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Abstract

Farming of Arctic charr mainly takes place in land-based farms applying intensive

rearing methods with relatively high production costs. Depending on local condi-

tions at each site, it is possible to regulate important environmental factors to

improve productivity and well-being of the fish. Knowledge about how these differ-

ent environmental factors affect various farming traits is important to reduce pro-

duction costs. This review shows how rearing temperature, photoperiod, salinity

and feeding rate can affect farming traits such as growth rate, maturation and feed

conversion efficiency of Arctic charr. High growth rate during juvenile phase when

the fish are reared at higher temperatures can result in higher incidence of matura-

tion during the on-growing period. Overall, more moderate rearing temperature

regimes seem to result in better long-term growth rates. Photoperiod manipulation

and feed ration can be used as tools to improve growth and reduce maturation. It is

possible to rear Arctic charr successfully up to market size in salinities up to c. 27–
28 ppt. However, extended rearing resulted in higher ratio of sexually mature fish

at 29 than at 25 possibly linked to higher rearing temperatures in brackish water.

Future studies should focus on better preserving the potential high growth rate of

Arctic charr during juvenile phase into the on-growing period and establish proto-

cols to improve the seawater tolerance of Arctic charr.

Key words: Arctic charr, environmental manipulation, land-based farming, seawater tolerance,

sustainable aquacultue, temperature.

Introduction

The Arctic charr has a circumpolar distribution in the

Holarctic region (Maitland et al. 2007; Fig. 1). It has the

northernmost distribution of all freshwater and anadro-

mous fish species, and it is estimated that over 50 000 pop-

ulations exist worldwide with most diversification in the

Scandinavian countries (Klemetsen et al. 2003). The pro-

duction of Arctic charr has increased slowly but steadily

during the last 30 years to reach 6000–10 000 metric tons

(MT, Sæther et al. 2013, 2016). Iceland is the leading pro-

ducer of Arctic charr with an annual production of

4280 MT in 2017, and further expansion is planned. Most

of the charr produced in Iceland is exported fresh to either

the European or the North American markets. Other coun-

tries, such as Canada, Sweden and Norway, produce Arctic

charr mainly for domestic markets.

Farming of Arctic charr

Arctic charr has several features that make it a good species

for farming in colder climates. It has relatively good growth

rate at low temperatures (Le Franc�ois et al. 2002; Gun-

narsson et al. 2011; Siikavuopio et al. 2013), it can be reared

at high densities (Jobling et al. 1993a; Jørgensen et al. 1993)

and flesh is perceived of high quality (Gines et al. 2004;

Gunnarsson et al. 2012). Several aspects of the farming

cycle and the attributes of Arctic charr as food are impor-

tant to the species sustainability as farmed product. No

antibiotics or other medical products are used in Arctic

Charr farming in Iceland, and it has not been genetically

modified (GMO) in any way. Consumer preference tests

done by Mat�ıs in Iceland (https://issuu.com/matisohf/docs/

iceland_arctic_charr) revealed that consumers rate the pro-

duct as a high-quality product with excellent taste. The

© 2019 The Authors. Reviews in Aquaculture published by John Wiley & Sons Australia, Ltd. 1
This is an open access article under the terms of the Creative Commons Attribution License, which permits use,

distribution and reproduction in any medium, provided the original work is properly cited.

Reviews in Aquaculture, 1–19 doi: 10.1111/raq.12404

https://orcid.org/0000-0003-0077-8077
https://orcid.org/0000-0003-0077-8077
https://orcid.org/0000-0003-0077-8077
mailto:
https://issuu.com/matisohf/docs/iceland_arctic_charr
https://issuu.com/matisohf/docs/iceland_arctic_charr
http://creativecommons.org/licenses/by/4.0/


carbon footprint of the farming is very low and around

20% lower than farming of Atlantic salmon in Norway

(http://www.avs.is/media/skyrslur/2013_10_30_Iceland_

Arctic_Charr_final.pdf). Arctic Charr is as rich in protein as

cod but higher in unsaturated fatty acids. Vitamin D content

of the fillet is high so 100 g of fillet would suffice to cover

the recommended daily allowance for vitamin D. The

polyunsaturated fatty acids of Arctic Charr are mostly long-

chain omega-3 fatty acids. Arctic Charr is very low in sodium

(http://www.matis.is/media/matis/utgafa/33-11-Naeringa

rgildi-sjavarafurda.pdf).

Eriksson et al. (2010) reviewed the status of Arctic charr

farming in Sweden and concluded that, in order to develop

a significant charr industry in Sweden, Iceland and Norway,

an effort would be required to develop the markets. Fur-

thermore, factors such as limited tolerance to high temper-

atures, limited seawater tolerance and morphological

variations between strains are all factors that limit the pro-

duction of Arctic charr (Guðmundsd�ottir 2017). Nonethe-

less, the slow but steady growth in the production of Arctic

charr and the limited production volume has maintained

market prices relatively constant. The market price of fresh

Arctic charr has reached more than twice the market price

of Atlantic salmon showing the high-quality and consumer

preferences in markets where the species is well known

(Thorarinsdottir 2013).

Breeding programmes for Arctic charr have been in place

in Iceland and Sweden for the past 30 years (Svavarsson

2007; Eriksson et al. 2010). In both countries, fish were col-

lected from several wild populations and compared before

selecting the populations with the best production perfor-

mance to start up the breeding programmes. After about

seven generations, substantial progress has been made to

enhance growth and reduce early maturation in the farmed

strains. In Sweden, the production time of a given group

has been shortened from 3.5 to 1.5 years and maturation

reduced from over 70% to less than 5% for fish smaller

than 1 kg (Eriksson et al. 2010). Through selective breeding

and other measures, the productions costs of Arctic charr

in Sweden have been reduced by at least 40% compared to

the years before 2000 (Eiriksson et al. 2010). In Iceland, the

progress of selective breeding is reported to be about 3–4%
weight gain per year and the incidence of early maturation

has dropped from about 20–30% to less than 5% for 1 kg

Arctic charr (Svavarsson 2007).

Most of the Arctic charr production in Iceland is in coastal

land-based farms with good access to brackish (15–25 ppt)

water at stable temperatures. The juvenile production is all

Figure 1 Map showing the global distribu-

tion of Arctic charr inclusive of all nominate

subspecies and closely related “species” con-

sidered to belong to this group in the narrow

sense (http://www.grida.no/resources/7758).
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in freshwater, but in Iceland, the fish are commonly trans-

ferred to brackish water at a size of 50–150 g (�Arnason et al.

