We thus hypothesized that 

the reversed montage in healthy participants in paper II would mimic the deficits 

observed in schizophrenia patients and that the treatment in paper III would improve 

patients’ performance. We hypothesized functional activity and Glx increase under 

the anode and functional activity decrease and GABA increase under the cathode in 

both paper II and III. 

 In this manner, we were able to thoroughly investigate tDCS treatment and its 

underlying neuronal mechanisms in a single clinical case, a population of healthy 

individuals and a specific patient group, namely AVH hearers, and thereby study the 

leading theory behind the AVH treatment with tDCS. 
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3. Methods 

3.1 Participants 

3.1.1 Paper I: tDCS in POLG epilepsy 

In paper I, our participant was a young woman, age 15, with severe POLG 

epilepsy, who received tDCS as experimental emergency treatment due to medication 

resistance.  

3.1.2 Paper II: Healthy participants 

Thirty-eight participants were recruited via flyers and word-of-mouth, resulting 

mostly in participants being students from the Faculties of Medicine and Psychology 

at the University of Bergen. Exclusion criteria were past/present neurological or 

psychological disorders, head trauma, metallic implants, epilepsy in first degree 

relatives, pregnancy, claustrophobia, acute consumption of drugs or alcohol at time of 

testing, and severe skin diseases in the area of the electrode placement. After 

exclusion of six participants, the remaining 32 (18 males) had a mean age of 26±4.8 

years. They received reimbursement for their participation and gave written informed 

consent.   

3.1.3 Paper III RCT of tDCS treatment in AVH 

 Twenty-one participants underwent an RCT on tDCS treatment for AVH. 

Inclusion criteria were the following: 1) Able to give written consent; 2) Having 

hallucinations at least five times a week; 3) Two different antipsychotic drugs must 

have been tried which did not eliminate the hallucinations (medication resistant); 4) 

On stable medication for at least 2 weeks at project start.  

 Exclusion criteria were: 1) Being underage (under 18); 2) being under 

guardianship or mandatory mental health care; 3) Have metal in their body such as 

heart pacemaker, cochlea implant, medical pumps, surgical clips, brain 

implants/stimulators or metal in their head or eyes; 4) Have a skin disease such as 
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neurodermatitis on their head where the electrodes were placed or 5) being pregnant. 

1) and 2) being ethical considerations, 3) and 5) being safety issues for MRI scanning 

and 4) being a safety issue for tDCS treatment. 

3.2 Ethical considerations 

 For the first study the use of tDCS was discussed with Regional committees 

for medical and health research ethics (REK), who considered it a form of 

supplementary experimental treatment whose purpose was to provide care for an 

individual, and for which the caring physician could take responsibility without 

obtaining the committees' approval. 

 For the second study ethical approval was obtained by REK (2012/2217), the 

same is true for the third study (2014/2179 REK). For all patients included in the 

study, the treating physician determined that they were able to give consent, not the 

research staff. To ensure that patients understood that the treatment was experimental 

and part of a study, potential participants received oral and written information about 

the study. If they agreed to take part in the study, they signed the written consent 

form before the study started.  

3.3 tDCS stimulation 

For all three studies we used a binodal set-up with anode and cathode on the 

scalp. Stimulation was delivered by a NeuroConn stimulator. Two rubber electrodes 

(5x7cm2) were used, and 2 mA stimulation lasted for 20 minutes in each session 

(additional ramp up and down 30 seconds), giving a current density of 0.057 mA/cm2.  

In the first study, the electrode montage was: cathode over the left motor 

cortex (EEG 10/20 system: C3) and the right orbitofrontal cortex (Fp2) and treatment 

was given for five consecutive days (Figure 2). The electrodes were prepared with a 9 

mg/ml NaCl solution saturated sponge and coated with electrode paste (Signa gel 

electrode gel, BIOPAC Systems Inc., Santa Barbara, California, US). There was no 

sham condition in this case study. 
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Figure 2 tDCS montage study I. 

 

 For the second study, the anode was placed over the left TPC and the cathode 

over the left DLPFC (Figure 3). The stimulator was set to study mode to ensure 

double blinding: that is, codes had to be entered by the experimenters that would 

either provide real or sham stimulation. Participants were tested twice, once with real 

and once with sham stimulation in a double-blind design, with a range from 4-16 

days in between. In the sham case, stimulation was delivered for 40 ms to provide the 

sensation of being stimulated. An MRI compatible tDCS system (DC-Stimulator Plus 

from NeuroConn GmbH, Ilmenau, Germany) was used. The electrodes were coated 

with a more adhesive paste Ten20 (Weaver and Company, Aurora, United States of 

America). Correct placement for the electrodes was determined with EEG caps in 

10/20 system at AF3 and CP5 (EasyCap, Herrsching, Germany) and side effects were 

measured with the tDCS Adverse Effects Questionnaire. 
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Figure 3 tDCS montage study II. 

 

 In the third study, tDCS was given for five consecutive days, twice daily with 

a minimum break of three hours in between. Participants would either receive sham 

or real tDCS for the entire treatment in a double-blind design. The cathode was 

placed over the left TPC and the anode over the left DLPFC (Figure 4). The 

electrodes were prepared with a sponge saturated with saline solution and coated with 

electrode paste like in study I. Correct placement for the electrodes was determined 

with EEG caps at AF3 and CP5 and side effects were measured, like in study II. 

 

Figure 4 tDCS montage study III. 
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3.4 Study protocols 

3.4.1 Paper I 

 20 min before, 20 min during, and 20 min after four of the five tDCS sessions, 

surface electromyography (EMG) was recorded to measure tDCS effect on the 

muscle jerks. Before and after tDCS the electroencephalography (EEG) was recorded 

to measure the frequency of spikes. On one day, the EMG/EEG system was not 

available. 

3.4.2 Paper II 

Participants completed two MRI sessions during which tDCS took place, one 

session with real and one with sham tDCS (for details please see Figure 1 in paper II). 

Table 2 shows all MRI sequences included in the study in chronological order. Voxel 

I and voxel II were the left TPC or the left DLPFC (counterbalanced across 

participants).  
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Table 2 

Chronological order of MRI sequences included in each session  

MRI sequence Time (min:sec) 

Structural MRI 4:00 

MRS PRESS in Voxel I 03:48  

MRS PRESS in Voxel II 03:48 

DL with tDCS, fMRI sequence 16:03 

MRS PRESS in Voxel I 03:48 

MRS PRESS in Voxel II 03:48 

DL – dichotic listening, fMRI-functional magnetic resonance imaging, min – minutes, MRI – magnetic 

resonance imaging, MRS- magnetic resonance spectroscopy, sec – seconds. 

MRS 

We used a Point resolved spectroscopy sequence (PRESS) with TE = 35ms, 

TR = 1500ms, and 128 repetitions (with eight additional water-unsuppressed 

“reference” frames), with a sample frequency of  5000 Hz and the number of samples 

was 4096. One voxel was placed over the left DLPFC (27x25x32mm, volume 21,6 

mL) and the other over the left TPC (26x31x31mm, volume 25,0 mL). After 

acquisition, the data were quantified with LCModel version 6.3-1J (Provencher, 

1993), using a basis set incorporating components from 15 metabolites: alanine, 

aspartate, creatine, γ-aminobutyric acid, glucose, glutamine, glutamate, 

glycreophosphorylcholine, phosphorylcholine, lactate, myo-inositol (mI), N-

acetylaspartate (NAA), N-acetylaspartylglutamate, scyllo-inositol, and taurine. 

 

Metabolite estimates were scaled to an internal water reference, then adjusted 

for partial volume effects, water concentration, and expected relaxation times in 

different tissue classes (Gasparovic et al., 2006). Voxel tissue content was estimated 

from the structural T1 images, after segmentation into distinct tissue classes (gray 

matter, white matter, cerebrospinal fluid) using per-subject voxel masks. Spectral and 

fit quality was ensured by visual inspection, with attention to linewidth, S/N and 
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Cramér Rao Lower Bounds of individual estimates, and aberrations in baseline or 

residual signals. 

Dichotic Listening paradigm  

During tDCS, participants completed a 16 min long dichotic listening 

paradigm that was adopted to fMRI. It started 3.5 minutes after tDCS had begun to 

ensure the left TPC and DLPFC had already been stimulated for a while. In every 

dichotic listening trial, two out of six different syllables (/ba/, /da/, /ga/, /pa/, /ta/, and 

/ka/) were presented simultaneously, one to each ear. For example, /ba/ to the left ear 

and /ka/ to the right ear. Homonyms (e.g., /ba/-/ba/) were not included, leaving 30 

possible syllable combinations which participants completed twice, in three different 

conditions: the non-forced condition, the forced-left and forced-right condition. 

Verbal responses were written down and recorded during scanning as a measure of 

behavioral data.  

 

The dichotic listening paradigm was carried out in a block design during 

fMRI acquisition. The paradigm had 270 volumes in total, distributed across 25 

blocks (7 resting-blocks +6 Non-Forced +6 Forced-Right +6 Forced-Left). The block 

order was pseudo-randomized. Each block was 10 trials long, giving 180 dichotic 

listening volumes/trials and 70 resting volumes (Hugdahl & Andersson, 1986; 

Hugdahl, Westerhausen, et al., 2009; Thomsen, Rimol, Ersland, & Hugdahl, 2004). 

Following each volume a silent gap was given for presenting the stimuli and 

recording the verbal responses from the dichotic listening task (van den Noort et al., 

2008). Participants waited quietly for 90 seconds until tDCS finished, after the 

dichotic listening task. 

fMRI  

 The dichotic listening paradigm was carried out in a block design during fMRI 

acquisition, using a 2D gradient echo-planar imaging sequence with the following 

parameters: TE = 30 ms, nominal TR = 3500 ms (1500ms nominal 

acquisition+2000ms “silent gap”), flip angle = 90 degrees, 64x64 matrix, FOV = 
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220mm, 27 axial slices of 5mm thickness with 0.5mm gap. Stimuli were presented 

with E-Prime 2.0 Professional. 

The fMRI data was preprocessed using SPM12 by realigning and unwarping 

the data to correct for movement and related image distortions, normalization into the 

MNI standard reference space, and smoothing with an 8mm Gaussian kernel in order 

to improve SNR. The data were visually inspected for remaining motion artefacts. 

The first four dummy scans were cut from subsequent analysis. First level analysis 

was done for each participant and session by specifying a general linear model that 

incorporated the onsets of the stimulation blocks of the three conditions and included 

the realignment parameter as regressors of no interest and a high-pass filter set at 340 

Hz. Contrasts were defined for exploring the effect of each condition (non-forced, 

forced-right, forced-left) separately.  

Simulation of tDCS electrical field was carried out with a software called 

SimNIBS. To run the model, the electrodes in the simulation were placed over the 

real electrodes visible on each participant's head model. The simulated electrodes 

were 5×7cm2, like the real ones, with a 1mm electrode thickness and 3mm gel. The 

electric field strength (in [V/m]) and the focality (in cubic mm) of the stimulation 

were calculated for the entire cortex and the peak activation field (10mm sphere). 

3.4.3 Paper III 

 A double-blind RCT was carried out in patients with severe AVH to study 

tDCS treatment. Neuroimaging and clinical/neurocognitive assessment were run at 

baseline, post-treatment, and 3-month follow-up (Table 3), with 10 sessions tDCS 

between baseline and post-treatment. Table 4 depicts the list of clinical assessment 

and neurocognitive testing included in the study.  
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Table 4 

List of clinical assessment and neurocognitive testing tools 

Safety Questionnaires: 

Pre-Study Questionnaire  

Pre-Study tDCS/neuroimaging Checklist 

Informed consent form  

Expectations Questionnaire 

Clinical assessment: 

AHRS - Auditory Hallucination Rating Scale  

AHCS – Auditory Hallucination Change Scale 

AES - Apathy Evaluation Scale  

PANSS - Positive And Negative Symptom Scale, semi-structured 

interview 

Neurocognitive and General Functioning Assessment: 

CGI - Clinical Global Impression 

GAF - Global Assessment of Functioning 

Stroop test 

Trail Making Test 

NART - National Adult Reading Test  

 

 Table 5 shows all MRI sequences in a single testing session in chronological 

order. Voxel I and voxel II were the left TPC or the left DLPFC, which were 

alternated between participants and sessions. It was counterbalanced across 

participants whether MRS PRESS or MEGA-PRESS was measured first. The 

analysis of MRS, fMRI and the dichotic listening task are highly similar to paper II 

(described above) and are described in detail in the paper. For structural MRI, 

parcellation of the cortical surface was performed using Freesurfer 5.0 (Fischl et al., 

2004) to yield estimates for surface area, cortical thickness, and gray matter volume 

for each of the 74 labelled regions per hemisphere of the Destrieux atlas (Destrieux, 
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Fischl, Dale, & Halgren, 2010). Twelve regions of interest, based on electrode 

placement over the DLPFC and TPC, were selected and analyzed. 