2014; Gunnarsson et al. 2014). The land-based farms offer

varying degrees of possibilities of controlling environmental

factors such as rearing temperature, salinity and photope-

riod. In Sweden, the majority of Arctic charr farms are in

large, semi-oligotrophic freshwater lakes in the northern half

of the country (Eriksson et al. 2010).

In Canada, the potential for selective breeding in sev-

eral strains has been investigated (Ditlecadet et al. 2006,

2009; Blackie et al. 2011; Norman et al. 2011, 2014). Two

natural populations from geographically distant locations

and phylogenetic lineages have been the primary contrib-

utors to the Arctic charr being produced in the Canadian

industry (Blackie et al. 2011): the Nauyuk Lake system in

Nunavut and the Fraser River in Labrador. These strains

were established from limited numbers of founders in the

1970s and 1980s (Lundrigan et al. 2005). Blackie et al.

(2011) found that broodstocks from the Nauyuk Lake

broodstocks showed greater differentiation from each

other than did Fraser River broodstocks, which could be

attributed to differences in the number of founders. The

genetic variability in two farmed strains in Quebec

(Buteux and Fraser) was investigated by Ditlecadet et al.

(2006). They found that the two strains had significantly

different allelic and genotypic distribution and that the

genetic variability was lower in the Quebec domesticated

strains than in wild populations of the same species. In a

later study (Ditlecadet et al. 2009) with the same farmed

strains, it was found that faster-growing families had sig-

nificantly lower relatedness coefficients than slower-grow-

ing families. Recently, Nugent et al. (2017) presented a

single nucleotide polymorphism (SNP) linkage map for

Arctic charr based on genetic sequencing of 85 full-sib-

lings, and their parents, from the Fraser strain.

Effects of environmental factors on growth of
Arctic charr

Farms where fish are reared in net cages have limited possi-

bilities of regulating environmental factors. However, in

land–land-based farms there may be some room for adjust-

ment of rearing environment depending on the local condi-

tions (Thorarensen & Farrell 2011). Farms applying

recirculation technology have, at least in principle, the pos-

sibility to regulate most of the environmental factors affect-

ing growth and feeding although economic considerations

may limit what is feasible, for example, in terms of temper-

ature control. Similarly, farms with access to geothermal

heat or hot effluent water from industrial plants may have

possibilities of regulating rearing temperature. However,

most farms have limited practical possibilities of regulating

rearing conditions. Photoperiod and light can be controlled

both in tanks and in net cages. Most Arctic charr farmers in

Iceland have light over tanks, reportedly to increase feed

intake during the night. This has, however, not been stud-

ied in any detail. Under these conditions, fish may mature

during any season which suggests that the lights are strong

enough to affect biological clocks, even in outdoor tanks.

Sound knowledge of the impact of different environmental

factors on important farming traits is therefore critical so

they can be manipulated to secure high productivity and

competitiveness for farming and matching the needs of a

given species.

Consistent with its northerly distribution (Maitland et al.

2007), Arctic charr is also among the most cold-adapted

freshwater and/or anadromous fish species in the world

(Baroudy & Elliott 1994; Sinnatamby et al. 2015). Despite

their association with cold environments, Arctic charr exhi-

bit the widest natural distribution of all salmonids and

some recent studies have indicated that different popula-

tions of Arctic charr may differ in their response towards

environmental factors. Sinnatamby et al. (2015) studied

phenotypic variation in inferred growth and field metabolic

rates in young-of-the-year Arctic charr across eastern and

central Canada and revealed higher growth in high-latitude

populations demonstrating the significant ability of the

species to utilize different thermal regimes with different

growing season lengths. In Iceland, studies have revealed

differences in growth performance of different populations

(P�etursd�ottir & Eyþ�orsd�ottir 1993; Eyþ�orsd�ottir et al.,

1993). Larsson et al. (2005) found differences in growth

performance among Arctic charr populations in Sweden,

but no indication of thermal adaptation. This review

focussed the impact of environmental factors on the growth

and maturation in farmed Arctic charr discussion the

response to environmental factors in farmed populations.

We are fully aware that these responses may differ in differ-

ent wild populations (P�etursd�ottir & Eyþ�orsd�ottir 1993;

Larsson et al. 2005; Sinnatamby et al. 2015), but this is out-

side the scope of this review which focuses on the response

in farmed Arctic charr.

The main objective of this review was to discuss how the

farmers of Arctic charr can use and manipulate environ-

mental factors to improve the productivity of their farms.

In a recent review by Sæther et al. (2016), the water quality

requirements for land-based farming of Arctic charr were

reviewed. Accordingly, the present review focuses on

manipulation of temperature, photoperiod, salinity and

feeding regimes and their effects on growth, feeding and

maturation of farmed strains of Arctic charr.

Rearing temperature

A good number of studies have examined the effect of tem-

perature on the growth of Arctic charr, and the results
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suggest that the optimum temperature for growth for juve-

niles is between 12 and 18°C (Swift 1964; Lyytik€ainen et al.

1997; Larsson & Berglund 1998, 2005; Larsson et al. 2005;

Jobling et al. 2010; Gunnarsson et al. 2011; Table 1). How-

ever, Arctic charr will grow at temperatures as low as 0.3°C
(size range: 200–300 g, Br€ann€as & Linn�er 2000; size range:

2–25 g, Borgstrøm et al. 2015) and the upper limits for

growth are near 20°C (size range: 1–5 g, Lyytik€ainen et al.

1997; size range: 15–26 g, Thyrel et al. 1999). Most of these

studies were performed on small fish over a relatively short

period of time and provide only limited information on the

effect of temperature on the long-term growth of Arctic

charr up to market size. For most species, the optimum

temperature for growth decreases with increasing size of

fish (Hallar�aker et al. 1995; Bj€ornsson & Tryggvad�ottir

1996; Imsland et al. 1996, 2001a,b, 2006, 2008; Aune et al.

1997; Jonassen et al. 1999). Long-term studies on the

growth of Arctic charr also suggest that the optimum tem-

perature for growth of the fish is reduced as the fish grow

larger (Gunnarsson et al. 2011; Siikavuopio et al. 2013;

Table 1). In Figure 2, we summarize the results of several

growth studies of two Icelandic aquaculture populations

and one wild population of Arctic charr performed between

1997 and 2000. The long-term growth of fish was consis-

tently as good or even better at 9°C than at 15°C. Similarly,

P�etursd�ottir and Eyþ�orsd�ottir (1993) found about equal

growth of fish when reared at 8–12°C (Fig. 3), but lower

gonadosomatic index at 5 and 9°C compared to 14℃
(Fig. 4). These results suggest that there are small differ-

ences in long-term growth performance between 8 and

15°C for Arctic charr up to 800 g, considerably lower tem-

perature than the results of the short-term studies suggest.