 

 rs-fMRI was acquired for 5 minutes with closed eyes. The data was 

preprocessed and went through a default denoising procedure in the toolbox CONN. 

Seed-based functional connectivity analyses in addition to a Fractional Amplitude of 

Low-Frequency Fluctuations (fALFF) analysis were conducted. Two seed regions of 

interest were generated from the MRS voxel masks in the left DLPFC and TPC. 

tDCS treatment groups were compared in different contrasts. For seed-to-voxel 

connectivity and fALFF, a cluster correction procedure at the single-voxel level was 

applied with thresholds of p<.001 and p<.005, respectively. For both, the cluster level 

threshold was p<.05 with FDR-correction for multiple comparisons. The simulation 

of the electrical field of tDCS was carried out based on the structural data, similar to 

paper II, only here the EEG 10/20 virtual cap in SimNIBS was used to place the 

anode over AF3 and the cathode over CP5. The simulated electrodes were 5x7cm2, 

like the real ones, with a 1 mm electrode thickness and 8 mm sponge.  

 Participants in the sham group were offered to receive real tDCS after the 

completion of the study.  
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Table 5  

Chronological order of MRI sequences in each MRI session  

MRI sequence Time (min:sec) 

Structural MRI 07:07 

MRS PRESS voxel I 03:48 

MRS MEGA-PRESS voxel I 10:12 

MRS PRESS voxel II 03:48 

MRS MEGA-PRESS voxel II 10:12 

Resting-state fMRI 05:30 

Dichotic listening and fMRI 08:28 

 

3.5 Statistical Analysis 

 In paper I, EMG and EEG spikes were counted manually by three raters. The 

counts were analyzed with an ANOVA and non-parametric Friedmann test for EMG 

data and paired sample t-test and non-parametric Wilcoxon tests for EEG spikes. 

Non-parametric statistical tests were used in addition as the counts were in a small 

range and not normally distributed. 

 In paper II, water-scaled, tissue-content-adjusted Glx levels from LCModel 

were subjected to a 2x2x2 repeated measures ANOVA with the within-participants 

factors Stimulation (real/sham), Time (before/after tDCS) and Brain area 

(DLPFC/TPC).  

 Correctly identified syllables from dichotic listening were transformed into 

accuracy rates and subjected to a 2x3x2 repeated measures ANOVA with the within-

participants variables Stimulation (real/sham), Dichotic Listening Condition (non-

forced, forced-right, forced-left) and Ear (left/right). Similarly, for the fMRI group 

analysis, individual contrast images were subjected to a 2x3 repeated measures 
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ANOVA with Stimulation (real/sham) and Dichotic Listening Condition (non-forced, 

forced-right, forced-left). For the electric field and focality Ms and SDs were 

calculated. 

 In paper III, t-tests and Chi-square /Fischer exact tests were calculated for 

baseline comparisons between the groups and demographic variables, showing a 

difference in AHRS score between the real and sham group. As a result, AHRS score 

was included as a covariate in all further analyses.  

 The clinical and structural data were analyzed in a 2x3 repeated measures 

ANOVA with the within-participants variables Time (baseline/post- treatment/ 

follow-up) the between participant factor tDCS Treatment (real/sham). A 3x2x2 

ANOVA of Glx and GABA levels was carried out with the within-participants 

variables Time (baseline/ post-treatment/ follow-up) and Brain area (DLPFC/TPC). 

tDCS treatment (sham/real) was added as a between-participant factor. rs-fMRI was 

processed in a toolbox called CONN; different contrasts were explored and post-hoc 

t-tests were done with extracted values. Correct responses from dichotic listening 

were transformed into accuracy rates and a 3x3x2x2 repeated measures ANOVA with 

the within-participants variables Time (baseline/post- treatment/ follow-up), Dichotic 

Listening Condition (non-forced/forced-left/forced-right), and Ear (left/right) as well 

as tDCS Treatment (real/sham) as a between-participant factor was performed. For 

fMRI, the group analysis was conducted in the SPM12 toolbox for individual contrast 

images a 2x3 repeated measures ANOVA was performed, with tDCS Treatment 

(real/sham) and Time (baseline/ post-treatment/ follow-up). For the electric field and 

focality Ms and SDs were calculated. Finally, Correlations between the AHRS and 

neuroimaging variables were calculated.  
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4. Results 

4.1 Paper I 

The five consecutive days of tDCS treatment at 2 mA for 20 min did not lead to 

a statistically or clinically significant reduction of myoclonus jerking or epilepsy 

spikes in the 15-year old POLG patient.  

4.2 Paper II 

fMRI and dichotic listening did not show any tDCS related changes but yielded the 

typical activation of the auditory cortex in dichotic listening.  

 MRS results showed a trend with Glx levels being higher after tDCS than 

before when participants received real tDCS (F(1,31) = 3.35, p = .077, η2
p = .098). 

However, post-hoc tests were not significant. Further, this trend was not electrode 

specific, meaning the trend was unspecific to the brain area TPC or DLPFC. There 

was no significant three-way interactions between pre-post tDCS, brain areas TPC 

and DLPFC and real or sham stimulation in MRS.  

 Simulation of tDCS showed large individual differences and peak electric field 

strength between the electrodes, not as hypothesized directly under the electrodes. 

None of the calculated correlations, between Glx and dichotic listening or simulated 

electric field strength were significant. 

4.3 Paper III 

 There was a small decrease in AVH which was shown both in the self-report 

measures of AHRS and AHCS. The AHRS scores AVH severity with seven 

questions. While the AHCS was used after treatment, simply asking if AVH became 

better, worse or were the same and how much if they became better or worse (in %). 

AHRS scores showed a post-treatment reduction: 12% real tDCS 15% sham tDCS 

group, and a follow-up reduction: 21% real tDCS 12% sham tDCS group, and the 

AHCS  showed AVH reduction of 25% in the real and 22% in the sham group. 
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However, this decrease is only based on self-report measures and is not reflected 

interview-based measures as the PANSS. It was also evident that the treatment had a 

placebo effect and that the real tDCS effect was not much stronger than this placebo 

effect in our sample.  

 None of the neuroimaging data showed significant effects for the DLPFC or 

TPC, neither rs-fMRI, MRS, structural MRI nor task-related fMRI. We found a 

negative connectivity in the left and right superior frontal gyrus after treatment, 

which was not present at baseline. However, this was independent of real or sham 

tDCS. In the real tDCS group, there was a decrease of brain activity in the right 

precentral gyrus from before to after treatment, which did not emerge in the sham 

group. Note, that this does not include any of the two stimulated brain areas. 

Moreover, this finding was significant at a single-voxel threshold of .005 (psize p-FDR = 

0.047) but would not withstand the standard single-voxel threshold of .001. These 

data thus did not confirm the notion that tDCS reverses the 

hypofrontal/hypertemporal activity pattern.  

 For all three papers, more results can be found in the papers themselves. 
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5. Discussion 

 This thesis studied the underlying mechanism and effects of tDCS in a single 

case of POLG mutation induced epilepsy, in a healthy population, and a patient 

population of AVH hearers. We found no effects of tDCS treatment in the POLG 

epilepsy case. In the healthy participants, there were no tDCS effects on behavior or 

brain activity, and only an electrode-unspecific trend in Glx levels. In the AVH 

patients, a small clinical effect on AVH was found. However, there were no tDCS 

effects in the regions of interest in neuroimaging. Here follows a discussion of the 

individual papers and on more overarching topics concerning tDCS treatment and its 

underlying neuronal effects.  

5.1 Paper I Case report: tDCS treatment for epilepsia 
partialis continua in POLG disease 

 This case study was conducted as an experimental treatment based on only one 

previously published case report (Ng et al., 2018). The epilepsy spikes and muscle 

jerks were not reduced by tDCS treatment and the young patient died 9 months after 

the tDCS intervention due to a super-refractory status epilepticus, demonstrating the 

severity and fast-moving nature of this particular POLG-disease case. We discuss 

several possibilities why the treatment did not work in the paper, one being that tDCS 

treatment was attempted too late in the course of the disease. The vicious cycle, 

starting with the POLG mutation, leading to dysfunctional mitochondrial DNA, 

causing failure in the respiratory chain, giving low neuronal energy levels in turn, 

eventually triggering seizure activity/ epilepsy and ultimately neuronal necrosis 

(Hikmat et al., 2017) might have been too far advanced in this case.  

 Another reason why we did not replicate the previous study might be that Ng 

et al. treated with tDCS for 14 days with the cathode over the temporo-parietal-

occipital junction, while we only had five days of treatment over the left primary 

motor cortex, due to the fact that the patient having severe muscle jerks in her right 

arm. In addition, the two patients also had different genetic mutations. POLG disease 
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is quite rare and there are too few studies to prove whether tDCS is an effective 

treatment in this specific condition or not. But we were able to contribute to the very 

thin empirical database on this disease and tDCS so far, albeit in a fairly limited way, 

with one patient. The literature now comprises one case report where treatment 

worked (Ng et al., 2018) and one where it did not (Marquardt et al., 2019), neither 

being able to prove or disprove the efficacy of tDCS using case report design. In 

general, however, tDCS has been rated “probably effective” for decreasing seizures 

in epilepsy (Fregni et al., 2020).  

5.2 Paper II Multimodal neuroimaging study of tDCS in 
healthy participants 

 There were no effects of tDCS on behavior and functional activity and only a 

trend towards a Glx increase after tDCS. In the paper, we discuss many details of the 

study, one is that we failed to detect significant tDCS effects because the peak of the 

electric field was between the two electrodes, and not in the targeted left DLPFC and 

TPC itself. While this could explain the lack of clear Glx results, it is difficult to 

reconcile with the fact that we did not observe any changes in functional activity in 

the left central sulcus/Broca's area. 

 The null findings are supported by findings in the literature that a single 

session of tDCS, like in our study, is not sufficient to induce changes in cognitive 

tasks in healthy individuals (Horvath, Forte, & Carter, 2015). Meta-analyses showed 

that cathodal tDCS over the DLPFC has little effect on cognitive tasks (Dedoncker, 

Brunoni, Baeken, & Vanderhasselt, 2016) and that the cathode rarely induces 

inhibitory effects in cognitive tasks (Jacobson, Koslowsky, & Lavidor, 2012). Taken 

together with earlier tDCS research (D'Anselmo, Prete, Tommasi, & Brancucci, 2015; 

Dwyer et al., 2018; Westwood, Olson, Miall, Nappo, & Romani, 2017), paper II 

suggests that at least the posterior temporal-parietal region might be less responsive 

to tDCS than, for instance, the primary sensory/motor cortex and that it might be 

interesting to research Broca’s area with the DLPFC/TPC electrode montage. 
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5.3 Paper III Multimodal neuroimaging of tDCS treatment 
in patients with severe AVH  

 In paper III neither brain activity (as assessed with task-related and resting-

state fMRI), brain structure, nor Glx/GABA levels showed significant effects of 

tDCS in the DLPFC or TPC, and none of those parameters correlated with changes in 

AVH over the course of the treatment. Thus, our data is not in line with the 

hypofrontal/hypertemporal reversal model, the leading theory behind the AVH 

treatment with tDCS. 

 The small treatment effect on AVH that was found in paper III was very 

similar at post-treatment between the sham (AHRS reduction 15%) and real (AHRS 

reduction 12%) group and got stronger at the 3-month follow-up in the real tDCS 

group (21% in real, sham 12% in sham). The positive effect on AVH was smaller in 

our sample than in some previous studies (Brunelin et al., 2012; Lindenmayer et al., 

2019) but of similar magnitude as in Koops et al. (2018), who did not find 

improvements beyond placebo. This discrepancy could be explained by the fact that 

both Brunelin et al.(2012) and Lindenmayer et al. (2019) tested samples with 

schizophrenia patients only, while we and Koops et a. (2018) had a mixed sample. 

The most recent meta-analysis on tDCS in psychiatric disorders concludes that the 

DLPFC and TPC montage is probably effective (level B categorization) (Fregni et al., 

2020). To reach a verdict on whether it is definitely effective (level A), more data is 

needed. Our study adds some data to this pool, but probably larger samples are 

needed, ideally from multicenter trials and/or collaborations across research groups. 