These findings concur with the experience of some Ice-

landic fish farmers who choose to grow Arctic charr at 8–
9°C, even if higher temperatures are available, claiming that

growth at this temperature is equally good and that there

are less problems with diseases than at higher temperatures

(Benedikt Kristj�ansson, �Islandsbleikja Fish Farm, pers.

comm.). Another reason that favours the use of lower tem-

peratures in Arctic charr aquaculture is that growth rate is

maximized a few degrees below the temperature giving

maximum feed intake (Jobling 1994; Imsland et al. 2006;

Handeland et al. 2008). Feed conversion efficiency can,

therefore, improve if the rearing temperature is lowered

slightly below the optimum temperature for growth.

During growth to market size, the feed intake of Arctic

charr can cycle (P�alsson et al. 1992) resulting in periods

where growth rate is reduced or the fish even lose weight

(Sæther et al. 1996; Tveiten et al. 1996; Damsg�ard et al.

1999). This is also in line with the experience of Icelandic

charr farmers where fish reared at a constant temperature

under continuous light, go through periods where feed

intake and growth rate are reduced (Hjalti Bogason, �Islands-

bleikja Fish Farm, pers. comm.), especially in farms that

grow the fish to a market size of 1.5 kg or more. These

growth cycles may, to some extent, be linked to maturation

since maturing fish grow faster than immatures early in

spring and then feed intake and growth of maturing fish is

reduced in late summer and autumn (P�alsson et al. 1992;

Sæther et al. 1996; Tveiten et al. 1996; Damsg�ard et al. 1999).

The growth cycles of Arctic charr are not only related to

maturation status, since immature fish also show growth

cycles (Jobling 1987; Sæther et al. 1996; Damsg�ard et al.

1999). For wild fish, these cycles may balance the need to

acquire quickly the necessary energy to survive long winters

without undue exposure to predation while foraging, espe-

cially in the marine environment. The growth cycles of

immature fish are caused by variations in feed intake and

they are maintained under constant temperature and pho-

toperiod conditions, suggesting that they are driven by

endogenous rhythm (Jobling 1987; Sæther et al. 1996).

There also appears to be some form of regulatory mecha-

nism, a lipostat of sorts (Frøiland et al. 2010, 2012), that

reduces feed intake once the fish have reached a certain

level of adiposity. At higher temperatures, the cycles may

be shorter (6 months at 10°C) (Jobling 1987) than at lower

temperatures (12 months at 4°C) (Sæther et al. 1996)

which suggests that temperature could modulate the length

of the cycles. Fulton’s condition factor (K) can be an indi-

cator of the different energy reserves especially when

Table 1 Optimal rearing temperature for growth for different onto-

genic groups and size classes of Arctic charr

Size of Arctic

charr

Optimal

temperature for

growth

Reference

Broodstock 4–6°C Jobling et al. (2010)

Eggs 4–6°C Jobling et al. (2010)

Yolk sac—first

feeding stage

6–8°C Jobling et al. (2010)

Juveniles

0.5–25 g 15°C Lyytik€ainen et al. (1997),

Larsson and Berglund (1998)

<50 g >15°C

20–150 g 12–18°C Siikavuopio et al. (2013)

12–16°C Jobling et al. (2010)

14–16°C Swift (1964), Thyrel et al.

(1999), Larsson and Berglund

(2005), Larsson et al. (2005)

50–200 g 15°C Siikavuopio et al. (2013)

On-growing

100–500 g 8–12°C P�etursd�ottir and Eyþ�orsd�ottir

(1993)

15°C Gunnarsson et al. (2011)

>500 g 7–12°C Gunnarsson et al. (2011)

8–12°C P�etursd�ottir and Eyþ�orsd�ottir

(1993)

Reviews in Aquaculture, 1–19

© 2019 The Authors. Reviews in Aquaculture published by John Wiley & Sons Australia, Ltd.4

A. K. D. Imsland et al.



comparing fish of similar sizes. The K of Arctic charr

increases as they grow and the rate at which the K increases

is proportional to temperature between 5 and 14°C (Gun-

narsson et al. 2011). Therefore, fish reared at higher tem-

peratures may reach earlier the level of adiposity where feed

intake and growth are reduced and this, in turn, could

explain why the growth cycles are shorter at higher temper-

atures (Jobling 1987; Sæther et al. 1996). However, it is not

clear whether the set points of adiposity, whether they do

in fact exist, are the same at all temperatures. It is of interest

to look at the results of Gunnarsson et al. (2011) in this

context. They found that when charr were transferred from

15 to 12°C, the fish almost stopped growing while fish

maintained at 15°C continued to grow well (Fig. 5). In con-

trast, the growth rate of fish transferred from 12 to 9°C slo-

wed only slightly (Fig. 5) compared with fish maintained at

12°C. The K in the group reared at 15°C was higher at the

time of transfer than in the 12°C group which may suggest

that the ‘set point’ of the ‘lipostat’ is lower at 12 than at

15°C. Another possibility is that K reached at 15°C
exceeded the lipostat value for growing at 12°C, while the K
reached during growth at 12°C was not only lower but also

under the threshold that would reduce the growth rate for

fish at both 9 and 12°C. In this case, the ‘set point’ of the

‘lipostat’ is not necessarily lower at 12 than at 15°C but just

not reached.

Since the optimum temperature for growth is reduced as

the fish become larger, it may be possible to maximize

growth by reducing the rearing temperature progressively

as the fish grow. The growth of Atlantic halibut, Hippoglos-

sus hippoglossus L. (Aune et al. 1997), turbot, Scophthalmus

maximus, and Atlantic cod, Gadus morhua (Imsland et al.

2007, 2008), has been improved by 18–20% compared with

fish reared at constant temperature by applying a strategic

Figure 2 Results from three growth studies

on Arctic charr populations at different tem-

peratures. The first experiment was conducted

in 1997–1998 (a and b), the second experi-

ment was conducted in 1998–1999 (c and d)

and the third experiment was conducted in

1999–2000 (e and f). The populations Gren-

lækur and €Olfusvatn were the populations

chosen for the Icelandic Arctic charr breeding

programme and are the F2–F3 generations

from wild ancestors. The M�yvatn population is

the F1 generation from wild parents. Each

population was tested in either duplicate (a, c,

d) or one tank (b), with 90–100 fish in each

tank 2-m3 tank. All experiments commenced

in early October. Prior to that time, all groups

were reared at 8–10°C. The fish were fed in

excess, twice each day. (a) , 5°C; ,

10°C; , 15°C. (e) , 5°C; , 9°C; ,

13°C.
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reduction in temperature reflecting the progressive change

in optimum temperature as the fish grow. A similar

approach was tested for farmed Arctic charr (Gunnarsson

et al. 2011) but with no long-term production gain since

the growth of fish reared at progressively lower tempera-

tures resulted in a consistently lower growth rates than in

fish kept at constant temperature.