 Previous studies showed beneficial effects of tDCS on negative symptoms in 

schizophrenia with prefrontal stimulation (Gomes et al., 2015; Palm et al., 2016). 

This was not confirmed in our study, which was designed to pick this up, if present, 

with the full PANSS interview. The reason for this difference could be the difference 

in montage, as the other studies lack the TPC electrode. However, recently Valiengo 

et al. (2019) found a significant reduction in negative symptoms, but not AVH in 

schizophrenia with the same montage as ours. The difference here could be due to the 
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fact that Valiengo et al. recruited patients specifically with a negative symptom load. 

Fregni et al. (2020) concluded that tDCS is “probably effective” (Level B) for 

negative symptoms.  

 Another argument for multicentre collaborations is the identification of factors 

that determine treatment response. In our study, we found a small tDCS effect on 

AVH. Though not reported in the paper, the treatment effect rested mostly on three 

individuals in the tDCS group who improved by at least 50% according to the AHCS, 

while six participants did not improve (0%) and two only improved slightly (25-

30%). Simply put, one can divide the sample into at least two groups, tDCS 

responders and tDCS non-responders. Why some patients responded well and others 

not at all and what distinguished these two groups needs to be further explored. This 

work has started and recently, Mondino et al. (2020) modeled the electric field in 

responders (n = 6) and non-responders (n = 11) and found that tDCS responders 

displayed a higher electric field strength in the left transverse temporal gyrus.  

 In addition to the treatment effect, there was a small decrease in fALFF 

measured brain activity in the right precentral sulcus in the real tDCS group. This is 

in the area of the primary motor cortex controlling the face. A possible explanation 

for this effect could be callosal inhibition/facilitation: The corpus callosum connects 

the two hemispheres and regulates communication between them (Mangia, Ursino, 

Lannocca, & Cappello, 2017). It was shown that excitation of one sensorimotor area 

leads to inhibition in the other and vice versa (Mangia et al., 2017). Thus possibly, 

the stimulation of the left frontal lobe could have led to corresponding activity 

changes in the contralateral, homologous area, whereby an increase in one 

hemisphere is associated with a decrease in the other hemisphere, and vice versa. 

However, without further investigations this is purely speculative.  

We also found a negative connectivity cluster in the left and right superior 

frontal gyrus with the TPC. However, this was independent of whether participants 

received real or sham tDCS. The connectivity cluster was not present at baseline and 

only emerged at post-treatment. This anti-correlation would be in line with the notion 
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that, for example, an upregulation in the right/left superior frontal gyrus activity is 

associated with a downregulation in the TPC, as the hypofrontal/hypertemporal 

model would predict. But since it is not only apparent in the tDCS group but also the 

sham group, it is not in line with the hypofrontal/hypertemporal reversal model – and 

could be attributed to the placebo effect. 

 Both the tDCS simulation in paper II and III showed that the strongest electric 

field lies between the electrodes, in Broca’s area. Broca’s area function is linked to 

speech production, and stimulation here might improve speech production. In 

schizophrenia, this might help with the symptom of disorganized speech. Broca’s 

area is involved in language processing and has been linked to AVH (Sommer et al., 

2008). Hence, it could be speculated that the tDCS treatment effect also has to do 

with Broca’s area stimulation. As described above, it was shown that tDCS 

responders had a significantly stronger electric field strength in the left transverse 

temporal gyrus (or Heschl’s gyrus) compared to non-responders (Mondino et al., 

2020), which is relatively close to Broca’s area, but separated from it by the lateral 

fissure. Both regions are involved in language processing and have been found 

important in AVH (Ćurčić-Blake et al., 2012; Mondino et al., 2020). The effect of the 

DLPFC/TPC montage on Broca’s area should be further investigated. While we did 

not see any fMRI activation here, it was not investigated with MRS to look for 

neurotransmitter changes and our research group just set up a study where this tDCS 

montage is investigated with functional MRS in healthy participants. There are also 

plans to study patients in the long term. Another implication of our finding that the 

current peaks over Broca’s area, is that in order to specifically stimulate the left 

DLPFC and TPC another electrode set-up would be necessary. What this set-up 

would look like and what its effects on AVH would be also requires future studies. 

 When treating patients on antipsychotics with tDCS one needs to consider that 

the baseline cortical excitability is different in people using pharmacotherapy, that 

interferes with chosen tDCS dosage (Brunoni et al., 2012). In schizophrenia, the 

cortical excitability is lower than in controls in the motor cortex, either due to 

schizophrenia itself or antipsychotic medication, which means a higher stimulus 
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intensity is required in order to evoke motor response (Soubasi et al., 2010). It is not 

given that our regions of interest react the same way as the motor cortex, but if they 

do, this means we need higher intensity current in order to stimulate schizophrenia 

patients as compared to healthy individuals. This is complicated since stimulation 

with more than the conventional 2 mA can be painful and is not used in research. 

 As indicated above, certain individuals felt they benefited a lot from the 

treatment. Patients who participate in studies oftentimes want to continue the 

treatment, if possible, at home (Sandran, Hillier, & Hordacre, 2019); during this study 

we received several such enquiries. Unfortunately, we were not able to offer 

additional tDCS treatment, as we did not have a mandate for more stimulation than 

the 10 sessions in the RCT. However, our research group is working on ideas to 

implement tDCS at the psychiatric clinic. Researchers have been wary of advising the 

use of tDCS at home due to safety concerns, as we were when our patients asked. 

However, some of them were so convinced about the efficacy of the treatment that 

they bought a device anyway, against our recommendations. The use of tDCS devices 

at home and coverage about the method in the media is spreading and is therefore an 

ongoing debate in the brain stimulation community (Dubljević et al., 2014). In some 

cases, it is sold as a “wonder” device online to help with everything from training 

more efficiently to gaming better. For a long time, there was a disjoint between the 

regulation and guidelines which were mostly for scientific readers and the availability 

of tDCS devices for the public online (Dubljević et al., 2014). Recently, guidelines 

for home-based tDCS use have been developed (Charvet, Shaw, Bikson, Woods, & 

Knotkova, 2020), which can advance the safe use of tDCS in the private sphere. A 

review on in-home transcranial electric stimulation in psychiatric and neurological 

disorders showed that the field is advancing and that in-home stimulation seems so be 

safe. However videoconferencing is advisable to improve protocol compliance 

(Sandran et al., 2019). Only one of the studies included in the review was on 

schizophrenia, however. The cognitive deficits often accompanying schizophrenia 

might be an additional difficulty for safe in-home delivery of tDCS.  
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 In science, the researcher wants to be as objective and as independent of their 

measurements as possible. However, as one measures and looks at what one studies, 

one also takes part in it and changes the reality of it (Matthews, 2014). We cannot be 

independent of our measurements. In our experiments this became very clear as we 

work with and study humans. First of all, we gave patients hope to become better – 

which can induce a placebo effect, which we in fact see in the data. Secondly, in this 

study, we were together with our patients for a whole week. Obviously, we talked 

with them and thus got to know them a little. By this interaction we might have 

influenced them; most likely we had a positive effect on them through this, as these 

are often patients who do not have a lot of social contacts in their daily life. By the 

end of the week, they might feel better just because of the daily routine with a 

purpose (the study) and having contact with others. There are two possible 

consequences of these interactions: First, the patients might start to like us and be 

hopeful for the study and our work, and therefore be more inclined to tell us that the 

treatment worked – a social desirability effect which increases the likelihood of 

finding a treatment effect but is a false positive. Secondly, as they spend time with us, 

they trust us more and report symptoms more honestly at post-treatment. We noticed 

more of their symptoms throughout the week, which would give a higher symptom 

rating at post-treatment, which is more correct, than the one we obtained at baseline. 

Hence, the symptom severity at baseline could be underestimated due to a lack of 

trust between patient and rater. This second notion would make it more difficult to 

find a treatment effect. This could partly have been solved by having different 

personnel for the treatment provision itself and the RCT data requisition. 

5.4 Discussion on mechanisms of tDCS  

 As there were only sparse tDCS effects in all three papers included in this 

thesis, it is necessary to discuss the general mechanisms of tDCS and how these 

considerations might have affected our studies. There is a lot of critique on non-

invasive brain stimulation and its effectiveness, both from researchers in the field and 
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other neuroscientists. To exemplify this critique there is a quote from Vincent Walsh 

(2013): 

“Based on the best available studies, from reputable laboratories, we don’t really 

know where to put the electrodes, we don’t know how robust is the idea that the 

effects are excitatory or inhibitory, we don’t know what other behaviors are affected, 

we haven’t tested the methods with real-world tasks and therefore don’t know how 

they perform outside the lab, and we have no idea in healthy people if they continue 

to work after more than 2 or 3 repeated applications.” 

While this is from 2013 and put somewhat exaggeratedly, it brings up several 

important points which will be discussed in the following paragraphs. The basic 

research on tDCS in this section is usually done in healthy controls, if not stated 

otherwise.  

 Early modeling of the electric field in tDCS showed that only about 10 % of 

the current (electric field of 0.22V/m) reaches the cortex with scalp current of 2 mA 

(Miranda, Lomarev, & Hallett, 2006; Vöröslakos et al., 2018), raising the question 

whether tDCS with such parameters would have an effect at all. Even though the 

modeling procedures have advanced substantially, it shows maximum values in the 

motor cortex of 0.2-0.5 V/m electric field strength (Miranda et al., 2018), which is in 

agreement with our own modeling where we found electric fields from 0.29 to 0.65 

V/m at 2 mA tDCS. While the finding of little electricity reaching the brain caused 

quite a stir in the research community, it has been known for quite a while, and can 

be viewed as a mechanistic virtue of the method as well. It gives the opportunity to 

only modulate the firing threshold in neurons, not trigger action potential directly, as 

TMS does (Radman, Ramos, Brumberg, & Bikson, 2009).  

 In addition to a generally low electrical effect on the brain, the dose-response 

curve of tDCS is not well understood. Many studies ignore the fact that 

anode/cathode does not simply equate to excitatory/inhibitory at the current intensity 

delivered. It was earlier assumed that both 1mA and 2 mA stimulation have an 

excitatory anode and inhibitory cathode effect, but there is a growing body of 
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literature showing this might not be the case. Studies showed that 1 mA cathodal 

stimulation is inhibitory, while 2 mA is excitatory in the motor cortex (Batsikadze et 

al., 2013; Samani, Agboada, Jamil, Kuo, & Nitsche, 2019). Also Parkin et al. (2019) 

showed that the classical unilateral polarity (excitatory and inhibitory effects) of 1 

mA does not hold when montage (e.g., bilateral) and intensity (e.g., 2 mA) are 

changed, in the motor cortex. Moreover, other papers have shown that the polarity 

effect of tDCS is not a given; in truth, direct current always produces bimodal 

polarization, this means anodal stimulation produces depolarization in the soma and 

hyperpolarization in the dendrite of a single neuron (Bikson et al., 2004), thereby 

enhancing synaptic processing (A. Rahman et al., 2013). A review concluded that the 

polarity effect is quite common in motor area investigations, but cannot be extended 

to cognitive studies (Jacobson et al., 2012). 

 Taken together, these findings indicate that in tDCS more is not always more, 

if one specifically wants to induce an excitatory AND inhibitory effect. As the 

hypofrontal/hypertemporal reversal model is based highly on the polarity of tDCS, 

this could mean that the tDCS montage to treat AVH could work more optimally with 

an intensity of 1 mA, to achieve the most polarity of excitation and inhibition over the 

DLPFC and TPC, respectively. To my knowledge there are no RCTs researching 

tDCS in AVH with 1 mA current. There is, however, a successful case report (Homan 

et al., 2011).  

 Most studies keep stimulation from 1 mA to 2 mA, for 10-30 minutes from 1-

10 sessions. Protocols are mostly set up this way because we know it is safe (Antal et 

al., 2017) and due to historical development, but it is understudied whether this the 

most effective for the purpose of a particular outcome. As pointed out in the 

introduction, in the tDCS treatment of AVH RCTs vary in the number of sessions 

used (5-40) (Fröhlich et al., 2016; Lindenmayer et al., 2019), but meta-analyses have 

shown that higher frequency of sessions (two daily) and more sessions (at least ten) 

are superior to less to induce an effect (Cheng et al., 2020; J. Kim et al., 2019). 
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 In addition, many tDCS studies show small effects, where it is hard to know if 

they have any real-life implications (Cheng et al., 2020; Minarik et al., 2016). 

Another issue is that tDCS research rarely includes control tasks and/or control sites 

in order to show that the effect is specific (Walsh, 2013). Clinical studies, including 

our own, are often underpowered, meaning that they include too few participants for 

drawing strong conclusions. In the case of tDCS treatment for AVH most of the 

largest studies have a sample size of around 50 participants (Koops et al., 2018; 

Mondino et al., 2018). Since they typically include a sham control group, this means 

around 25 participants actually received tDCS. A solution to this problem would be to 

pool datasets from different studies in order to get more power and conduct analysis 

on tDCS responders, which is something we plan to do with our study and Koops et 

al. 

 With the normal tDCS electrodes used here and in many other studies, with a 

size of 5x7cm2, we cannot achieve very focal stimulation. A possible solution to this 

is a high definition tDCS montage, where four electrodes surround one (four cathodes 

are placed around one anode or vice versa) which focalizes current distribution and 

makes it possible to target brain areas more specifically (Knotkova, Nitsche, Bikson, 

& Woods, 2019). Higher focality could be achieved with the 5-point electrode set-up 

tDCS, which could improve the targeting of the DLPFC, the TPC, or Broca’s area. 

 tDCS simulation shows a large degree of individual differences with respect to 

how much current is delivered to the cortex due to individual anatomy (Bikson, 

Rahman, & Datta, 2012). It was suggested that neuronavigation of tDCS might be a 

good tool to improve delivery of stimulation in different individuals (De Berker et al., 

2013), and neuronavigation was recently used to predict individual doses of tDCS 

(Caulfield et al., 2020). However, this reduces the simplicity and affordability of the 

method greatly, as it requires MR imaging prior to tDCS. In addition to the sources of 

variability previously described, age and stage of the menstrual cycle may also affect 

tDCS performance (Thair, Holloway, Newport, & Smith, 2017). 
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 So, what implications does the method discussion above have for this thesis? 

The montage with the anode over the left DLPFC and the cathode over the left TPC 

puts the electrodes relatively close together. That probably results in an activation 

peak between electrodes, that is, a single, larger electrical field, not two small ones 

directly under the electrodes; simulation of the electric field in paper II and III 

showed this. The normal component (going down into brain from surface) still goes 

straight into temporo-parietal lobe and frontal lobe, though. If this is the effective part 

of stimulation, the montage does not need to be changed to reduce AVH. Individual 

differences in skull and brain anatomy still need to be taken into account, especially 

in schizophrenia. For example, schizophrenia patients are often characterized by loss 

of gray matter (Glahn et al., 2008; Neckelmann et al., 2006). Loss of gray matter 

leads to larger ventricles filled with CSF and more CSF reduces stimulation, this 

could mean that there is less current reaching schizophrenia patients’ brains than in 

healthy controls.  

 In summary, to treat AVH effectively with tDCS, at least 10 sessions are 

needed, preferably more. In order to overcome the problem of underpowered studies, 

multicenter studies could be conducted. Focality could be increased by using a high 

definition tDCS set-up instead of the traditional one and in order to get the best 

individual targeting of the tDCS current, neuronavigation can be used. Polarity might 

be superior with 1 mA, however in schizophrenia delivery of current to the brain 

could be more challenging than in healthy participants, which is a counter argument 

to decreasing stimulation intensity.  

 While there are still methodological issues to overcome, it is important to 

remind ourselves that non-invasive brain stimulation has been proven to work as 

treatment in certain disorders (Fregni et al., 2020), we just do not yet know exactly 

how and why it works. Taken together, the above points demonstrate that more basic 

research is needed to understand tDCS fully and in order to optimize treatment 

montages, both in AVH and other disorders.  
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5.4.1 Neuroimaging and tDCS 

 There is a large body of literature on tDCS with different MRI methods and to 

review this literature comprehensively would be beyond the scope of this thesis. I 

therefore decided to focus on research that aimed to examine the underlying 

mechanisms of tDCS with MRS in healthy participants. However, some of the issues 

raised in the next paragraphs (e.g., replication problems, underpowered studies, 

different tDCS parameters) also apply to other neuroimaging methods and 

neuroimaging/tDCS research in general.  

 In the motor cortex, Glx has been found to decrease after 1 mA cathodal 

stimulation, but Glx concentration did not change after anodal stimulation. Further, 

the authors reported that GABA concentrations decreased after anodal stimulation 

and cathodal stimulation (n = 11) (Stagg et al., 2009). Also, in the motor cortex, 

specifically the hand area, anodal 1.5 mA tDCS induced a significant reduction in 

GABA levels, while no changes in glutamine and glutamate measures were found (n 

= 35) (S. Kim, Stephenson, Morris, & Jackson, 2014) and 1 mA anodal stimulation 

caused a GABA decrease in 32 subjects (Patel et al., 2019). In the sensorimotor 

cortex at 1 mA, GABA levels were reduced after anodal tDCS but not after cathodal 

tDCS and no significant glutamate changes were reported (n = 48) (Antonenko et al., 

2017). 

 

 In a small dataset (n = 9) a Glx increase under the anode was found in the right 

parietal cortex at 2 mA (Clark, Coffman, Trumbo, & Gasparovic, 2011; Hunter et al., 

2015). Another study stimulating the DLPFC bilaterally (n = 17) found striatal Glx 

and prefrontal NAA levels to be elevated during 1 mA tDCS, but not after 

stimulation. No GABA level changes were found (Hone-Blanchet, Edden, & Fecteau, 

2016). Cerebellar tDCS at 2 mA in 34 participants showed no changes in glutamate 

and GABA levels. (Jalali, Chowdhury, Wilson, Miall, & Galea, 2018). With 20 

participants receiving anodal 2 mA tDCS over the left superior temporal gyrus no 

GABA, Glx or NAA level changes were found (Dwyer et al., 2018). Similarly, in 32 
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subjects no MRS alterations (Glx and moreover GABA) were found when the motor 

cortex was stimulated at 2 mA five times within 25 hours (Zappasodi et al., 2017). 

 

 From this short review of the literature on tDCS induced neurotransmitter 

changes in healthy participants it is evident that results vary greatly. For anodal 

stimulation in the motor cortex, most find GABA reduction (Antonenko et al., 2017; 

S. Kim et al., 2014; Patel et al., 2019; Stagg et al., 2009), but some find Glx decreases 

(Antonenko et al., 2017; S. Kim et al., 2014; Patel et al., 2019; Stagg et al., 2009) and 

some find no change in Glx (Antonenko et al., 2017; S. Kim et al., 2014; Zappasodi 

et al., 2017). Cathodal stimulation in the motor cortex was found to decrease both 

GABA and Glx levels in one study (Stagg et al., 2009), while there were no changes 

in another study in the sensory motor cortex (Antonenko et al., 2017). These studies 

vary in stimulation parameters such as montage and stimulation intensity and often 

comprise relatively small sample sizes. But even when looking at similar parameters 

(1mA in motor areas) the results vary, at least for Glx findings, indicating replication 

issues in the field. This holds for most neuroimaging research in the tDCS field. To 

uncover the mechanism of tDCS some papers call for a push for multimodal imaging 

techniques (Hunter, Coffman, Trumbo, & Clark, 2013; Tremblay et al., 2014). A 

consortium of different research groups, working towards bigger samples and a 

comprehensive mapping of parameters with multimodal imaging techniques, would 

be a solution to push the field forwards, as it is hard for single groups to achieve large 

sample sizes with these expensive and time-consuming techniques.  

5.5 Limitations 

 An obvious limitation to paper I is that there is no control condition. The study 

was designed to try and help a young patient with acute, severe epilepsy symptoms as 

soon as possible and research design issues were of secondary relevance. 

 The tDCS treatment was generally well tolerated with little side effects, 

however in paper II the healthy participants reported relatively many side effects 

compared to other studies (Koops et al., 2018), supposedly due to the added stress of 
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MRI scanning at the same time. Which means that one needs to be aware of higher 

side effect profiles when tDCS and MRI are combined and that it does not necessarily 

reflect the tolerability of tDCS alone. 

 We only had a small patient sample in the RCT in paper III. The recruitment of 

patients was challenging, Bergen is a small city and the length of the study, in total 

seven days, made it difficult for some patients to travel to us. In some cases, we 

travelled to the patients’ homestead to give tDCS treatment, but in those cases MR 

imaging was not possible. Another factor was a change in treatment policy in 

psychiatric clinics that coincided with the start of our RCT: Instead of being treated 

longer at the large psychiatric clinic where we would contact them through our 

project partners, the new policy meant that patients were sent more quickly to other 

smaller psychiatric clinics in the Bergen area as soon as they partly recovered. In 

addition, we were also looking for a quite narrow population of patients, which 

required medication resistant AVH and thus a substantial severity of illness but at the 

same time participants had to be functional enough to provide informed consent 

themselves and to undergo the RCTs assessment and treatment for seven days. The 

most severely affected patients were not able to undergo this extensive protocol, as 

evidenced by three dropouts out of 24 participants.  

 This implies that the tDCS treatment had a small effect on well-functioning, 

treatment-resistant hallucinators. One could speculate, that the tDCS treatment could 

have worked even better in more affected patients, which we were unable to include. 

It could also be the case that tDCS works in non-chronic patients, with short duration 

of illness, but not in patients with a long history of hearing voices, which is mostly 

whom we recruited in the study. It is also possible that due to cultural differences 

patient recruitment is more challenging in Norway than in other countries, as patients 

here have a high degree of self-determination such that they disagree to participate, 

even if it is recommended by the treating physician. This is however purely 

speculative.  
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 There is a theory that tDCS works better when brain areas are already active, 

meaning that targeted areas need to be activated (e.g., by a task) for tDCS to have 

excitatory powers. This notion is called activity-selectivity (Bikson & Rahman, 

2013). Since we administer tDCS without a task in the RCT, the effect could have 

been stronger with a task during stimulation. On the other hand, it is possible that 

when patients hallucinate during tDCS, the increased activity in their language areas 

might serve as activity-selectivity and facilitate the treatment effect. However, it was 

not controlled for in the RCT, whether patients were hallucinating during tDCS 

treatment. This means that our study treated AVH as a “trait” variable as opposed to a 

“state” variable. Hugdahl (2015) distinguishes between whether AVH are studied as a 

general trait by, for instance, clinical interviews or whether AVH are studied as a 

state, in the moment they are experienced (e.g., as indicated by a button press). It 

might be argued that a state approach could have benefitted this study. 

 Hypothetically, patients could only be stimulated while hearing voices, but that 

is just not realistic as there are very few patients hallucinating all the time or in a 

manner that can be planned in coherence with tDCS sessions. Another possibility 

would have been that patients either indicated during the daily tDCS sessions, if they 

had AVH, or at least were asked about it shortly after each session. However, this 

would have made the already very extensive assessment only more demanding.  

Nevertheless, we tried to address this issue by setting up a separate study (not 

detailed in this thesis) which involved participants undergoing tDCS (20 min, 2 mA) 

in the MR-scanner. During tDCS, they indicated via button press how often and for 

how long they experienced AHV. Only patients that hallucinated frequently enough 

to expect hallucinations in a 20 min time window were invited and underwent the 

combined tDCS/fMRI/experience sampling procedure twice, once while receiving 

real tDCS and once while receiving sham tDCS. The hypothesis was that the AVH 

would be reduced during the real tDCS compared to sham and that it would show “in 

real time” by reduced button presses. However, at this point we have too few 

participants and hallucination periods to carry out meaningful statistics for this study. 

While there is empirical support for the activity-selectivity notion, we did not observe 
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tDCS effects in paper II, where participants performed the dichotic listening task 

during stimulation. This would argue against the activity-selectivity theory.  

 Overall limitations for all three studies are low sample sizes, in line with 

previous studies using tDCS. It is desirable for future studies to acquire larger sample 

sizes. 
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6. Conclusion and future research 

Taken together, the thesis provided the following answers to the research 

questions set out in the introduction: 

1) Can tDCS reduce auditory hallucinations?  

In the studied sample, tDCS did relieve auditory hallucinations, but the placebo 

effect and real tDCS were difficult to distinguish and the AVH reduction was only seen 

in self report measures, and not in interviews performed by examiners.  

2) Is there supporting evidence for the hypofrontal/hypertemporal reversal model of 

the tDCS treatment?  