Photoperiod

Photoperiod is one of the physical environmental factors

that can be regulated in Arctic char farming to improve

productivity through various physiological processes such

as the feed intake (P�alsson et al. 1992; Sæther et al. 1996;

Tveiten et al. 1996; Gunnarsson et al. 2012), growth (Mor-

tensen & Damsg�ard 1993; Gunnarsson et al. 2012) and

maturation (Frantzen et al. 2004; Liu & Duston 2019). In

land-based farms in Iceland, Arctic charr is most com-

monly reared under continuous light, both during the juve-

nile stage and the on-growing phase by placing artificial

light above the water surface of each tank.

In nature, the Arctic charr displays highest growth rate

during spring and summer, but this period also coincides

with high availability of food sources and increasing water

temperatures (Jørgensen & Johnsen 2014; Hawley et al.

2017). However, Arctic charr held in controlled

environment, including constant photoperiods and stable

water temperatures, also display seasonal cycles in food

intake and growth (P�alsson et al. 1992; Sæther et al. 1996;

Tveiten et al. 1996). Growth of Arctic charr is often stimu-

lated following changes in day length, and the growth of

fish in changing photoperiod may be better than in fish

kept in constant photoperiod. Thus, Duston et al. (2003)

reported lower maturation rate and increased proportion

of high-value fish (>1 kg) in Arctic charr that were exposed

to long photoperiod (LD18:6) for 42 days during winter

followed by a short (LD8:16) or natural photoperiod com-

pared with fish reared under constant long days. Mortensen

and Damsg�ard (1993) reported that Arctic charr (4–50 g)

reared at constant short or long days grew equally well, but

a group of fish reared for a period on a short photoperiod

followed by long photoperiod showed a significant increase

in growth. In a long-term study, Siikavuopio et al. (2009)

reported a 25–30% higher growth rate of wild Arctic charr

held under culture condition and exposed to intervals of

short day length in between periods of continuous light

compared with a group reared at continuous light. Gun-

narsson et al. (2012) reported that Arctic charr given a 6-

week short photoperiod between periods of continuous

light improved long-term growth rate of Arctic charr reared

in freshwater (Fig. 6a) compared with fish kept in continu-

ous light. However, a change from short days to long days

does not necessarily result in increased growth, as Bot-

teng�ard and Jørgensen (2008) found no immediate increase

in growth in Arctic charr after transfer from short days to

Figure 3 Results from a growth experiment conducted in Iceland in

1991–1992 (redrawn from P�etursd�ottir & Eyþ�orsd�ottir 1993;

Eyþ�orsd�ottir et al. 1993). The fish come from several different popula-

tions sampled in different locations around Iceland in autumn 1990. F1

generation from wild parents. Each temperature treatment was tested

in duplicate with 50 fish in each tank. All populations were reared in

equivalent conditions at temperatures 4, 6, 8, 10, 12 and 14°C. ,

4°C; , 6°C; , 8°C; , 10°C; , 12°C; , 14°C.

Figure 4 The gonadosomatic index of Arctic charr reared at three dif-

ferent temperatures. (a, b) Results from the experiments shown in

Fig. 2a,b. (c, d) Results from the same experiment as shown in Fig. 2c,d.

The points shown outliers.
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continuous light in late winter. It is not clear whether this

photostimulation of growth could be dependent of temper-

ature or season in Arctic charr, whereas such temperature-

dependent photostimulation has been indicated in Atlantic

salmon (Imsland et al. 2017). Hence, it appears as if the

growth of Arctic charr might be less sensitive to acute pho-

tostimulation than other salmonids (Imsland et al. 2017).

Aarseth et al. (2010) suggested that this may indicate a

much stronger endogenous component in the seasonal reg-

ulation of appetite and growth in the high-latitude Arctic

charr than in more temperate species, such as the Atlantic

salmon.

The effect of photoperiod on the fish is generally medi-

ated through the diurnal cycles of the hormone melatonin

which is expressed during darkness and while expression is

suppressed in daylight (Falcon et al. 2010). The plasma

melatonin profiles of Arctic charr mirror closely the pre-

vailing photoperiod (Strand et al. 2008). At high latitudes,

plasma melatonin levels in Arctic charr are constantly low

during the summer when feeding activity is high, and high

during the dark winter when, in nature, they eat little

(Strand et al. 2008). Aarseth et al. (2010) found that, in

Arctic charr, the feed intake, growth and the timing of the

seasonal growth rhythm were not affected when summer

plasma melatonin levels were artificially increased and the

authors concluded that melatonin did not have any direct

effect on the somatotropic axis in the Arctic charr.

Nonetheless, the melatonin profile reflects the seasonal

photoperiod cycle that Arctic charr are exposed to (Strand

et al. 2008), and therefore, it seems likely that this hor-

monal system is involved in the regulation and control of

the seasonal changes in feed intake and growth.

For salmonids, it is well established that photoperiod can

be used to either advance or delay the time of maturation

(Bromage et al. 2001) and photoperiod is also used in com-

mercial fish farming to postpone or suppress maturation.

As discussed above, plasma melatonin profiles of Arctic

charr have been found to mirror environmental photope-

riod (Strand et al. 2008). Further, in other teleosts, mela-

tonin has been found to influence the release of luteinizing

hormone (LH) from the pituitary cells in vitro (Khan &

Thomas 1996), reduce dopamine levels which would result

in increased LHb secretion (Popek et al. 2005) and suppress

annual testicular function (Bhattacharya et al. 2007). How-

ever, less is known about these control mechanisms of

melatonin in Arctic charr and we suggest that this aspect of

sexual maturation control should be investigated in future

studies.