Neither paper II nor III showed results which would corroborate the idea that 

tDCS with the DLPFC and TPC montage compensates the hypofrontal/hypertemporal 

activity pattern. The underlying mechanisms of tDCS in general, but also this specific 

tDCS montage for AVH, need to be further explored; a reasonable starting point might 

be Broca’s area.  

3) What are the neurochemical and functional changes in the stimulated brain regions 

of tDCS treatment? 

Very few neurochemical and functional activity changes were found in 

connection with tDCS - at least with the parameters, montage, and healthy 

participants/patients used in the present studies. In the patient data, there were also no 

structural or functional connectivity findings in the regions of interest, the DLPFC and 

TPC. The hypothesized brain activity increase under the anode, with corresponding 

increase in Glx and/or decrease in GABA was not found. Neither did we find changes 

in the region underneath the cathode. Our findings suggest that the 

hypofrontal/hypertemporal reversal model of how tDCS treatment reduces AVH may 

need to be revised.  

4) Does tDCS relieve symptoms in POLG mutation specific epilepsy? 

In the presented case, tDCS did not relieve epilepsy, as spike activity was not reduced, 

nor were symptoms: muscular jerking was not reduced. 
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 Our data imply that future research needs to verify that tDCS has an effect 

beyond the placebo effect in AVH. If the effect size of the presented study turns out 

to be realistic, then we only rely on the placebo effect. Though placebo can be 

powerful, tDCS itself would not be effective. As described, tDCS did only induce 

small significant changes or treatment effects on AVH in our study, but we see in the 

literature and from individual cases in our RCT that it can have beneficial effects. To 

this end, the tDCS research field needs to combine forces to find out under which 

parameters the method is effective. That is, montages, session length, intensity (1 or 2 

mA), number of treatment sessions, electrode sizes and electrode shapes and so forth. 

 Gaining a better understanding of the mechanisms that underlie tDCS 

treatment of AVH (and other disorders) is a stepping stone to improve the treatment 

itself. To achieve this, more basic research on mechanisms is needed, preferably in 

the multimodal manner of the 2nd and 3rd paper described in this thesis. In patient 

groups, large RCTs need to be conducted, where it is possible to determine subgroups 

of patients which can have beneficial effects of tDCS (tDCS responders), related to 

severeness and length of illness and auditory verbal hallucinations, age, gender, 

nicotine addiction, medication interactions, and other factors. 
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We report a 15-year-old female with POLG-related mitochondrial disease who developed severe multifocal
epilepsia partialis continua, unresponsive to standard anti seizure drug treatment and general anesthesia.
Based on an earlier case report, we treated her focal seizures that affected her right upper limb with 20-min ses-
sions of transcranial direct current stimulation (tDCS) at an intensity of 2mAon each offive consecutive days. The
cathode was placed over the left primary motor cortex, the anode over the contralateral orbitofrontal cortex.
Surface electromyography (EMG) were recorded 20 min before, 20 min during, and 20 min after four of five
tDCS sessions to measure its effect on the muscle jerks. The electroencephalography (EEG) was recorded before
and after tDCS to measure the frequency of spikes. Our results showed no statistically or clinically significant
reduction of seizures or epileptiformactivity using EEG and EMG,with this treatment protocol. To our knowledge,
this is only the second time that adjunct tDCS treatment of epileptic seizures has been tried in POLG-related mi-
tochondrial disease. Taken togetherwith thepositivefindings from the earlier case report, the present studyhigh-
lights that more data are needed to determine if, and under which parameters, the treatment is effective.

© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Refractory status epilepticus

1. Introduction

Mitochondrial diseases are a group of genetic disorders affecting
about one in 5000 people [1]. The symptoms are diverse but since
mitochondria produce energy for body tissues through production of
adenosine triphosphate (ATP), organs with high energy consumption,
such as the brain, are often affected. For example, as many as 35% to
60% of people with mitochondrial disease develop seizures [1]. In
POLG-related mitochondrial disease, a genetic mutation interferes
with a catalytic subunit of the mitochondrial DNA polymerase gamma,
which replicates mitochondrial DNA [2], leading to depleted mitochon-
drial DNA [3]. Once the resulting neuronal energy failure reaches a
critical point, neuronal death ensues, causes atrophy and potentially

acts as the trigger for epilepsy that in turn increases neuronal loss [4].
A study found mitochondrial dysfunction in one third of patients with
epilepsy that underwent metabolic testing [5], emphasizing that drug-
resistant seizures are a frequent problem in mitochondrial disease,
and that new treatments need to be developed. In a previous case re-
port, focal seizures in a patientwith POLG-relatedmitochondrial disease
ceased after twoweeks of transcranial direct current stimulation (tDCS)
[6]. Since these seizures are often refractory to medical treatment and
the technique is non-invasive, we tested tDCS using similar parameters
as in Ng et al. [6] in a patient with POLG-related mitochondrial disease
and drug-resistant multifocal epilepsy.

1.1. Case report

This 15-year-old female was apparently healthy until the first
admission followed two consecutive generalized tonic–clonic seizures.
Prior to the seizures, she had experienced nausea, headache, reduced
vision and paraesthesia in both upper limbs. She was intubated during
helicopter transfer to hospital due to reduced consciousness. Following
admission, she regained consciousness, but developed continuous
jerking of her right arm. EEG showed ongoing epileptiform discharges
over the right occipital region (Fig. 1A) that later involved most of the
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right cerebral hemisphere, and because of persisting uncontrolled epi-
leptic activity she was loaded with phosphenytoin before using anes-
thesia with propofol and ketamine at relevant clinical dosages to
provide effective serum levels, as well as lowering her core body tem-
perature to 33 °C in accordance with the Norwegian treatment guide-
lines [7]. The clinical presentation with status epilepticus involving an
occipital lobe focus prompted investigation for POLG mutation, which

was subsequently confirmed through DNA sequencing analysis show-
ing a homozygous genotype c.2243GNC.

Following two episodes of propofol anesthesia and achieving burst
suppression, she regained consciousness and her epilepsy was then
treated with phenobarbital and oxcarbazepinewhile withdrawing phe-
nytoin. After stabilization, the patient was discharged with ongoing
medication treatment. She was readmitted a second and third time

Fig. 1. POLG disease visualized through EEG examples. Panel A) EEG sample from the patient from an early clinical recording, showing almost continuous 2 Hz polyspike-and-slowwaves
mainly over the right parieto-occipital region. Panel B) Continuous EEG recording from the tDCS experiment showing channels (from top to bottom) C4, C3, P3, O1 and EMG1 and EMG2
being the right hand and left trapezius, respectively.
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with headache and visual disturbances that quickly morphed into gen-
eralized tonic–clonic seizures, followed by focal motor status epilepti-
cus, both episodes treated with anesthesia and hypothermia. On the
third occasion, her MRI showed new changes in both occipital regions.
During the second prolonged admission, she still had jerking of her
right armdespitemaintaining phenytoin, levetiracetam, oxcarbazepine,
topiramate and clobazam at therapeutic doses. At the point where tDCS
treatment was instituted, the patient had a multifocal seizures with
multiple semiologies (Fig. 1A and B) including a multifocal, asynchro-
nous myoclonus, that was dominant and most debilitating in the right
hand. We thus targeted the left primary motor cortex with tDCS, as
the myoclonus activity most likely arose from that area, with the goal
to relieve pain and disability.

1.2. Methods of tDCS and EEG

The use of tDCS was discussed with the local ethical committee who
considered it a form of supplementary experimental treatment whose
purpose was to provide care for an individual, and for which the caring
physician could take responsibility without obtaining the committees'
approval. Verbal consent was obtained from the parents and treatment
was reported in the patient's medical journal. tDCS was applied for
20 min at 2 mA on each of five consecutive days with a DC-Stimulator
PLUS (neuroConn, Ilmenau, Germany) through 5 × 7 cm rubber elec-
trodes with saline soaked sponges giving a current density of
0.057 mA/cm2. The patient displayed continuous jerking in the right
hand muscles and left shoulder muscles. To reduce the jerking of the

Fig. 2. tDCSmontage and results. Panel A) Placement of anode at Fp2 (red) and cathode at C3 (blue)within the international 10/20 system. Panel B)Means of spikes/jerks per second across
all four days. Time in minutes. Panel C) Spikes/jerks per second and 95% confidence intervals before, during, and after treatment.
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right hand, the cathode was placed over the contralateral left primary
motor cortex at approximately C3 of the 10–20 EEG system (see
Fig. 2A). The rationale was that cathodal stimulation has been shown
to reduce cortical excitability in the brain area underneath the electrode
and hencemight reduce epileptic activity causing themyoclonus [8]. The
anode was placed on the right orbitofrontal cortex (approximately Fp2).
By placing the electrode on the contralateral side, the electric field be-
tween anode and cathode crosses the midline and was hoped to affect
themotor cortexmost effectively. Since the anode is active and expected
to increase cortical excitability, a better setup would have included an
extra-large anode that would effectively reduce the current strength.
However, as the tDCS treatment was issued at short notice, we did not
have large electrodes available at the time.We chose the orbitofrontal re-
gion, because it is often used as a control site in tDCS experiments [9] and
because it was not particularly affected by epilepsy. Indeed, we did not
observe a worsening in the EEG in this region after the treatment. The
tDCS setup was used in accordance with safety guidelines [10,11].

Initial EEG recordings and seizuremonitoring during status epilepti-
cuswere donewith continuous 25 channel clinical EEG and scored visu-
ally by experienced neurophysiologists. With the cathode placed over
the left primary motor cortex, we looked for improvement particularly
in the right hand. Continuous EEG was measured from C3 and C4
(right motor cortex as control) for 20 min before and 20 min after
tDCS, from a clinical EEG setup following the 10/20 system with 6 + 2
(F3, F4, P3, P4, O1, O2) electrodes and video monitoring of the patient.
EMG data from the right hand and left trapezius was acquired continu-
ously for 20min before tDCS, during 20min tDCS, and20min after tDCS.
EEG data was not interpretable during tDCS due to amplifier blocking.
EMG and EEG data were recorded on four out of five days.

Three separate raters, two neurophysiologists (TE, HKO) and the
tDCS clinician (LM), counted the frequency of spikes (EEG) and muscle
jerks (EMG) drawn from multiple random samples. Specifically, the
datawere binned into 12 five-minute segments. Then, each rater picked
randomly ten, artifact-free one-second periods from each five-minute
segment on all four days and determined the mean number of EEG
spikes and EMG jerks per second (Hz) for all four measurements (C3,
C4, right hand, left trapezius). Subsequently, means were calculated
across raters (see Fig. 2B) and EEG data was subjected to paired sample
t-tests andnon-parametricWilcoxon tests, comparing spikes before and
after tDCS. The means for EMG data were subjected to an ANOVA with
the repeated measures variable Time (before, during after tDCS) and a
non-parametric Friedman test. Non-parametric Friedman andWilcoxon
tests were included because not all variables met the normal distribu-
tion criterion necessary for t-tests and ANOVAs — due to the limited
range of values for spikes/jerks per second. At the same time, non-
parametric tests are sometimes not sensitive enough to pick up small
effects. In the interest of comprehensiveness, we thus decided to report
findings from both ANOVA/Friedman and paired sample t-tests/
Wilcoxon tests. We also compared the pre-tDCS data on day one (base-
line) to the post-tDCS data on day five using t- and Wilcoxon tests,
assuming that the treatment effect should be strongest between these
measurement points.

2. Results

Fig. 2C shows the average frequency of epileptic spikes and jerks in
the right hand and left shoulder during treatment. According to t-
tests/Wilcoxon tests for EEG data and the ANOVAs/Friedman tests for
EMG data, there were no significant differences in the means across all
raters in C3 or C4 spikes (all ts(15) ≤ 0.613, all ps ≥ 0.549; all χ2s(1) ≤
0.091, all ps ≥ 0.763) as well as jerks in the right hand and left shoulder
(all Fs(2,30) ≤ 1.74, all ps ≥ 0.192; all Zs ≥ 0.642, all ps ≥ 0.521). The mean
spikes and jerks across all raters for pre-tDCS on day one (baseline) ver-
sus post-tDCS on day five were for the right hand 4.58 ± 0.32 and 4.42
±0.57, left trapezius 4.58±0.32 and4.08±0.42 jerks/s, C3 4.50±0.43
and 4.25 ± 0.32 and C4 4.25 ± 0.32 and 4.13 ± 0.17 spikes/s,

respectively. None of these changes were significant (all ts ≤ 1.57, all
ps ≥ 0.215; all Zs ≤ 1.34, all ps ≥ 0.180).

TDCS treatmentwas given inMarch 2018. The stimulation itself was
well tolerated. The patient only reported short-term skin irritation from
the net holding the electrodes in place. Four months after receiving
tDCS, the patient was discharged from the hospital, still with upper
limb jerking, but was readmitted in December 2018 and died due to a
super-refractory status epilepticus.

3. Discussion

Neither spike nor jerk frequency changed over the course of five
tDCS sessions (between before, during, and after tDCS) or when com-
paring baseline spike/jerk rates from day one to after treatment on
day five. We therefore conclude that – in this case study – tDCS did
not have a beneficial treatment effect on treatment-resistant refractory
epilepsia partialis continua in POLG-related mitochondrial disease.
Hence, our results are inconsistent with those of Ng et al. [6], who
found that seizures stopped completely in a similar case study.

There are several differences between the two case studies that
could explain the different outcomes: Ng et al. [6] placed the cathode
over the right temporo-parietal–occipital junction (P4/T6), while in
our study it was over the left primary motor cortex. Ng et al. provided
tDCS treatment twice, once for three days and once for 14 days, while
we provided tDCS treatment once for five days. However, the treatment
in our case was stopped before the completion of 14 days because there
was no sign of improvement and due to technical reasons/staff avail-
ability. Moreover, while the patients appeared to have similar seizure
frequency their genotypes were different; the patient reported by Ng
and colleagues was homozygous for the c.1399GNA whereas our pa-
tient was homozygous for the c.2243GNC genotype. Both patients
were also on multiple, but different anticonvulsant regimens, raising
the possibility that competing mechanisms modulated response to
tDCS. Lastly, our casewas severe, so by the timewe started the interven-
tion the seizures may have become refractory to both medication and
tDCS treatment. We cannot rule out that cathodal stimulation else-
where (e.g., over the right occipital region) might have yielded a better
treatment response, perhaps, at an earlier stage of the disease. However,
while the patient had a multifocal epilepsy with multiple semiologies,
we specifically targeted the left motor cortex to reduce the myoclonic
jerking of the right hand that the patient found very debilitating. Simi-
larly, we cannot rule out that stimulating for more than five days
would have worked better.

According to guidelines published by a European expert consortium
in 2017, and several reviews, it is not yet possible to draw conclusions
regarding the efficacy of tDCS in any kind of epilepsy, even though
there are some promising results [12–15]. Similarly, it remains unclear
whether transcranial magnetic stimulation (TMS), another type of
non-invasive brain stimulation, is an effective treatment of epilepsy
[16–18], although there are some positive findings for epilepsia partialis
continua [19]. Even less is known about how these non-invasive brain
stimulation techniques will affect patients with mitochondrial diseases.
However, given that refractory epilepsy appears to be common in these
diseases [5], finding novel treatments is highly relevant. To our knowl-
edge, this is only the second documented attempt to use tDCS in mito-
chondrial disease. With one positive and one negative result, it is too
early to saywhether tDCSwillfinda place in the treatment ofmitochon-
drial epilepsy, but during the early stages of any new treatment, all find-
ings, negative or positive, need to be published to obtain a clearer
overall picture. This is particularly relevant in this case, where almost
nothing is known about the efficacy of tDCS for epilepsy in patients
with mitochondrial diseases. Further, because the condition is so rare,
it is difficult to realize randomized controlled trials with decent sample
sizes and that could control for potential placebo effects. A final reason
forwhywe deem it important to report this negative finding is – despite
its limited contribution to the literature – that there is growing
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awareness of reporting bias and replication issues in the scientific com-
munity and with it a growing recognition of the relevance of negative
findings. We hope that our findings contribute to a growing body of lit-
erature and encourage other scientists to provide larger samples and
proper clinical trials.
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Abstract
The underlying neural mechanisms of transcranial direct current stimulation (tDCS), 
especially beyond the primary motor cortex, remain unclear. Several studies exam-
ined tDCS effects on either functional activity, neurotransmitters or behavior but few 
investigated those aspects together to reveal how the brain responds to tDCS. The 
objective is to elucidate the underlying mechanisms of tDCS using a multimodal ap-
proach that extends from behavioral to neurotransmitter levels of explanation. Thirty-
two healthy participants performed an auditory dichotic listening task at two visits, 
one session with sham and one session with real tDCS (2 mA) while simultaneously 
undergoing functional magnetic resonance imaging (fMRI). The anode and cathode 
were placed over the left temporo-parietal cortex (TPC) and dorsolateral prefrontal 
cortex, respectively. Before and after simultaneous dichotic listening/fMRI/tDCS, 
combined glutamate and glutamine (Glx) and myo-inositol levels were assessed in 
the stimulated areas. While fMRI and dichotic listening showed expected functional 
activity and behavioral effects, neither method demonstrated differences between 
real and sham stimulation. Glx only showed a statistical trend towards higher levels 
after real tDCS in both stimulated brain areas. There were no significant correlations 
between behavior and Glx. Despite a reasonable sample size, electrical field strength, 
and replication of behavioral and functional activity results, tDCS had little to no 
effect on dichotic listening, Glx, and functional activity. The study emphasizes that 
findings about the underlying neural mechanisms of the primary motor cortex cannot 
simply be generalized to other brain areas. Particularly, the TPC might be less sensi-
tive to tDCS. Moreover, the study demonstrates the general feasibility of multimodal 
approaches.
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1  |   INTRODUCTION

Despite substantial progress, the underlying neural mecha-
nisms of transcranial direct current stimulation (tDCS) are 
still not well understood. In humans, the effects of tDCS are 
typically studied with respect to behavior (Ditye, Jacobson, 
Walsh, & Lavidor,  2012; Westwood, Olson, Miall, Nappo, 
& Romani,  2017), brain activity (assessed with functional 
magnetic resonance imaging, fMRI) (Antal et  al.,  2012) 
and neurotransmitters/neurometabolites (Kim, Stephenson, 
Morris, & Jackson, 2014; Stagg et al., 2009). For instance, 
several studies investigated tDCS effects on gamma-amino-
butyric acid (GABA) and glutamate, the main inhibitory and 
excitatory neurotransmitters, respectively. Some reported an 
increase of Glx (glutamate + glutamine) levels after anodal 
stimulation (Clark, Coffman, Trumbo, & Gasparovic, 2011; 
Hunter et al., 2015) and a Glx decrease after cathodal stimu-
lation (Stagg et al., 2009). However, there are also null find-
ings on glutamate or Glx (Antonenko et  al.,  2017; Dwyer 
et  al.,  2018; Kim et  al.,  2014). Another study found a sig-
nificant increase in myo-inositol under the anode (Rango 
et  al.,  2008). Myo-inositol is a carbocyclic sugar, derived 
from glucose and involved in signal transmission in the 
brain. Others have examined tDCS effects on fMRI measures 
in motor or cognitive tasks. For example, Antal, Polania, 
Schmidt-Samoa, Dechent, & Paulus (2011) found a signifi-
cant decrease of the blood oxygen level-dependent signal in 
the supplementary motor cortex when participants performed 
a finger-tapping task and were stimulated with anodal tDCS 
over the primary motor cortex. Weber, Messing, Rao, Detre, 
& Thompson-Schill (2014) reported changes in brain con-
nectivity, as assessed with fMRI, due to tDCS during a risk 
assessment paradigm.

However, few studies looked at tDCS effects on behav-
ior, brain activity and neurotransmitters together, although 
such a multimodal, neuroscientific approach may be more 
promising to reveal the associations between different as-
pects of brain functioning (Hunter, Coffman, Trumbo, & 
Clark,  2013; Tremblay et  al.,  2014). For instance, partic-
ipants in Antonenko et  al. (2017) received tDCS over the 
sensorimotor cortex during resting-state fMRI and GABA 
levels were measured before and after. The results showed 
reduced GABA levels after anodal tDCS compared to sham. 
Another study by the same group found that both anodal and 
cathodal tDCS decreased GABA levels and increased senso-
rimotor network connectivity and the tDCS induced changes 
in GABA levels correlated with the simulation of the tDCS 
electric field strength (Antonenko et al., 2019).

Studies investigating the underlying mechanisms of tDCS 
often focus on stimulation of the primary sensory/motor cor-
tex (Antal et  al.,  2011, 2012; Antonenko et al., 2019; Kim 
et al., 2014; Stagg et al., 2009). We aimed to extend that work 
and examined the left dorsolateral prefrontal cortex (DLPFC) 
and left temporo-parietal cortex (TPC) with respect to tDCS 
effects on behavior, neurotransmitter levels and functional 
brain activity—within the same study. We chose those two 
brain areas to test a model that seeks to explain auditory hal-
lucinations in patients with schizophrenia by assuming that 
hyperactive temporo-parietal areas give rise to auditory hal-
lucinations and hypoactive prefrontal areas limit an individ-
ual's capacity to control the hallucinations (Hugdahl, 2009, 
2015). Tentative evidence for the model comes from treat-
ment studies where anodal tDCS over the prefrontal areas 
(with a supposedly excitatory effect) and cathodal stimu-
lation of temporal areas (with a supposedly inhibitory ef-
fect) reduced hallucinations in patients with schizophrenia 
(Brunelin et al., 2012).

We aimed to test the model in healthy individuals using the 
Bergen dichotic listening task, in which simple speech sounds 
are presented to the left and right ear (Hugdahl et al., 2009). 
It was chosen because it is a reliable and well-established 
behavioral paradigm that involves both the DLPFC and the 
TPC, as revealed by functional neuroimaging (Westerhausen, 
Kompus, & Hugdahl, 2014). Behaviorally, it produces a right 
ear advantage that is modulated by participants' attention 
(Hugdahl,  2004). This right ear advantage and attentional 
modulation are typically reduced in schizophrenia patients 
(Hugdahl et al., 2013; Ocklenburg, Westerhausen, Hirnstein, 
& Hugdahl,  2013). Thus, by placing the excitatory anode 
over the TPC and the inhibitory cathode over the DLPFC 
in healthy individuals, we intended to “mimic” the reduced 
right ear advantage/generally fewer correct responses and the 
corresponding hypertemporal/hypofrontal activity pattern in 
schizophrenia patients as a test for the model.

More specifically, we hypothesized that excitatory, an-
odal stimulation of the left TPC and inhibitory, cathodal 
stimulation of the left DLPFC would lead to higher and 
lower levels of Glx, respectively. Functional brain activity 
would increase in the left TPC due to anodal excitation and 
Glx increase, and decrease in the left DLPFC, during tDCS 
as compared to sham. The right ear advantage would be 
reduced due to interference caused by increased Glx levels 
and reduced Glx levels in the left TPC and DLPFC, respec-
tively. Based on findings showing Glx increase under the 
anode and decrease under the cathode (Clark et al., 2011; 
Stagg et al., 2009), we predicted that Glx in the left DLPFC 
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(cathode) should be correlated negatively with a stronger, 
more focal electric field. In turn, Glx concentrations in the 
left TPC (anode) should be correlated positively with a 
stronger and focal electric field.

2  |   METHODS

2.1  |  Participants

Initially, 38 participants were recruited via flyers and word-
of-mouth at the Haukeland University Hospital, Bergen, 
Norway. Exclusion criteria were past/present neurological 
or psychological disorders, head trauma, metallic implants, 
epilepsy in first degree relatives, pregnancy, claustrophobia, 
acute consumption of drugs or alcohol at time of testing, and 
severe skin diseases in the area of the electrode placement. 
Six participants had to be removed from the analysis due 
to incomplete data (n = 1), insufficient magnetic resonance 
spectroscopy (MRS) quality, (n = 4) and incorrect stimula-
tion protocol (n = 1).

The mean age of the remaining 32 participants (18 
male/14 female) was 26  ±  4.8  years (range  =  20–39). 
Participants had a mean of 16 ± 2 years of education. All 
participants were screened for hearing deficits and could 
detect frequencies between 250 and 3,000 Hz at an intensity 
of <20 dB. Further, none of the participants had an interau-
ral acuity difference of more than 10 dB (see also Hirnstein, 
Hugdahl, & Hausmann,  2014; Hirnstein, Westerhausen, 
Korsnes, & Hugdahl,  2013). All participants gave writ-
ten informed consent in accordance with the Declaration 
of Helsinki and were reimbursed for their participation. 
The study was approved by the Regional Committee for 
Medical Research Ethics in Western Norway (REK Vest) 
# 2013/2342.