Salinity tolerance

Anadromous salmonids migrate between freshwater and

seawater. However, Salvelinus species are typically less

anadromous than the Salmo species (Spares et al. 2012,

2015). Anadromous strains of Arctic charr stay in the mar-

ine environment for a period of a few weeks during spring

or summer, often near the estuaries making sorties into the

sea and then returning to freshwater. Thus, an anadromous

riverine strain of Arctic charr may spend about 40 days in

the estuary and 25 days at sea during the summer (Jensen

& Rikardsen 2008, 2012). Under natural conditions, the

seawater tolerance of Arctic charr is limited to this short

time each year (Finstad et al. 1989; Arnesen et al. 1993b). It

should also be kept in mind that there are differences in the
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osmoregulatory capacity between landlocked and anadro-

mous strains of Arctic charr (Eliassen et al. 1998), between

different anadromous strains (Jørgensen & Arnesen 2002)

and within rearing strain (Chiasson et al. 2014). When con-

ducting research on seawater tolerance of Arctic charr, the

origin of the fish should therefore be considered. For the

anadromous Arctic charr, they typically grow rapidly dur-

ing the first part of the marine phase and increase their adi-

posity before moving back to freshwater (Rikardsen et al.

2000). Thus, the anadromous charr may return to the lake

after only 5–6 weeks in the sea, because the potential to

maintain a high growth rate in the sea is reduced (Rikard-

sen et al. 2000). On return to freshwater, the Arctic charr

either spawn during the fall or overwinter in the cold and

often food scarce environment until the next seawater

entrance (next spring/summer).

The development of hyperosmoregulatory capacity is, to

some degree, similar in Arctic charr and in Atlantic salmon

(Halvorsen et al. 1994). Anadromous salmonids adapt to

the habitat change by a transformation referred to as

smoltification which involves various behavioural, mor-

phological and biochemical changes (Wedemeyer et al.
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1980). As for Atlantic salmon, the development of seawater

tolerance for Arctic charr also takes place, while the fish are

still in freshwater (Arnesen et al. 1992; Staurnes et al. 1992;

Nilssen et al. 1997). For wild Arctic charr, the transition

between the freshwater and seawater can be an annual event

in adult life (Halvorsen et al. 1994), while for Atlantic sal-

mon the smoltification is primarily a once in lifetime event.

Improved seawater tolerance in salmonids is linked to

increases in Na+, K+-ATPase activity (NKA) in the gill tis-

sue (McCormick et al. 1996; Nilsen et al. 2003; Stefansson

et al. 2012), and common indicators to evaluate the smolt

quality in Atlantic salmon involve assessment of increase in

branchial NKA and measurement of monovalent plasma

ions following 24–72 h of seawater challenge tests

(Bj€ornsson & Bradley 2007). The onset of smoltification in

salmonids is primarily initiated by changes in environmen-

tal photoperiod and temperature that act as cues for the

initiation of the process (Duston & Saunders 1990;

Bj€ornsson et al. 1995; Stefansson et al. 2007). However, the

salinity tolerance of Arctic charr may not be under as strict

environmental control as it is in other salmonids. The

increasing day length during spring induces the hypoos-

moregulatory ability of Arctic charr under natural condi-

tions. Finstad et al. (1989) and Jørgensen & Johnsen (2014)

suggest that, as in other salmonids, the smoltification of

Arctic charr is essentially an endogenous rhythm, modu-

lated by photoperiod, which acts as a zeitgeber. However,

photoperiod does not necessarily change the salinity toler-

ance of Arctic charr. A study showed that exposing Arctic

charr to a 6-week short day period during early winter fol-

lowed by continuous light did not result in measurable dif-

ferences in neither gill NKA nor plasma Na+ levels when

compared with a control group kept at continuous light at

27 ppt during the on-growing phase (Gunnarsson et al.

2014, Fig. 7a,b). There is also evidence to suggest that the

smoltification process in Arctic charr is less affected by

rearing temperature than it is in Atlantic salmon (Bot-

teng�ard & Jørgensen 2008). The NKA pumps in Arctic

charr gills show little temperature sensitivity which may be

an adaptation to cold environment (Galarza-Munoz et al.

2011).

Norman et al. (2011) investigated the genetic basis of

salinity tolerance in Arctic charr. They used a genome-

scan approach to map quantitative trait loci (QTL) cor-

related with variation in four salinity tolerance perfor-

mance traits and six body size traits. Comparative

genomics approaches were used to infer whether allelic

variation at candidate gene loci (e.g. ATP1a1b, NKCC1,
CFTR and cldn10e) could have underlain observed vari-

ation. Among the salinity tolerance performance QTL,

trait co-localizations occurred on chromosomes 1, 4, 7,

18 and 20, while the greatest experimental variation was

explained by QTL on chromosomes 20 (19.9%), 19

(14.2%), 4 (14.1%) and 12 (13.1%). Variation in salin-

ity tolerance capacity could, therefore, be mapped to a

subset of Arctic charr genomic regions that significantly

influence performance in a seawater environment and

the study provided a foundation for more detailed can-

didate gene-based experiments. The detection of QTL

on linkage group 12 was consistent with the hypothesis

that variation in salinity tolerance may be affected by

allelic variation at the ATP1a1b locus. IGF2 may also

affect salinity tolerance capacity as suggested by a gen-

ome-wide QTL on linkage group 19. More recently,

Norman et al. (2014) found that that intraspecific varia-

tion in salinity tolerance capacity correlated with differ-

ential expression of immune response genes.

Anadromous Arctic charr can tolerate full-strength sea-

water (33–35 ppt) for approximately 2-month period dur-

ing summer but appear to lose this ability in late summer/

fall (Finstad et al. 1989). However, Arctic charr appear to

tolerate brackish water at any time of year. Comparing the

growth of Arctic charr (200–300 g) reared at salinities

between 17 and 32 ppt, Mortensen and Lund (1991) found

the highest growth rate at 20 ppt. Similar findings were

found by Chiasson et al. (2014) that investigated possible

family 9 environmental interactions in growth and sur-

vival in the Canadian Frasier strain by reared either in

freshwater or in 20 ppt for 1 year. They found that some

families reared at 20 ppt outperformed their freshwater

counterparts, but the evidence of significant treatment (FW

vs. 20 ppt) by family interaction for each trait also suggests

that rearing at brackish water (here 20 ppt) does influence

the growth performance among families differentially. In a

related study, Chiasson et al. (2015) tested whether previ-

ously identified quantitative trait loci (QTL) for body

weight and condition factor were detectable across a com-

mercial broodstock (Frasier strain) reared in both freshwa-

ter and brackish water (20 ppt). They identified variation

in body weight QTL across multiple families of Arctic charr

and this, combined with moderate heritability and genetic

correlations between full-sibs reared in fresh and brackish

water environments, indicates there is potential for genetic

improvement of growth in both environments. In another

study, Gunnarsson et al. (2014) found that Arctic charr

maintain high NKA activity and relatively stable levels of

plasma Na+ at 27 ppt, although growth rate was lower at

27 ppt than at 17 ppt. Similarly, �Arnason et al. (2014)

reported lower long-term growth at 29 ppt than at 25 ppt.