2.2  |  Procedure

The dichotic listening paradigm was carried out during 
fMRI to assess tDCS effects on functional brain activ-
ity. Moreover, immediately before and after simultane-
ous tDCS/fMRI/dichotic listening, participants underwent 
MRS to measure glutamate. Finally, we took inter-indi-
vidual differences in electric field parameters into account 
through simulation of tDCS effects based on structural MR 
scans.

A reporting checklist with an overview of the study's de-
sign, following the recommendations by Buch et al. (2017), 
is provided in the Appendix S1. Participants were tested 
twice, once with real and once with sham stimulation in a 
counter-balanced double-blind design. Fifteen participants 
received real, 17 sham tDCS in the first session. The real and 
sham tDCS sessions were separated by 8.4 ± 3.2 days on av-
erage (range: 4–16 days).

Only at the first session, participants provided in-
formed consent and completed the hearing test as well 
as the dichotic listening task practice trials. In both ses-
sions, they completed questionnaires concerning tDCS 
and MR safety, and electrode positions for tDCS were lo-
cated with EEG caps (EASYCAP GmbH), based on the 
10/20 system (Figure 1a), before entering the MR scanner. 
Rectangular, MR compatible tDCS electrodes made of rub-
ber (5 cm × 7 cm) were used. The cathode and anode were 
placed over AF3 (left DLPFC) and CP5 (left TPC), respec-
tively. Electrodes were coated with conductive paste Ten20 
(Weaver and Company) and a 9  mg/ml NaCl solution to 
decrease impedance and attached to the scalp via a rub-
ber band. Impedance was kept below 14.2 kΩ, which was 
tested outside the MR scanner.

After the impedance check, participants entered the 
GE 750 3T Scanner. In both sessions, the MR sequences 

F I G U R E  1   Electrode Montage and Experimental setup of one visit. Panel a) The cathode (blue) was placed over AF3 and the anode (red) 
over CP5. Panel b) Participants completed a dichotic listening task while undergoing simultaneous tDCS/fMRI. Before and afterwards, MR 
spectroscopy was performed in both stimulated areas. T1 was a structural scan that was used for modelling the electric field. At the end, participants 
completed an adverse effects questionnaire. Each participant visited twice, receiving once sham and once real tDCS.
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were completed in the order as described below (see also 
Figure 1b). For all details regarding MR acquisition, quality 
control and hardware/software, please see Appendix S1.

2.2.1  |  Structural MRI
After a localizer sequence, participants underwent a struc-
tural anatomical image 3D T1-weighted fast-spoiled gradient 

F I G U R E  2   MR spectroscopy setup 
and results. Panel a) Voxel placement 
during MRS acquisition of the DLPC and 
TPC (sagittal and axial view) from one 
participant (in orange) and the simulated 
peak activation, threshold at 0.48 V/m for 
the illustration, as a group average (in blue). 
Panel b) Typical successfully acquired MRS 
spectrum as given by LCModel. The black 
line denotes the measured data, the red line 
the model. Concentration estimates for the 
different neurotransmitters are given in the 
right-hand box. Panel c) Trend towards 
increased Glx levels after real tDCS as 
compared to sham tDCS. Vertical bars 
denote 95% confidence intervals
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sequence. The structural MR scan was carried out first for 
placing the voxels for the subsequent MRS and allowed elec-
tric field parameter simulations.

2.2.2  |  MR spectroscopy

The structural scan was followed by two single-voxel point 
resolved spectroscopy (PRESS) sequences. Two voxels were 
placed, based on the T1 images, in the left DLPFC and the 
left TPC (Figure 2a). After the simultaneous tDCS/fMRI/di-
chotic listening sequence, MRS was performed again in both 
voxels. The voxel order was identical before and after the 
simultaneous tDCS/fMRI/dichotic listening sequence. In the 
second session, voxel order was reversed. Seventeen partici-
pants began with the left TPC, and 15 participants began with 
left DLPFC in the first session. The order was randomized, 
meaning, seven participants who began with the left TPC 
started with real and 10 started with sham. For the DLPFC, 
eight participants started with real and seven participants 
started with sham.

2.2.3  |  tDCS

After MRS, the electrode cables were connected to the inner 
box and stimulation began. Codes were used to ensure dou-
ble-blinding. tDCS lasted 20 min (+30 s ramp up and 30 s 
ramp down) at 2 mA (current density = 0.057 mA/cm) from 
an MR compatible DC-Stimulator Plus (neuroConn GmbH). 
Sham tDCS was delivered for 40 s, followed by very weak 
pulses of 110 µA lasting 15 ms, provided every 550 ms as an 
impedance check.

2.2.4  |  Dichotic listening fMRI paradigm

During tDCS, participants completed a dichotic listening 
paradigm that was adapted to fMRI. It lasted 16 min and 
began 3.5  min after tDCS had started to ensure the left 
TPC and DLPFC had already been stimulated for a while 
(Figure  1b). In each dichotic listening trial, two out of 
six different syllables (/ba/,/da/,/ga/,/pa/,/ta/ and/ka/) are 
presented simultaneously, one to each ear. For example,/
ba/ to the left ear and/ka/ to the right ear. Homonyms 
(e.g., /ba/-/ba/) were not included, leaving 30 possible 
syllable combinations. Participants completed these 30 
trials twice, in three different conditions: In the non-
forced condition, participants were instructed to verbally 
report the syllable they heard best and most clearly. In 
the forced-left and forced-right condition, they were in-
structed to specifically report the stimulus from the left 
and right ear, respectively. Verbal responses were scored 

and recorded during scanning as a measure of behavioral 
data.

The dichotic listening paradigm was carried out in a 
block design during fMRI acquisition, using an echo-pla-
nar imaging sequence. The paradigm had 270 volumes in 
total, distributed across 25 blocks (seven resting blocks + six 
non-forced +  six forced-right +  six forced-left). The block 
order was pseudo-randomized. Each block consisted of 10 
trials, resulting in 180 dichotic listening volumes/trials and 
70 resting volumes (Hugdahl & Andersson, 1986; Hugdahl 
et  al.,  2009; Thomsen, Rimol, Ersland, & Hugdahl,  2004). 
A silent gap, a delay until the following scan, was provided 
after each volume for presenting the stimuli and for recording 
the verbal responses from the dichotic listening task (van den 
Noort, Specht, Rimol, Ersland, & Hugdahl, 2008).

After the dichotic listening task, participants waited for 
90  s in a quiet position until tDCS terminated. Then, the 
electrode cables were detached from the inner electrode box 
and the two remaining PRESS sequences were carried out. 
One participant with dyslexia was removed from the analy-
sis including dichotic listening data because dyslexia might 
be associated with aberrant hemispheric asymmetry and/or 
performance in the forced attention conditions (Breznitz & 
Misra, 2003; Thomson, 1976).

2.2.5  |  Adverse side effects

Side effects were measured with the tDCS Adverse Effects 
Questionnaire (Brunoni et al., 2011) after both sham and real 
tDCS sessions (Appendix S1).

2.3  |  Data analysis

SPSS Statistics (version 25) and Statistica (version 13.3) 
were used for statistical analysis.

2.3.1  |  Dichotic listening and fMRI

Correctly identified syllables were transformed into accuracy 
rates and subjected to a 2 × 3 × 2 repeated measures ANOVA 
with the within-participants variables Stimulation (real/sham), 
Dichotic Listening Condition (non-forced, forced-right, forced-
left) and Ear (left/right). Similarly for the fMRI group analysis, 
individual contrast images were subjected to a 2 × 3 repeated 
measures ANOVA with Stimulation (real/sham) and Dichotic 
Listening Condition (non-forced, forced-right, forced-left). A 
mean contrast was estimated for illustrating the overall acti-
vation pattern across all conditions and for comparisons with 
earlier studies. This was supplemented with differential and in-
teraction contrasts. For more details regarding preprocessing of 
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fMRI data in SPM12 (https://www.fil.ion.ucl.ac.uk/spm/), see 
Appendix S1. For dichotic listening and spectroscopy data, es-
timated marginal means are provided.

2.3.2  |  MR spectroscopy

Water-scaled, tissue-content-adjusted Glx levels from LCModel 
(Appendix S1) were subjected to a 2 × 2 × 2 repeated meas-
ures ANOVA with the within-participants factors Stimulation 
(real/sham), Time (before/after tDCS) and Brain area (DLPFC/
TPC). In four participants, MRS data from one voxel did not 
meet the data quality requirements. To retain the data from 
the other voxel with sufficient quality, we additionally calcu-
lated two Time x Stimulation ANOVAs separately for the left 
DLPFC (n = 35) and TPC (n = 33). For explorative reasons, we 
also ran the aforementioned 2 × 2 × 2 ANOVA with choline, 
creatine, myo-inositol and NAA levels.

2.3.3  |  Simulation of electrical field 
during tDCS

Simulation (done in SimNIBS 2.1.2, Simulation of NIBS [non-
invasive brain] stimulation [Version 2.1.2, Software] available 
from www.simni​bs.org) of the tDCS electrical field in each 
participant was done based on their real tDCS session. To run 
the model, the electrodes in the simulation were placed over 
the real electrodes on the participants' head model. The simu-
lated electrodes were 5 × 7 cm2, like the real ones, with a 1 mm 
electrode thickness and 3 mm gel. The electric field strength 
(in [V/m]) and the focality (in cubic mm) of the stimulation 
were calculated for the entire cortex and the peak activation 
field (10 mm sphere). For field strength, 99% of the norm of 
the electric field and for focality the gray matter volume with 
an electric field greater or equal to 75% of the peak value are 
reported. Means and SD were calculated.

2.3.4  |  Relationship between changes 
in Glx, dichotic listening accuracy, field 
strength, and focality

We computed a normality test for all variables and found 
some with non-normal distribution; hence, Spearman Rank 
correlations were computed between Glx and myo-inosi-
tol levels from before and after real stimulation as well as 
changes in Glx/myo-inositol levels (as calculated with Glx/
myo-inositolpre-tDCS minus Glx/myo-inositolpost-tDCS), sepa-
rately for DLPFC and TPC, with (a) field strength and fo-
cality from the simulation data and (b) the total number of 
correct responses in the non-forced, forced-right and forced-
left condition. All measures were taken from the real tDCS 

session. As tDCS had no significant effect on fMRI data (see 
below), no correlations involving fMRI data were computed.

3  |   RESULTS

3.1  |  Simultaneous Dichotic Listening and 
fMRI paradigm

3.1.1  |  Dichotic listening behavior

The behavioral data revealed a significant main effect of 
Ear (F(1,30) = 5.63, p = .024, �

p
2 = .158), showing that par-

ticipants reported more syllables correctly from the right 
(M = 45.51 ± 13.86) than the left ear (M = 35.51 ± 10.91). 
There was also a significant Condition*Ear interaction 
(F(1,30) = 40.28, p < .0001, �2

p
 = .573) with a substantial right 

ear advantage in the non-forced and forced-right condition, 
while a left ear advantage emerged in the forced-left condition 
(Figure 3). However, neither the main effect of Stimulation 
nor any interaction involving Stimulation reached signifi-
cance (all Fs ≤ 1.64, ps ≥ .203, �2

p
s ≤ .052).

3.1.2  |  fMRI

For the fMRI data, a mean contrast across all variables in 
the ANOVA (Figure  4a) showed activity in the auditory 

F I G U R E  3   Mean accuracy scores (estimated marginal means) 
for dichotic listening. Panel a) Real tDCS stimulation. Panel b) sham 
stimulation.
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cortex and the left DLPFC. Moreover, we found a main ef-
fect of Condition, showing two main significant clusters, one 
in the left cerebral white matter and precuneus (location in 
mm: x = −10 y = −60 z = 52, cluster level: #voxel = 1,739, 
p(FWE)  <  0.001, peak: F(2,186)  =  20.73 p(FWE)  <  0.001) 
and one in the right lingual gyrus and cerebellum exterior 
(location in mm: x  =  10 y  =  −64 z  =  −8, cluster level: 
#voxel  =  285, p(FWE)  <  0.001, peak: F(2,186)  =  21.71, 
p(FWE)  <  0.001; Figure  4b). There was also a significant 
cluster in the forced-right versus forced-left contrast in the 
right lingual gyrus and cerebellum exterior (location in 
mm: x = 10 y = −64 z = −8, cluster level: #voxel = 377, 
p(FWE)  <0.001, peak: T(1,186)  =  6.30, p(FWE)  <  0.001; 
Figure  4c). No significant suprathreshold clusters emerged 
for the main effect of Stimulation or the interaction between 
Conditions*Stimulation (all Ts  ≤  2.66, pFWE-corr  ≥  0.999, 
puncorr ≥ 0.004).