Due to the limited and seasonal seawater tolerance (Finstad

et al. 1989; Arnesen et al. 1993a, b), most of the production

of Arctic charr (on-growing) takes place either in freshwa-

ter or in brackish water. In Iceland, the bulk of the Arctic

charr farming takes place in brackish water (15–27 ppt)

during on-growing (�Arnason et al. 2014; Gunnarsson et al.

2014).
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For Arctic charr, there is still little, and fragmented,

information on the effect of salinity on the maturation pro-

cesses. �Arnason et al. (2014) found indication that rearing

Arctic charr at 25 ppt delays the onset of maturation by c.

4 months compared with rearing at 29 ppt. Similarly, Gun-

narsson (2014) also reported that gonad growth in Arctic

charr was stimulated by rearing in 27 ppt compared with

17 ppt. Sexual maturation is known to slow somatic

growth in salmonids (Damsg�ard et al. 1999; Berglund et al.

2006; Duston et al. 2007). The immature Arctic charr in the

study of Gunnarsson et al. (2014) had 35.6% higher final

mean weight than maturing fish and the elevated gonado-

somatic index levels in the 27 ppt group may therefore

have been a causative factor for their slower growth

compared with the 17 ppt group. Atse et al. (2002) found

that female broodstock of Arctic charr kept in seawater

during the summer months produced larger eggs contain-

ing more lipids and proteins than eggs from female brood-

stock in freshwater. Similarly, survival of eggs and embryos

from broodstock in seawater was higher than that of fish in

freshwater. Stress can have various effects on reproduction

depending on when in the life cycle it is experienced and

the severity and duration of the stressor (Schreck 2010).

The decision of salmonids whether or not to mature is

taken several months prior to final maturation stage. Rain-

bow trout had advanced ovulation when exposed to mild

stressor during late or the whole vitellogenic period

(Schreck et al. 2001). The rearing of Arctic charr brackish
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Figure 7 Mean (a) plasma sodium, (b) gill

NKA activity and (c) plasma leptin of untagged

juvenile Arctic charr at different measurement

dates in the period from March to December

2010. The Arctic charr was reared in freshwa-

ter for 100 days and then reared in seawater

(27 salinity) for the following 9 months. Two

photoperiod regimes: S groups (●) were given

short day (LD8:16) from 24 November to 5

January but then returned to continuous light.

C groups (---○---) were held at continuous

light at all times. The first data points are from

Arctic charr following 24-h seawater challenge

test (30 salinity), S group (▲) and C group (M),
while the subsequent samplings are from the

27 salinity treatment. Modified from Gun-

narsson et al. (2014).
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water (29 ppt, �Arnason et al. 2014; 27 ppt. Gunnarson

et al. 2014) may have had similar effects of mild stress lead-

ing to advanced maturation.

Compensatory growth and restricted feeding

Feed costs make up one of the highest single factors in the

production of salmonids as for many other species. It is

therefore of importance for the fish farmer to ensure that

the feed is consumed and is utilized efficiently for somatic

growth. In nature, the Arctic charr experience large sea-

sonal fluctuations in environmental factors and food avail-

ability. Anadromous Arctic charr show rapid growth and

can double their body weight and increase their body lipids

during few weeks in seawater in the summer (Jørgensen

et al. 1997; Jobling et al. 1998).

After migration, back to freshwater, they have to adapt

to prolonged periods of fasting and have to rely on the

body reserves acquired during the previous summer to sur-

vive until next growth period (Boivin & Power 1990; Jør-

gensen et al. 1997). The term compensatory growth (CG)

refers to a phase of accelerated growth following a period of

little or no growth when food has been withheld (Ali et al.

2003). Following refeeding after a period of starvation, fish

going through CG may reach full compensation of growth

compared with fish fed ad libitum (Ali et al. 2003). The

length of time or the severity of the feed restriction has an

effect on the outcome of trials, whether the fish can partly

or fully compensate for the weight loss when reverted to

full feeding (Jobling et al. 1993b; Jobling & Koskela 1996;

Savoie et al. 2017). Factors such as rearing temperature are

important in determining the effect of restricted feeding

regimes on CG since higher rearing temperatures lead to

higher metabolic rates which, in turn, may make the win-

dow narrower for applying restricted feeding if the aim is

to reach full compensation in growth. Studies have shown

that compensatory growth is partly a result of hyperphagia

(Ali et al. 2003; Imsland & Gunnarsson 2011), a state where

the feed intake of the previously feed-deprived or feed-re-

stricted group is significantly higher than for a group that

has been fed ad libitum. The hyperphagia response was

reported for Atlantic salmon when feeding was restored

after a period of feed restriction (Bull & Metcalfe 1997).

Hyperphagic Arctic charr may consume nearly twice as

much food as do controls fed ad libitum (Miglavs & Jobling

1989).

In addition to consuming more food, fish may show

improved feed utilization during periods of CG. Miglavs

and Jobling (1989) found improved feed conversion effi-

ciency for Arctic charr when returned to normal feeding

after a period of restricted feeding and similar response was

reported for Atlantic cod by Jobling et al. (1994). Hansen

et al. (2012) reported that feed cost could be drastically

reduced for juvenile Atlantic cod fed periodically restricted

feed rations compared with continuously fed fish without

compromising biomass growth. Quinton and Blake (1990)

reported improved feed conversion efficiency for rainbow

trout undergoing compensatory after 3 weeks of restricted

feeding. Boujard et al. (2000) reported that compensatory

growth in rainbow trout was caused by improved growth

efficiency but not higher feed intake. Savoie et al. (2017)

found that long fasting (39 and 61 days) during summer in

juvenile (80–120 g) brook charr (Salvelinus fontinalis)

resulted in full CG and adjustment in both growth and sev-

eral physiological indicators (feed conversion ratio,

organosomatic index, digestive enzymatic activities) were

more pronounced. The authors suggested that CG in juve-

nile brook charr takes place in two stages after a long star-

vation period: (i) restoration of the digestive system

followed by enzyme activities (trypsin and chymotrypsin)

and (ii) rebuilding of somatic tissues. However, not all

studies have reported improved feed utilization during

periods of CG. Speare and Arsenault (1997) found no dif-

ferences in growth efficiency between groups of rainbow

trout undergoing compensatory growth compared with

control group in a 7-week trial. Further, not all studies have

shown benefits of restricted feeding and compensatory

growth. For example, sea bream (Sparus aurata) juveniles

were unable to catch up with a control group that was fed

continuously to satiation (Ali & Jauncey 2004; Eroldogan

et al. 2008).