3.1.3  |  MR spectroscopy

Glx showed a trend for a Stimulation*Time interaction 
(F(1,31) = 3.35, p = .077, �2

p
 = .098). Glx levels were higher 

after tDCS than before when participants received real tDCS, 
while there was a very minor decrease during sham tDCS 
(Figure  2c). However, exploratory post hoc t-tests (unad-
justed) did not find a significant difference between before 
and after real tDCS (p = .109) and sham tDCS (p = .356). As 
there was no significant three-way interaction (F(1,31) = 0.002, 
p = .961, �2

p
 < .001), this Glx change did not differ between 

left TPC and DLPFC. Except for a main effect of Brain area 
(F(1,31) = 14.19, p = .001, �2

p
 = .314), with higher Glx levels 

in the left DLPFC (M = 11.45 ± 1.47) as compared to the 

left TPC (M = 12.84 ± 1.47), no other main effect or interac-
tion reached significance (all F ≤ 0.367, p ≥.549, �2

p
 ≤ .012). 

Likewise, there were no significant main effects or interac-
tions in the 2 × 2 ANOVA for either left DLPFC or TPC (all 
F ≤ 2.013, p ≥ .166, �2

p
 ≤ .059).

None of the other metabolites or parameters (choline, cre-
atine and NAA) showed a significant main effect or interac-
tion involving the factor Stimulation, except for myo-inositol, 
where a Stimulation*Time interaction emerged (F(1,31) = 4.59, 
p  =  .040, �2

p  =  .129). Real tDCS led to an increase from 
M = 5.34 ± 0.53 I.U. to M = 5.47±0.57 I.U., while there was 
a small decrease in sham tDCS from M = 5.40±0.72 I.U. to 
M = 5.29±0.65 I.U., uncorrected post hoc tests showed nei-
ther were significant. The difference between real and sham 
tDCS after stimulation was significant (p = .032).

3.2  |  Simulation of electrical field 
during tDCS

The simulated electric field strengths of all participants 
were strongest in the left central sulcus region and Broca's 
area, though with considerable inter-individual differ-
ences (Appendix S1). For the full cortex, the 99% peak 
field was M  =  0.65  ±  0.096  V/m and 75% focality was 
M  =  9,716±2045  mm2. For the Peak, the 99% peak 
field was M  =  0.77  ±  0.144  V/m and 75% focality was 
M = 274±142 mm2.

3.3  |  Correlations

Glx levels before/after tDCS as well as Glx changes between 
before/after did not correlate with either dichotic listening 
(all rs ≤ .345, ps ≥ .057) or simulated field strength and fo-
cality (all rs ≤ .234, ps ≥ .197). Similarly, myo-inositol lev-
els before/after tDCS as well as myo-inositol changes did not 
correlate with dichotic listening (all rs ≤ −.271, ps ≥ .140). 
Myo-inositol changes did not correlate with simulated field 
strength and focality (all rs ≤ −.197, ps ≥ .280). There was 
one significant correlation, uncorrected for multiple testing, 
between focality of the simulated field and myo-inositol lev-
els in the TPC before tDCS (r  ≤  −.422, p  ≥  .016), which 
would not withstand Bonferroni correction. All other corre-
lations between myo-inositol levels before/after tDCS with 
focality and simulated field strength were not significant (all 
rs ≤ −.177, ps ≥ .332).

3.4  |  Blinding and adverse side effects

When asked after the second session to indicate when they 
received real stimulation, 42% of participants responded 

F I G U R E  4   fMRI activity during dichotic listening. Panel a) 
Contrast across all variables in ANOVA. Panel b) Main effect dichotic 
listening condition. Panel c) Contrast forced-right vs. forced-left 
condition.

(a)

(b)

(c)
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incorrectly (blinding data from one participant was missing). 
A binominal test found no statistically significant difference 
from 50% chance level (p = .473), implying that the blind-
ing worked by and large. Results on adverse side effects are 
reported in the Appendix S1.

3.5  |  Power analysis

A G*Power analysis (Faul, Erdfelder, Buchner, & 
Lang,  2009) suggests that to obtain a significant 
Time*Stimulation interaction with n  =  32, one would 
need a medium effect size of f = 0.26 (with the settings: 
power = 0.80, α = .05, number of groups = 1, number of 
measurements = 2, corr among rep measures = 0.5, non-
sphericity correction = 1).

4  |   DISCUSSION

The present study aimed to elucidate the underlying mecha-
nisms of tDCS effects with a multimodal approach in areas 
beyond the rather well-researched primary motor/sensory 
cortex (Antal et  al.,  2012; Antonenko et al., 2019; Kim 
et al., 2014; Stagg et al., 2009). We expected a reduced right 
ear advantage/fewer correct responses in dichotic listening 
and increased Glx levels/functional activity in the TPC as 
well as reduced Glx levels/functional activity in the DLPFC 
during tDCS as compared to sham. However, we found no 
effects of tDCS on behavior and functional activity and only 
a trend towards a Glx increase after tDCS. There were only 
very weak correlations between Glx/myo-inositol levels and 
dichotic listening and simulated electrical field parameters, 
if any.

The mean contrast across all dichotic listening fMRI con-
ditions replicated previous findings: Behaviorally, a right 
ear advantage arose that was modulated by instructions to 
focus attention on either the left or right ear stimulus (Bless 
et  al.,  2013; Hugdahl & Hammar, 1997). We further repli-
cated increased functional activity in typical fronto-tempo-
ro-parietal language perception and attention areas (Noort 
et al., 2008; van den Kompus et al., 2012). Crucially, how-
ever, neither dichotic listening performance nor fMRI ac-
tivity was significantly affected by tDCS. The negative 
behavioral performance results are in line with a previous 
study that did not find tDCS effects on dichotic listening 
after anodal and cathodal stimulation over the left auditory 
cortex (D'Anselmo, Prete, Tommasi, & Brancucci,  2015). 
tDCS effects on functional activity during dichotic listening 
have not been investigated before. In the primary motor cor-
tex, tDCS also did not affect fMRI activity but led to reduced 
activity in the adjacent supplementary motor cortex (Antal 
et al., 2011). Finally, while our null findings do not support 

the hypertemporal/hypofrontal model (Hugdahl, 2015), they 
also do not invalidate it.

The weak increase in Glx after tDCS was independent of 
the electrode/brain area. This is inconsistent with findings 
showing increased Glx levels only after anodal stimulation 
(2 mA) of the right parietal cortex (Clark et al., 2011; Hunter 
et al., 2015) or decreased Glx levels only after cathodal tDCS 
(1 mA) of the motor cortex (Stagg et al., 2009). Our finding 
is in line, however, with other studies that failed to detect 
tDCS induced changes in Glx in the primary motor and sen-
sorimotor cortex, posterior superior temporal gyrus and cer-
ebellar cortex at both 1 and 2 mA (Antonenko et al., 2017; 
Dwyer et  al.,  2018; Jalali, Chowdhury, Wilson, Miall, & 
Galea,  2018; Kim et  al.,  2014; Zappasodi et  al.,  2017). 
Another study found increased Glx levels in the striatum 
during tDCS (1 mA) over the left and right DLPFC (Hone-
Blanchet, Edden, & Fecteau, 2016). The inconsistent results 
are likely to arise from differences in stimulation intensity 
and electrode location, for instance. However, spurious find-
ings with small samples also constitute a problem: some 
tDCS/spectroscopy studies have sample sizes around n = 10, 
which is plainly underpowered as recently demonstrated 
(Sanaei Nezhad et al., 2020).

The most parsimonious explanation for the weak dichotic 
listening behavioral, Glx and fMRI effects is that the electric 
current was too low to induce meaningful changes. However, 
there was a significant, electrode-independent increase of 
myo-inositol levels, in line with a previous study (Rango 
et  al.,  2008). Moreover, glutamate changes were reported 
in the sensorimotor cortex (Antonenko et al., 2019) and on 
motor learning in tDCS over primary motor cortex (Naros 
et  al.,  2016) with 1  mA—thus, in principal, lower electric 
field strength than in the present study. Finally, since the cor-
relations between electric field parameters and dichotic lis-
tening performance as well as the MRS measures were either 
non-significant (or would become non-significant if adjusted 
for multiple testing), stronger electric field parameters might 
not have necessarily produced stronger tDCS effects.

Another possibility is test power. Our study has a reason-
able sample size compared to previous studies. We cannot 
conclude that tDCS with the parameters described here has 
no effect at all. However, if it exists, the effect is likely to be 
small (at best medium) according to our power analysis.

A third possibility is that we failed to detect significant 
tDCS effects because the peak of the electric field was be-
tween the two electrodes, and not in the stimulated left 
DLPFC and TPC itself. While this could explain the lack of 
clear Glx-results, it is difficult to reconcile with the signifi-
cant increase of myo-inositol levels in the left DLPFC and 
TPC, and with the fact that we did not observe any changes 
in functional activity in the left central sulcus/Broca's area.

Meta-analyses showed that cathodal tDCS in the DLPFC 
has little effect on cognitive tasks (Dedoncker, Brunoni, 
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Baeken, & Vanderhasselt, 2016) and that the cathode rarely 
induces inhibitory effects in cognitive tasks (Jacobson, 
Koslowsky, & Lavidor,  2012). In the auditory and pos-
terior temporal cortex, performance in dichotic listening 
(D'Anselmo et al., 2015) as well as in reading and naming 
tasks (Westwood et al., 2017) was found to be unaffected by 
tDCS, and anodal stimulation of the posterior superior tem-
poral gyrus did not change Glx levels (Dwyer et al., 2018). On 
the other hand, anodal tDCS over the temporo-parietal junc-
tion had behavioral effects on reality monitoring (Mondino, 
Poulet, Suaud-Chagny, & Brunelin, 2016) and tDCS over the 
DLPFC yields promising findings with respect to depression 
treatment (Mutz, Edgcumbe, Brunoni, & Fu,  2018; Palm, 
Hasan, Strube, & Padberg, 2016). Taken together, the DLPFC 
and TPC can evidently be affected by tDCS, but given the 
considerable body of null findings together with the present 
findings, it seems that at least the posterior temporal-parietal 
region might be less responsive to tDCS than, for instance, 
the primary sensory/motor cortex. This might make tDCS 
treatments targeting posterior temporal-parietal areas more 
challenging (e.g., in schizophrenia or tinnitus).

4.1  |  Limitations

Since the structural MR scans were taken with the electrodes 
on, the electrodes were included in the modelling of the elec-
tric field parameters as part of the head. While this affects 
the thickness of skin and skull in the model, it does so for 
all participants and should not meaningfully affect the results 
of the simulation (G.B. Saturnino, A. Thielscher, personal 
communication, April 08, 2019). We placed the MRS voxels 
as closely under the electrodes as possible to measure tDCS 
effects. However, moving the voxel deeper into the brain, es-
pecially in the TPC, would have given better MRS measure-
ments. We further avoided high CSF involvement by adding 
saturation bands, but this does not protect against signal loss 
from participants' movements.

Moreover, whilst the sample size is relatively large for a 
study of this nature, it is still small for correlational work 
and, finally, the effect of stimulation intensity needs further 
elaboration. A recent study (Samani, Agboada, Jamil, Kuo, 
& Nitsche, 2019) showed that at 2 mA the cathode might not 
have an inhibitory but excitatory effect—which is in fact in 
line with our increased Glx levels under the cathode. Thus, 
cathodal stimulation at 1  mA could have yielded different 
results.

In conclusion, we found at best weak effects of tDCS over 
the left DLPFC and TPC on behavior, glutamate, and func-
tional activity. This is unlikely due to insufficient electric 
current but, together with other findings, could reflect that 
the stimulated regions, especially the left TPC, are less sen-
sitive to tDCS than primary sensory/motor areas. Although 

such weak findings are naturally limited in terms of their 
scientific contribution, we still think they are relevant—es-
pecially in the field of brain stimulation, which due to its fast 
growth and popularity is sometimes subject to findings that 
raise replication issues: First, the present study further em-
phasizes that findings from the primary sensory/motor cortex 
cannot easily be generalized to other brain regions. Second, 
it demonstrates that multimodal approaches that combine 
behavioral with multiple neuroscientific assessments are fea-
sible, in principle. Such studies are rare to date, but clearly 
have the potential to deepen our understanding the underlying 
mechanisms of tDCS.
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