Cassidy et al. (2016) deprived juvenile Arctic charr

(Canadian Nauyuk strain) of food for 101 days and then

fed to satiety for 126 days. The refeeding period resulted in

compensatory growth, with a partial compensation of body

mass. The feed deprivation period leads to a decrease in

hepatosomatic index (HSI) and intestinal somatic index

(ISI). HSI and ISI were then gradually replenished during

early refeeding, following a lag phase prior to the compen-

satory growth response. mRNA transcripts regulating pro-

tein degradation via the autophagy pathway (cathepsin D

and cathepsin L) in muscle were upregulated during feed

restriction and downregulated after refeeding allowing for

greater protein accretion in muscle, facilitating compen-

satory growth. The same research group later studied possi-

ble adjustment of protein metabolism in fasting Arctic

charr (Cassidy et al. 2018) of the Canadian Fraser strain.

They found no observable effects of food deprivation on

the protease activities in any of the tissues measured (red

and white muscle, liver, heart and gills) with the exception

of liver, where the ubiquitin–proteasome pathway seemed

to be activated during fasting conditions. The authors spec-

ulated whether Arctic charr regulate protein metabolism

during food deprivation to conserve proteins.

Applying periods of restricted feeding in farming Arctic

charr could also be of interest regarding the relationship
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between adiposity, feed intake and maturation. As already

mentioned, farmers of Arctic charr frequently complain

about uneven growth. Tveiten et al. (1998) reported that

maturing Arctic charr reduced feeding once a ‘threshold

condition’ in the range of the condition index (K) of 1.4–
1.5 was attained suggesting that fish become anorexic once

sufficient energy reserves were obtained for overwintering

and or maturation.

Studies have indicated that there is a lipostatic regulation

of feed intake for various salmonids species such as Atlantic

salmon (Johansen et al. 2001, 2002, 2003), chinook salmon

(Shearer et al. 1997) and Arctic charr (Tveiten et al. 1998;

Frøiland et al. 2012) although a comprehensive under-

standing of the endocrine control of lipid homeostasis is

still lacking (Leaver et al. 2008). In mammals, appetite is

regulated through a hypothalamic integration of stimula-

tory (orexigenic) and inhibitory (anorexigenic) factors.

Although major gaps exist in our understanding of the con-

trol of food intake in fish, the regulation seems to involve

the same signalling molecules (hormones, neuropeptides)

as in mammals (Frøiland et al. 2010). Recently, Striberny

et al. (2014) investigated the possible involvement of

altered gene expression of brain neuropeptides in seasonal

appetite regulation of Arctic charr. They found that the

non-feeding Arctic charr (May, January) had a lower

expression of the anorexigenic centrally expressed leptin

(LepA1), melanocortin receptor 4 (MC4-R) and leptin

receptor (LepR) in hypothalamus and a higher expression

of the orexigenic neuropeptide Y (NPY) and agouti-related

peptide (AgRP) in mesencephalon, than the feeding charr

(July). The peptide hormone leptin is produced and

secreted from adipose tissue of mammals and appears to

function as an adiposity signal, being anorexigenic, with

plasma leptin levels decreasing with loss of fat tissue, for

example, due to food restriction (Maffei et al. 1995). There

are indications that leptin has similar anorexigenic function

in fish (Murashita et al. 2011; Striberny et al. 2014), but on

the other hand, leptin appears to be expressed mostly in

liver of salmonids fish and its plasma levels increase rather

than decrease during periods of fasting or food restriction

(Kling et al. 2009; Frøiland et al. 2012; Trombley et al.

2012). Fuentes et al. (2012) suggested that for fine flounder

(Paralichthys adspersus), plasma leptin levels are linked to

nutritional status, controlling appetite and limiting physical

activity in periods of natural food shortage. In Arctic charr,

leptin seems to be involved in the long-term regulation of

energy homeostasis, but does not function as an adiposity

signal (Frøiland et al. 2010, 2012). Higher levels of leptin

have been found to be concomitant with periods where the

overall growth rate of Arctic charr was highest (Gunnarsson

et al. 2014, Fig. 7c). Restricted feeding reduces growth and

adiposity (Einen et al. 1999; Shearer et al. 2006) but if

applied for a short time during the window of ‘critical

decision point’ for maturation it can lead to delayed matu-

ration with little effects on the final weight due to compen-

satory growth during the following full feeding period

(Taranger et al. 2010). It could, therefore, be hypothesized

that it is possible to reduce the observed growth fluctua-

tions in farming of Arctic charr with the use of restricted

feeding routines, given that the fish can reach full growth

compensation in the periods with full feeding. Application

of periodically restricted feed rations (50%) of 6 weeks fol-

lowed by full ration feeding (100%) in Arctic charr between

20 and 200 g led to full growth compensation (CG) (Ims-

land & Gunnarsson 2011). Periods of food restrictions can

affect the maturation rate of Arctic charr although results

are contrasting. Jobling et al. (1993b) reared Arctic charr

(initial size range: 28–31 g, final size range: 236–452 g) at

different intervals of either food deprivation or full ration

and found no effect on maturation ratio when beginning

the food restriction in May prior to maturation in the fol-

lowing autumn. In contrast, Imsland and Gunnarsson

(2011) reported that periodical feed restriction regimes

proved to be effective in reducing the incidence of matura-

tion with lower mean gonadosomatic index (GSI) and

plasma testosterone (T) levels (Fig. 8) during the final

stages of maturation in the feed-restricted group (Fig. 8).

Recently, Liu and Duston (2019) found that food depriva-

tion under LDN in fall (October–November) had no signif-

icant effect on maturation (♀:52%; ♂:42%) but was more

effective during winter (December–January), significantly
reducing maturity in both sexes (♀:32%; ♂:15%). Similar

results have been presented for Atlantic salmon (Thorpe

et al. 1990), Chinook salmon, Oncorhynchus tshawytscha

(Shearer et al. 2006), and Atlantic halibut (Foss et al. 2009).

In general, fish undergoing compensatory growth may uti-

lize energy and nutrients for growth that otherwise would

utilized for reproduction (Ali et al. 2003).

Conclusions: Strategies for advancing Arctic charr
farming

In this article, we have discussed the short- and long-term

effects of four environmental factors, temperature, salinity,

photoperiod and feeding regimes, on several important

farming traits of Arctic charr. Intensive aquaculture is a

high-cost production so information regarding optimal

rearing conditions resulting in high growth rate of the fish

but in the same time maintaining good product quality is

important to secure competitive production. The main

challenges in farming of Arctic charr are to ensure stable

and even growth and reduce negative effects from matura-

tion. The high-latitude Arctic charr has strong endogenous

rhythms in terms of feeding, growth and maturation that

endure even though various environmental factors are

manipulated in fish farms.
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Rearing temperature is a highly effective tool to improve

growth rate of Arctic charr, and the optimum temperature

varies with the size of fish and development (P�etursd�ottir &

Eyþ�orsd�ottir 1993; Thyrel et al. 1999; Larsson et al. 2005;

Jobling et al. 2010; Gunnarsson et al. 2011; Siikavuopio

et al. 2013). The combination of high temperatures and

high growth rate during the juvenile phase can induce early

maturation during the on-growing phase so for production

of fish >1 kg, moderate (≤10°C) or low temperatures

should be applied during the juvenile phase in order to

reduce negative effects from maturation. It should be con-

sidered that rates of feeding that result in greatest feed uti-

lizations are lower than those resulting in maximum

growth and the amounts of ingested food resulting in most

efficient feed utilizations vary with rearing temperatures

(Jobling 1994). Accordingly, to maximize feed utilization

farmers of Arctic charr should choose more moderate rear-

ing temperatures (<10°C) especially during juvenile stage.

High-latitude species such as Arctic charr experience large

seasonal changes in environmental factors such as tempera-

ture and photoperiod with subsequent seasonal fluctua-

tions in food intake and body condition (Bairlein &

Gwinner 1994; Loudon 1994). Photoperiod can be applied

in the farming environment, entraining various physiologi-

cal variables and affecting the feed intake (P�alsson et al.

1992; Sæther et al. 1996; Tveiten et al. 1996; Gunnarson

et al. 2012), growth (Mortensen & Damsg�ard 1993; Gun-

narsson et al. 2012) and maturation in Arctic charr (Frant-

zen et al. 2004). How and when the photoperiod is changed

is of importance. Altering of the photoperiod during early

phase of maturation is more likely to result in stronger syn-

chronization of both ovulation and spermiation rather than

to alter the proportion of maturing Arctic charr (Frantzen

et al. 2004). The general trend is that increased or extended

photoperiods lead to increased feeding and growth (Tveiten

et al. 1996; Boeuf & Le Bail 1999; Boeuf & Falcon 2001;

Johnston 2002). Variable photoperiod shifting between

periods with long day and short day has been shown to

have growth-inducing effects compared with rearing at

continuous light (Mortensen & Damsg�ard 1993; Siikavou-

pio et al. 2009; Gunnarsson et al. 2012). Arctic charr is

most commonly reared under continuous light throughout

the both during the juvenile stage and the on-growing

phase, but future studies are required on application of

alternate photoperiods to enhance growth. Especially, how

photoperiod manipulation can be used to reduce or work

against the endogenous growth rhythm in Arctic charr

resulting in periods with growth halt and reduced produc-

tivity.

Salvelinus species are ranked as least anadromous com-

pared with their counterparts belonging to the Salmo spe-

cies (Spares et al. 2015). Rearing of Arctic charr in seawater

or dilute seawater is of interest as it opens up for net-pen

rearing in the sea and farming in coastal land-based facili-

ties with dilute seawater resources. In Iceland, Arctic charr

has been successfully farmed during on-growing in land-

based facilities with dilute seawater in the range from 18 to

27 ppt. Development of hyperosmoregulatory capacity of

Arctic charr takes place while the fish are still in freshwater

(Arnesen et al. 1992; Staurnes et al. 1992; Nilssen et al.

1997). The smoltification process of Arctic charr is likely

under endogenous rhythm, but photoperiod is acting

merely as a zeitgeber altering the timing of the smoltifica-

tion (Jørgensen & Johnsen 2014). Photoperiod
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Figure 8 Mean (�SE) plasma values of

testosterone (T) of individually tagged female

Arctic charr reared at two feeding regimes.

Different letters indicate significant difference

between the experimental groups. Modified

from Imsland and Gunnarsson (2011). ,
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manipulation as a method to synchronize or induce smolti-

fication is not part of the current production routines prior

to rearing in dilute seawater. The salinity tolerance of Arctic

charr is positively correlated to body size (Johnston 2002),

so size at the day of transfer to seawater is of importance.

The Arctic charr seem to cope well at any time of the year

in brackish water (15–27 ppt) but with reduced growth

and feed conversion efficiency with increased salinities

(Finstad et al. 1989; Arnesen et al. 1994; Gunnarsson et al.

2014). Brackish water in the range from 15 to 27 ppt is suc-

cessfully used during the on-growing period of farmed Arc-

tic charr in Iceland, but with some negative effects in terms

of higher ratio of maturing fish in groups at higher salinity

(29 ppt �Arnason et al. 2014; 27 ppt Gunnarsson et al.

2014).

Feed costs make up one the highest single factors in the

production of Arctic charr as for many other species. Good

feed utilization is therefore an important element in suc-

cessful Arctic charr farming. There are many factors that

affect growth rate, feed intake and feed utilization efficiency

in Arctic charr farming as we have discussed such as rearing

temperature, photoperiod and salinity. Feeding techniques

such as rearing Arctic charr at periodically restricted feed

rations can be an effective tool to reduce feeding costs.

Periodical feed restrictions followed by full ration can

improve the overall feed conversion efficiency and reduce

early maturation compared with the full ration groups

(Imsland & Gunnarsson 2011).

Future studies in the field should be directed at inves-

tigating how the growth advantage of farmed juvenile

Arctic charr reared at optimum temperature can be

transferred successfully into the on-growing period with-

out the observed negative effect on growth (Gunnarsson

et al. 2011) when transferred down in temperature

regime and negative effects from induced early matura-

tion. Studies of interest could include interacting effects

of different environmental factors such as rearing tem-

perature and photoperiod and their effects on growth

and maturation as well as further investigations exploring

the effects of feeding regimes on important farming

traits. The theme in these studies should focus on how

the great scope of growth during the juvenile phase can

be extended into the on-growing period. Future studies

should also focus on better understanding the develop-

ment of smoltification of Arctic charr and how this can

be manipulated to improve the performance of Arctic

charr during on-growing in brackish water or seawater.

Future studies should also address the question of

genetic variability inside and among Arctic charr popula-

tions and discuss whether these genetic traits could affect

the phenotypic plasticity and the responses of phenotypic

traits to modulation of environment to optimize produc-

tivity as well-being of fish.
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